

2 Supplemental Figure S1. The JA signal positively regulates the hydrolysis rate of
3 glucosinolates.

(A) and (B) Hydrolysis rate of aliphatic glucosinolates (A) and indole glucosinolates 4 (B) at different times after different concentrations of MeJA pretreatment for 72 h. 5 (C) and (D) Hydrolysis rate of aliphatic glucosinolates (C) and indole glucosinolates 6 7 (D) at different times of 21-old-day seedlings of different genetic materials of JA synthesis and signal molecules after 100 µM of MeJA pretreatment for 72 h. 8 A-D, seedlings of 21-day-old plants were crushed in water to allow a breakdown of 9 10 glucosinolates by myrosinase. Myrosinase activity was stopped by heat inactivation at 11 the indicated time points and the remaining glucosinolates were extracted. For details 12 on calculating the hydrolysis rate of glucosinolate, see the method section. Values are means  $\pm$  SEM of eight independently grown plants. The experiments were repeated at 13 14 least three times with similar results. Different letters represent significant differences 15 (P < 0.05, Student's t-test).

16

1



40 Supplemental Figure S2. Expression levels of JA-unaffected and -downregulated

- 41 myrosinase genes.
- 42 Expression levels of TGG2, TGG4, TGG5, BGLU19, BGLU20, BGLU25, PEN2,
- 43 BGLU29, BGLU31, and BGLU33 of 21-day-old seedlings of wild-type (Col-0) and

| 44 | <i>coil-2</i> were treated with 100 $\mu$ M of MeJA for the indicated time periods. The treated |
|----|-------------------------------------------------------------------------------------------------|
| 45 | plants were harvested for total RNA extraction and RT-qPCR assays. Means $\pm$ SEM              |
| 46 | are relative values obtained from three technical replicates. Different letters represent       |
| 47 | significant differences ( $P < 0.05$ , Student's <i>t</i> -test).                               |
| 48 |                                                                                                 |
| 49 |                                                                                                 |
| 50 |                                                                                                 |
| 51 |                                                                                                 |
| 52 |                                                                                                 |
| 53 |                                                                                                 |
| 54 |                                                                                                 |
| 55 |                                                                                                 |
| 56 |                                                                                                 |
| 57 |                                                                                                 |
| 58 |                                                                                                 |
| 59 |                                                                                                 |
| 60 |                                                                                                 |
| 61 |                                                                                                 |
| 62 |                                                                                                 |
| 63 |                                                                                                 |
| 64 |                                                                                                 |
| 65 |                                                                                                 |
| 66 |                                                                                                 |
| 67 |                                                                                                 |
| 68 |                                                                                                 |
| 69 |                                                                                                 |
| 70 |                                                                                                 |
| 71 |                                                                                                 |
| 72 |                                                                                                 |
| 73 |                                                                                                 |





Supplemental Figure S4. The phenotypes of 21-day-old *FAMA* mutants and
overexpression plants in JA-regulated myrosinase activity.

93 (A) and (B) The expression levels of *FAMA* of five-day-old seedlings of indicated

94 genotypes (A) and *FAMA* of 21-day-old seedlings of indicated genotypes. Plants of

95 different growth stages were harvested for total RNA extraction and RT-qPCR assays.

96 Means  $\pm$  SEM are relative values obtained from three technical replicates; different

```
97 letters represent significant differences (P < 0.05, Student's t-test).
```

98 (C) and (D) Myrosinase activity (C) and expression levels of TGG1 (D) of 21-day-old

99 seedlings of the indicated genotypes after treating with 100  $\mu$ M of MeJA for 24 h.

- 100 Values are means  $\pm$  SEM of 8 to 16 plants. The experiments were repeated at least
- 101 three times with similar results. Different letters represent significant differences (P <
- 102 0.05, Student's *t*-test).
- 103
- 104





124 glucosinolates.

125 (A) and (B) Hydrolysis rate of aliphatic glucosinolates (A) and indole glucosinolates (B) at different times of five-old-day seedlings of indicated genetic plants after 100 126 µM of MeJA pretreatment for 72 h. Seedlings of five-day-old plants were crushed in 127 water to allow a breakdown of glucosinolates by myrosinase. Myrosinase activity was 128 stopped by heat inactivation at the indicated time points and the remaining 129 glucosinolates were extracted. For details on calculating the hydrolysis rate of 130 glucosinolate, see the method section. Values are means  $\pm$  SEM of eight 131 independently grown plants. The experiments were repeated at least three times with 132 133 similar results. Different letters represent significant differences (P < 0.05, Student's 134 *t*-test).





154 hydrolysis rate of glucosinolates of *coil-2* mutant.

155 (A) and (B) Hydrolysis rate of aliphatic glucosinolates (A) and indole glucosinolates

156 (B) at different times of five-old-day seedlings of indicated genetic plants after 100

157  $\mu$ M of MeJA pretreatment for 72 h. Seedlings of five-day-old plants were crushed in

158 water to allow a breakdown of glucosinolates by myrosinase. Myrosinase activity was

- stopped by heat inactivation at the indicated time points and the remaining
- 160 glucosinolates were extracted. For details on calculating the hydrolysis rate of
- 161 glucosinolate, see the method section. Values are means  $\pm$  SEM of eight

162 independently grown plants. The experiments were repeated at least three times with

- similar results. Different letters represent significant differences (P < 0.05, Student's
- 164 *t*-test).



165



167 glucosinolates.

168 (A) and (B) Hydrolysis rate of aliphatic glucosinolates (A) and indole glucosinolates

169 (B) at different times of 21-old-day seedlings of indicated genetic plants after 100  $\mu$ M

170 of MeJA pretreatment for 72 h. Seedlings of 21-day-old plants were crushed in water

to allow a breakdown of glucosinolates by myrosinase. Myrosinase activity was

stopped by heat inactivation at the indicated time points and the remaining

173 glucosinolates were extracted. For details on calculating the hydrolysis rate of

174 glucosinolate, see the method section. Values are means  $\pm$  SEM of eight

175 independently grown plants. The experiments were repeated at least three times with

- similar results. Different letters represent significant differences (P < 0.05, Student's
- 177 *t*-test).



Supplemental Figure S8. JA repressed the occupation of FAMA on the G-box likeregion in the promoter of *TGG2*.

181 (A) Schematic diagram of *TGG2* indicating the amplicons and probe used for the

182 ChIP-qPCR assay. Positions of the transcription start site (TSS) and transcription

183 termination site (TTS) are indicated with thin red bars.

184 (B) ChIP-qPCR assays showing that FAMA associates with the *TGG2* locus. The

185 chromatin of transgenic plants expressing *ProFAMA: FAMA-GFP* or 35S<sub>pro</sub>: GFP was

- 186 immunoprecipitated with an anti-GFP antibody, and *35Spro: GFP* plants served as
- 187 control. Immunoprecipitated chromatin was analyzed by RT-qPCR using primers

- 188 corresponding to the amplicons represented by the schematic diagram of *TGG2* (A).
- 189 ChIP signal was displayed as the percentage of total input DNA. Means  $\pm$  SEM are
- 190 relative values obtained from three technical replicates; different letters represent
- 191 significant differences (P < 0.05, Student's *t*-test).
- 192 (C) Dynamic recruitment of FAMA to the TGG2 locus. ChIP assays were performed
- as in (B), except that *ProFAMA: FAMA-GFP* and 35S<sub>pro</sub>: GFP plants were treated
- 194 with 100  $\mu$ M of MeJA for 30 min before cross-linking. Means  $\pm$  SEM are relative
- values obtained from three technical replicates; different letters represent significant
- 196 differences (P < 0.05, Student's *t*-test).
- 197
- 198



Supplemental Figure S9. FAMA did not bind the promoters of *BGLU18*, *PYK10*, or *BGLU28*.

228 (A) Schematic diagram of *BGLU18* indicating the amplicons and probe used for the

- 229 ChIP-qPCR assay. Positions of the transcription start site (TSS) and transcription
- 230 termination site (TTS) are indicated with thin red bars.
- 231 (B) ChIP-qPCR assays showing that FAMA does not associate with the *BGLU18*
- 232 locus. *ProFAMA: FAMA-GFP* and 35S<sub>pro</sub>: GFP plants were first treated with 100 μM
- of MeJA for 30 min, and then the chromatins of the treated plants were
- immunoprecipitated with an anti-GFP antibody, and 35Spro: GFP plants served as
- 235 control. Immunoprecipitated chromatin was analyzed by RT-qPCR using primers
- corresponding to the amplicons represented by the schematic diagram of BGLU18
- 237 (A). ChIP signal was displayed as the percentage of total input DNA. Means  $\pm$  SEM
- are relative values obtained from three technical replicates.
- 239 (C) Schematic diagram of *PYK10* indicating the amplicons and probe used for the
- 240 ChIP-qPCR assay. Positions of the transcription start site (TSS) and transcription
- termination site (TTS) are indicated with thin red bars.
- 242 (D) ChIP-qPCR assays showing that FAMA does not associate with the *PYK10* locus.
- 243 *ProFAMA: FAMA-GFP* and 35S<sub>pro</sub>: GFP plants were first treated with 100 μM of
- 244 MeJA for 30 min, and then the chromatins of the treated plants were
- immunoprecipitated with an anti-GFP antibody, and 35Spro: GFP plants served as
- control. Immunoprecipitated chromatin was analyzed by RT-qPCR using primers
- corresponding to the amplicons represented by the schematic diagram of *PYK10* (A).
- 248 ChIP signal was displayed as the percentage of total input DNA. Means  $\pm$  SEM are
- 249 relative values obtained from three technical replicates.
- 250 (E) Schematic diagram of *BGLU28* indicating the amplicons and probe used for the
- 251 ChIP-qPCR assay. Positions of the transcription start site (TSS) and transcription
- termination site (TTS) are indicated with thin red bars.
- 253 (F) ChIP-qPCR assays showing that FAMA does not associate with the *BGLU28*
- 254 locus. *ProFAMA: FAMA-GFP* and 35S<sub>pro</sub>: GFP plants were first treated with 100 μM
- of MeJA for 30 min, and then the chromatins of the treated plants were
- immunoprecipitated with an anti-GFP antibody, and 35Spro: GFP plants served as
- 257 control. Immunoprecipitated chromatin was analyzed by RT-qPCR using primers
- corresponding to the amplicons represented by the schematic diagram of BGLU28

- 259 (A). ChIP signal was displayed as the percentage of total input DNA. Means  $\pm$  SEM
- 260 are relative values obtained from three technical replicates.





264 Supplemental Figure S10. FAMA bound the promoters of *BGLU30*.

265 (A) Schematic diagram of *BGLU30* indicating the amplicons and probe used for the

266 ChIP-qPCR assay. Positions of the transcription start site (TSS) and transcription

267 termination site (TTS) are indicated with thin red bars.

268 (B) ChIP-qPCR assays showing that FAMA associates with the *BGLU30* locus.

269 ProFAMA: FAMA-GFP and 35Spro: GFP plants were first treated with 100 µM of

270 MeJA for 30 min, and then the chromatins of the treated plants were

271 immunoprecipitated with an anti-GFP antibody, and 35Spro: GFP plants served as

272 control. Immunoprecipitated chromatin was analyzed by RT-qPCR using primers

- 273 corresponding to the amplicons represented by the schematic diagram of *BGLU30*
- 274 (A). ChIP signal was displayed as the percentage of total input DNA. Means  $\pm$  SEM
- are relative values obtained from three technical replicates.
- 276

| Primer name | Sequence (5'-3')       | Purpose |
|-------------|------------------------|---------|
| TGG1-RT-F   | CGTTGATGTTTACAGGACGAAA |         |
| TGG1-RT-R   | CAGTTGCATCTTTGCTCTCTTG |         |
| TGG2-RT-F   | TGGCAGAAAGATCTAGACGTGA |         |
| TGG2-RT-R   | TTCCTTTTGGAAGGATTCTTGA |         |
| TGG4-RT-F   | TCCCCAAACTTTAGAAGACGAA |         |
| TGG4-RT-R   | GTTGCAAGAGAGAAAGGCTGAT |         |
| TGG5-RT-F   | ACGCTGAGCTTCTATTCCAAAG |         |
| TGG5-RT-R   | CCAGAATCTCCTCCAAGTTCAC |         |
| BGLU18-RT-F | GGGACACAAGATCACAACAGAA |         |
| BGLU18-RT-R | CCACTCAAAGTTGTCCATCAAA |         |
| BGLU19-RT-F | CTGTGGGACATCTACACCAAGA |         |
| BGLU19-RT-R | CCATCAGTGTTCAGCTTTTTCA |         |
| BGLU20-RT-F | GTTTTTCACTGGGACACTCCTC |         |
| BGLU20-RT-R | TGATCCAATGCTTCACTTTGTC |         |
| PYK10-RT-F  | ATACGCAAATCCGGAAATTATG |         |
| PYK10-RT-R  | TTATGATCAGCGGTACCAACAG |         |
| BGLU21-RT-F | CTCAATCGCATGGTCAAGAATA |         |
| BGLU21-RT-R | ATCGATGAGCTCGTGGTAGAAT |         |
| BGLU22-RT-F | CTCAATCGCATGGTCAAGAATA | Gene    |
| BGLU22-RT-R | CAGGTCGTGGTAGAATTTCACA |         |
| BGLU24-RT-F | ACTTTGAGTGGCAAGATGGTTT |         |
| BGLU24-RT-R | CTCATGACGTGTGAGGTTGTTT |         |
| BGLU25-RT-F | TCAAAGTCCAATGTGGTTTGAG |         |
| BGLU25-RT-R | CCTGAGGGTAATCTCCATGTGT |         |
| PEN2-RT-F   | TCGCTTTTCGTGAAGAGTATCA |         |
| PEN2-RT-R   | TCCACTCTGATCCTCCTTGTTT |         |
| BGLU27-RT-F | CTTGGCCTAGGATTTTTCCTCT |         |
| BGLU27-RT-R | GCGAGAGGTGTTATTCCGTTAG |         |
| BGLU28-RT-F | TTCCCGATAATTTTGTTTTTGG |         |
| BGLU28-RT-R | GGTTCTTTCTGGAAAAGTGTGG |         |
| BGLU29-RT-F | AAATCGCAGTAACCACGAAACT |         |
| BGLU29-RT-R | AGAACTCTTCGCAAACCTTCTG |         |
| BGLU30-RT-F | TACCCAGTGGAAAGCTAAAGGA |         |
| BGLU30-RT-R | ATGATAGAGCGTCATCGAAGGT |         |
| BGLU31-RT-F | GGGTCGATGTTCTAAATGGGTA |         |
| BGLU31-RT-R | TTTCCTGAACTCTTCAACAGCA |         |
| BGLU32-RT-F | AATGGATCAGTGACACGTGAAG |         |

## **Supplemental Table S1.** Primers used in this study.

| BGLU32-RT-R                 | ATCCAACAATGACCATGTGAAA                     |     |  |
|-----------------------------|--------------------------------------------|-----|--|
| BGLU33-RT-F                 | CAAATTCTTGCTCATCTTGCTG                     |     |  |
| BGLU33-RT-R                 | ACGTCTTCACTCGAATTTGGAT                     |     |  |
| FAMA-RT-F                   | GGTGAAGAGCAAGAGGAAGAGA                     |     |  |
| FAMA-RT-R                   | AGCCAGGCATGAGAGATCTAAG                     |     |  |
| ACT7-RT-F                   | CCATTCAGGCCGTTCTTTC                        |     |  |
| ACT7-RT-R                   | CGTTCTGCGGTAGTGGTGA                        |     |  |
| pGADT7-FAMA-NdeI-F          | GGAATTCcatatgATGGATAAAGATTACT<br>CGGCAC    |     |  |
| pGADT7-FAMA-BamHI-R         | CGCggatccTCAAGTAAACACAATATTT<br>CCC        |     |  |
| pGADT7-FAMA<br>head-NdeI-F  | GGAATTCcatatgATGGATAAAGATTACT<br>CGGCAC    |     |  |
| pGADT7-FAMA<br>head-BamHI-R | CGCggatccCCACTTCTTCGCTGGTCTTG<br>C         |     |  |
| pGADT7-FAMA tail-NdeI-F     | GGAATTCcatatgATGGCAAGACCAGCG<br>AAGAAGTG   |     |  |
| pGADT7-FAMA<br>tail-BamHI-R | CGCggatccTCAAGTAAACACAATATTT<br>CCC        |     |  |
| pGADT7-MUTE-NdeI-F          | GGAATTCcatatgATGTCTCACATCGCTG<br>TTGAA     |     |  |
| pGADT7-MUTE-BamHI-R         | CGCggatccTTAATTGGTAGAGACGATC<br>AC         |     |  |
| pGADT7-SPCH-NdeI-F          | GGAATTCcatatgATGCAGGAGATAATA<br>CCGGAT     | Y2H |  |
| pGADT7-SPCH-BamHI-R         | CGCggatccCTAGCAGAATGTTTGCTGA<br>AT         |     |  |
| pGBKT7-JAZI-EcoRI-F         | TCgaattcATGTCGAGTTCTATGGAAT                |     |  |
| pGBKT7-JAZI-SalI-R          | TTAgtcgacgTATTTCAGCTGCTAAACCG              |     |  |
| pGBKT7-JAZ2-EcoRI-F         | GCgaattcATGTCGAGTTTTTTCTGCCGAG<br>TGTTGGGA |     |  |
| pGBKT7-JAZ2-SalI-R          | CTTgtcgacgCCGTGAACTGAGCCAAGCT<br>GGGTTA    |     |  |
| pGBKT7-JAZ3-EcoRI-F         | TCgaattcATGGAGAGAGAGATTTTCTCGGG            |     |  |
| pGBKT7-JAZ3-SalI-R          | TTAgtcgacgGGTTGCAGAGCTGAGAGA<br>AGAA       |     |  |
| pGBKT7-JAZ4-EcoRI-F         | GCgaattcATGGAGAGAGAGATTTTCTCGG<br>GCTGGGAT |     |  |
| pGBKT7-JAZ4-SalI-R          | CTTgtcgacgGTGCAGATGATGAGCTGG<br>AGGACA     |     |  |
| pGBKT7-JAZ5-EcoRI-F         | GCgaattcATGTCGTCGAGCAATGAAAA<br>TGCTAAGGCA |     |  |

| pGBKT7-JAZ5-SalI-R      | CTTgtcgacgTAGCCTTAGATCGAGATCT<br>TTCGA    |          |
|-------------------------|-------------------------------------------|----------|
| pGBKT7-JAZ6-EcoRI-F     | GCgaattcATGTCAACGGGACAAGCGCC<br>GGAGAAGT  |          |
| pGBKT7-JAZ6-SalI-R      | CTTgtcgacgAAGCTTGAGTTCAAGGTTT<br>TTGGA    |          |
| pGBKT7-JAZ7-EcoRI-F     | gaattcATGATCATCATCATCAAAAAACTG<br>C       |          |
| pGBKT7-JAZ7-SalI-R      | CTTgtcgacgTCGGTAACGGTGGTAAGG<br>GGA       |          |
| pGBKT7-JAZ8-EcoRI-F     | GGgaattcATGAAGCTACAGCAAAATTG<br>TGACTTGGA |          |
| pGBKT7-JAZ8-PstI-R      | AAActgcaggTCGTCGTGAATGGTACGG<br>TGAAGTA   |          |
| pGBKT7-JAZ9-EcoRI-F     | gaattcATGGAAAGAGATTTTCTGGGTTT<br>G        |          |
| pGBKT7-JAZ9-SalI-R      | CTTgtcgacgTGTAGGAGAAGTAGAAGA<br>GTAATT    |          |
| pGBKT7-JAZI0-EcoRI-F    | GCgaattcATGTCGAAAGCTACCATAGA<br>ACTCGA    |          |
| pGBKT7-JAZI0-SalI-R     | CTTgtcgacgGGCCGATGTCGGATAGTAA<br>GGA      |          |
| pGBKT7-JAZII-EcoRI-F    | GCgaattcATGGCTGAGGTAAACGGAGA<br>TTT       |          |
| pGBKT7-JAZII-SalI-R     | CTTgtcgacgTGTCACAATGGGGGCTGGTT<br>TCA     |          |
| pGBKT7-JAZI2-EcoRI-F    | GGgaattcATGACTAAGGTGAAAGATGA<br>GCCA      |          |
| pGBKT7-JAZI2-SalI-R     | CTTgtcgacgAGCAGTTGGAAATTCCTCC<br>TT       |          |
| pGBKT7-JAZI Jas-EcoRI-F | TCgaattcATGCTTAGCCAAGAATCAAAC             |          |
| pGBKT7-JAZI Jas-SalI-R  | TTAgtcgacTATTTCAGCTGCTAAACCG              |          |
| pGBKT7-JAZI NT-EcoRI-F  | TCgaattcATGTCGAGTTCTATGGAAT               |          |
| pGBKT7-JAZI NT-SalI-R   | TTAgtcgacGGTGCAGTTTGAGACTCTG<br>G         |          |
| pGBKT7-JAZI ZIM-EcoRI-F | TCgaattcATGAGAGTCTCAAACTGCACC             |          |
| pGBKT7-JAZI ZIM-SalI-R  | TTAgtcgacGCTATTAGCGGTGCCTTTGC             |          |
| ChIP-TGG1-A-F           | GGCTCGTGATGAATGGCAAAC                     |          |
| ChIP-TGG1-A-R           | CATATTAGAAATATGATCAAG                     |          |
| ChIP-TGG1-B-F           | GGACAAGAAATCTATTTTTG                      | ChIP-PCR |
| ChIP-TGG1-B-R           | GTTTTCAAATAGGTTCTTCTC                     |          |
| ChIP-TGG1-C-F           | CACATTAAAATGATCAATTG                      |          |

| ChIP-TGG1-C-R   | GAATCCCGTGGGATTGCTTAC  |  |
|-----------------|------------------------|--|
| ChIP-TGG1-D-F   | GGTTTGTCGCTTGCATGGTTG  |  |
| ChIP-TGG1-D-R   | GAGATTACTATGAATATATAG  |  |
| ChIP-TGG1-E-F   | CTTTATTTTCTCAGTTCAATG  |  |
| ChIP-TGG1-E-R   | CTCAGTGACATATATTAAAGG  |  |
| ChIP-TGG1-F-F   | GATGCATGAAATATCCAATCC  |  |
| ChIP-TGG1-F-R   | CAATACATATGGTAGAAAAAG  |  |
| ChIP-TGG2-A-F   | TTGAAACGATTAAAAAGTGC   |  |
| ChIP-TGG2-A-R   | CACCGCTGACATCACATATC   |  |
| ChIP-TGG2-B-F   | CCAATCCAACCCAAATTGAC   |  |
| ChIP-TGG2-B-R   | GACAAAAATGTACGCGAAAT   |  |
| ChIP-TGG2-C-F   | GCTTGAGATAAAGAAATTTTC  |  |
| ChIP-TGG2-C-R   | GGGTTCACGTACACGTACTC   |  |
| ChIP-TGG2-D-F   | TGTGAAAGGTGCATGTGATG   |  |
| ChIP-TGG2-D-R   | CAGGTCCAATCTTCCCTCCT   |  |
| ChIP-TGG2-E-F   | CTTGCTCCATAGATAAAAGG   |  |
| ChIP-TGG2-E-R   | CCCCATCCCATGGCATAATG   |  |
| ChIP-BGLU18-A-F | TTACCAATTTAAAAAACCTTAA |  |
| ChIP-BGLU18-A-R | GTTACAAAGGCAATCTAGTC   |  |
| ChIP-BGLU18-B-F | TAAAAATGAAGGTGAGTTTTTG |  |
| ChIP-BGLU18-B-R | CTAAACCAAAAAAGCTGATC   |  |
| ChIP-BGLU18-C-F | ΑΤΤΤΑΑΑΑΤCΤΤΑΑΑΤΤΑΑΤΤ  |  |
| ChIP-BGLU18-C-R | CTTATTGGCTTTCGTATTGCG  |  |
| ChIP-BGLU18-D-F | TGTTATAGTGCTTTTGCAATT  |  |
| ChIP-BGLU18-D-R | CTCTATTTCTCTACCACGAAA  |  |
| ChIP-BGLU18-E-F | TTTTGTTGAAAGCCAATGAC   |  |
| ChIP-BGLU18-E-R | ΑΤCTTAATTTATTATTATTATT |  |
| ChIP-BGLU18-F-F | AACATAGATAAGTTTTTTTTTA |  |
| ChIP-BGLU18-F-R | CAATACGTAAATATATGAATG  |  |
| ChIP-BGLU18-G-F | AGTTTTTGATTAAATGTAAAT  |  |
| ChIP-BGLU18-G-R | CTTCACACTTTACTCTGCTTT  |  |
| ChIP-BGLU18-H-F | CTTGAAATGTGGATGGTGTG   |  |
| ChIP-BGLU18-H-R | CTTGCTGGTTGTAAAATTGC   |  |
| ChIP-BGLU18-I-F | AAATTTCATTAAATAAAAGAT  |  |
| ChIP-BGLU18-I-R | GCATTAATTATCACACGAATA  |  |
| ChIP-BGLU18-J-F | TAATGTACTAAGTAGTGACTA  |  |
| ChIP-BGLU18-J-R | TTTTCAATTTTCTTTCCAAGTG |  |
| ChIP-PYK10-A-F  | GAGAAGATAACGAGAAAAAAAG |  |
| ChIP-PYK10-A-R  | GTTTTACACCATGCCAAATTG  |  |
| ChIP-PYK10-B-F  | TACACAAACAGCCTTTCTTTC  |  |

| ChIP-PYK10-B-R  | CCAAAACGTGTACATCCGCTC     |  |
|-----------------|---------------------------|--|
| ChIP-PYK10-C-F  | TGTGGGTGCGAGTTCCACATC     |  |
| ChIP-PYK10-C-R  | TGCAGTGGCGAGTCCAAAAAC     |  |
| ChIP-PYK10-D-F  | ACGAAGTGTACCAACAACTTG     |  |
| ChIP-PYK10-D-R  | CTAAGCCGAGCGCATGCGTAAC    |  |
| ChIP-PYK10-E-F  | ATTTGGTCCCCAACAGTCGAAA    |  |
| ChIP-PYK10-E-R  | CTGTAGTACTGAATAAATCTT     |  |
| ChIP-PYK10-F-F  | TTTAATATTGTTTTGACTTTTT    |  |
| ChIP-PYK10-F-R  | TAAGACATGTCTATCAGATAA     |  |
| ChIP-PYK10-G-F  | ATTGGGAAATATGCTCTAAGA     |  |
| ChIP-PYK10-G-R  | GTATAATACTATCTCGTGTTT     |  |
| ChIP-PYK10-H-F  | TCCATTCTTTCATTATCGGAG     |  |
| ChIP-PYK10-H-R  | TAGTAATATCCAGTAATACCA     |  |
| ChIP-PYK10-I-F  | AATAAAATAATCATATAAATT     |  |
| ChIP-PYK10-I-R  | ТАТТGTTTCTTTACCTTTTTA     |  |
| ChIP-PYK10-J-F  | TACAACCTATAACGTCAATAT     |  |
| ChIP-PYK10-J-R  | TTTTACATATCGAAGACGTTC     |  |
| ChIP-BGLU28-A-F | GGCTCTGAATTTTTTTTTTTTTTTT |  |
| ChIP-BGLU28-A-R | GTTTGATACAAATTCTGCTTG     |  |
| ChIP-BGLU28-B-F | TTTTCTTGTGTATCAAACAAA     |  |
| ChIP-BGLU28-B-R | GTAGTAGTAACTTAGAAATTA     |  |
| ChIP-BGLU28-C-F | AATATTATTCTCTACGACCC      |  |
| ChIP-BGLU28-C-R | GTCTTTGGATCAGATTCAGG      |  |
| ChIP-BGLU28-D-F | TTATGCACGGTTTGATGTAAA     |  |
| ChIP-BGLU28-D-R | GAATGAGAATGAGTTTGTTGC     |  |
| ChIP-BGLU28-E-F | ATTCTCTTAATCAAAATGATT     |  |
| ChIP-BGLU28-E-R | TAGCCCATTAAGATAATGTTC     |  |
| ChIP-BGLU28-F-F | AGCTTTCCCAATTTGACCATG     |  |
| ChIP-BGLU28-F-R | GTATGATTTACAAGCAGGCG      |  |
| ChIP-BGLU28-G-F | AGGAATGAATTTAAGTATTTT     |  |
| ChIP-BGLU28-G-R | ATGACATCAAAGATTAATTCC     |  |
| ChIP-BGLU28-H-F | TTCCTTGTGGAATCGGAATTG     |  |
| ChIP-BGLU28-H-R | ATTACAATCCAAACCCTTTTTG    |  |
| ChIP-BGLU28-I-F | GACACACACTTATTTCTATAG     |  |
| ChIP-BGLU28-I-R | ΤΑΑCΤΤΑΑΤΤΑΑCΑΤΤΑΑΑC      |  |
| ChIP-BGLU30-A-F | AAATTAATTCAACGTTTAGTG     |  |
| ChIP-BGLU30-A-R | TTAATCGAGTATTATTAGCTC     |  |
| ChIP-BGLU30-B-F | AAAGATATTTTTTGACTTTC      |  |
| ChIP-BGLU30-B-R | TTTAGTAAATTATACATTTC      |  |
| ChIP-BGLU30-C-F | AGGGAGGGACAAGACAAAAAA     |  |

| ChIP-BGLU30-C-R       | GAGTGCAGATTTTGTATGGAAG               |              |
|-----------------------|--------------------------------------|--------------|
| ChIP-BGLU30-D-F       | AGTAAAAAGAAATTATGTATTG               |              |
| ChIP-BGLU30-D-R       | CAATACTACCCTCTGTTAAATT               |              |
| ChIP-BGLU30-E-F       | GATTCTAGAAACCTAAGAATA                |              |
| ChIP-BGLU30-E-R       | ACTAAATTTATTTTTATTTTAT               |              |
| ChIP-BGLU30-F-F       | AATAGTATAATTAAATATGTA                |              |
| ChIP-BGLU30-F-R       | GATTTTAATTGCTTAGAAACA                |              |
| ChIP-BGLU30-G-F       | TTATCAAAACTTCATTGCCC                 |              |
| ChIP-BGLU30-G-R       | ATTTGTGTGTAAAGTAATGTT                |              |
| ChIP-BGLU30-H-F       | ATATGATTATATATACATATG                |              |
| ChIP-BGLU30-H-R       | CATAAGATTTCTTTCCAAGG                 |              |
| FAMA-nLuc-BamHI-F     | CGGggtaccATGGATAAAGATTACTCGG<br>CAC  |              |
| FAMA-nLuc-SalI-R      | ACGCgtcgacTCAAGTAAACACAATATT<br>TCCC |              |
| cLuc-JAZI-BamHI-F     | CGGggtaccATGTCGAGTTCTATGGAAT<br>G    | Firefly      |
| cLuc-JAZI-PstI-R      | AActgcagTCATATTTCAGCTGCTAAAC         | luciferase   |
| cLuc-JAZ9-BamHI-F     | CGGggtaccATGGAAAGAGATTTTCTGG<br>G    | on imaging   |
| cLuc-JAZ9-PstI-R      | AActgcagTTATGTAGGAGAAGTAGAAG         | assay        |
| TGGIPro-LUC-HindIII-F | CCCaagcttAGAAGGATAGAATTATGTTT<br>TG  |              |
| TGGIPro-LUC-PstI-R    | TAActgcagGGTTTATTAGTAGTGTGTAT<br>G   |              |
| pMAL-C2X-FAMA-BamHI-F | CGggatccATGGATAAAGATTACTCGGC         |              |
| pMAL-C2X-FAMA-PstI-R  | GCctgcagTCAAGTAAACACAATATTTC         | Protein      |
| pET32a-JAZI-SalI-F    | GCgtcgacATGTCGAGTTCTATGGAATG         | purification |
| pET32a-JAZI-XhoI-R    | CCGctcgagTCATATTTCAGCTGCTAAAC        |              |