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Solving the optimal controls using Pontryagin’s minimum
principle

Consider the optimal control problem

min
u∈U

∫ T

0

S(t, u(t))µ(u)dt, U = [0, uMTD] (1)

with µ(u) = µ0 + αu(t), subject to the dynamics{
Ṡ = f = rS(1− S+R

K )S − d(u)S − µ(u)S; S(0) = 1

Ṙ = g = rR(1− S+R
K )R+ µ(u)S; R(0) = 0.

(2)

where d(u) = dmax

(
1− 1

1+(u
h )k

)
is fixing the pharmacodynamics of the drug. The

problem can be solved with two alternative methods based either on Pontryagin’s
minimum principle or Hamilton-Jacobi-Bellman equation. The Pontryagin’s minimum
principle is based on the variational approach and proceeds by defining the Hamiltonian
as

H = L(t, S, u) + λ1f + λ2g, (3)

where L(t, S, u) := S(t, u(t))µ(u) is the Lagrangian cost functional and the multipliers
(costate variables) satisfy the following equations:λ̇1 = −HS = −µ(u)− λ1

(
rS(1− 2S+R

K )− d(u)− µ(u)
)
− λ2

(
µ(u)− rR R

K

)
;

λ̇2 = −HR = λ1rS
S
K − λ2

(
rR(1− 2R+S

K )
)
,

(4)

with boundary conditions
λ1(T ) = 0 = λ2(T ). (5)

The optimal control strategy uopt(t) is found by studying the function

Hu(t) = S(t)
(
α− λ1

(
d′(u) + α

)
+ λ2α

)
, (6)

whose roots, should they exist, determine the singular controls. (If no roots exists, then
the optimal control reduces to so-called bang-bang controls.) Using the parameters given
in Table 1 (in main text), two separate roots appear; the first root can be excluded
using the Legendre-Clebsch condition (Huu < 0) [1]. The candidate optimal control
u∗(S,R, λ1, λ2) must then be iterated using e.g. the Forward-Backward-Sweep
Method [2], where the state variables are first solved forward in time using dynamics (2)
and then the multipliers are solved backwards in time using dynamics (4) with the
updated variables. The numerical solution to the problem together with the trajectories
and multipliers are showed in S1 Fig.
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Time-independent control laws from Hamilton-Jacobi-Bellman
equation

Notice that since the Lagrangian cost functional L(t, S, u) does not depend on the
number of resistant cells R, we need not explicitly track them. This is because we
assume resistant cells are initially so rare that the competitive interactions on the
sensitive cell growth is negligible (note that the opposite is not true). If this assumption
would be violated, then the cost functional itself would lose its usefulness and the object
of the treatment should rather focus in the containment and management of the already
present resistance and not its de novo emergence. Consequently, we can concentrate our
analysis on the single state variable S and assume that its dynamics is independent of R.

To gain further insight, we then solved the same problem using the alternative
method based on Hamilton-Jacobi-Bellman (HJB) equation. This approach relies on
solving the cost-to-go function J(t, S) from the partial differential equation:

− ∂tJ(t, S) = min
u∈U

(
L(t, S, u) + f(t, S, u)∂SJ(t, S)

)
(7)

with boundary condition
J(T, S) = 0. (8)

By recording the minimizing control at each point, the HJB approach gives a control
map

u∗(t, S) = argmin
u∈U

(
L(t, S, u) + f(t, S, u)∂SJ(t, S)

)
, (9)

from which the optimal control can be read for any conceivable state. The HJB
equation above is for the deterministic version of the control problem that corresponds
to the Pontryagin methods described above. We also solved the stochastic version of the
problem, and found that demographic stochasticity plays very little role here. The
resulting control map is showed in S2 Fig.

We notice from S2 Fig. that the optimal control is virtually independent of time,
except at the very end of the control period, when the control is discontinued. Closer
inspection of this reveals that this is in fact a biologically irrelevant boundary effect
created by the fixed end-time corresponding to stopping therapy and letting the target
population grow again. Consequently, by letting the end-time T to be sufficiently large
so that the sensitive population is almost surely eliminated before the end, then the
optimal treatment becomes time-independent and we can solve for a closed-loop control
u(S) which has only feedback from the current population size. Such stationary solution
can be obtained analytically for the deterministic HJB by setting

− ∂tJ(t, S) = min
u∈U

(
L(t, S, u) + f(t, S, u)∂SJ(t, S)

)
= 0 (10)

and carrying out the minimisation by formally differentiating the terms inside the
brackets with respect to u. This minimization yields condition

∂SJ(t, S) = −
Lu(t, S, u)

fu(t, S, u)
, (11)

which can be substituted back to the HJB equation. The stationary profile for the
problem then reads

L(t, S, u)− f(t, S, u)Lu(t, S, u)

fu(t, S, u)
= 0, (12)

which gives an implicit equation for the optimal control. Furthermore, as the
time-dependence realizes only via the state and control variables, solving the implicit
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equation yields a time-independent control law u(S). Indeed, by substituting the
Lagrangian cost functional and the sensitive dynamics, we get

Sµ(u)− S
(
r(S)− d(u)− µ(u)

) Sµ′(u)

−S
(
d′(u) + µ(u)

) =0

µ(u) +
(
r(S)− d(u)− µ(u)

) µ′(u)

d′(u) + µ′(u)
=0.

Notice that here we assumed nothing about the precise functional form of the
dose-dependent mutation rate µ(u), the pharmacodynamics d(u) or the
density-dependent growth model r(S) except that these are all differentiable functions
with respect to u. Furthermore, notice that as the state variables S cancel out, the only
remaining dependence of the state variable happens via the assumed density dependent
growth model, where we assumed that r(N) ≈ r(S). Thus, we have now derived the
control law equation, where the only technical modelling assumption we have made is
that of the log-kill hypothesis, where the control leverage depends only of the drug
concentration and specifically does not depend on the population size.

The analytically derived stationary profile cannot be directly applied to the
discounted problem, because of its explicit time-dependence. However, the same
stationary profile can be obtained numerically more simply if the optimal
time-dependent control eliminates the target population without allowing it to grow in
between. Then S(t) is a monotonically decreasing function and hence there exists an
inverse function S−1 : [0, 1]→ [0, T ] which gives the time at which the population was
at any given size. Now, if indeed time-independent control law u(S) does exist, it must
be unique and thus the optimal control for some population size S′ must satisfy
u(S′) = uopt(t

′) where S(t′) = S′. Then the stationary profile can be obtained using the
inverse function as

u(S′) = uopt(S
−1(S′)).

Applying this inverse function method agrees with the analytically derived stationary
profile and can be used also to the discounted problem (see S3 Fig.).

Here we have focused on the problem of determining the optimal way of eliminating
the target population, with respect to two biologically meaningful objectives. The
derived optimal treatment strategies were calculated with respect to the simple
constraint that there is some maximum tolerated dose uMTD, which may be below the
drug concentration where the pharmocodynamical effect is assumed to have plateaued.
Even though the cumulative drug concentration was not constrained, we did consider
that the constant MTD would generally be lower than umax (where the death rate
saturates) when demonstrating the effect sizes compared to the optimal treatment.
Such constraints can also be easily incorporated to the presented optimal control
framework by appending the Hamiltonian with an additional state variable, which
enforces the isoperimetric constraint (see e.g. [3], [4]).
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