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1 Additional simulations

Fig A. Comparison of the impact of effective sample size increase to modeling hetero-
geneity. We simulate summary statistics with c=1, c=2, or c=3 causal variants implanted in 3 loci
and 5 heritability levels with 20 replicates each. This is done for 2 different European populations
and one Asian sample, all with 9,000 individuals in order to compare the impact leveraging differing
LD to the effective sample size increase of meta-analysis. (A) Bar graph displaying the sensitivity
of the methods (B) Box plots showing the set sizes returned by the methods. The lines inside
the boxes represent the median while the white crosses inside the boxes represent the mean. (C)
Bar graph showing the average number of SNPs taken in descending order of posterior inclusion
probability (PIP) until 1, 2, or 3 causal SNPs are identified. Stacked bars represent increasing
numbers of causal SNPs identified, until the true number of causal SNPs (x-axis) are identified.
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Fig B. Comparison of sensitivity and set sizes of MsCAVIAR to itself with a PIP
cutoff. We simulated c ∈ {1, 2, 3} causal variants averaging over 20 replications of 3 loci with
5 levels of heritability each. We compare the performance of MsCAVAIR to MsCAVIAR plus a
posterior inclusion probability (PIP) threshold of 1%, where any SNPs with a PIP less than 1% is
removed from the causal set. (A) Bar graph displaying the sensitivity of the methods. The dashed
line reflects the expected posterior probability of recovering all causal SNPs; methods that reach
this threshold are considered “well-calibrated”. (B) Box plots showing the set sizes returned by the
methods.

We performed additional simulations on the data described in the main text (“MsCAVIAR
improves fine mapping resolution in a simulation study”) including several other approaches. We
sampled another population of 9,000 unrelated White British individuals. We then ran MsCAVIAR
on the two British populations. We also ran fastGWA on the two European populations to generate
stronger summary statistics, and then applied CAVIAR to those statistics (Fig A). We evaluated
the effect of applying a “cutoff parameter” to MsCAVIAR’s results, in which SNPs with less than 1%
posterior probability of being causal were excluded from the causal set (Fig B). We ran simulations
in which the causal effect sizes of the SNPs were equal across populations, in order to investigate
whether lack of effect size heterogeneity impacted the results (Fig C). Finally, we ran SuSiE [1], a
recent fine mapping method, on the Asian population and on the first British population (Fig D).
We caution that SuSiE employs a different approach to fine mapping. SuSiE’s credible sets differ
from the causal sets of the other methods in that SuSiE does not attempt to capture all causal
SNPs, so the sensitivity calibration is not directly comparable to the other methods. We focus on
the rest of the methods in the following paragraphs, and then return to SuSiE.

MsCAVIAR run on the two British populations performed almost identically to MsCAVIAR
run on the Asian and British population. Additionally, CAVIAR run on the two British popula-
tions yielded causal set sizes only marginally larger than MsCAVIAR’s. Thus, in our simulations,
combined population size was a larger factor than ethnic differences in LD. We caution that this
may not always be the case in real data.

When a cutoff parameter was applied to MsCAVIAR, predictably, both the causal set size and
recall were reduced. This reduction was proportional to the number of causal SNPs. With one
causal SNP, the mean set size was reduced from 18.7 to 17.6 and the recall was reduced from 98.6%
to 98%. With two causal SNPs, the mean set size was reduced from 41.6 to 30.9 and the recall was
reduced from 96.5% to 92.8%. With three causal SNPs, the mean set size was reduced from 52.4
to 35.7 and the recall was reduced from 97.1% to 87.8%. The cutoff parameter, therefore, can be
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Fig C. Comparison of sensitivity and set sizes using simulated data with equal effect
sizes. We simulated c ∈ {1, 2, 3} causal variants averaging over 20 replications of 3 loci with 5
levels of heritability each. (A) Bar graph displaying the sensitivity of the methods. The dashed
line reflects the expected posterior probability of recovering all causal SNPs; methods that reach
this threshold are considered “well-calibrated”. (B) Box plots showing the set sizes returned by the
methods.

used to limit the causal set size, with the drawback of potentially reducing recall.
When we performed our original simulations except with effect sizes fixed across populations

(e.g. no heterogeneity), the results were fairly similar to our main text results. This indicates that,
in our simulations, MsCAVIAR’s improved performance relative to PAINTOR is not mostly due
to explicit modeling of heterogeneity.

SuSiE [1] takes a different approach to fine mapping from the other methods. Instead of
returning a causal set, SuSiE returns (potentially multiple) credible sets for a locus, each of which is
expected to contain at least one causal SNP. The goal of SuSiE is not to capture all causal variants
in a locus, but to return one or more minimal size credible sets, each of which has ρ probability of
containing at least one true causal effect. This explains why SuSiE is not well-calibrated according
to our causal set definition, which expects all casual variants to be captured with probability ρ∗,
when there is more than one causal SNP.

It is worth noting, however, that SuSiE’s credible set is equivalent to the causal set (as defined
by the other methods) when the methods assume that there is only one causal SNP in a locus.
In this case, SuSiE applied to our Asian population had a recall of 91% and an average set size
of 21.68, while SuSiE applied to the first of our British populations had a recall of 92.3% and
an average set size of 20.6. Thus, SuSiE’s returned set sizes were smaller than those of CAVIAR
applied to individual populations but larger than MsCAVIAR’s or PAINTOR’s sets.

2 MsCAVIAR improves fine mapping resolution in a simulation
study

Here, we describe a previous set of simulations that were removed from the main text during the
revision process when the simulations now in the main text were developed. We have included
them because they can complement our main simulations.

We used two regions from the 1000 Genomes project [2] to generate LD matrices for the SNPs
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Fig D. Comparison of sensitivity, set sizes and precision in simulated data (w/ SuSiE).
Comparison of the methods with c=1, c=2, or c=3 causal variants implanted. Results are averaged
over three loci and 5 levels of heritability. The simulations are identical to those in the Fig 2
but we now include SuSiE, a fundamentally different method, in the comparison. SuSiE’s credible
sets differ from the causal sets of the other methods in that SuSiE does not attempt to capture all
causal SNPs, so the sensitivity calibration is not directly comparable to the other methods. (A) Bar
graphs displaying the sensitivity of the methods. The dashed line reflects the expected posterior
probability of recovering all causal SNPs; methods that reach this threshold are considered “well-
calibrated”. (B) Box plots showing the set sizes returned by the methods. The boxes represent the
interquartile range of causal set sizes identified by each tool, the lines inside the boxes represent
the median while the white crosses inside the boxes represent the mean.

at that locus for both European and East Asian populations. Out of these loci, we selected one
region with relatively low LD, where 20% of the SNP pairs have LD equal to or higher than 0.5,
and one region with relatively high LD, where 80% of the SNP pairs have LD equal to or higher
than 0.5 (Fig E, LD matrices). These represent easier and more difficult scenarios, respectively, for
fine mapping, since LD makes signals more difficult to distinguish. We pruned groups of SNPs that
were in perfect LD in one or more of the populations, leaving one SNP for each. After pruning, the
low LD matrix contained 48 SNPs and the high LD matrix contained 38 SNPs.

Using these LD matrices, we implanted causal SNPs and simulated their non-centrality pa-
rameters. In each simulation, we implanted either 1, 2, or 3 causal SNPs. Each causal SNP’s true
non-centrality parameter Λ was drawn according toN (5.2, 0.1252). We then drew the non-centrality
parameter Λi for each study i according to Λi ∼ N (Λ, 0.5), and subsequently the summary statis-
tics Si for each study i according to Si ∼ N (ΛiΣi,Σi). For each number of causal SNPs, we
performed 1000 replicate simulations (e.g. re-drawing the causal SNP non-centrality parameters
and re-picking the causal SNPs).

Using this data, we compared MsCAVIAR to the trans-ethnic mode of PAINTOR [3] and to
CAVIAR [4] and SuSiE [1] run on East Asians and Europeans, individually (Fig E). The SuSiE
method is a new approach to fine mapping that has a different model than the other methods, so
we first discuss the rest of the methods and then return to SuSiE.

All other methods were run with posterior probability threshold ρ∗ = 0.95, so methods with 95%
or higher sensitivity were considered “well-calibrated” (dashed line in the bar plots). MsCAVIAR’s
heterogeneity parameter was set to τ2 = 0.5 (Methods); the sensitivity of MsCAVIAR’s performance
to different settings of this parameter is shown in the appendix (Fig G). All methods but SuSiE
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Fig E. Comparison of sensitivity and set size using simulated data. Comparison of the
methods with c=1, c=2, or c=3 causal variants implanted. Both low LD (top half) and high LD
(bottom half) settings were evaluated. The bar plots (left) display the sensitivity of the methods,
with standard deviation bars included. The dashed line reflects the expected posterior probability
of recovering all causal SNPs; methods that reach this threshold are considered “well-calibrated”.
The box plots (right) show the set sizes returned by the methods; for SuSiE, this is calculated
as the sum of the sizes of credible sets returned. The boxes represent the interquartile range of
causal set sizes identified by each tool, the lines inside the boxes represent the median, and the
whiskers extend to the non-outlier extremes. Outliers are represented as dots above or below the
whiskers. SuSiE’s credible sets differ from the causal sets of the other methods in that SuSiE does
not attempt to capture all causal SNPs, so the sensitivity calibration is not directly comparable to
the other methods.

were well-calibrated in both LD settings (Fig E, bar plots). This is unsurprising since CAVIAR is
well-known to be calibrated in the single study setting [4, 5, 6], as is PAINTOR in the trans-ethnic
setting [3].

However, when considering the subset of simulations in which each method was able to correctly
capture all causal variants (i.e. 100% sensitivity), we observed that MsCAVIAR consistently returns
the smallest average set size (Fig E, box plots). MsCAVIAR and PAINTOR return smaller set
sizes than CAVIAR run on either population across all settings, highlighting the value of using
varying LD patterns in different populations to refine fine-mapping results. MsCAVIAR returned
smaller set sizes than PAINTOR with multiple causal variants or high LD. This may be due to
MsCAVIAR’s explicit modeling of heterogeneity between studies. In both the high LD and multiple
causal variants setting, complex and strong correlations between non-causal and causal SNPs are
induced, and modeling heterogeneity between studies allows for more effective use of the differing
LD structures to disentangle non-causal from causal SNPs.

SuSiE [1] takes a different approach to fine mapping from the other methods. Instead of
returning a causal set, SuSiE returns (potentially multiple) credible sets for a locus, each of which is
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expected to contain at least one causal SNP. The goal of SuSiE is not to capture all causal variants
in a locus, but to return one or more minimal size credible sets, each of which has ρ probability of
containing at least one true causal effect. This explains why SuSiE is not well-calibrated according
to our causal set definition, which expects all casual variants to be captured with probability ρ∗,
when there is more than one causal SNP. It is worth noting, however, that SuSiE’s credible set is
equivalent to the causal set (as defined by the other methods) when the methods assume that there
is only one causal SNP in a locus. In this case, all methods are well-calibrated and MsCAVIAR
returns the smallest average set size, followed by PAINTOR, then SuSiE, and finally CAVIAR.
This finding supports the hypothesis that using trans-ethnic information improves fine mapping
resolution.

3 MsCAVIAR is well-calibrated with different population sizes
between studies

Fig F. Comparison of sensitivity and set size using simulated studies with unequal
sample sizes. Comparison of the methods with 3 causal variants implanted and imbalanced
sample sizes. The size of the Asian population was fixed at 10,000, while the European study was
set to be 1, 2, 5, or 10 times larger. Both low LD (top half) and high LD (bottom half) settings
were evaluated. The bar plots (left) display the sensitivity of the methods, with standard deviation
bars included. The dashed line reflects the expected posterior probability of recovering all causal
SNPs; methods that reach this threshold are considered “well-calibrated”. The box plots (right)
show the set sizes returned by the methods; for SuSiE, this is calculated as the sum of the sizes
of credible sets returned. The boxes represent the interquartile range of causal set sizes identified
by each tool, the lines inside the boxes represent the median, and the whiskers extend to the non-
outlier extremes. Outliers are represented as dots above or below the whiskers. SuSiE’s credible
sets differ from the causal sets of the other methods in that SuSiE does not attempt to capture all
causal SNPs, so the sensitivity calibration is not directly comparable to the other methods.
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It is possible that input studies can have different sample sizes, in which case the non-centrality
parameters of their SNPs are expected to be different proportionally to sample size, in addition
to heterogeneity. We tested whether MsCAVIAR would still be well-calibrated in this setting, and
compared it again with trans-ethnic PAINTOR and with CAVIAR and SuSiE run on the individual
populations (Fig F). The caveats with SuSiE discussed in the previous section also apply here, so
we omit it from further discussion and refer readers to the appendix.

In order to evaluate performance under this scenario in a simulation study, we used the same LD
matrices from the previous section, but now varied the population size for one of the studies. We
fixed the population size of the Asian study at 10,000 individuals, and varied the European study to
have population sizes of 1, 2, 5, or 10 times that of the Asian study. Consequently, the effect sizes of
causal SNPs in the European study were larger than those of the corresponding SNPs in the Asian
study by a factor of

√
1,
√

2,
√

5, and
√

10 (Methods). For the sake of sufficient statistical power, we
ensured that the causal variants in the smaller study were still statistically significant genome-wide.
1000 simulation replicates were run for each LD setting. In each simulation, we implanted three
causal SNPs and simulated their effect sizes, with the association statistics of non-causal SNPs
being based on their correlation with causal SNPs (Methods). All methods were run with posterior
probability threshold ρ∗ = 0.95, so methods with 95% or higher sensitivity were considered “well-
calibrated” (dashed line in the bar plots). MsCAVIAR was run with its heterogeneity parameter
set at τ2 = 0.5 (Methods).

Once again, MsCAVIAR was well-calibrated and generally returned the smallest causal set sizes.
As the sample size differences grew, the difference between MsCAVIAR, CAVIAR on Europeans,
and PAINTOR tended to diminish. This is likely due to the fact that we required SNPs to be
genome-wide significant in the smaller study, such that the larger study had very large effect sizes
for causal SNPs when there was a significant sample size imbalance, making the fine mapping
problem easier. Reinforcing this interpretation is the fact that CAVIAR on Asians had consistently
much larger causal set sizes than the other methods when the sample size imbalance was large.

All methods (exempting SuSiE) were well-calibrated in the low LD setting, but we observed
that as the sample size increases with high LD that CAVIAR’s calibration on the larger population
decreases. This is likely due to the extremity of the situation, with exceptionally large effect sizes
in combination with the high LD setting. We again, note that SuSiE’s miscalibration is due to
fundamental differences between SuSiE and the other methods.

4 Effects of heterogeneity parameter on MsCAVIAR

To examine the effects of mismatched true and model heterogeneity on MsCaviar results, we first
simulated our studies with different ”true heterogeneity” τ2. We used two regions from the 1000
Genomes project [2] to generate a high LD matrix and low LD matrix. For the low LD matrix, 20%
of the SNPs have LD equal to or higher than 0.5, while the region with relatively high LD have 80%
of the SNPs with LD equal to or higher than 0.5. We pruned groups of SNPs that were in perfect
LD in one or more of the populations, leaving one SNP for each. The low LD matrix contains
48 SNPs, and the high LD matrix contained 38 SNPs Using these two matrices LD matrices, we
implanted causal SNPs and simulated their effect sizes. In each simulation, we implanted either 1,
2, or 3 causal SNPs.

Each casual SNP’s true overall non-centrality parameter Λ was drawn according toN (5.2, 0.1252).
The study specific non-centrality parameter Λi for each study i was drawn according to Λi ∼
N (Λ, τ2), where τ2 = 0.5, 1, or 2. For each model configuration, we performed 1000 replicate
simulations (e.g. re-drawing the causal SNP effect sizes and re-picking the causal SNPs). We then
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ran MsCAVIAR with different modeled heterogeneity settings, τ2 = 0.5, 1, or 2, on the simulations
with the various true heterogeneity settings (Fig G). MsCAVIAR was well-calibrated and main-
tained similar set sizes even when the modeled heterogeneity did not match the true heterogeneity,
indicating that MsCAVIAR is fairly robust to small mis-specifications of the τ2 parameter.

5 Out-of-sample LD matrices degrade the accuracy of fine-mapping

The methods CAVIAR [4], PAINTOR [3], and MsCAVIAR are designed such that they only require
the z-scores as summary data and may use an external LD matrix representative of the samples
for fine-mapping. Previous work has shown that this approach is underpowered [7]. In the results
section “MsCAVIAR improves fine mapping resolution in a simulation study” we provide each
fine-mapping method the LD matrices generated in-sample. Here, we simulate data in an almost
identical fashion, but we generate the input LD matrices using the 1000 Genomes Project [2] to
demonstrate the impact of the out-of-sample LD matrices on our fine-mapping results. We exclude
SuSiE [1] from this set of analyses as the method was not designed to accept summary data.

For the results shown in Fig H, we use two sets of 9,000 unrelated individuals from the UK
Biobank with European and Asian ancestry and then identify the corresponding populations in
1000 Genomes Project to generate the out-of-sample LD matrices. For the 9,000 UK Biobank
samples with European ancestry, we select the 503 samples in the super population “EUR” in the
1000 Genomes Project as the reference sample. For the individuals with Asian ancestry, we needed
to use two super populations “SAS” and “EAS” due to the UK Biobank sample containing 1600
individuals with Chinese ancestry, 5900 individuals with Indian ancestry, and 1800 individuals with
other Asian ancestry. We generate our representative sample using all 489 “SAS” individuals and
123 “EAS” individuals sampled across subpopulations. This sub-sampling was done to approximate
the proportion of individuals with Chinese and Indian ancestry. We note that while our example
of out-of-sample LD for Asian ancestry is more extreme than when only 1 “super population” is
used, it highlights how the accuracy of the out-of-sample LD impacts fine-mapping.

We looked at the three loci with low, medium, and high LD described in “MsCAVIAR improves
fine mapping resolution in a simulation study” and retained the SNPs with MAF > 0.05 in the two
samples generated from the 1000 Genomes Project. This resulted in 144, 125, and 149 SNPs for
the low, medium, and high LD loci, respectively. Using this set of SNPs, we simulate the causal
variants identically to the process described in the main results section referenced above. The only
difference was that we provide the LD matrices generated from the 1000 Genomes samples to the
methods instead of their in-sample LD matrices.

In the results shown in Fig H, we compare MsCAVIAR to trans-ethnic PAINTOR [3] and
to CAVIAR [4] run on the Asian and European populations, separately. We average the results
over the set of simulations for each number of causal SNPs: 1, 2, and 3. All methods were run
using ρ∗ = 0.95 as the posterior probability threshold; therefore methods were considered “well-
calibrated” if their sensitivity was at least 95% (dashed line in Fig HA), and we set MsCAVIAR’s
heterogeneity parameter to τ2 = 0.52 (see Methods). We evaluated the precision of the methods
in Fig HB where we show the causal set size. This metric is informative when the method returns
the causal variant(s) because then fewer non-causal variants or “false positives” are being returned
in the set.

When there is only 1 causal SNP, all methods are well-calibrated; however, only CAVIAR when
analyzing European samples is well-calibrated when there are 3 causal SNPs and is slightly below
the threshold for 2 implanted causal variants (94.3%). All other methods see a serious degradation
in their sensitivity. This decrease in performance is a result of a poor approximation to the LD
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Fig G. Evaluation of the sensitivity and set sizes of MsCAVIAR results under mis-
specified heterogeneity parameters. Each column of plots shows a different “True Heterogene-
ity” value τ2 used to simulate Z-scores of causal variants. Different-colored bars/boxes correspond
to different values of τ2 used internally in MsCAVIAR’s model, referred to as the “Model Het-
erogeneity”. The model is mis-specified when the Model Heterogeneity does not match the True
Heterogeneity. The first two rows of plots are based on a low LD locus, and the bottom two rows
are based on a high LD locus. The bar plots (1st and 3rd rows) display the sensitivity of the results,
with standard deviation bars included. The dashed line reflects the expected posterior probability
of recovering all causal SNPs; methods that reach this threshold are considered “well-calibrated”.
The box plots (2nd and 4th rows) show the set sizes returned by MsCAVIAR. The boxes represent
the interquartile range of causal set sizes identified by each tool, the lines inside the boxes represent
the median, and the whiskers extend to the non-outlier extremes. Outliers are represented as dots
above or below the whiskers. Simulations were performed with c=1, c=2, or c=3 causal variants.

matrix for individuals with Asian ancestry. When the out-of-sample LD accurately reflects the
sample, as is the case for European ancestry, CAVIAR returns results comparable to when an in-
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Fig H. Comparison of sensitivity, precision, and set sizes using simulated data and out-
of-sample LD matrices. We compare MsCAVIAR, PAINTOR, and CAVIAR with c ∈ {1, 2, 3}
causal variants averaging over 3 loci and 5 levels of heritability with 20 replicates for each value of
c. (A) Bar graph indicating the sensitivity of the method and the expected posterior probability, ρ,
of recovering all causal SNPs represented as a dashed line. (B) Box plots showing the average set
sizes each method returns. Each box is the interquartile range of causal set sizes. The middle black
line represents the median and the white crosses indicating the mean. (C) Bar graph displaying
the average number of SNPs in descending order of posterior inclusion probability (PIP) until 1,2,
or 3 causal SNPs is identified. Stacked bars represent increasing numbers of causal SNPs identified
until the true number of causal SNPs (x-axis) are identified.

sample LD matrix is provided. For MsCAVIAR and PAINTOR, however, we see incorporating two
populations does not help when one sample’s LD is poorly approximated. Though the set sizes are
smaller in Fig H, the specificity is also lower than either run of CAVIAR. While MsCAVIAR and
PAINTOR are both poorly calibrated, we see that MsCAVIAR is more robust to the out-of-sample
LD than PAINTOR. Further work would need to be done to explore this phenomenon.

At present, we encourage users to use the in-sample LD matrix whenever possible. If this is
not a possibility, we advise the user to interpret their results with the understanding the out-of-
sample LD may fail to provide well-calibrated results, and the quality of results depend how well
the out-of-sample LD approximates the in-sample LD. Future work could also enable the method
to incorporate the sufficient summary data described in [7].

6 Loci and set sizes for the real data fine-mapping analysis.

Below we include a table of the real data results. The first column is the list of regions fine-mapped.
The remaining four columns is the number of SNPs returned by each method’s causal set. The
methods in order are: CAVIAR on Biobank Japan (BBJ) ”CAVIAR-Asian”, CAVIAR on UK
Biobank (UKB) ”CAVIAR-Euro”, PAINTOR, and MsCAVIAR. The last two methods fine-map
utilizing data from both BBJ and UKB.

LOCUS CAVIAR-Asian CAVIAR-Euro PAINTOR MsCAVIAR

chr10:113440329-114440329 83 52 58 61
chr10:115286236-116286236 31 16 18 10
chr10:122398697-123398697 97 85 53 102
chr10:33136099-34136099 230 32 48 20
chr10:45522005-46522005 59 48 38 34
chr10:64552205-65552205 275 249 230 238
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LOCUS CAVIAR-Asian CAVIAR-Euro PAINTOR MsCAVIAR

chr10:88011326-89011326 88 77 54 63
chr10:94314710-95314710 148 15 22 6
chr10:94816037-95816037 112 7 17 4
chr10:99269388-100269388 66 57 57 55
chr11:109470749-110470749 72 65 62 62
chr11:115908029-116908029 9 6 6 5
chr11:117920241-118920241 54 46 44 38
chr11:122014403-123014403 97 59 58 43
chr11:125725876-126725876 143 50 47 18
chr11:13837575-14837575 254 151 118 93
chr11:14365399-15365399 137 112 105 71
chr11:27248493-28248493 121 101 90 90
chr11:45413607-46413607 15 13 15 12
chr11:46228966-47228966 170 57 16 24
chr11:46837383-47837383 396 82 81 73
chr11:47398535-48398535 248 34 49 36
chr11:47944711-48944711 71 9 4 9
chr11:61092362-62092362 44 6 25 6
chr11:63504723-64504723 23 14 18 16
chr11:64973798-65973798 100 62 65 64
chr11:65566993-66566993 35 27 33 28
chr11:68116074-69116074 55 51 50 46
chr11:74952486-75952486 143 116 110 100

chr12:109371179-110371179 232 177 19 28
chr12:110558188-111558188 64 88 35 65
chr12:111218231-112218231 10 172 5 7
chr12:112091686-113091686 16 27 27 19
chr12:112819105-113819105 6 90 10 4
chr12:120916622-121916622 159 110 94 96
chr12:122688475-123688475 129 31 19 19
chr12:123236084-124236084 430 253 128 249
chr12:123909502-124909502 98 56 6 17
chr12:124765201-125765201 19 6 4 5
chr12:19970199-20970199 75 9 19 9
chr12:53233529-54233529 33 23 25 17
chr12:56831741-57831741 42 19 29 28
chr12:57339173-58339173 46 20 16 15
chr12:57922642-58922642 36 33 34 33
chr12:6163964-7163964 89 81 79 69

chr12:70973887-71973887 17 14 16 14
chr12:8595905-9595905 83 51 42 54

chr14:102747844-103747844 22 17 16 10
chr14:104758892-105758892 33 8 26 8
chr14:68649372-69649372 29 28 30 26
chr14:73750126-74750126 30 22 25 19
chr14:74860906-75860906 367 320 236 283
chr14:81135888-82135888 50 49 47 39
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LOCUS CAVIAR-Asian CAVIAR-Euro PAINTOR MsCAVIAR

chr15:23444489-24444489 25 21 21 21
chr15:42599550-43599550 99 83 55 45
chr15:57703414-58703414 8 6 5 3
chr15:58223939-59223939 5 3 6 3
chr15:59004897-60004897 30 52 20 14
chr15:62844167-63844167 18 12 16 12
chr15:74212937-75212937 219 191 171 189
chr15:74964992-75964992 51 42 42 40
chr16:53303187-54303187 59 45 47 40
chr16:55410194-56410194 51 8 6 5
chr16:55918284-56918284 50 10 7 7
chr16:56995026-57995026 4 3 5 6
chr16:66898369-67898369 57 38 48 43
chr16:67472194-68472194 301 154 8 94
chr16:68059767-69059767 302 111 5 82
chr16:74682354-75682354 311 295 254 286
chr16:81034790-82034790 86 17 21 19
chr17:37310218-38310218 287 111 42 110
chr17:37844485-38844485 192 94 58 91
chr17:40281561-41281561 196 182 64 66
chr17:41426126-42426126 22 7 7 6
chr17:66323805-67323805 129 36 27 19
chr17:6962969-7962969 34 30 28 22

chr17:75898130-76898130 157 112 124 97
chr17:7590908-8590908 32 25 27 23

chr18:19166877-20166877 147 137 140 138
chr18:46078242-47078242 49 5 12 4
chr18:46609955-47609955 7 13 7 6
chr18:47132322-48132322 24 15 6 7
chr18:57413965-58413965 65 41 48 33
chr19:10850488-11850488 28 14 19 8
chr19:33396432-34396432 65 30 40 27
chr19:44911941-45911941 6 3 5 3
chr19:45884830-46884830 72 45 39 41
chr19:51841757-52841757 291 204 100 149
chr19:54300500-55300500 14 14 6 11
chr19:7011798-8011798 16 13 13 11
chr19:7929323-8929323 46 6 7 5

chr1:109166352-110166352 41 16 25 15
chr1:109732983-110732983 85 12 7 7
chr1:178013895-179013895 193 138 127 123
chr1:181671957-182671957 77 67 70 63
chr1:219182178-220182178 24 19 19 15
chr1:220470028-221470028 51 24 30 19
chr1:229797778-230797778 177 19 11 23
chr1:230323363-231323363 53 6 22 6
chr1:23210475-24210475 26 19 21 18
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LOCUS CAVIAR-Asian CAVIAR-Euro PAINTOR MsCAVIAR

chr1:39503410-40503410 183 103 84 115
chr1:435222-1435222 13 8 11 8

chr1:65573952-66573952 23 14 18 12
chr2:-216206-783794 73 64 52 55

chr1:93358292-94358292 274 156 48 56
chr20:17096155-18096155 70 53 50 31
chr20:44051855-45051855 75 10 4 12
chr20:45840596-46840596 138 7 12 7
chr20:50746378-51746378 48 44 42 41
chr20:61847191-62847191 255 183 9 87
chr21:45771452-46771452 122 127 71 61
chr21:46399279-47399279 60 52 51 47
chr22:21425017-22425017 69 68 68 68
chr22:29924863-30924863 260 206 187 188
chr22:30425616-31425616 217 170 128 159
chr22:38099857-39099857 31 23 24 16
chr22:38610124-39610124 33 24 29 23
chr2:100295962-101295962 60 59 4 49
chr2:134763081-135763081 96 85 81 76
chr2:135407088-136407088 60 59 57 53
chr2:135907479-136907479 26 24 24 22
chr2:136507429-137507429 21 19 20 18
chr2:165055539-166055539 144 73 55 61
chr2:173416114-174416114 78 57 67 50
chr2:19871772-20871772 13 10 12 10
chr2:20731524-21731524 105 24 32 27

chr2:211040507-212040507 64 55 46 40
chr2:226599180-227599180 218 61 107 139
chr2:241737902-242737902 105 87 71 75
chr2:48462291-49462291 31 26 29 23
chr3:11851223-12851223 365 79 32 69

chr3:135380410-136380410 130 100 91 103
chr3:135904095-136904095 163 130 115 123
chr3:156298732-157298732 46 23 35 24
chr3:184782232-185782232 66 55 64 60
chr3:185322353-186322353 92 10 29 10
chr3:46425539-47425539 152 126 110 112
chr3:47221512-48221512 67 66 57 55
chr3:49524027-50524027 249 163 164 100

chr4:102181041-103181041 23 14 19 12
chr4:102688709-103688709 24 10 16 12
chr4:25550450-26550450 11 3 7 3
chr4:39288949-40288949 91 77 68 59

chr4:470112-1470112 63 56 50 44
chr4:54998781-55998781 25 20 23 21
chr4:68861445-69861445 29 25 27 24
chr4:86973776-87973776 133 101 100 84
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chr4:87518991-88518991 242 68 103 89
chr4:89230074-90230074 111 65 78 65
chr4:99761577-100761577 160 110 100 83
chr5:103434169-104434169 44 35 26 23
chr5:110726812-111726812 79 73 69 63
chr5:126850549-127850549 49 35 21 19
chr5:157499022-158499022 122 109 71 87
chr5:55304552-56304552 88 9 6 9
chr5:74503678-75503678 78 58 49 41

chr7:551664-1551664 195 85 65 51
chr7:106289152-107289152 63 41 46 34
chr7:129938531-130938531 70 31 37 29
chr7:150040196-151040196 407 203 105 187
chr7:17420253-18420253 359 230 221 252
chr7:25897239-26897239 73 54 53 48
chr7:35710924-36710924 114 80 86 75
chr7:49806810-50806810 32 32 34 30
chr7:5970622-6970622 111 82 54 66

chr7:72539406-73539406 117 68 90 78
chr7:79842775-80842775 148 173 68 69

chr8:103383630-104383630 45 2 35 11
chr8:116103103-117103103 216 113 24 110
chr8:12123463-13123463 24 21 24 22
chr8:8683358-9683358 96 10 24 9

chr8:121367780-122367780 79 70 15 25
chr8:125980367-126980367 73 36 40 27
chr8:143806597-144806597 58 35 40 33
chr8:18751679-19751679 13 7 5 4
chr8:19324667-20324667 55 24 6 18
chr8:19941920-20941920 10 3 6 3
chr8:70838185-71838185 325 314 298 285
chr8:9277873-10277873 51 12 24 9

chr9:106574213-107574213 8 22 9 14
chr9:107161742-108161742 6 3 5 3
chr9:123131225-124131225 109 121 70 103
chr9:139487756-140487756 38 32 33 31
chr9:14804782-15804782 52 11 14 10
chr9:94882297-95882297 121 101 98 96

Table A. Loci and causal set sizes for the trans-biobank High Density Lipoprotein fine
mapping analysis. Each row is a fine mapping locus, and the columns represent the number of
SNPs in the causal sets returned by each method.
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