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Winkler et al. Supplementary material and methods, figures and legends:  
 
Supplementary material and methods 

RT-PCR on FFPE tissues. RT-qPCR on on FFPE tissues was performed as 

previously described (1). In brief, three membrane glass slides (PEN Membrane Glass 

slides, Arcturus® Bioscience Inc. CA, USA) were loaded with 8-µm thick sections cut 

from FFPE-embedded pre-treatment diagnostic biopsies. One section of each sample 

was hematoxylin/eosin-stained and examined to assess tumor cellularity. Samples 

with a < 70% cellularity were subjected to microdissection. Upon RNA extraction and 

retro-transcription, RNA was quantified by Q-RT-PCR using a SLFN11-

specific InvitrogenTM TaqMan® assay (Invitrogen Inc. CA, USA) on an Applied 

Biosystems Inc. HT-7900 instrument. Samples were analyzed in triplicate, using 

RPLP0, GAPDH and GUS as housekeeping (HK) genes. The mean PCR cycle 

thresholds (Ct) of the three HK genes was subtracted from the Ct value of SLFN11 for 

each sample, expressed as log2 (ΔCt) and, in turn, the median of ΔCts from the 

dataset was subtracted from ΔCts of single samples and inverted, to obtain a normally 

distributed, zero-centered semi-quantitative value for each sample (-ΔΔCt), as 

previously described (2).  

Statistical analyses. Correlations between continuous variables were calculated 

using the Spearman’s rank coefficient and represented using scatter plots 

(package CNtu (3)), whereas differences in continuous distributions were calculated 

using the Wilcoxon test without continuity correction. Intraclass correlation coefficients 

(ICCs) were calculated to assess the consistency and agreement of IHC assessments 

(package psy (4)), and visually inspected for bias and trend using dot plots and Bland-

Altman plots. Correlation matrices and correlograms of IHC and TILs were generated 

using the package corrgram (5). P-values were adjusted for multiple testing using the 

Benjamini-Hochberg method. Univariable Cox’s proportional hazards regression 

models were used for associations with PFI, after log2 transformation and scaling of 

continuous measures. HR, 95%CI and p-values according to the Wald statistics were 

reported. For multivariable Cox’s regression, variables with a p-value < 0.1 were 

entered in a stepwise forward-backward model minimizing the Akaike Information 

Criterion (package MASS (6)). “Optimal” (quoted because considerable as such only 

in the examined case set) cutoffs to dichotomize continuous variables were obtained 

using binary class labels (i.e. NR vs PR patients) and maximizing the accuracy to 
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correctly classify those classes with the package cutpointr (7). Forest plots 

representing adjusted HR and 95%CIs were generated with the 

package survminer (8). To estimate the relative abundances of cell types in gene 

expression mixtures from the Cancer Genome Atlas high-grade ovarian cancer data 

(OVCAR) - processed and normalized as described in Roelands J, et al., (9) the count 

matrix was analyzed using CIBERSORTx (10) on the dedicated web tool available at 

the URL https://cibersortx.stanford.edu/. The following parameters were set for the 

analysis: impute cell fractions, signature file LM22.update-gene-symbols.txt, batch 

correction enabled, batch correction mode B-mode, disable quantile normalization 

true, run mode absolute, permutation number 1,000. The job was performed on March 

6, 2020. To derive cancer cellularity, we used ESTIMATE (11) with default 

parameters, after log2 transformation and offsetting count data by a value = 

1. Single sample gene set enrichment analysis for selected immune phenotypes, 

gene, and hallmark immune signatures was obtained as previously described (9, 12-

14). For univariable analysis of correlations between SLFN11 expression and cell 

fractions, we calculated the Spearman’s correlation coefficient. P-values were 

adjusted for multiple testing using the Benjamini-Hochberg method. For multivariate 

analysis of CIBERSORTx cell fractions and SLFN11 expression in the HGSOC TCGA 

dataset, we included variables with FDR < 0.05 for correlation with SLFN11, including 

cancer cellularity, after normalizing vectors as follows: we first removed near-zero 

variance variables (caret package (15)), then we pseudo-normalized data using the 

Tukey’s ladder of power transformation method (rcompanion package (16)), finally, we 

centered and scaled them. The relationship between variables was represented using 

a variable correlation plot, with SLFN11 expression as a supplementary quantitative 

variable (17). To estimate the enrichment of myeloid-derived suppressive cells 

(MDSC) in ovarian cancer patients, gene expression deconvolution analyses were 

performed with single sample gene set enrichment analysis (ssGSEA) implemented 

in the “GSVA package” using cell-specific signatures. We used a specific signature 

(MDSC_INT) that was constructed based on 25 genes highly correlated with each 

other in cancer patient peripheral blood mononuclear cells, selected from the top 100 

genes upregulated in extracellular vesicle (EV)-MDSCs vs monocytes(18, 19). 

Estimation of MDSC based on this signature was highly correlated with proportion of 

MDSC by flow cytometry in cancer patients. Additional MDSC signatures include the 

one proposed by Angelova et al.(20) (MDSC_Angel), based on markers selected 
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according to the literature, and a granulocytic myeloid-derived suppressor cell (G-

MDSC) signature defined by comparing G-MDSC vs naïve neutrophils(21). Overall, 

these estimations cover both monocytic and granulocytic MDSC. For survival 

analyses, we selected TCGA OVCAR (HGSOC) cases with the following 

characteristics: stage IIIc/IV, histologic grade III, and with PFI > 28 days. SLFN11 was 

considered “high” when in the top two tertiles of expression, and “low” otherwise. 

Univariable Cox’s regression and Kaplan-Meier curves were used as described above. 

For multivariable Cox’s regression, we first transformed bimodal CIBERSORTx cell 

fractions into binary factors (“present” vs. “absent”) if the Hartigan’s dip test for 

unimodality was rejected with p-value < 0.01. We then performed feature selection 

starting from stage, age, SLFN11 transcript, and CIBERSORTx variables. To do so, 

we fitted the Cox’s regression model by regularizing it with a lasso penalty, using the 

package glmnet (22) with default options (α = 1, 10-fold cross-validation), and iterating 

it 1,000 times to obtain the minimum average error of the regularization parameter 

lambda for variable selection. Finally, selected variables were entered in a Cox’s 

multiple regression model to report HR point estimates and 95% CI. The dendrogram 

of similarity between immunologic signatures was built through hierarchical clustering 

using the Ward’s criterion agglomeration method and Euclidean distance between 

variables (23). For comparisons shown in Figs 6C and 6G, adjusted p-values from 

pairwise t-tests corrected with the Holm's method to control for familywise error are 

reported. 

Power considerations. The sample size for the present study was meant to identify 

a clinically significant difference in SLFN11 expression between platinum-

resistant (PR) patients, defined as relapsing within six months from the end of 

chemotherapy, and platinum-sensitive (PS) ones (i.e., relapsing beyond six months 

from the end of treatment). The suggested size of the collected cohort was based on 

our previous findings of a very significant hazard ratio in terms of overall survival 

between “SLFN11-high” and “SLFN11-low” HGSOC patients, with SLFN11 levels 

deemed so if being above or below the median for the considered cohort (24). The 

required sample size would be of 24 patients, equally allocated in two groups of 12 PR 

and 12 PS ones, assuming a proportion of “SLFN11-high” patients of 10% in the first 

group and 70% in the second groups, with two-tailed α = .05 and 1 - β = 0.9 (z test 

family, G*Power 3.1.4). Assuming that 20% of samples could not be analyzed due to 
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failure in sample processing or testing, it was estimated that 28 samples were a 

sufficient number needed to test the aforementioned hypothesis.  
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Supplementary figures and figure legends 
 

 
 

Figure S1: Frequency distribution of SLFN11 H-scores in the analyzed HGSOC 

case set. Nuclear SLFN11 protein in cancer and non-cancer cells was blindly 

assessed with automated image analysis by Halo and quantified as an H-score in all 

nuclear cells ( A), cancer cells ( B), and non-cancer cells ( C). y axis: frequency of 

samples within each H-score bin; x axis: H-score values, subdivided into increasing 

30-unit bins. 
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Figure S2: SLFN11 is independently prognostic in HGSOC also when assessed 

in cancer or non-cancer cells only. A and C: Waterfall plot showing SLFN11 protein 

levels in cancer ( A) and non-cancer ( C) cells, colored by platinum sensitivity: SLFN11 

protein is reported as H-score (y axis), whereas cases are reported by increasing 

values (x axis) and colored in red if platinum-refractory (PR) or light blue if non-

refractory (NR). B and D: Kaplan-Meier plots showing progression-free interval (PFI) 

stratified by SLFN11 cancer protein levels (“high” if H-score > 5, “low” if < 5,  B) and 
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non-cancer protein levels (“high” if H-score > 110, “low” if < 110,  B). The progressed 

fraction of patients (y axis) is plotted against time expressed in months from the end 

of first-line chemotherapy, censored at 24 months (x axis). Numbers at risk are 

reported below the plots. P-values in the bottom left of the plots are from the Wald 

statistics for the univariable Cox’s regression. E and F: Forest plots of hazard ratios 

(x axis, in log scale) for SLFN11 protein in cancer ( E) and non-cancer ( F) cells 

together with variables retained by the multivariable model generated for overall 

SLFN11. Point HR estimates are reported below each variable together with 95% 

confidence intervals (95%CI) in parentheses, whereas adjusted p-values for each 

variable are on the right side of the plot. Filled black squares represent HR estimates, 

with relative 95%CI shown as horizontal lines with brackets. 
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Figure S3: SLFN11 is expressed in a subset of leukocyte subpopulations. A: 

Scatterplot representing SLFN11 expression (log-transformed normalized counts, y 

axis) as a function of GSEA macrophage enrichment score (ES, x axis) in TCGA 

OVCAR dataset (N = 302); ⍴ is the Spearman’s correlation coefficient, the least 

squares regression are represented by the red lines, whereas dots are measurements 

of SLFN11 expression by ES in individual samples. B: Box plots of publicly available 

RNA-sequencing results (GEO accession number GSE60424) for SLFN11 in sorted 

leukocyte subpopulations from patients.  NK: natural killer cells. GEO: gene 

expression omnibus. 
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Figure S4: Cancer cellularity is negatively correlated with SLFN11 in ovarian 

cancer. A: Scatterplot representing SLFN11 transcript (log-transformed normalized 

counts, y axis) as a function of cancer cellularity inferred using ESTIMATE (x axis) in 

TCGA OVCAR dataset (N = 302). B: Scatterplot representing SLFN11 protein 

measured in all nuclear cells (overall H-score, y axis) as a function of cancer cellularity 

measured by HALO (x axis) in our cohort (N = 27). ⍴ is the Spearman’s correlation 

coefficient, the least squares regression are represented by the red lines, whereas 

dots are measurements of SLFN11 protein levels by cancer cellularity in individual 

samples. 
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Figure S5: SLFN11 is expressed in a subset of immune-related cells in tonsil 

and HGSOC tissues. A: Representative images of CD3, CD8, SLFN11, CD20 and 

CD68 IHC on serial sections of tonsil tissue. Shown is a lymphoid follicle with the 

round- to oval shaped germinal center, the surrounding mantle zone and, at the outer 

layer of the lymphoid follicle, the paracortical zone. SLFN11 is mainly expressed in the 

germinal center, which is mostly composed of B-cells (CD20+) and 

macrophages/monocytes (CD68+), as well as in the T-cell rich (CD3+/CD8+) 
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paracortical zone. B and C: Representative images of CD3, CD8, SLFN11, CD20 and 

CD68 IHC on serial sections of tumor SLFN11 high- (B) and low (C) and stroma 

SLFN11 high cancers. The insets show nuclear SLFN11 in cytosolic/membrane-based 

CD3, CD8, CD20 and CD68 positive cells (indicated by arrows in B and C). Scale bars, 

100 μm (A) and 50 μm (B). The insets show a 3x magnification of the representative 

images. 
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Figure S6: DNA damaging agent treatment induces the expression of immune-

related genes in SLFN11-proficient cells. A: RNA-sequencing results of DU145 wild 

type (WT) and SLFN11-KO cells (2 different clones, KO1 and KO2) treated with control 

or gemcitabine for 6 hours as further described in the material and methods section. 

The Venn diagrams illustrate the overlap in significantly altered genes in control (Ctr) 

and gemcitabine (Gem) treated conditions (FDR<0.01 and 2-fold change) and the bar 
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chart below shows the differentially expressed gene numbers in the different 

comparisons. B: Meta-analysis of the RNA-sequencing datasets as indicated in panel 

A. The figure shows the heat map of the significantly up- (red shades) and down-

regulated (blue shades) gene clusters (FDR<0.01 and 2-fold change, n=3) as well as 

their top canonical WikiPathways, as identified with OnRamp BioInformatics Rosalind 

genomic analysis platform. The list of significantly changed genes is available in 

supplementary table S7. C: Heat map of the up- (red shades) and down-regulated 

(blue shades) genes (log2 fold change) of the IL-18 signaling pathway shown in B in 

the indicated conditions. D, E: Bar charts of RNA-sequencing data showing the relative 

expression of some of the genes of the IL-18 (D) and Type II interferon signaling 

(IFNG) pathway (E) in WT or SLFN11 KO cells treated for 0, 6 or 24 hours with 

gemcitabine. IRF1, ICAM1 and JUN gene are also part of the IL-18 signaling pathway 

(panel C). Data are presented as mean ±s.e.m. (n=3). *P<0.05; **P<0.01; ***P<0.001; 

****P<0.0001, (unpaired Student’s t-test, GraphPad Prism V8). F: pNFκ-B p65 Ser365 

mean intensities in WT and SLFN11 KO cells treated for the indicated time points with 

gemcitabine as determined by immunofluorescence. The data are presented as 

mean±s.d. of the control-treated condition (n=3). *P<0.05; **P<0.01, (paired Student’s 

t-test, GraphPad Prism V8). 
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Figure S7: Response to cisplatin in SLFN11 proficient and deficient ovarian 

cancer cell lines. A: Representative immunoblots of the indicated proteins in 3 

SLFN11-deficient (SLFN11-) and 3 SLFN11-proficient (SLFN11+) ovarian cancer cell 

lysates. The DU145 prostate cancer isogenic pair (WT and SLFN11 KO) served as 

control for SLFN11 expression. Vinculin served as loading control. B: Response to 

cisplatin in the indicated cell lines as determined by CellTiter-Glo luminescent viability 

assays (n=3). Data are presented as mean percentages ±s.d. of the control-treated 

conditions. IC50: 10.2 (EFO-21); 4.0 (KURAMOCHI); 9.1 (RMGI); 4.2 (DU145 SLFN11 

KO); 1.1 (OAW42); 2.2 (OV7); 1.5 (OV56); 1.1 (DU145 WT). C: Apoptosis of the 

indicated cell lines following cisplatin treatment as determined by annexin V staining. 

Apoptosis activity is represented by mean fluorescence levels of annexin V normalized 
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to total cell confluency. % confluency and fluorescence intensities were calculated 

using incucyte software. 
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Figure S8: Cisplatin treatment activates an immune response in SLFN11-

proficient OV-7 cells. A: Representative immunoblots of the indicated proteins in 

control KD and SLFN11 KD OV7 ovarian cancer cell lysates. Vinculin served as 

loading control. B: Response to cisplatin in the indicated cell lines as determined by 

CellTiter-Glo luminescent viability assays (n=3). Data are presented as mean 

percentages ±s.d. of the control KD condition. C: Apoptosis of the indicated cell lines 

following cisplatin treatment as determined by annexin V staining. Apoptosis activity 

is represented by mean fluorescence levels of annexin V to total cell confluency. % 

confluency and fluorescence intensities were calculated using incucyte software. D:  
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mRNA levels of the indicated genes were measured by qRT-PCR in control and 

SLFN11 KD OV-7 cells treated for different time points with cisplatin. Data are 

represented as a mean±s.e.m. of the control KD treated condition (n=3). Similar results 

were obtained in a second independent experiment. E: SLFN11 mRNA expression in 

control KD and SLFN11 KD OV7 cells (n=3). Data are presented as mean percentages 

±s.d. of the control KD condition. F: pNFκ-B p65 Ser365 mean intensities in control 

and SLFN11 KD OV-cells (left) and SLFN11-proficient OV-7 cells (same data set as 

in the left plot, caveat) versus SLFN11-deficient EFO-21 cells (right) treated for the 

indicated time points with cisplatin as determined by immunofluorescence. The data 

are presented as mean±s.d. of the control KD condition (n=2-3). *P<0.05; **P<0.01, 

(paired Student’s t-test, GraphPad Prism V8). 
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Figure S9: Correlation between SLFN11 and markers of suppression, 

exhaustion and immune activation in ovarian cancer. A: List of exhaustion 
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markers, co-stimulatory, and inhibitory checkpoint pathways assessed for correlation 

with SLFN11 in the ovarian cancer TCGA cohort (N=302). B: Heatmap matrix based 

on pairwise Pearson correlation coefficients between i) SLFN11 gene expression and 

ii) inhibitory, co-stimulatory, and exhaustion transcripts, as listed in panel A, iii) 

myeloid-derived suppressive cell (MDSC) enrichment scores (estimated using single 

sample GSEA, see methods), and regulatory T cells (estimated using CIBERSORTX). 

Five additional leucocyte subsets, estimated by CIBERSORTX, having the highest 

correlation with SLFN11 (see Table S5) are represented for contrast purposes to 

facilitate data interpretation. These include: M2 Macrophages, CD8 T cells, M1 

Macrophages, NK cells resting, and activated CD4 memory T cells. C: Scatter plots 

displaying correlation between SLFN11 and CD8 T cells, regulatory T cells, and MDSC 

estimates. Pearson correlation was used in view of the normal/quasi-normal 

distribution of most the analyzed markers. 

  

 

 

 

 

 

 

 

 

 

 

 

 


