Cell Reports, Volume 37

Supplemental information

A potent bispecific nanobody

protects hACE2 mice against SARS-CoV-2

infection via intranasal administration

Xilin Wu, Lin Cheng, Ming Fu, Bilian Huang, Linjing Zhu, Shijie Xu, Haixia Shi, Doudou Zhang, Huanyun Yuan, Waqas Nawaz, Ping Yang, Qinxue Hu, Yalan Liu, and Zhiwei Wu

1 This file includes:

- 2 Supplemental Figures 1 to 7
- 3 Supplemental Table 1 to 3
- 4

5

6 Supplemental Figure 1. Characterization of anti-sera specific for SARS-CoV-2. Related to Figure

7 **1.** (A) The experimental schedule for immunization. The titer of anti-sera specific for SARS-CoV-2 S

8 protein (**B**) and RBD protein (**C**) was evaluated one week after the immunization in alpaca receiving

9 SARS-CoV-2 spike protein, respectively. The titer of the third anti-serum was indicated as blue line.

- 10 The blue # indicates the anti-serum titer after the third immunization. 3^{rd} anti-serum and 2^{nd} anti-serum
- 11 represent the anti-sera collected from alpaca one week after the 3rd and 2nd immunization. Blank serum
- 12 represents the alpaca serum collected before immunization, which was taken as a negative control. (D)
- 13 Neutralization potency of the immunized alpaca's serum against pseudotyped SARS-CoV-2 was
- 14 detected. ND₅₀: half-maximal serum neutralization dilution titer. Titer and ND₅₀ were indicated. Data of
- 15 B-D represent as mean ± SEM. All experiments of B-D were repeated twice.
- 16
- 17

A The summary of C9-Nb library

18

19 Supplemental Figure 2. The construction and biopanning of C9-Nb library. Related to Figure 1.

20 (A) The table summary of C9-Nb library, wherein phage displayed Nb of PBMC from alpaca receiving

21 three times immunization of SARS-CoV-2 S protein. (B) The binding of the phage library with S via

22 phage ELISA. Lib is the phage library of C9-Nb; 1^{st} , 2^{nd} , and 3^{rd} are the phage library after panning on

23 1 round, 2 rounds, and 3 rounds of S protein enrichment, respectively. (C) Single clone of phages from

24 the C9-Nb library after the second and third enrichment of SARS-CoV-2 S were analyzed by phage

25 ELISA. One dot represents the supernatant binding of one clone. Positive rate was indicated.

26

A

Supplemental Figure 4. Characterization of purified Nb-Fcs. Related to Figure 1. (A) Purified NbFcs binding with RBD identified by ELISA. Data represent as mean ± SEM. (B) RBD protein under
reducing condition (R) or non-reducing condition (NR) was detected by WB with Nb₁₅-Fc, Nb₂₂-Fc and
Nb₃₁-Fc. Kinetic binding curve of RBD with Nb₁₅-Fc (C), Nb₂₂-Fc (D) and Nb₃₁-Fc (E), respectively.
Binding curves are colored black, and fit of the data to a 1:1 binding model is colored red.

48 **Supplemental Figure 5. Epitope analysis of Nb-Fcs by BLI. Related to Figure 1.** RBD protein was 49 coated on the sensor, Nb₁₅-Fc (**A**), Nb₂₂-Fc (**B**) or Nb₃₁-Fc(C) as the first antibody was added to bind 50 for 300 s following with the baseline step with 30 s immersion in 0.02% PBST. The second competing 51 concentration of Nb (50 μ g/ml) was then added for 300 sec to measure binding in the presence of the 52 first saturating Nb.

- 53
- 54
- 55

Supplemental Figure S6. Characterizing the potency of neutralization against authentic
SARS-CoV-2 conferred by Nb-Fcs. Related to Figure 1. The neutralization potency of Nb₁₅-Fc
(A), Nb₂₂-Fc (B), Nb₃₁-Fc(C), SNB02 (isotype control antibody) (D) was detected based on
authentic SARS-CoV-2 plaque reduction neutralization test. The raw data was depicted. (E) A table
summary authentic SARS-CoV-2 neutralization potencies of Nb-Fcs.

63 Supplemental Figure 7. Kinetic binding curve of Nb₁₅-Nb_H-Nb₁₅ with MSA. Related to Figure 5.

Kinetic binding curve of Nb₁₅-Nb_H-Nb₁₅ at the concentration of 300 nM, 100nM, 33.3 nM,11.1nM,

```
65 3.7nM and 1.2 nM with MSA by BLI. Binding curves are colored black, and fit of the data to a 1:1
```

- 66 binding model is colored red.

ID	CDR1	CDR2	CDR3			
Nb ₁ -Fc	GNIFSIYT	VTSGGST	NARLFDPGY			
Nb ₂ -Fc GGTLASFA		INIINRT	AAHFVPPGSRLRDCLVNELYNY			
Nb ₄ -Fc	GGTLASFA	INIINRT	AAHFVPPGSRLRGCLVNELYNY			
Nb5-Fc	GFTWNYHA	ISSSGSTT	AAPHSGSVCPRWAEYYGVDH			
Nb ₇ -Fc	GGTLASFA	INIINRT	AAHFVPPGSRLRGCLVNEAYNY			
Nb9-Fc	GGTLASFA	INIINRT	AAHFVPPGGRLRGCLVNDLYNY			
Nb ₁₂ -Fc	GGTLASFA	INIINRT	AAHFVPPGSRLRGCLVNDLYNY			
Nb ₁₃ -Fc GGTLASFA		ITNSGST	NTFHY			
Nb ₁₄ -Fc	GGTLASFA	ISSSGGST	TARPSLWAVVAGCPLDQNTYFS			
Nb ₁₅ -Fc	GGTLASFA	ISSSGST	AG-VVHDVQAMCVMNP-WGS			
Nb ₁₉ -Fc	GGTLASFA	INIINRT	AAHFVPPGSRLRGCLVNDVYNY			
Nb ₂₂ -Fc	GGTLASFA	IDVINRA	AAHFVPPGSRLRGCLVNELYNY			
Nb ₂₄ -Fc	GGTLASFA	INIINRT	AAHFVPPESRLRGCLVNELYNY			
Nb ₂₅ -Fc GGTLASFA		ITSRRDT	YGQDVLGQIY			
Nb ₂₇ -Fc	GGTLASFA	ITSGGST	TTAGSWQGDY			
Nb ₂₈ -Fc	GGTLASFA	INIINRT	AAHFVPPESRLRGCLVNEAYNY			
Nb ₂₉ -Fc	GGTLASFA	ISSRSFT	YGQDILGQIY			
Nb ₃₀ -Fc	GGTLASFA	INIINRT	AAHFVPPGSRLRGCLVNELYNY			
Nb ₃₁ -Fc	GGTLASFA	INIINRP	AAHFVPPGSRLGGCLVNELYNY			
Nb ₃₃ -Fc	GGTLASFA	INIINRT	AAHFVPPGSRFRGCSVNELYNY			
Nb ₃₄ -Fc	GGTLASFA	INIINRP	AAHFVPPGSRLGGCLVNELYNY			
Nb _H	GFILDYYA	IDSSGGTT	AAGGDLGVGQCSTWVRAYDY			

95 Supplemental Table 1. Summary of CDR sequences of positive Nb clones. Related to Figure 1.

amiants. Related to Figure 1. C.

Supplemental Table 2. Summary of Nbs inhibiting SARS-CoV-2 variants. Related to Figu
--

112 113 114

Variants	Nb ₁₅ -Fc(mean±sd µg/ml)		Nb ₂₂ -Fc (mean±sd µg/ml)			Nb ₃₁ -Fc(mean±sd µg/ml)			Nb ₁₅ -Nb _H -Nb ₁₅ (mean±sd µg/ml)			
	IC ₅₀	IC ₈₀	IC ₉₀	IC ₅₀	IC ₈₀	IC ₉₀	IC ₅₀	IC ₈₀	IC ₉₀	IC ₅₀	IC ₈₀	IC ₉₀
WT	0.0008±0.0001	0.0019±0.0004	0.0033±0.0012	0.0016±0.0001	0.0046±0.0012	0.0086±0.0033	0.0023±0.0004	0.0083±0.0019	0.0183±0.0059	0.0004±0	0.0012±0.0004	0.0018±0.0009
Q321L	0.0009±0.0004	0.0023±0.0007	0.0039±0.0008	0.0014±0.0003	0.0042±0.0009	0.0079±0.0019	0.002±0.0005	0.0065±0.0017	0.0133±0.0033	0.001±0.0001	0.0022±0.0004	0.0034±0.0009
V341I	0.0007±0.0002	0.0026±0.0005	0.0059±0.0019	0.0017±0.0005	0.0042±0.0007	0.007±0.001	0.0028±0.0004	0.0087±0.0024	0.0169±0.0058	0.0011±0.0001	0.0027±0.0009	0.0047±0.0022
A348T	0.001±0.0002	0.0023±0.0003	0.0036±0.0005	0.0019±0.0008	0.0046±0.0012	0.0076±0.0016	0.0029±0.0001	0.0088±0.0013	0.0176±0.0032	0.0008±0.0002	0.0014±0.0001	0.0019±0.0004
N354D	0.0008±0.0002	0.0022±0.0002	0.0041±0.001	0.0013±0.0003	0.0033±0.0005	0.0056±0.0012	0.0019±0.0001	0.0068±0.0018	0.0145±0.0051	0.0006±0.0002	0.0016±0.0006	0.0032±0.0013
S359N	0.0011±0.0001	0.0026±0.0003	0.0043±0.0006	0.0016±0.0003	0.0037±0.0005	0.0061±0.0008	0.002±0.0005	0.0064±0.0012	0.0129±0.0037	0.0008±0.0002	0.0017±0.0002	0.0025±0.0005
V367F	0.0007±0.0001	0.002±0.0002	0.0036±0.0004	0.0011±0.0003	0.0033±0.0003	0.0062±0.0004	0.0021±0.0006	0.0095±0.0017	0.0237±0.0022	0.0005±0	0.0013±0.0001	0.0026±0.0006
K378R	0.0007±0.0002	0.0024±0.0003	0.0046±0.0001	0.0012±0.0002	0.0028±0.0003	0.0045±0.0005	0.0013±0.0001	0.004±0.0004	0.0079±0.0017	0.0008±0.0002	0.002±0.0004	0.0033±0.0006
R408I	0.0007±0.0002	0.002±0.0007	0.0035±0.0016	0.001±0.0001	0.0027±0.0003	0.0047±0.0009	0.0014±0.0002	0.0038±0.001	0.0069 ± 0.0026	0.0007±0.0001	0.0014±0.0002	0.002±0.0005
Q409E	0.0005±0.0001	0.0014±0	0.0026±0.0002	0.0009±0.0003	0.0022±0.0007	0.0036±0.0011	0.0009±0.0001	0.0029±0.0004	0.0057±0.0007	0.0007±0.0002	0.0014±0.0002	0.0021±0.0003
K458R	0.0009±0.0003	0.0025±0.0002	0.0047±0.0006	0.0013±0.0001	0.0041±0.0014	0.008±0.0036	0.0025±0.0003	0.0068±0.0013	0.0128±0.004	0.0008±0.0002	0.0018±0.0003	0.0029±0.0004
G476S	0.0006±0.0002	0.0015±0.0004	0.0025±0.0006	0.0013±0.0006	0.0034±0.0011	0.006±0.0013	0.0015±0.0001	0.0049±0.0008	0.0101±0.0023	0.0003±0.0001	0.0009 ± 0.0002	0.0014±0.0003
V483A	0.0006±0.0001	0.0017±0.0005	0.0031±0.0011	0.0015±0.0003	0.0039±0.0008	0.0069±0.0026	0.0027±0.001	0.0093±0.0018	0.0206±0.0027	0.0005±0.0001	0.0013±0	0.0022±0.0002
Y508H	0.0005±0.0001	0.0023±0.0003	0.0053±0.001	0.0013±0.0002	0.0035±0.0007	0.006±0.0015	0.0018±0.0005	0.0068±0.0007	0.0157±0.0047	0.0008±0.0001	0.0019±0.0006	0.0033±0.0016
H519P	0.0008±0.0001	0.0023±0.0002	0.0041±0.0005	0.0011±0.0002	0.0033±0	0.006±0.0004	0.0014±0.0003	0.005±0.0004	0.0107±0.0032	0.0007±0.0002	0.0016±0.0001	0.0025±0.0002
D614G	0.0007±0.0001	0.002±0.0002	0.0035±0.0007	0.0012±0.0005	0.0033±0.0005	0.0059±0.0003	0.0015±0.0004	0.0039±0.001	0.0067±0.0016	0.0006±0.0001	0.0015±0.0005	0.0026±0.001
A435S	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.0007±0.0001	0.0015±0.0003	0.0024±0.0006
I472V	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.0006±0.0001	0.0014±0.0003	0.0023±0.0006
E484K	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	>1.000	>1.000	>1.000
N501Y	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.0007±0.0002	0.002±0.0005	0.0042±0.0013

Note: N/A, no test

115 116 117

123	Supplemental Table 3. Summary of RBD binding with Nb ₁₅ s in different conditions. Related to
124	Figure 5.

Sample ID	Condition	Conc. (nM)	Response	KD (M)	Ka(1/Ms)	Kd(1/s)	RMax	Full R ²
	WT	133.3	0.3806	<1.0E-12	3.44E+05	<1.0E-07	0.3687	0.9676
	Aero	133.3	0.2139	9.92E-09	4.11E+04	4.08E-04	0.3277	0.9957
	37 °C	133.3	0.3756	<1.0E-12	1.89E+05	<1.0E-07	0.374	0.9948
	50 °C	133.3	0.3903	5.78E-11	2.11E+05	1.22E-05	0.3849	0.996
	60 °C	133.3	0.4048	5.57E-10	1.91E+05	1.06E-04	0.402	0.9986
	70 °C	133.3	0.3775	2.52E-10	1.63E+05	4.10E-05	0.3801	0.9989
	80 °C	133.3	0.3199	5.64E-09	5.85E+04	3.30E-04	0.4193	0.9994
	90 °C	133.3	0.1078	1.02E-08	2.90E+04	2.95E-04	0.211	0.9978
	WT	62.5	0.8028	<1.0E-12	6.98E+05	<1.0E-07	0.7814	0.9824
	Aero	62.5	0.3398	2.79E-10	5.05E+04	1.41E-05	0.7387	0.999
	37 °C	62.5	0.8136	<1.0E-12	4.34E+05	<1.0E-07	0.804	0.9946
Nb Eo	50 °C	62.5	0.853	<1.0E-12	4.11E+05	<1.0E-07	0.848	0.9976
ND ₁₅ -FC	60 °C	62.5	0.7989	4.38E-11	4.11E+05	1.80E-05	0.7944	0.9979
	70 °C	62.5	0.6126	4.95E-09	8.87E+04	4.39E-04	0.956	0.9995
	80 °C	62.5	0.2077	1.98E-08	4.16E+04	8.26E-04	0.557	0.9983
	90 °C	62.5	0.1088	4.12E-08	2.76E+04	1.14E-03	0.4281	0.9978
	WT	133.3	0.3769	<1.0E-12	6.20E+05	<1.0E-07	0.3637	0.8833
	Aero	133.3	0.184	<1.0E-12	2.55E+04	<1.0E-07	0.3816	0.9946
	37 °C	133.3	0.3667	<1.0E-12	4.01E+05	<1.0E-07	0.3578	0.9563
3vNb	50 °C	133.3	0.3588	<1.0E-12	3.96E+05	<1.0E-07	0.3507	0.9583
5XN015	60 °C	133.3	0.3715	<1.0E-12	3.49E+05	<1.0E-07	0.3635	0.9717
	70 °C	133.3	0.2294	<1.0E-12	2.78E+04	<1.0E-07	0.4508	0.9975
	80 °C	133.3	0.2748	4.97E-10	4.53E+04	2.25E-05	0.4052	0.9994
	90 °C	133.3	0.1294	4.87E-09	5.21E+04	2.54E-04	0.1778	0.9968

126

128