Cell Reports, Volume 36

Supplemental information

The histone chaperone HIR maintains

chromatin states to control nitrogen

assimilation and fungal virulence

Sabrina Jenull, Theresia Mair, Michael Tscherner, Philipp Penninger, Florian Zwolanek, Fitz-Gerald S. Silao, Kontxi Martinez de San Vicente, Michael Riedelberger, Naga C. Bandari, Raju Shivarathri, Andriy Petryshyn, Neeraj Chauhan, Lucia F. Zacchi, Salomé LeibundGut -Landmann, Per O. Ljungdahl, and Karl Kuchler

Figure S1: HIR1-deletion enhances growth on protein. Related to Figure 1.

A. Growth of C. albicans in YNB-BSA at 30 °C. Graphs show the mean +/- SD from 3 biological replicates. **p < 0.01 with Student's t-test after equal variance testing (F test) after 40 hours. B-D. Growth of the indicated C. albicans strain in YP medium supplemented with different carbon sources at 30 °C over a 12 hours period. OD_{600} values were measured every 20 minutes. Graphs show the mean +/- SD from 3 biological replicates. *p < 0.05, **p < 0.01 with one-way ANOVA followed by Tukey's multiple comparison test at the 12.2 hour time point after equal variance testing (Bartlett's test). E-F. Growth of the indicated C. albicans strains in YCB-BSA +/- Pepstatin A (PepA; E) and in YCB-BSA (F). Panel E is related to Figure 1C, showing the parallel treatment of PepA. Panel F depicts an additionally tested clinical isolate and is linked to Figure 1G. These additional conditions were split into two graphs to increase clarity. Graphs show the mean (solid dots) and single measurement values (opaque dots) from 2 biological replicates.

14 YP yeast peptone, YPD YP dextrose, YPG YP glycerol, YPL YP lactate, YPR YP raffinose, wo without, w with.

29 30

Figure S2: Hir1 functions in gene regulation during growth on protein. Related to Figure 2.

31 A-B. Volcano plots showing the global effect of deleting HIR1 on gene expression after 4 hours (A; t4) and 8 32 hours (B; t8) in YCB-BSA. The x-axis represents the log2-fold change in mRNA expression in $hir1\Delta/\Delta$ vs WT 33 and the y-axis shows the negative log10 FDR values. Horizontal dashed blue lines indicate a FDR of 0.05, and 34 vertical lines depict log2-fold change values of 0.58 and -0.58. The number insert in the top left corner indicates 35 the number of up- and downregulated genes (FDR < 0.05 and log2-fold change < -0.58 or log2-fold change > 36 0.58 in the mutant relative to the WT). C. GO term analysis of upregulated genes (FDR < 0.05 and log2-fold 37 change > 0.58) in *hir1*Δ/Δ cells at the indicated time (t0 YPD, t4 YCB-BSA 4 hours, t8 YCB-BSA 8 hours). The 38 gene ratio shows the number of genes enriched in the relevant GO term relative to the total input gene number. 39 D. RT-qPCR analysis of SAP gene expression (relative to the reference gene [RG] PAT1) in YNB-BSA medium. 40 Graphs show the mean +/- SD from 3 biological replicates. * p< 0.05, ** p< 0.01, *** p< 0.001, **** p< 0.0001 41 with Student's t-test after equal variance testing (F test).

42 FDR false discovery rate.

- 43
- 44
- 45

48 Figure S3: *HIR1* deletion alters chromatin accessibility upstream of genes related to nitrogen

49 **metabolism.** *Related to Figure* 3.

50 Figure caption is on the next page.

51

- 52 Figure S3: HIR1 deletion alters chromatin accessibility upstream of genes related to nitrogen
- **metabolism.** *Related to Figure* 3.
- **A.** Fragment size distribution of ATAC-seq libraries prepared from intact chromatin and naked gDNA after 55 paired-end sequencing. The x-axis shows the size in bp and the y-axis the frequency of the fragment length. 56 **B.** Volcano plot representing differential ATAC-seq peak signals in *hir1* Δ/Δ cells vs WT during YPD growth (t0),
- 57 with the log2-fold change plotted on the x-axis and the negative log10 FDR on the y-axis. Each dot corresponds
- to one ATAC-seq peak, which was annotated to the next adjacent gene. Turquoise colored dots represent selected genes involved in nitrogen metabolism, grey dashed line indicates a FDR of 0.05. The number insert in the top left corner depicts the number of significantly up- or downregulated peaks (FDR < 0.05 and log2-fold change > 0 or < 0, respectively). **C.** IGV tracks of normalized read coverage profiles from ATAC-seq and RNAseq data for the *RHB1* and *SAP2* loci. Grey boxes represent ORFs, white arrows show direction of
 - 63 transcription. **D.** GO term analysis of genes with upregulated ATAC-seq peaks (located max. 2 kb upstream
 - 64 the TSS after 4 or 8 hours (t4 and t8) in YCB-BSA in *hir1* Δ / Δ cells. The GeneRatio represents the proportion
 - of genes enriched in the depicted GO term relative to the total number of input genes. The number insert next
- to each dot shows the number of genes from the input dataset in comparison to the total number of genes
- 67 associated with the depicted GO term. **E.** Venn diagram showing the overlap of genes with significantly altered 68 ATAC-seg peak abundance during growth in YPD (t0) and differential RNA-seg signals (FDR < 0.05) after 4
- 69 and/or 8 hour culture in YCB-BSA (t4 or t8) in $hir1\Delta/\Delta$ cells. **F.** Heatmap of proteins with significant altered
- 70 abundance (adjusted p-value < 10^{-05}) in *hir1* Δ/Δ supernatants relative to WT and *HIR1* complemented cells.
- 71 gDNA genomic DNA, FDR false discovery rate, ORF open reading frame, TSS transcription start site

101 102

103 Figure S4: Proteolytic activity of $hir1\Delta/\Delta$ requires Sap2, Sap3 and the SPS-sensor. Related to Figure 4. 104 **A-B.** Immunoblot analysis for Sap2 (A) and Coomassie staining for BSA degradation (B) of WT and $hir1\Delta/\Delta$ 105 YCB-BSA culture supernatants used in parallel for both analyses. Results are from 3 independent experiments. 106 C-E. Coomassie staining (C-D) and Sap2 immunoblot analysis (E) of YCB-BSA culture supernatants. Results are representative for 2 independent experiments. F. RT-qPCR analysis of GAT1 expression (relative to the 107 108 reference gene [RG] PAT1) in WT and hir1 Δ/Δ cells in YNB-BSA. Graphs show the mean +/- SD from 3 109 biological replicates. P-values are derived from Student's t-test after equal variance testing (F test). G. 110 Immunoblot analysis of 3xHA-tagged Stp1-3HA processing. Cultures of $hir1\Delta/\Delta$ were grown for 2 hours in 111 YNB-BSA at 30 °C, followed by treatment with arginine (R; SPS-inducer), proline (P; SPS non-inducer) or 112 ddH₂O (-; solvent control). Protein extracts are from 3 biological replicates (1-3). Untagged strains grown for 2 113 hours in YNB-BSA served as control (ctrl). H. RT-qPCR analysis of OPT1 gene expression (relative to the RG 114 PAT1) in YNB-BSA. Graphs show the mean +/- SD from 3 biological replicates. **p < 0.01 with Student's t-test 115 after equal variance testing (F test). I. Growth of the indicated strains in YCB-BSA at 30 °C. Graphs show the 116 mean +/- SD from 3 biological replicates. ****p < 0.001 with one-way ANOVA followed by Tukey's multiple 117 comparison test at 48 hours after testing for equal variances (Bartlett's test).

121 Figure S5: In vitro host response towards $hir1\Delta/\Delta$ cells. Related to Figure 5.

122 Figure caption is on the next page.

- 123
- 124

125 Figure S5: *In vitro* host response towards *hir1*Δ/Δ cells. *Related to Figure 5.*

A-C. Isoluminol-dependent (A) or luminol-dependent (B-C) ROS assay with co-cultures of BMDMs and the indicated fungal strains alone or pre-mixed with Zymosan (B) or trehalose-6,6-dibehenate (TDB; C). Graphs show the mean +/- SD of the total RLU after 90 minutes from 4 independent replicates (shown as grey dots; A) or are representative for 3 replicates (B-C). *p < 0.05 with Student's *t*-test after equal variance testing (F-test). **D.** Representative FACS plot and gating strategy for fungal β -glucan exposure analysis shown in panel E. Example data from unstained (unst.) WT cells and one example showing the FITC-A signal from the indicated samples are depicted. E. Mean fluorescent intensity (MFI) values from FITC of flow-cytometry data. Graphs show the mean +/- SD from 3 independent replicates (grey dots). F. Luminol-dependent ROS assay of BMDMs challenged with the indicated fungal strains. RLU per minute per 1000 BMDMs over time are plotted. Data are representative for 3 independent experiments. **G-H.** RT-qPCR analysis of *ll1b* (G) and *Cxcl1* (H) expression in BMDMs stimulated with PBS, the WT or $hir1\Delta/\Delta$ cells for the indicated times. Transcript levels are normalized to Actb (β -actin). Dots refer to single measurements. Horizontal lines indicate mean values from 5 replicates. Indicated p-values were calculated using Student's t-test of the indicated comparison. I. Fungal survival of the indicated genotypes co-cultured with BMDMs for 3 hours. Graphs show the mean +/-SD from 4-5 replicates (grey dots) pooled from two experiments using different BMDMs differentiation batches. BMDMs bone marrow-derived macrophages, RLU relative luciferase units.

170 Figure S6: Gating strategy of flow cytometry data. *Related to Figure 6.*

Representative FACS plots and gating strategy of lavage samples from infected animals for assessing
leukocyte recruitment to the peritoneum. Number inserts present percentage values of the gated population.
NPHs neutrophils, MPHs macrophages.

Figure S7: Host response to $hir1\Delta/\Delta$ in oropharyngeal candidiasis (OPC) and systemic infection.

180 Related to Figure 7.

181 Figure caption is on the next page.

- Figure S7: Host response to $hir1\Delta/\Delta$ in oropharyngeal candidiasis (OPC) and systemic infection.
- Related to Figure 7.
- A. Fungal burden in murine tongues after 1 day of infection with the indicated genotypes. Graphs show the mean +/- SD from 8 animals per group that were pooled from two independent experiments (grey dots). The p-value from Student's t-test after equal variance testing (F test) is depicted. B-C. Histopathology of mouse tongues stained with periodic acid-Schiff (PAS) after 1 day of infection with $hir1\Delta/\Delta$ cells (B) or the revertant strain (C). Representative images from whole tongue sections were taken with 2.15x (B) and 1.75x (C) magnification with 1 mm scale bar. Blow-ups represent 20x magnifications. Filled arrowheads indicate fungal filaments, empty arrowheads indicate leukocyte infiltrates. **D-F.** RT-qPCR analysis of whole tongue extracts after 1 day of infection with the indicated fungal strains. Gene expression is shown relative to β -actin (Actb). Graphs show the mean +/- SD from 8 animals per group that were pooled from two independent experiments (grey dots). G-I. Fungal burdens of mouse spleen (G), liver (H) and lungs (I) after 1 day of i.v. infection with the indicated fungal strains. The CFUs per g organ are shown. Each dot corresponds to one animal. Horizontal lines represent the mean value from 4-5 animals. J-O. RT-qPCR analysis of whole kidney lysates after 1 day of i.v. infection. Transcript levels are expressed as fold-change relative to the PBS (uninf) control after normalization to Actb (β -actin). Graphs show the mean +/- SD from 4-5 mice (grey dots). CFU colony forming unit, uninf uninfected.

Table S1. Oligos used in this study. *Related to STAR METHODS*. 221

Strain construction					
Name	Sequence (5'->3'; lower case letters denote overlaps used for Gibson	Purpose			
	assembly or <i>in vivo</i> cloning; underlined sequences represent restriction				
	enzyme sites)				
55IC_SAP	ttctttcctgcgttatcccctgattctgtggataaccgtaccatggCCAAACCTTCAATGTACGTCC	Gene deletion			
3					
53IC_SAP	gaggggggggcccggtacccaattcgccctatagtgagtcgGTTGTTTTGATACACGGCACC	Gene deletion			
3					
35IC_SAP	tagtgagggttaattgcgcgcttggcgtaatcatggtcatCCACAAACAATTACTCAAAGC	Gene deletion			
3					
33IC_SAP	aacgcagaaaatgaaccggggatgcgacgtgcaagatta <u>ccatgg</u> CCAGTTGTTGTCAAATATGG	Gene deletion			
3					
5C_SAP3	GGATTGGATTATGCCGACTC	Integration check			
3C_SAP3	GATAAAAACACTGCTGCTCAAG	Integration check			
55_SAP3t	GTGGGACATTGATTGCTTTACC	Loss of gene check			
ag					
53_SAP3t	ccactagcagcagaaccggaAGTAAGAGCAGCAATGTTAGAAG	Loss of gene check			
ag					
55_IC_YE	ttctttcctgcgttatcccctgattctgtggataaccgtaccatggGATAGACGAAACAAACGAAGG	Gene deletion			
P_PMR1					
53IC_PM	gaggggggggcccggtacccaattcgccctatagtgagtcgGATTAGCACTCATTGAACTGTATAC	Gene deletion			
R1					
35IC_PM	tagtgagggttaattgcgcgcttggcgtaatcatggtcatGACTGTATTTGGCTCCATGAAAG	Gene deletion			
R1					
33_IC_YE	aacgcagaaaatgaaccggggatgcgacgtgcaagatta <u>ccatgg</u> GCACCTAGTAAACGAGCTAT	Gene deletion			
P_PMR1	AG				
5C_PMR1	CTAGGCACTACAGGGAATGAG	Integration check			
3C_2_PR	GCACAACCACGAAATGTACTAGTTG	Integration check			
M1					
PMR1_LO	GTAACAACGCCAGATATTCTACTG	Loss of gene check			
G_fo					
PMR1_LO	CAATACAGCATGGTCTCCAAC	Loss of gene check			
G_re					
53_reintIC	gaggggggggcccggtacccaattcgccctatagtgagtcgTTCATGTTCACCTCCTCCCT	Gene			
_PMR1		complementation			
55IC_STP	ttctttcctgcgttatcccctgattctgtggataaccgtaccatggGTGTGAAATGAGATATCAACCG	Gene deletion			
1					
53IC_STP	gaggggggggcccggtacccaattcgccctatagtgagtcgCGTTGAAAGCTTATGACTGATGC	Gene deletion			
1					
35IC_STP	tagtgagggttaattgcgcgcttggcgtaatcatggtcatCTTTATGGTATAGGGTTTTCGG	Gene deletion			
1					
33IC_STP	aacgcagaaaatgaaccggggatgcgacgtgcaagatta <u>ccatgg</u> GACTGTTAGCATTGGTTCAG	Gene deletion			
1					

LOG-	CATTAGATG	ACGAGTTTGTACC	Loss of gene check	
STP1_fo				
LOG-	CTCTGACTT	GCCTTTACACC	Loss of gene check	
STP1_re				
5C_STP1	GAAACTTGAAAGCTCTCAACG Integrati			
3C_STP1	CATCCAATC	Integration check		
STP1_HA	ccatattgaagct	Amplification of		
_fo	TCTTTTACCO	CATACGATG	3xHA-NAT tagging	
			cassette for Stp1	
C-	tattaaaactaaa	agaatataagaaaagaaaagaagaagaaataataaccgaaaaccctataccataaagaa	Amplification of	
HATagST	gtaaaactaatat	3xHA-NAT tagging		
P1R			cassette for Stp1	
55ic CHS	ttctttcctgcgttat		Gene deletion	
3	00			
53ic CHS	caaaaaaaaaa		Gene deletion	
3	0 0000000			
35ic CHS	ttaataaqqqttaa		Gene deletion	
3				
33ic CHS	aacqcaqaaaa		Gene deletion	
3	uuuguuguuuu			
5C CHS3	AAGATAATTO	STAAGTTGAATGAGG	Integration check	
3C CHS3				
LOGfwd				
CH83	1100/010/0		Loss of gene oncor	
	GAATCACGC	ттасстстаттасст	Loss of gene check	
HS3	0,0,10,10000		Loss of gene oncor	
hk3	CATCATCTG	CCCAGATGCGAAG	Liniversal 3'	
TIKO			integration check	
SATflipp	TTTCCAACT			
SATTIPP_	TTIGGAACT	AACGATGCATACGAC	Universal 5	
YEp_IC	gtaatcttgcacg	regeatee	Amplification of	
twa			YEp352 backbone	
YEP_ic	tacggttatccaca	agaatcaggg	Amplification of	
rev			YEp352 backbone	
SATflipp_f	CGACTCACTATAGGGCGAATTGG		Amplification of the	
wd			NAT-flipper	
			cassette	
SATflipp_r	ATGACCATG	ATTACGCCAAGC	Amplification of the	
ev			NAT-flipper	
			cassette	
qPCR				
Name		Sequence (5'->3')		
RT5_PAT1		CAGCAACTGATTTATCGGAATGG		
RT3_PAT1		ACATCTTCAGGGTTAGGTGG		
SAP2_fwd		CCCAGTTACTAATGGTCAAGAAGG		

SAP2_rev	GCAGTTTGATCACTATAAGTGACTTG
SAP3_fwd	TCAAGTTTCATGTCAAGCTGGT
SAP3_rev	ATGTCCCTTGTGAAGTAGTTCC
SAP7_fwd	TCTCAATGTAAAGTCAATGGAGGG
SAP7_rev	TGACCCATAGTACCTGATGCC
SAP8_fwd	GGTGATGAAAGTAGTCCAACCT
SAP8_rev	GTACCAGATGAAGCAGAAGCAG
RT5_OPT1	CTGGAACCAAATTGCAGGGT
RT3_OPT1	TTGGGAGTACCAAGTGTTGGA
RT5_STP1	ACACGATTCAATTTCACCACCA
RT3_STP1	CCGTTTGATGTAACTGAAGAACTG
RT5_Gat1	TACGATCAATGTCGCAAACTCC
RT3_Gat1	TGTGGTGACGGTTGACTAGG
Actb_fwd_KK	AGTGTGACGTTGACATCCGT
Actb_rev_KK	TGCTAGGAGCCAGAGCAGTA
ICAM1_fwd	TGGATACCTGAGCATCACCA
ICAM1_rev	CTGCTACCTGCACTTTGCC
P-Selectin_fwd	GAACAATCCAGGTTGCCTTG
P-Selectin_rev	CAGTTCATGTGCGATGAAGG
ll1b_fwd	CCAACAAGTGATATTCTCCATGAG
ll1b_rev	TCTTTCATTACACAGGACAGGT
KIM1_fwd	ACATATCGTGGAATCACAACGAC
KIM1_rev	ACAAGCAGAAGATGGGCATTG
Csf3_fwd_KK	TCTCCGTTACTTGGGGACAC
Csf3_rev_KK	CCACACTCAAGAATGGTCGC
Cxcl2_fwd_KK	TCCAGGTCAGTTAGCCTTGC
Cxcl2_rev_KK	CGGTCAAAAAGTTTGCCTTG
ll6_fwd	GAGGATACCACTCCCAACAGACC
II6_rev	AAGTGCATCATCGTTGTTCATACA
Actb_fwd_SLG	CCCTGAAGTACCCCATTGAAC
Actb_rev_SLG	CTTTTCACGGTTGGCCTTAG
Cxcl2_fwd_SLG	AGTGAACTGCGCTGTCAATGC
Cxcl2_rev_SLG	GCAAACTTTTTGACCGCCCT
Csf3_fwd_SLG	CTTAAGTCCCTGGAGCAAGTG
Csf3_rev_SLG	GTGGCCCAGCAACACCAG
II1b_fwd_SLG	TACAGGCTCCGAGATGAACA
ll1b_rev_SLG	AGGCCACAGGTATTTTGTCG