APPENDIX for "Multistability maintains redox homeostasis in human cells"

Jo-Hsi Huang^{1,a}, Hannah K. C. Co^{2,a}, Yi-Chen Lee², Chia-Chou Wu², Sheng-hong Chen^{2,b}

 Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115

a. These authors contributed equally

b. Corresponding author: shengchen@gate.sinica.edu.tw

TABLE OF CONTENTS

Appendix Supplementary Figures	
Figure S1	page 2
Figure S2	page 3
Appendix Supplementary Tables	
Table S1	page 4
Table S2	page 5
Table S3	page 6
Table S4	page 7
Table S5	page 8
Table S6	page 9
Table S7	page 10
Table S8	page 11
Table S9	page 12

Appendix Figure S1. Ultrasensitivity of the ROS-response curve in U87-MG cells (A) Representative HyPer7 images of U87-MG-HyPer7 cells 10 h after glucose deprivation (from 400 μ M to 0 μ M). (B) A dose-response curve of ROS 10 h after glucose deprivation. For each glucose concentration, the ROS levels of 80 cells were quantified. To deconvolute the effects of non-responsive cells, they were not considered in the analyses of the lower five glucose concentrations (0 μ M, 6.3 μ M, 12.5 μ M, 25 μ M and 50 μ M). A Hill exponent (n) was fitted to be 6.5, with a 95% confidence interval of 2-11.

Appendix Figure S2. Validation of calcium and NOX inhibitors.

(A) Representative differential interference contrast (D.I.C., left panel) and fluorescent images of calcium indicator Fluo-4 AM (right panel) of LN18 cells 3 h after glucose deprivation. Cells were pre-treated with Nifedipine (10 μ M) and BAPTA-AM (12.5 μ M) 1 h before glucose deprivation to inhibit calcium signaling. (B) Activity of tyrosine kinase signaling was probed with western blot analysis using an anti-phospho-tyrosine antibody (4G10, Cell Signaling Technology) under normal [glucose] (band 1), no glucose (band 2), and no glucose with addition of BAPTA-AM alone (band 3), GKT137831 alone (band 4) and both (band 5). A multi-targeted tyrosine kinase inhibitor, Dasatinib (1 μ M, band 6), was used as a positive control for suppression of tyrosine kinase signaling. The middle and right panels show the quantifications of phospho-tyrosine and the protein loading control respectively.

Appendix rable Molecule	o I - Variable L Location	Organism	r canges Concentration Unit	Ref	Assumption made to convert unit	Converted quanty Converted unit	Note
SLC7A11	Cell	Human	200 ppm	PaxDB (https://pax-db.org/protein/1846679); See table 002	10000 ppm ∼ 500 uM (See Table EV2)	10 uM	Upper bound
GSH	Cell	Human	10 mM	Bionumbers #113865; Forman et al. Mol. Aspects Med. 2009	NA	10000 uM	Upper bound
НЗЫ	Cell	Hiiman	T T T	Bionumbers #113865; Friman et al Mol Assuerts Med. 2009	NA	1 Mi	- ower hound
GSH/GSSG	Cell	Human	100 NA	Zitka et al. Oncol. Lett. 2012	NA	100 NA	Upper bound
GSH/GSSG	Cell	Human	10 NA	Zitka et al. Oncol. Lett. 2012	NA	10 NA	Lower bound
GSSG	Cell	Human	1 mM	Calculated from above	NA	1000 uM	Upper bound
GSSG	Cell	Human	0.01 mM	Calculated from above	NA	10 uM	Lower bound
Glu	Cell	Human	20 mM	Bionumbers #100790	NA	20000 uM	NA
Glu	Cell	Human	10 mM	Featherstone. ACS Chem. Neurosci. 2010	NA	10000 uM	Upper bound
Glu	Cell	Human	5 mM	Featherstone. ACS Chem. Neurosci. 2010	NA	5000 uM	Lower bound
Cys2	Cell	Human	2 nmol / mg protein	Jamalpoor et al. Biomed. Chromatogr. 2017, Fig. 3	Cellular protein concentration 300 mg	600 uM	Cystinotic cell
Cys2	Cell	Human	0.05 nmol / mg protein	Jamalpoor et al. Biomed. Chromatogr. 2017, Fig. 3	Cellular protein concentration 300 mg	15 uM	Healthy cell
Cys	Cell	Human	1.5 nmol / mg protein	Sato et al. J. Biol. Chem. 2005, Fig. 7	Cellular protein concentration 300 mg	450 uM	NA
Cys	Cell	Human	4 nmol / mg protein	Stipanuk et al. J. Nutr. 2006, Fig. 4	Cellular protein concentration 300 mg	1200 uM	Lower bound
Cys	Cell	Human	6 nmol / mg protein	Stipanuk et al. J. Nutr. 2006, Fig. 4	Cellular protein concentration 300 mg	1800 uM	Upper bound
NADPH	Cell	Human	3 uM	Zou et al. Nat. Protoc. 2018, Table 2	NA	3 uM	NA
NADPH/NADP+	Cell	Human	300 NA	Zou et al. Nat. Protoc. 2018, Table 2	NA	300 NA	Upper bound
NADPH/NADP+	Cell	Human	15 NA	Zou et al. Nat. Protoc. 2018, Table 2	NA	15 NA	Lower bound
NADP+	Cell	Human	200 nM	Zou et al. Nat. Protoc. 2018, Table 2	NA	0.2 uM	Upper bound
NADP+	Cell	Human	10 nM	Zou et al. Nat. Protoc. 2018, Table 2	NA	0.01 uM	Lower bound
ROS	Cell	Human	0.01 uM	Giorgio et al. Nat.Rev. Mol. Cell Biol. 2007, Box 1	NA	0.01 uM	Proliferative
ROS	Cell	Human	0.1 uM	Giorgio et al. Nat.Rev. Mol. Cell Biol. 2007, Box 1	NA	0.1 uM	Proliferative
ROS	Cell	Human	1 uM	Giorgio et al. Nat.Rev. Mol. Cell Biol. 2007, Box 1	NA	1 uM	Growth arrest
ROS	Cell	Human	100 uM	Giorgio et al. Nat.Rev. Mol. Cell Biol. 2007, Box 1	NA	100 uM	Cell death
ROS	Cell	Human	1 uM	Antunes and Cadenas. Free Radic. Biol. Med. 2001, Fig. 2	NA	1 uM	Cell death
ROS	Cell	Human	50 nM	Huang et al. ACS Synth. Biol. 2016, Fig. 4 and 5	NA	0.5 uM	Cell death
ROS	Cell	Human	0.01 uM	Sies. Redox Biol. 2017; Sies and Jones. Nat. Rev. Mol. Cell Biol. 2020	NA	0.01 uM	Proliferative
ROS	Cell	Human	0.1 uM	Sies. Redox Biol. 2017; Sies and Jones. Nat. Rev. Mol. Cell Biol. 2020	NA	0.1 uM	Stress;
ROS	Cell	Human	1 uM	Sies. Redox Biol. 2017; Sies and Jones. Nat. Rev. Mol. Cell Biol. 2020	NA	1 uM	Growth arrest; Cell death
RTK	Cell	Human	100 nM	Take generic number from Cell Biology by the Numbers (http://book.bionumbers.org/what-are-the-absolute-numbers-of-signaling- proteins/)	NA	0.1 uM	NA
PPTase	Cell	Human	001 Mr	Take generic number from Cell Biology by the Numbers (http://book.bionumbers.org/what-are-the-absolute-numbers-of-signaling- proteins/)	¢z	Mu 1.0	NA
Ca2+	Cell	Hilman	Ma 001	Bionumbers #107490; Clanham, Cell 2007	NA	Mii E O	ΔN
- 700	DDMI-1640	NA	11 11 mM	General DDMI-1640 revine	VI	11110M	
- B	RPMI-1640	NA	Mm C	General RPML-1640 recipe	AN	2000 III	AN
Cive 2	PPMI-1640	NA	0.2 mM	Constant DDMI 16.40 reside	NIA	Mii 000	NA

Rar	,
Concentration	
- Variable	
Table S1	
ndix	

Molecule	Locatio	on Organism	Concentration Unit	Ref	Assumption made to convert unit Conver	ted quanty Converted	unit Note
Total actin	Cell	Mammals	500 uM	Lodish et al. Freeman. 2000, Molecular Cell Biology, 4th Edition, Section 18.1	NA	500 uM	NA
Total actin	Cell	Acanthamoeba	200 uM	Pollard et al. Annu. Rev. Biophys. Biomol. Struct. 2000, Table1	NA	200 uM	NA
Total actin	Cell	Dictyostellium	250 uM	Pollard et al. Annu. Rev. Biophys. Biomol. Struct. 2000, Table1	NA	250 uM	NA
Total actin	Cell	Mammals (Neutrophils)) 400 uM	Pollard et al. Annu. Rev. Biophys. Biomol. Struct. 2000, Table1	NA	400 uM	NA
Total actin	Cell	Mammals (Platelets)	550 uM	Pollard et al. Annu. Rev. Biophys. Biomol. Struct. 2000, Table1	NA	550 uM	NA
Polymerized acti	in Cell	Eukaryotes	1000 uM	Bionumbers #109980	NA	1000 uM	NA
Total actin	Cell	Unspecified	100 uM	Bionumbers #109293	NA	100 uM	NA
Total G-actin	Cell	Unspecified	100 uM	Bionumbers #112131	NA	100 uM	NA
Total actin	Cell	Dictyostellium	250 uM	Bionumbers #109565	NA	250 uM	NA
ACTA1	Cell	Human	150 ppm	PaxDB (https://pax-db.org/protein/1854428)			normalized averge
ACTB	Cell	Human	5000 ppm	PaxDB (https://pax-db.org/protein/1853523)			normalized averge
ACTC1	Cell	Human	800 ppm	PaxDB (https://pax-db.org/protein/1847228)			normalized averge
ACTG1	Cell	Human	5000 ppm	PaxDB (https://pax-db.org/protein/1851354)			normalized averge
Total Actin	Cell	Human	10000 ppm	Summation over PaxDB entries	10000 ppm ~ 500 uM	500 uM	normalized averge
SLC7A11	Cell	Human	1.5 ppm	PaxDB (https://pax-db.org/protein/1846679)	10000 ppm ~ 500 uM	0.075 uM	normalized averge
SLC7A11	Cell	Human	200 ppm	PaxDB (https://pax-db.org/protein/1846679)	10000 ppm ~ 500 uM	10 uM	Upper bound
Total protein	Cell	Human	10 * 10^9 molecule:	Cell biology by the numbers; s http://book.bionumbers.org/how-many-proteins-are-in-a-cell/	Cell volume ~ 3 pL; Avogadro's number ~ 6 * 10^23	50 mM	

Nutrient	Transporte	er Measure	e Value Unit Ref	Assumption made to convert unit Converted quanty Converted unit Note	
Glc	SLC2A1	Km	1.5 mM Lodish et al. Freeman. 2000, Molecular Cell Biology, 4th Edition, Section 15.3	NA 1500 uM NA	
GIn	SLC1A5	Km	0.1 mM Pingitore et al. Biochim. Biophys. Acta 2013, Fig. 9A	NA 100 uM NA	
GIn	SLC1A5	Km	30 uM Fuchs and Bode. Semin. Cancer Biol. 2005	NA 30 uM Lower	er estimate
GIn	SLC1A5	Km	90 uM Fuchs and Bode. Semin. Cancer Biol. 2005	NA 90 uM Higher	er estimate
GIn	SLC7A5	Km	1.6 mM Fuchs and Bode. Semin. Cancer Biol. 2005	NA 1600 uM NA	
GIn	SLC38A2	Km	2.3 mM Menchini and Chaudhry. Neuropharmacol. 2019	NA 2300 uM NA	
Cys2	SLC7A11	Km	0.05 mM Thomas et al. PLOS ONE 2015	NA 50 uM NA	
Glu	SLC7A11	Km	7.5 mM Thomas et al. PLOS ONE 2015	NA 7500 uM Export	ort Km for intracellular Glu

Appendix Table S4 - Flux Ranges					
Process	Value Unit	Ref	Assumption made to convert unit	Converted quanty Converted u	unit Note
Cys2 uptake	0.2 nmol / mg protein / min	Thomas et al. PLOS ONE 2015, Fig. 6	Cellular protein concentration 300 mg / mL	60 uM / min	Lower measurement
Cys2 uptake	0.8 nmol / mg protein / min	Thomas et al. PLOS ONE 2015, Fig. 6	Cellular protein concentration 300 mg / mL	240 uM / min	Higher measurement
Cys2 uptake	0.6 nmol / mg protein / min	Ye et al. J. Neurosci. 1999, Fig. 5D	Cellular protein concentration 300 mg / mL	180 uM / min	NA
Cys2 uptake	7 fmol / cell / hr	Hosios et al. Dev. Cell 2016, Fig. 1	Cell volume 3 pL	40 uM/min	NA
Gin uptake	3.5 pmol / ug protein / min	Parker et al. Metab. Eng. 2017, Fig. 2	Cellular protein concentration 300 ug / uL	1000 uM / min	NA
Gin uptake	100 fmol / cell / hr	Hosios et al. Dev. Cell 2016, Fig. 1	Cell volume 3 pL	1700 uM / min	NA
Gin uptake	300 fmol / cell / hr	Jain et al. Science 2012, Database S1	Cell volume 3 pL	5000 uM / min	Max from 60 cell lines
Gin uptake	70 fmol / cell / hr	Jain et al. Science 2012, Database S1	Cell volume 3 pL	1200 uM / min	Median from 60 cell lines
Gin uptake	10 fmol / cell / hr	Jain et al. Science 2012, Database S1	Cell volume 3 pL	170 uM/min	Min from 60 cell lines
Glu export	2 pmol / ug protein / min	Parker et al. Metab. Eng. 2017, Fig. 2	Cellular protein concentration 300 ug / uL	600 uM / min	NA
Glu export	20 fmol / cell / hr	Hosios et al. Dev. Cell 2016, Fig. 1	Cell volume 3 pL	100 uM / min	NA
Glu export	100 fmol / cell / hr	Jain et al. Science 2012, Database S1	Cell volume 3 pL	500 uM / min	Max from 60 cell lines
Glu export	10 fmol / cell / hr	Jain et al. Science 2012, Database S1	Cell volume 3 pL	50 uM / min	Median from 60 cell lines
Guevort	-3 fmol / coll / hr	lain at al Science 2012 Database S1	Coll volvino 3 al	-15	Min from 60 cell lines; Not unstant of exercit
Glu anaplemsis	1 pmol / up protein / min	Parker et al. Metab End 2017 Eid 2	Cellular protein concentration 300 µg / ul	300 IJM / min	NA
Ou to other metabolites	O E amol / us amotoin / min	Doubor of of Motob End 2017 Fig. 0	Collider anothin concentration 200 up / ul	150M / min	Environmented for in the discrete
		רמואט אואי אואי אואי אין אין אין אין אין אין אין אין אין א			
GIn to other metabolites / total labeling	0.1 NA	Hosios et al. Dev. Cell 2016, Fig. 1	Gln uptake flux 1700 uM / min (Hosios et al. Dev. Cell 2016)	170 uM / min	Gin channeled to soluble, polar fraction (metabolites)
Glc uptake	900 fmol / cell / hr	Jain et al. Science 2012, Database S1	Cell volume 3 pL	15000 uM / min	Max from 60 cell lines
Glc uptake	300 fmol / cell / hr	Jain et al. Science 2012, Database S1	Cell volume 3 pL	5000 uM / min	Median from 60 cell lines
Glc uptake	40 fmol / cell / hr	Jain et al. Science 2012, Database S1	Cell volume 3 pL	700 uM / min	Min from 60 cell lines
Glc uptake	300 fmol / cell / hr	Hosios et al. Dev. Cell 2016, Fig. 1	Cell volume 3 pL	5000 uM / min	NA
Glc uptake	40 pmol / ug protein / min	Parker et al. Metab. Eng. 2017, Fig. 2	Cellular protein concentration 300 ug / uL	12000 uM / min	NA
Gic uptake	0.5 umol / uL packed cell / h	r Tanner et al. Cell Svst. 2018, Fig. 1	70 ug / uL packed cells (Fan et al. Nature 2014, Fig. S9); Cellular protein concentration 300 ug / uL	36000 uM / min	Basal rate
Gic uptake	1 umol / uL packed cell / h	r Tanner et al. Cell Syst. 2018, Fig. 1	70 ug / uL packed cells (Fan et al. Nature 2014, Fig. S9); Cellular protein concentration 300 ug / uL	72000 uM/min	Ras-stimulated rate
Glc uptake	1.25 pmol / cell / hr	Liu et al. Nat. Cell Biol. 2020, Fig. S1	Cell volume 3 pL	7000 uM / min	NA
NADPH synthesis by NADK	12 pmol / 10^6 cell / hr	Liu et al. Cell Metab. 2018, Fig. 1 (in text)	Cell volume 3 pL	0.07 uM / min	Very slow compared to regeneration; Assume to be total NADPH/+ to be constant
OXPPP flux	2 nmol / uL packed cell / h	r Fan et al. Nature 2014, Fig. 1	70 ug / uL packed cells (Fan et al. Nature 2014, Fig. S9); Cellular protein concentration 300 ug / uL	150 uM/min	NA
OXPPP flux / glycolysis flux	0.04 NA	Liu et al. Nat. Cell Biol. 2020, Fig. 1d	Glc uptake flux 7000 uM / min (Liu et al. Nat. Cell Biol. 2020)	280 uM / min	NA
OXPPP flux / glycolysis flux	0.02 NA	Bionumbers #112684	NA	NA NA	NA
NADPH regeneration by OXPPP	2 NADPH / Glc	Generic;1 from G6PD, 1 from PGD	NA	NA NA	NA
NADPH regeneration total	10 nmol / uL packed cell / h	r Fan et al. Nature 2014, Fig. 1	70 ug / uL packed cells (Fan et al. Nature 2014, Fig. S9); Cellular protein concentration 300 ug / uL	720 uM / min	NA
Fraction NADPH consumed by anabolism	0.9 NA	Fan et al. Nature 2014, Fig. 4	NA	NA NA	Upper bound
Fraction NADPH consumed by anabolism	0.7 NA	Fan et al. Nature 2014, Fig. 4	NA	NA NA	Lower bound

Appendix Table S5 - Fluxes Used To Estimate Para	meters				
Process Flux value	e used Flux unit Model	Note	Interpretation	Parameter estimated	Parameter unit
NADPH regeneration by Glc metabolism	500 uM / min kNadphRedGlc*glc/(Kglcln+glc)*(nadptot-nadph)*(1+switchNadphRed)	Assume total flux = 1000 uM / min; Assume switchNadphRed = 0 for estimation process	Not addicted to Glc for NADPH	kNadphRedGlc	/ min
NADPH regeneration by Glu metabolism	500 uM / min kNadphRedGlu * glu * (nadptot - nadph) * (1 - switchNadphRed)	Assume total flux = 1000 uM / min; Assume switchNadphRed = 0 for estimation process	Not addicted to Glc for NADPH	kNadphRedGlu	/ uM / min
Cys2 uptake	30 uM / min kCys2m* cys2o / (Kcys2n + cys2o) * xct* glu	Assume xct = 0.1 uM; Assume Cys2 uptake flux = 30 uM/ min; Bobh lower estimates; Assume 1:1 exchange; Same as Gui export flux	Not addicted to Cys2 for Cys	kCys2lm; kGluEx	/ uM / min
Glu export	30 uM / min kGluEx*oys2o / (Koys2n + cys2o)* xct*glu	Assume xct = 0.1 uM; Assume Glu export flux = 30 uM/ min; Bobh lower estimates; Assume 1:1 exchange; Same as Glu export flux	Not addicted to Cys2 for Cys	kGluEx; kCys2lm	/ uM / min
Cys2 reduction by NADPH	30 uM / min kCys2Red * cys2 * nadph	Assume all uptaken Cys2 gets reduced to Cys: Assume NADPH provides all reducing power needed: Same as NADPH consumed by Cys2		kCys2Red; kNadphOxCys2	/ uM / min
NADPH consumed by Cys2	30 uM / min khadph0xCys2*cys2*nadph	Assume all uptaken Cys2 gets reduced to Cys: Assume NADPH provides all reducing power needed: Same as Cys2 reduction by NADPH		kNadphOxCys2; kCys2Red	/ uM / min
NADPH consumed by anabolism	800 uM / min kNadphOxAnab * nadph	Assume anabolism consumes 80% NADPH			/ min
Gin uptake and Giu production	300 uM / min kGluPro≁glu / (KglnIn + glu)	Assume all Gin uptaken hydrolyzed to Glu; Assume Gin uptake = 300 uM / min; A lower estimate	Not addicted to GIn	kGluPro	uM / min
GSH synthesis	30 uM / min KOshPro*cys*glu	Assume 10% of Glu produced goes to GSH; An upper bound estimate		kGshPro	/ uM / min

Appendix Table S6 - Variable Stead	y States to Estimate Parameters
------------------------------------	---------------------------------

Molecule	State	Value	Unit	Note
ROS	Full nutrient	0.01	uМ	
GSH	Full nutrient	1000	uМ	
GSSG	Full nutrient	100	uМ	
NADPH	Full nutrient	1	uМ	
Cys2	Full nutrient	1	uМ	Lower estimate; Consistent with lower SLC7A11 used
Cys	Full nutrient	100	uМ	Lower estimate; Consistent with lower SLC7A11 used
Glu	Full nutrient	10000	uМ	
Ca2+	Full nutrient	0.1	uМ	
RTK-phospho / RTK-total	Full nutrient	0.1	NA	Ref. Graham et al. Mol. Syst. Biol. 2012
RTK-phospho / RTK-total	Glc deprivation	1	NA	Ref. Graham et al. Mol. Syst. Biol. 2012
PPTase-reduced / PPTase-total	Full nutrient	1	NA	Ref. Graham et al. Mol. Syst. Biol. 2012
PPTase-reduced / PPTase-total	Glc deprivation	0.5	NA	Ref. Graham et al. Mol. Syst. Biol. 2012

Parameter	Туре	Value	Range	Unit	Note
xct	Constant	0.1	0 to 10	uМ	Model low SLC7A11 cell
n1	Hill exponent	5	1 to n	NA	Ultrasensitivity in auto-inhibition
fRosGlc	Artificial handle	0.1	0 to 1	NA	Arbitrary
fRosGlu	Artificial handle	0.4	0 to 1	NA	Arbitrary
switchNadphRed	Artificial handle	0	-1 to 1	NA	Model non-addicted cell
foldRos	Artificial handle	1	0 to n	NA	Base line

Appendix Table S7 - Predetermined or Arbitrary Parameters

Appendix Table S8 - Estimate Parameter Values Estimation step Process Flux	value used. Flux unit. Model	Known parameters and estimated steady stat	Parameter estimated Estim	ated value Parameter unit
1 NADPH regeneration by Glc metabolism	500 uM/min_kNadphRedGic*gic/(kgicin+gic)*(nadptot-nadph)*(1+switchNadphRed)	glc = 10000 uM; Kglcln = 1500 uM; nadpixi = 1 uM; switchNadpRed = 0;	kNadphRedGic	5750 / min
2 NADPH receneration by Glu metabolism	500 uM/min_kNadohRedGlu*du*(nadobt-nadoh)*(1-switchNadohRed)	glu = 10000 uM: nadptot = 1 uM: nadph = 0.9 uM: switchNadohRed = 0.	kNadohRedGlu	0.5 / uM / min
3 NADPH consumed by anabolism	800 uM/min kNadphOxAnab*nadph	nadph = 1 uM;	kNadphOxAnab	800 / min
4 Cvs2 uptake	30 uM/min (KOys2lm*oys2o/(Koys2ln+oys2o)*xct*glu	cys2o = 0.2 uM; Kcys2ln = 0.05 uM; xct = 0.10 uM; giu = 1000 uM;	kCys2lm; kGluEx	0.0375 / uM / min
4 Glu export	30 uM/min kGluEx*cvs2o/(Kcvs2n+cvs2o)*xct*alu	cys2o = 0.2 uM; Kcys2ln = 0.05 uM; xct = 0.1 uM; qui = 1000 uM;	KGluEx: kCvs2lm	0.0375 / uM / min
5 Cvs2 reduction by NADPH	30 uM/min kCvs2Red*cvs2*nadph	cys2 = 1 uM; nadph = 1 uM;	kCys2Red; kNadphOxCys2	30 / uM / min
5 NADPH consumed by Cys2	30 uM/min kNadphOxCys2* cys2* nadph	cys2 = 1 uM; nadph = 1 uM;	kNadphOxCys2; kCys2Red	30 / uM / min
5 Cys production from Cys2 and NADPH	60 uM/min 2*kNadphOxCys2*cys2*nadph	cys2 = 1 uM; nadph = 1 uM;	kNadphOxCys2; kCys2Red	30 / uM / min
6 NADPH consumed by GSSG	170 uM / min kNadphOxGssg * gssg * nadph	gssg = 100 uM; nadph = 1 uM;	kNadphOxGssg	1.7 / uM / min
6 GSSG reduced by NADPH	170 uM / min KGshRed * nadph * gssg	gssg = 100 uM; nadph = 1 uM;	kGshRed	1.7 / uM / min
6 GSH regenerated by NADPH	340 uM / min 2* KGshRed * nadph* gssg	gssg = 100 uM; nadph = 1 uM;	kGshRed	1.7 / uM / min
7 Gin uptake and Giu production	300 uM / min kGuPro≛din / (Kahih + din)	gln = 2000 uM; Kalnin = 100 uM:	kGluPro	315 uM / min
8 GSH svnthesis	30 uM / min K6shPo*cvs* du	cys = 100 uM; alu = 10000 uM;	kGshPro	0.00005 / uM / min
9 Cys degradation through other processes	30 uM/min kCysDeg*cys	cys = 100 uM;	kCysDeg	0.3 / min
10 Glu degradation through other processes	240 uM/min kGluDeg*glu	glu = 10000 uM;	kGluDeg	0.024 / min
11 GSH and GSSG degradation	30 uM/min kGshDeg * gsh + kGssgDeg * gssg	gsh + gssg = 1000 uM;	kGshDeg; kGssgDeg	0.027 / min
12 GSH oxidation by ROS	340 uM / min 2* kGsh0x * ros * gsh^2	ros = 0.01 uM; gsh = 1000 uM;	kGshOx; kRosDeg	0.017 / uM / min
12 GSSG production from GSH oxidation	170 uM / min kGshOx * ros * gsh*2	ros = 0.01 uM; gsh = 1000 uM;	kGshOx; kRosDeg	0.017 / uM / min
12 ROS removed by GSH	170 uM/min kRosDeg *ros*gsh*2	ros = 0.01 uM; gsh = 1000 uM;	kGshOx; kRosDeg	0.017 / uM / min
13 ROS produced by lipid metabolism	foldRos * kRosProBase * (1 - RosGic - RosGiu) * ca * rkPhos * KrosInhRos^n1 / (KrosInhRos^n1 + 170 uM / min ros^n1)	foldRos = 1; RtosGlc = 0; RtosGlu = 0; RtsPhos = 0.01 uM; rtsPhos = 0.05; n1 = 5;	KRosProBase	170000 / uM / min
14 ROS produced by Gic metabolism	foldRos * kRosProGic * gic / (Kgicin + gic) * iRosGic * ca * rikPhos * KrosinhRos*n1 / (KrosinhRos*n	foldRos = 1; fRosGlc = 1; RosGlu = 0; glc = 1000 uM; glc = 1000 uM; ca = 0.1 uM; rtRPns = 0.01 uM; rtRPns = 0.5; H KroshirRos = 0.5;	oigocePooid	195500 / uM / min
15. PDS produced by Clu metabolism	170 mM / min - fordane * ManaBandan + min + 180 and 11, * aa * #60 maa * Konclah Bandan 17 / Konclah Banda 1 + medan 1	foldRos = 1; RRosGlo = 0; RRosGlu = 1; gu = 1000 uM; ca = 0.1 uM; KPhos = 0.01 uM; KroshinRos = 0.5;		nim / CAMAA / TE

Appendix Table	S9 - Parameter Sui	mmary			
Parameter	Type	Process	Note Note	ote	Value
kRosDeg	Rate constant	ROS removal; GSH oxidation	ROS removal by GSH Same	ame as kGshOx	0.017
kGshOx	Rate constant	ROS removal; GSH oxidation	GSH consumed by ROS Same	ame as kRosDeg	0.017
kGshRed	Rate constant	GSH regeneration; NADPH oxidation	GSH regenerated by NADPH Same	ame as kNadphOxGssg	1.7
kNadphOxAnab	Rate constant	Anabolism; NADPH oxidation	NADPH consumed in anabolism		800
kNadphOxGssg	Rate constant	GSH regeneration; NADPH oxidation	NADPH consumed by GSSG Same	ame as kGshRed	1.7
kNadphOxCys2	Rate constant	Cys production; NADPH oxidation	NADPH consumed by Cys2 Same	ame as kCys2Red	30
kCys2Red	Rate constant	Cys production; NADPH oxidation	Cys2 reduced by NADPH Same	ame as kNadphOxCys2	30
kPptaseRedGsh	Rate constant	RTK signaling	PPTase reduced by GSH		0.1
kPptaseOxRos	Rate constant	RTK signaling	PPTase oxidized by ROS		10
kRtkPhos	Rate constant	RTK signaling	RTK got phosphorylated		0.1
kRtkDephos	Rate constant	RTK signaling	RTK dephosphorylated by PPTase		10
kRosProBase	Rate constant	ROS production	Basal ROS production; ROS production by lipid metabolism; ROS production not (instantly) responsive to Glc or Glu		170000
kRosProGlc	Rate constant	ROS production	ROS production by Glc metabolism; ROS production responsive to Glc		195500
kRosProGlu	Rate constant	ROS production	ROS production by Glu metabolism; ROS production responsive to Glu		17
kNadpRedGlc	Rate constant	NADPH regeneration	NADPH regenerated by Glc metabolism; NADPH regenerated by OXPPP		5750
kNadpRedGlu	Rate constant	NADPH regeneration	NADPH regenerated by Glu metabolism; NADPH regenerated by IDH1 and ME1		0.5
kGluPro	Rate constant	GIn uptake; Glu production	Gin uptake; Giu production from Gin		315
kGluDeg	Rate constant	Glu metabolism	Glu consumed in other processes		0.024
kGluEx	Rate constant	Glu export; Cys2 uptake	Glu exported in exchange of Cys2 Same	ame as kCys2lm	0.0375
kGshPro	Rate constant	GSH synthesis	GSH de novo synthesis		0.00005
kGshDeg	Rate constant	GSH degradation	GSH degradation; GSH export		0.027
kGssgDeg	Rate constant	GSSG degradation	GSSG degradation; GSSG export		0.027
kCysDeg	Rate constant	Cys metabolism	Cys consumed in other processes		0.3
kCalnBase	Rate constant	Ca2+ influx	Basal Ca2+ influx		0.1
kCalnRos	Rate constant	Ca2+ influx	ROS-induced Ca2+ release		1
kCaOut	Rate constant	Ca2+ efflux	Ca2+ efflux		-
kCys2lm	Rate constant	Glu export; Cys2 uptake	Cys2 uptake at the expense of Glu Same	ame as kGluEx	0.0375
xct	Constant	Glu export; Cys2 uptake	SLC7A11 abundance; Mass conservation		3
nadpTot	Mass conservatio	NADPH regeneration	Total NADPH/+;Mass conservation		-
pptaseTot	Mass conservatio	n RTK signaling	Total PPTase; Mass conservation		0.1
rtkTot	Mass conservatio	n RTK signaling	Total RTK; Mass conservation		0.1
KrosInhRos	Km	ROS production	ROS auto-inhibition; Redox inhibition of OXPHOS / ETC enzymes; Oxidatie damages to ETC / mitocondria		0.5
1	Hill exponent	ROS production	Ultrasensitivity in ROS auto-inhibition		5
glc	Constant	ROS production; NADPH regeneration	Gic abundance in media		10000
gln	Constant	ROS production; Glu production	Gin abundance in media		2000
cys20	Constant	NADPH oxidation	Cys2 abundance in media		200
KglnIn	Km	GIn uptake	GIn concentration of half max uptake rate		100
Kcys2In	Km	Cys2 uptake	Cys2 concentration of half max uptake rate		50
KglcIn	Km	Glc uptake	Gic concentration of half max uptake rate		1500
fRosGlc	Artificial handle	ROS production	Fraction ROS production dependent on Glc metabolism		0.1
fRosGlu	Artificial handle	ROS production	Fraction ROS production dependent on Glu metabolism		0.4
switchNadphRe	d Artificial handle	NADPH regeneration	Fraction NADPH regeneration dependent on Glc metabolism		0.7
foldRos	Artificial handle	ROS production	Strength of ROS production		-