

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

BMJ Open

A pilot randomised controlled trial of a structured, homebased exercise program on cardiovascular structure and function in kidney transplant recipients: The ECSERT study design and methods

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-046945
Article Type:	Protocol
Date Submitted by the Author:	13-Nov-2020
Complete List of Authors:	Billany, Roseanne; University of Leicester, Department of Cardiovascular Sciences; University Hospitals of Leicester NHS Trust, John Walls Renal Unit Vadaszy, Noemi; University of Leicester, Department of Health Sciences Bishop , Nicolette ; Loughborough University, School of Sport, Exercise and Health Sciences Wilkinson, Thomas ; University of Leicester, Department of Health Sciences Adenwalla, Sherna; University of Leicester, Department of Cardiovascular Sciences; University Hospitals of Leicester NHS Trust, John Walls Renal Unit Robinson, Katherine; University of Leicester, Department of Cardiovascular Sciences Croker , Kathryn; University Hospitals of Leicester NHS Trust, John Walls Renal Unit Brady, Emer; University of Leicester, Department of Cardiovascular Sciences Wormleighton, Joanne; University Hospitals of Leicester NHS Trust, Department of Radiology Parke, Kelly; University of Leicester, Department of Cardiovascular Sciences; University of Leicester, Department of Cardiovascular Sciences; University of Leicester, Department of Health Sciences Webster, Angela; The University of Sydney, School of Public Health; Westmead Hospital, Centre for Renal and Transplant Research Barratt, Jonathan; University of Leicester, Department of Cardiovascular Sciences; University Hospitals of Leicester NHS Trust, John Walls Renal Unit McCann, Gerry; University of Leicester, Department of Cardiovascular Sciences Burton, James; University of Leicester, Department of Cardiovascular Sciences; University of Leicester, Department of Health Sciences Graham-Brown, Matthew ; University of Leicester, Department of Health Sciences Graham-Brown, Matthew ; University of Leicester, Department of Cardiovascular Sciences

Keywords: Renal transplantation < NEPHROLOGY, CARDIOLOGY, PUBLIC HEALTH
SCHOLAR ONE [™]
Manuscripts
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

Page 3 of 32

1

BMJ Open

A pilot randomised controlled trial of a structured, home-based exercise program on

2	
3	1
4 5	2
6 7	2
8	5
9 10	4
11	5
12 13	6
14	7
15 16	8
17	9
18 19	10
20 21	11
21	12
23 24	13
25	14
26 27	15
28	10
29 30	10
31 32	1/
32 33	18
34 35	19
36	20
37 38	21
39	22
40 41	23
42	24
43 44	25
45 46	26
40 47	27
48 ⊿q	20
50	20
51 52	29
53	30
54 55	31
56	32
57 58	33
59	34

60

2	cardiovascular structure and function in kidney transplant recipients: The ECSERT study
3	design and methods
4	
5	Roseanne E Billany ^{1,2} , Noemi Vadaszy ³ , Nicolette C Bishop ⁴ , Thomas J Wilkinson ³ , Sherna Adenwalla ^{1,2} ,
6	Katherine A Robinson ¹ , Kathryn Croker ² , Emer M Brady ¹ , Joanne Wormleighton ⁵ , Kelly Parke ^{1,5} , Nicola
7	J Cooper ³ , Angela C Webster ⁶ , Jonathan Barratt ^{1,2} , Gerry P McCann ¹ , James O Burton ^{1,2,5} , Alice C Smith ³ ,
8	Matthew PM Graham-Brown ^{1,2}
9	
10	¹ Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
11	² John Walls Renal Unit, University Hospitals of Leicester NHS Trust, Leicester, UK
12	³ Department of Health Sciences, University of Leicester, Leicester, UK
13	⁴ School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
14	⁵ Department of Radiology, University Hospitals of Leicester NHS Trust, Leicester, UK
15	⁶ Sydney School of Public Health, University of Sydney, Sydney, NSW, Australia; Centre for Renal and
16	Transplant Research, Westmead Hospital, Sydney, NSW, Australia.
17	
18	
19	Corresponding author:
20	Dr Matthew Graham-Brown
21	Department of Cardiovascular Sciences
22	University of Leicester
23	Leicester
24	United Kingdom
25	mgb23@leicester.ac.uk
26	
27	Keywords: kidney transplantation, home-based exercise, cardiovascular disease, feasibility, cardiac
28	MRI
29	
30	Abstract: 300
31	Word count: 4402
32	
33	

35 ABSTRACT

Background: Cardiovascular disease (CVD) is a major cause of morbidity and mortality in kidney transplant recipients (KTRs). CVD risk scores underestimate risk in this population as CVD is driven by clustering of traditional and non-traditional risk factors, which lead to prognostic pathological changes in cardiovascular structure and function. Whilst exercise may mitigate CVD in this population, evidence is limited, and physical activity levels and patient activation towards exercise and self-management are low. This pilot study will assess the feasibility of delivering a structured, home-based exercise intervention in a population of KTRs at increased cardiometabolic risk and evaluate the putative effects on cardiovascular structural and functional changes, cardiorespiratory fitness, quality of life, patient activation, healthcare utilisation, and engagement with the prescribed exercise program.

Methods and analysis: Fifty KTRs will be randomised 1:1 to: (1) the intervention; a 12-week homebased combined resistance and aerobic exercise intervention or; (2) the control; usual care. Intervention participants will have one introductory session for instruction and practice of the recommended exercises prior to receiving an exercise diary, dumbbells, resistance bands, and access to instructional videos. Outcomes, to be assessed prior to randomisation and post-intervention, include: cardiac structure and function with stress-perfusion cardiac magnetic resonance imaging, cardiorespiratory fitness, physical function, blood biomarkers of cardiometabolic health, quality of life, and patient activation. The study will also evaluate the feasibility of recruitment, randomisation, retention, assessment procedures, and the intervention implementation. These data will be used to inform the power calculations for future definitive trials.

Ethics and dissemination: The protocol was reviewed and given favourable opinion by the East 60 Midlands-Nottingham 2 research ethics committee (ref 19/EM/0209; 14/10/2019). Results will be 61 published in peer-reviewed academic journals and will be disseminated to the patient and public 62 community via social media, newsletter articles, and presentations at conferences.

Trial registration number: NCT04123951; prospectively registered.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
3 4	67	ARTICLE SUMMARY
5	68	Strengths and limitations of this study:
6 7	69	
8 9	70	• Data on the effects of exercise interventions on the cardiac structural and functional aspects
10	71	of CVD in this population are lacking and baseline values of multiparametric cardiac magnetic
11 12	72	resonance imaging in KTRs are previously undefined.
13 14	73	• This study uses a novel home-based exercise intervention with the potential to translate into
15	74	a widespread, low-resource intervention compared to in-centre, supervised interventions
16 17	75	that are costly and labour intensive.
18 19	76	As it can be difficult to ensure control groups are not influenced to change their lifestyle as a
20	77	result of being part of the study; control participants will be offered the intervention after
21 22	78	completion of the study.
23 24	79	• This study will provide quantitative and qualitative feasibility and pilot data to inform a
25	80	definitive randomised controlled trial that will explore longer-term engendered lifestyle
26 27	81	change in this population in response to a complex, home-based, lifestyle intervention.
28 29	82	• Secondary outcome analysis will identify the putative cardiometabolic and muscular effects
30	83	of the intervention, although these results would need confirming in adequately powered
31	84	studies due to the small sample size of this pilot study.
33 34	85	
35		
36 37		
38 39		
40		
41		
43 44		
45 46		
40 47		
48 49		
50 51		
52		
53 54		
55 56		
57		
58 59		
60		

86 BACKGROUND

Kidney transplantation is the preferred modality of renal replacement therapy for patients with end stage kidney disease (ESKD). Although kidney transplantation confers a significant survival advantage over remaining on dialysis, cardiovascular disease (CVD) is a leading cause of morbidity, mortality, and graft loss.¹⁻³ Since 2015, mortality rates attributed to CVD have been rising.³ Cardiovascular disease in kidney transplant recipients (KTRs) associates with traditional cardiometabolic risk factors,²⁴⁵ which drive classical atheromatous coronary artery disease, and non-traditional risk factors which drive pathological changes in cardiovascular structure and function that associate with mortality.⁶ Immunosuppressive agents are well known to drive traditional CVD risk factors,² but also drive non-traditional cardiometabolic risk factors.^{7 8} Non-traditional cardiometabolic risk factors, including endothelial dysfunction, systemic inflammation, acute rejection, anaemia, and deranged bone-mineral metabolism,⁹⁻¹¹ are of at least equal importance in the pathogenesis of CVD in KTRs.⁶ This is further illustrated by the fact that traditional CVD risk-stratification tools dramatically underestimate cardiovascular risk in patients with chronic kidney disease (CKD);¹⁰ coronary revascularisation does not improve outcomes for KTRs as it does in the general population¹¹ and cardiac events are more likely to be fatal in KTRs.¹²

Chronic kidney disease-related cardiomyopathy, which has been termed "Uremic Cardiomyopathy", is characterised by stereotypical changes in the cardiovascular structure and function of the heart such as left ventricular hypertrophy (LVH), left ventricular dilatation, left ventricular systolic dysfunction,¹³ myocardial fibrosis,¹⁴ and aortic stiffness¹⁵; all of which relate to poor cardiovascular outcomes.^{16 17} Although structural and functional improvements of the heart and vessels have been seen post-transplantation in some studies,¹⁸ others have shown no regression¹⁹ and parameters such as LVH are independent factors for cardiac failure and mortality in KTRs.²⁰ Cardiac magnetic resonance imaging (CMR) is the gold-standard for assessment of ventricular structure and function and we have shown methods for assessment of tissue characterisation, aortopathy, and sub-clinical systolic and diastolic function to be reproducible in patients with kidney disease,²¹⁻²³ making CMR the ideal imaging modality for assessing multiple aspects of prognostically relevant measures of CVD in clinical studies.

Numerous epidemiological studies have observed the association between low levels of physical activity and increased prevalence of CVD risk factors,²⁴⁻²⁶ and an inverse relationship between physical activity and all-cause and CVD mortality.^{27 28} Physical activity levels in KTRs are lower than the general population,^{29 30} with only 27% classified as meeting national recommended physical activity levels.³¹ Whilst physical activity levels improve in the year following transplantation, they plateau after one-year.³⁰ In the general population, lifestyle changes that increase physical activity through structured exercise lower mortality.^{32 33} Despite this evidence, there is a lack of rigorous research into the role of Page 7 of 32

1 2

BMJ Open

3	
4	
5	
ç	
0	
7	
8	
a	
1	~
I	0
1	1
1	2
1	2
1	2
1	4
1	5
1	6
1	7
1	/
1	8
1	9
2	ი
2	1
2	I
2	2
2	3
2	1
2	4
2	5
2	6
2	7
~	, ,
2	8
2	9
3	0
2	1
2	1
3	2
3	3
2	Δ
2	-
3	5
3	6
3	7
2	0
5	0
3	9
4	0
Δ	1
7	י ר
4	2
4	3
4	4
۵	5
7	2
4	b
4	7
4	8
,	۔ م
4	9
5	0
5	1
5	2
7	~
-5	3

120 increased physical activity in mitigating cardiovascular risk in KTRs.³⁴ Recent consensus 121 recommendations from experts and stakeholders highlighted the need for a priority research agenda 122 in exercise for solid organ transplant recipients (SOTRs) to improve cardiovascular outcomes in this patient population.³⁵ Whilst supervised exercise interventions in KTRs improve cardiorespiratory 123 fitness and a variety of traditional and non-traditional risk factors for CVD, including metabolic 124 125 profile,³⁶⁻³⁸ vascular stiffening,³⁷ weight,³⁹ and inflammation,⁴⁰ they are not realistically deliverable in 126 the current financial climate and have not translated to clinical practice. Furthermore, exercise habits following in-centre supervised programs are not maintained⁴¹⁻⁴³ which can be potentially attributed 127 128 to low levels of patient activation (a measure of a person's skills, confidence, and knowledge to 129 manage their own health) and a failure for such programs to engender sustained lifestyle changes.⁴⁴ ⁴⁵ Home-based exercise training programs have been shown to be deliverable in patients on dialysis 130 131 and patients undergoing cardiac rehabilitation,^{46 47} but the effectiveness and deliverability of home-132 based exercise interventions are untested in KTRs. It cannot be assumed that such programs will be 133 acceptable to KTRs, whose home-lives, social and occupational circumstances are significantly different to dialysis and cardiac patients. Many KTRs have had enforced sedentary lifestyles prior to 134 135 transplantation as dialysis patients and their goals for rehabilitation as well as the disease processes 136 at work may be different.

137 **Objectives**

- 138 The aims of this study are to evaluate the impact of a 12-week, home-based exercise intervention in
 139 KTRs with increased cardiometabolic risk, specifically addressing:
 - The deliverability and feasibility of the home-based exercise intervention in KTRs, defining
 recruitment, retention, and compliance;
 - 142 2. Potential cardiovascular structural and functional parameters measured using stress143 perfusion CMR;
 - 144 3. Cardiorespiratory fitness and strength;
- 1454. Biochemical markers of cardiometabolic health, body composition, physical function, and8146quality of life;
- 50 147 5. Patient activation and continued adherence to the prescribed home-based exercise program.
- ⁵² 148 Two sub-studies will assess:
- 149
 1. The acceptability of the intervention through qualitative semi-structured interviews post 150
 150
 150
 150
- 58 151 2. The differences between cardiorespiratory fitness in 'healthy controls' versus KTRs.

153 METHODS AND ANALYSIS

154 ECSERT trial design

This study is a prospective, randomised, open-label, blinded endpoint (PROBE) pilot study. The studyflowchart is presented in Figure 1.

11157Participant identification and recruitment

Fifty KTRs with a stable kidney transplant of >1 year will be recruited from University Hospitals of Leicester NHS Trust (UHL) kidney transplant outpatient clinic lists. There are approximately 400-420 KTRs registered in UHL kidney transplant outpatient clinics. Full lists of inclusion and exclusion criteria are included in Table 1. Patients will be screened by a clinician for eligibility to enter the study. Eligible patients will be approached (via telephone, post, or during their routine clinical appointment) and will be provided with verbal and written study information and time to consider without further contact (at least 24 h). Additionally, eligible patients who have given prior consent to be contacted regarding research opportunities will be contacted via post. All patients will be given the opportunity to discuss the study in more detail and to consider their participation. Consent will be performed by the Chief Investigator (MBG) according to the rules of good clinical practice.

31 168 Randomisation

Following baseline assessment, participants will be randomly allocated (1:1) to either; (1) a 12-week home-based combined resistance and aerobic exercise intervention (n=25) or; (2) control (n=25); receiving usual care). Randomisation will be blocked (using computer-generated random permuted blocks with allocation concealment; https://www.sealedenvelope.com/simple-randomiser/v1/) to ensure periodic balancing. The Clinical Trials Facilitator will perform the randomisation. Given the nature of the intervention, it is not possible for the participants to be blinded to their allocation.

4344 175 Intervention and comparator arms

46 176 Intervention Group: 12-week home-based combined aerobic and resistance training

The 12-week, home-based, structured exercise program includes aerobic and resistance training (4-5
 sessions in total per week). Participants will be advised to complete a warm-up and cool-down prior
 to and following each session, respectively. Participants will continue to receive usual clinical care.

54 180 Aerobic component

The aerobic component of the intervention will be walking, jogging, cycling, or similar, depending on
 resources available and participant preference. Participants will be asked to complete 2-3 sessions per
 week using a rating of perceived of exertion (RPE)⁴⁸ of 13-15 (somewhat hard) for 20-30 min. RPE will

BMJ Open

184 be collected throughout cardiopulmonary exercise tests (CPET) and participants will be educated on185 its use during the instructional session(s).

Resistance component

The resistance component of the exercise intervention will include a combination of 6-8 exercises per session chosen by the participant from a pool of twelve exercises (to provide variety) targeting upper and lower body and core muscle groups, using free weights and/or resistance bands. The chosen pool of exercises include: squat, hip abduction, lunge, calf-raise, side-lunge, bicep-curl, bent-over row, reverse-fly, lateral-raise, chest-press, side-bends, and standing trunk rotation. Each exercise has modifications for different abilities and may be pragmatically adjusted or changed throughout the study as required. These exercises were chosen based on their ability to be modified, their subjective difficulty, and their safety when being performed by participants new to exercise in an unsupervised environment. Participants will aim to complete 6-8 resistance exercises twice a week (but not on consecutive days to allow appropriate recovery). Initially they will be advised to complete 1-2 sets of 10 repetitions (at 60% 1 repetition maximum (RM)), gradually increasing to 3-6 sets of 10 repetitions over the study period with a minimum of 30 sec rest between sets. These figures may be adjusted to accommodate different abilities and different rates of progression.

Participants will be provided with an exercise diary which includes additional instructions, dumbbells and resistance bands, and access to educational and instructional videos. Instructional videos will include: the importance of an active and healthy lifestyle, the importance of warming up and cooling down and how to do it, a reminder of how to use the RPE scale, demonstrations of each resistance exercise, and information about the aerobic component (videos can be viewed here: https://www.youtube.com/playlist?list=PLwbE3AF9Ej_Vul5uoiF-C9Cl8wrgKz5Nv). Participants will receive a telephone call from a member of the research team every two weeks in order to discuss progression of the exercise and address any issues that may arise.

45
46 208 Control group: 'Usual care'

Participants in the control group will be asked to maintain their current lifestyle and exercise habits throughout the study. This includes continuing to attend any scheduled clinic appointments and taking prescribed medication as normal. As part of routine care, KTRs are recommended to take regular exercise and maintain a healthy lifestyle. This advice will be reiterated to patients in the control group to ensure the intervention is being appropriately compared to best-practice standard care. Participants will be asked to complete a 'control diary' to note any exercise, medication changes, illness, and other relevant information. Once control participants complete the post-intervention

1 2		
3 4 5 6 7 8 9 10	216	assessments, they will be offered the opportunity to complete the same intervention as the exercise
	217	group.
	218	Study timeline
	219	Baseline assessments
11 12	220	The ECSERT study timeline is shown in Figure 1. Baseline assessments will be carried out on the same
13 14	221	day and in conjunction with routine clinical appointments to prevent additional travel.
15 16	222	Collection of routine clinical information and cost-effectiveness
17 18	223	Clinical information will be extracted from the medical notes including: age, gender, ethnicity, primary
19 20	224	cause of kidney failure, transplant type, transplant vintage, dialysis duration, comorbidities,
20 21	225	blood/urine results, current medication, and smoking habits. This information will be used to primarily
22 23	226	capture cofounding variables and during analyses of differences and similarities between groups.
24 25	227	A questionnaire will be administered at baseline to capture the previous 3 months of self-reported
26 27	228	healthcare utilisation including: inpatient and outpatient appointments, emergency care, community
28	229	and primary care services, support services, and changes in medications. This will be compared to data
29 30	230	gathered from healthcare records allowing validation of the questionnaire for future cost-
31 32	231	effectiveness analyses.
33 34	232	Cardiac stress MRI
35 36	233	All participants will undergo a comprehensive adenosine-stress perfusion CMR scans at baseline and
37 38	234	on study-completion. Participants will be scanned on a 3T platform (Skyra, Siemens Medical Imaging,
39 40	235	Erlangen, Germany) with an 18-channel phased-array receiver coil. New-generation gadolinium-based
40 41	236	contrast agent with a licence for use in patients with an eGFR >30 ml/min/1.73 m ² will be given for
42 43	237	perfusion and delayed enhancement imaging. Patients with an eGFR <40 ml/min/1.73 m² will undergo
44 45	238	non-contrast CMR scanning without gadolinium. Scans will quantitatively define:
46 47	239	• Left and right-ventricular structure and function (left ventricular mass, left and right
48	240	ventricular volumes and ejection fractions);49
49 50	241	• Tissue-characterisation with native and post-contrast T1 mapping and delayed gadolinium
51 52	242	enhancement; ⁵⁰⁻⁵²
53	243	• Myocardial systolic-strain and peak early-diastolic strain rate; ²³
54 55	244	• Quantitative perfusion imaging (coronary blood-flow to quantify coronary reserve and
56 57	245	ischaemia); ⁵³
58	246	• Aortic distensibility. ²¹
59 60	247	Quadriceps MRI
		8

Page 11 of 32

BMJ Open

1	
2	
3	
Δ	
5	
2	
6	
7	
8	
9	
1	ი
1	1
1	כ
1	2
1	ر ۸
1	4 7
1	5
1	6
1	/
1	8
1	9
2	0
2	1
2	2
2	<u>ז</u>
2	ر ۸
2	4
2	5
2	6
2	7
2	8
2	9
З	0
3	1
2	י כ
2	2
2	с
3	4
3	5
3	6
3	7
3	8
3	9
4	0
4	1

At the end of the CMR scan, participants will immediately undergo an MRI scan of the quadriceps
muscle in their right leg to assess muscle size and muscle quality as previously described.⁵⁴

250 Cardiopulmonary exercise test

251 A CPET utilising a standardised ramp protocol will be performed on a stationary electronically braked 252 cycle ergometer (Lode Excalibur Sport, Groningen, Netherlands) with increasing workload (1 watt (W) 253 every 4 sec (10-15 w/min)) ensuring volitional exhaustion within 12-15 min⁵⁵. Participants will be encouraged to cycle at a continuous cadence (~70 rpm). The highest oxygen uptake will be measured 254 255 (VO₂peak) using a simultaneous gas analyser (Metalyser 3B CPX System, CORTEX, Germany) as true 256 maximal (plateau) $\forall O_2$ ($\forall O_2$ max) is less commonly achieved in deconditioned and/or clinical patients. 257 The test will be in the presence of a cardiac nurse to confirm safety to commence exercise training. A 258 non-invasive monitor (Moxy, Fortiori Design LLC., Minnesota, USA) will be worn on the quadriceps 259 muscle which uses near infrared spectroscopy (NIRS) to measure local oxygen saturation (SmO₂) and 260 total haemoglobin (THb) of the muscle.

261 Lower limb Strength and muscular endurance

Isometric and isokinetic muscle (knee extension) strength, of the dominant leg, will be assessed using
a dynamometer (Biodex System 4, Biodex Medical Systems Inc., New York, USA). Peak isometric
strength (torque, Nm) will be assessed from three repetitions of maximum effort at 90° knee flexion
for ~3-5 sec with 60 sec rest. Isokinetic strength will be assessed at three speeds for one set of five
repetitions at each speed: 60°/sec, 90°/sec, and 120°/sec. Participants will perform a 'sit-to-stand-60'
(STS-60) test measuring how many sit-to-stand cycles can be performed over 60 sec.

⁹ 268 Handgrip strength

Peak grip strength of the left and right hands will be assessed with a hand dynamometer (Jamar Plus+;
 Sammons Preston, Bolingbrook, IL). Each hand will be alternatively tested for three attempts each and
 the highest value on each hand with be recorded.

47 272 Gait speed

46

48

56

A 4 m walk test will be used to assess gait speed. Participants will be asked to walk 4 m at their 'usual
 walking pace' for one practice and two, timed trials. The average score (m/sec) of the timed trials will
 be recorded.

54 55 276 Functional mobility

57 277 The 'timed-up-and-go' test (TUAG) will be used to assess functional mobility.^{56 57} The participant is
 58 59 278 timed whilst rising from the seated position on a chair, walking 3m, turning around, and returning to
 60 279 a seated position.

280 Balance and postural stability

Postural stability and balance will be assessed using a previously reported method⁵⁸ with a FysioMeter
 device (modified Nintendo Wii balance-board (Nintendo, Kyoto, Japan)) connected via Bluetooth to
 software on a portable computer (FysioMeter ApS, Brønderslev, Denmark).

1 284 Quadriceps ultrasound and myotonometry

Rectus femoris anatomical cross-sectional area will be measured from the right leg using B-mode 2D ultrasonography (Clarius C3 HD Scanner, Clarius, Burnaby BC, Canada; 6 MHz) under resting conditions with the participant lying prone at a 45° as previously described.⁵⁴ Rectus femoris and vastus lateralis thickness, subcutaneous fat thickness, and fibre pennation angles will be obtained. Measurements of the viscoelastic properties of the soft tissue above the mid-point of the rectus femoris muscle will be obtained using a myotonometry device (MyotonPro, Tallinn, Estonia).

291 Anthropometric measures

Anthropometric measures of height, body mass, and waist and hip circumference will be attained in accordance with standard protocols.⁵⁹ Bioelectrical impedance analysis (BIA) performed on an InBody analyser (InBody 370, Chicago, Illinois, USA) will be used to estimate body composition (eg. body fat percentage, fat-free mass) and is validated for use in patients with CKD.^{60 61}

³ 296 Survey pack

297 Participants will be provided with a survey pack containing the following questionnaires:

- 298(1) Integrated Palliative Outcome Scale (I-POS-Renal): a validated questionnaire measuring the299presence and severity of disease related symptoms. The I-POS-Renal was developed based on201the POS and IPOS palliative care surveys, but with the additional inclusion of symptoms202common in CKD such as pruritus and restless legs.⁶²
 - 302 (2) 12-Item Short Form Health Survey (SF-12): a validated 12-item questionnaire used to assess
 303 generic health outcomes from the patient's perspective.⁶³
 - 304 (3) Functional Assessment of Chronic Illness Therapy-Fatigue (FACIT-F): a validated 13-item
 305 multidimensional scale that assesses fatigue over the past seven days using a 5-point Likert
 306 scale that covers physical fatigue, functional fatigue, emotional fatigue, and social
 307 consequences of fatigue with excellent internal consistency and test-retest reliability.^{64 65}
 - 308 (4) Pittsburgh Sleep Quality Index (PSQI): self-rated questionnaire which assesses sleep quality
 309 and disturbances over a 1-month time interval.⁶⁶
- 57
58310(5) Patient Activation Measure (PAM): a validated, licenced tool that has been extensively tested59
60311with reviewed findings from a large number of studies. It measures the spectrum of

Page 13 of 32

BMJ Open

1 2		
3	312	knowledge, skills, and confidence in patients and captures the extent to which they feel
4 5	313	engaged and confident in taking care of their condition ('activation').67
6 7	314	(6) Brief Health Literacy Screen (BHLS): a 3-item questionnaire to identify inadequate health
8 9	315	literacy, ⁶⁸ validated against longer screening tools in populations with ESKD. ^{69,70}
10	316	(7) The Global Physical Activity Questionnaire (GPAQ): developed by the World Health
11 12	317	Organisation (WHO) for physical activity surveillance in countries. It collects information on
13 14	318	physical activity participation in three settings or domains (activity at work, travel to and from
15	319	places, and recreational activities) as well as sedentary behaviour, comprising 16 questions. ⁷¹
16 17	320	(8) Duke Activity Status Index (DASI): a 12-item questionnaire that uses self-reported physical
18 19 20 21	321	work capacity to estimate peak metabolic equivalents and has been shown to be a valid
	322	measurement of functional capacity. ⁷²
22	323	Habitual physical activity
23 24	324	Objective data on habitual physical activity levels over a 7-day period (ideal minimum 6-days) ⁷³ will be
25 26 27 28	325	gained from tri-axial accelerometers (GENEActiv, ActivInsights Ltd., Cambridge, UK).
	326	Blood and urine sampling
29 30		
30 31 32	327	Venous blood (30 ml) will be collected using venepuncture of the antecubital vein and prepared and
32 33	328	stored appropriately for the following analysis:
34 35	329	Circulating markers of cardiovascular disease
36 37	330	 Circulating markers of systemic inflammation and oxidative stress
38	331	Blood glucose and HbA1c
39 40	332	Lipids and triglycerides
41 42	333	Full blood count and renal profile
43 44	334	A urine sample will be requested to ascertain urinary protein:creatinine ratio.
45 46	335	Follow-up assessments
47 48	336	Follow up visits are summarised in Figure 1. An instructional session (or more if required) following
49 50	337	baseline assessments will allow the intervention group to become familiar with the exercise
51	338	requirements and allow the research team to ensure safety and competence before commencing the
52 53	339	12-week home-based training program. This can be via video call or in-person. At 6 weeks into the 12-
54 55	340	week period for the intervention group only, participants will be invited to review exercise progression
56 57	341	(via video call or in-person), particularly if participants are struggling to undertake the requisite
58	342	amount of exercise, and as a refresher of the intervention. This combined with regular contact from
59 60	343	research staff should aid participant compliance and monitoring.

BMJ Open

Final assessments will be conducted for the exercise and control groups within 7 days of completing the 12-week exercise or control period. Assessments completed will be identical to the baseline visit with the addition of a 'patient satisfaction questionnaire' to allow pragmatic development of the study. This will also be offered to participants who withdraw from the trial. Three months after completing the exercise intervention, participants will be contacted for a semi-structured one-to-one telephone interview. This will aim to understand the impact of the intervention, if any, on subsequent lifestyle and exercise habits.

16 351 **Sub-studies**

- 1718 352 Additional informed consent will be sought for:
- 203531. Ten 'healthy' control participants to undertake a CPET to assess the differences, if any,21354between CPET parameters in 'healthy controls' versus KTRs, particularly during the recovery23355period.
 - KTRs completing the exercise intervention will be invited to undertake a semi-structured interview (via telephone, video call, or in-person) incorporating exercise self-efficacy, enjoyment, difficulties encountered, perceived advantages and disadvantages of the intervention, and study design. Participants who withdraw before the end of the intervention will also be invited to attend, although in line with ethical standards, this will be optional.

34 361 Sample size

- The purpose of this pilot study is to obtain appropriate data to adequately power future definitive
 trials;⁷⁴ a power calculation is neither relevant nor possible. A minimum sample size of 50 is based on
 accepted values to provide adequate estimates of standard deviations for future power calculations.⁷⁵
- 41
42365Data collection and management

Data from all time points will be collected in case report forms (CRFs) by the trial team. All data will be entered into a secure database and will only be accessible on password-protected computers at UHL and University of Leicester by relevant members of the study team. No identifying information will be kept in electronic form. All source data and original participant identities will be kept in a locked office in the trial site file only at UHL.

53 371 Data analysis

55372Data will be assessed for normality using histograms, the Shapiro-Wilk test and Q-Q plots. Continuous56373data to be expressed as mean (± standard deviation), if normally distributed or median (interquartile58374range) if not. To investigate the differences between interventions we will use analysis of (co-)59375variance. Independent samples t-tests and Mann-Whitney U tests will be used assess for baseline

Page 15 of 32

1 2 BMJ Open

3 4	376	differences between variables for normally and non-normally distributed data respectively. These
4 5 6	377	data will be used to inform the power calculation for future definitive trials.
7 8 9	378	Qualitative data will be transcribed verbatim and analysed according to the principles of interpretive
	379	thematic analysis to explore themes emerging from patient journeys through, and experiences of, the
10 11	380	interventions and outcome measures.
12 13	381	Outcomes pertaining to the feasibility of the intervention and trial will be assessed and include:
14	382	Eligibility: the percentage of patients screened who are eligible.
16 17	383	• <i>Recruitment rate:</i> the percentage of patients eligible who consent to the trial and the monthly
18 10	384	recruitment rate.
20	385	• Adherence to the exercise intervention: the number of completed sessions per week and
21 22	386	specific intensity and durations achieved.
23 24	387	Acceptability of randomisation: comparison of the final group characteristics and
25	388	identification of any stratification variables, if applicable.
26 27	389	Attrition rate: the number of participants that drop-out of the study.
28 29	390	Outcome acceptability: the percentage of missing data for each outcome measure.
30 31	391	• <i>Safety:</i> The number of self-reported injuries or adverse events throughout the trial.
32 33	392	The <i>a priori</i> thresholds for specific feasibility and acceptability criteria are as follows: eligibility (≥50%),
34	393	recruitment success of 20% of eligible participants (≥2 participants per month), adherence (an average
35 36	394	of 3 exercise sessions per week) and attrition (≤30%).
37 38 39	395	Safety reporting
40 41	396	All adverse events (AEs) or adverse reactions (ARs) and serious adverse events (SAEs) or serious
41	397	adverse reactions (SARs) will be recorded from the time a patient enters the study to the final study
43 44	398	visit. Each AE or AR will be considered for severity, causality, and expectedness and may be reclassified
45 46	399	as an SAE or SAR if required.
40 47	400	An SAE is any AE that:
48 49	401	is life threatening
50 51	402	 requires hospitalization or prolongation of a hospital admission
52	403	 results in a persistent or significant disability/incapacity
53 54	404	is a congenital anomaly
55 56	405	results in death
57	406	All AFs and ARs will be documented in participants CRFs, medical notes, and an AF log and will record
58 59 60	407	the following information: description, date of onset and end date, severity, assessment of

BMJ Open

408 relatedness to study, other suspect device and action taken. Only AEs that are judged to be related to
 409 the study intervention or procedures will be reported to the sponsor.

All SAEs will be reported by the investigators to the sponsor within 24 hours of discovery or notification
and the report will be signed by the chief investigator within 7 days. If the SAE is deemed related to
the research procedures or intervention and is unexpected, a report will be sent to the research ethics
committee (REC) within 15 days.

13 414 Patient and public involvement

A patient and public involvement (PPI) group has been convened and will meet with the research team to review progress and address issues that arise throughout the duration of the study. The PPI partners will assist in the interpretation and dissemination of results. The trial was designed in consultation with PPI partners who advised on intervention content and outcome measure acceptability, paying particular attention to patient burden, ensuring outcome measures would not over-burden participants. The PPI group approved the final design and duration of this intervention and advised the inclusion of an initial supervised intervention familiarisation period to build confidence in exercise capability.

423 Changes to the study protocol following the COVID-19 pandemic

The COVID-19 pandemic has made us all review the ways we design and deliver clinical studies. Whilst patient safety remains the absolute priority of clinical and research teams, there is a need for research to continue in a safe way that balances the benefits of continuing programs of research against the risks from COVID-19. We have amended the study protocol in several ways to reduce any additional exposure of patients to clinical environments where COVID-19 may be present:

- We have reduced the number of study visits to a minimum. The original study flow diagram is included in Additional file 1. All interim assessments have been removed in the modified protocol (Fig. 1) and the baseline and final study visits are now wrapped into part of patient clinical care. That is to say, when they attend for their baseline and follow-up study visits they will have their clinical review and clinical blood tests as they would for their normal clinical care with a transplant nephrologist (MGB), so there is no increase in-patient visits to a clinical environment over-and-above their normal care.
- The original study design included a 2-week face-to-face training period where participants would attend the hospital to learn how to complete the exercises and the exercise program with a member of the research team. This training period will now be done remotely, via video conferencing, with discussion and feedback over the telephone and using the instructional videos and literature that support the home-based exercise intervention.

Page 17 of 32

BMJ Open

When participants attend for their study visits, departmental procedures have been updated
 to now include meticulous cleaning of all equipment before and after use, one-way flows of
 participants to ensure participants do not mix, and the use of personal protective equipment
 for all staff and participants.

The above changes have been agreed with the local REC and the study sponsor and have allowedrecommencement of study recruitment and procedures.

447 DISCUSSION

This pilot study is designed to assess the feasibility of delivering a structured, home-based, exercise intervention in KTRs at increased cardiometabolic risk and evaluate the putative effects on cardiovascular structure and functional changes, cardiorespiratory fitness, quality of life, healthcare utilisation, patient activation, and engagement with the prescribed exercise program. It is the first trial to use a pragmatic home-based program of exercise this patient group. It is also the first to use CMR to evaluate the structural and functional changes of the heart in this at risk population.

454 Qualitative data will provide valuable personal perspectives on the acceptability of this specific 455 exercise program. Transplant recipients experience complex medical journeys and are likely to have 456 specific unmet needs in the area of exercise and lifestyle. This will be valuable information for future 457 randomised controlled trials (RCTs) and exercise guideline development.

4 458 Home-based intervention outcomes are reliant on accurate reporting by participants with regards to
 459 frequency, intensity, and duration of exercise performed. This is often a limitation of unsupervised
 460 interventions. We will ensure participants are correctly advised of how to monitor and report their
 461 exercise completion throughout the trial and encourage this through telephone communications.

462 We anticipate that a positive outcome will lead to both an increased understanding of the specific 463 exercise requirements of KTRs and the development of new programs that promote longer-term 464 engendered lifestyle change that can be incorporated into standard practice with much lower financial 465 implications than in-centre supervised rehabilitation. BMJ Open

1 2		
3 4 5 6 7 8 9 10 11 12 13 14 15	473	DECLARATIONS
	474	
	475	Ethical issues
	476	
	477	University of Leicester are the sponsor for this study (UOL 0714). The protocol was reviewed by the
	478	East Midlands-Nottingham 2 research ethics committee and was given a favourable opinion (REC ref
	479	19/EM/0209) on 14/10/2019. Health Research Authority regulatory approval was given on
	480	14/10/2019, and the study was adopted on the National Institute for Health Research (NIHR) portfolio
16 17	481	on 26/09/2019. Local governance approval was granted by UHL R&I on 31/01/2020. This study was
18	482	prospectively registered with ClinicalTrials.gov (NCT04123951; 11.10.2019). This manuscript is
19 20	483	quorate with the most recent approved protocol (version 5 01.05.2020). Relevant parties will be
21 22	484	informed of any substantial protocol modifications. Steps have been taken when designing this
23	485	protocol to minimise the ethical implications and ensure patient welfare. The study will comply with
24 25	486	the International Conference for Harmonisation of Good Clinical Practice (ICH GCP) guidelines and the
26 27	487	Research Governance Framework for Health and Social Care.
28	488	
29 30	489	Twitter: REB, @RBillany; MGB, @DrMattGB.
31 32	490	
33 34 35	491	Author contributions: MGB is the chief investigator for this trial. REB and MGB wrote this manuscript.
	492	All authors contributed to the development of the study design and protocol lead by MGB. All authors
36 37	493	reviewed and approved the final version of this manuscript.
38 39	494	
40	495	Funding: This study is funded by a project grant from Kidney Research UK (ref: KS_RP_003_20180913).
41 42	496	Neither the sponsor nor the funder had or will have any input into study design; collection,
43 44	497	management, analysis, and interpretation of data; writing of the report; or the decision to submit the
45	498	report for publication.
46 47	499	
48 49	500	Acknowledgements: This research is supported by the National Institute for Health Research (NIHR)
50	501	Leicester Biomedical Research Centre. The views expressed are those of the authors and not
51 52	502	necessarily those of the NHS, the NIHR or the Department of Health.
53 54 55	503	
	504	Competing interests: None declared.
57	505	
58 59 60		

BMJ Open

Availability of data: On completion the results of this study will be published in peer-reviewed journals and presented at national and international conferences. Contributions of all authors to manuscripts arising from this study will be made explicit in the relevant of each individual journal. Participant level data will be available following publication of results on request to the Chief Investigator. Results will also be disseminated to the patient and public community via social media and newsletter articles and presentations at patient conferences and forums, led by the patient partners. It is anticipated that the results of this study will inform future design of larger RCTs in this subject area and contribute to future specific physical activity guidelines in this population.

Consent for publication: Not applicable.

1	516	
2 3	517	
4 5	518	
5 7	519	
3 9 1	520	
) 2	521	
- 3 4	522	
5	523	
7 3	524	
€ Э	525	
1 2	526	
3 4	527	
5	528	
/ 3	529	
)) 1	530	
2 3	531	
4 5	532	
5 7	533	
3	534	
)		

2		
3	535	REFERENCES
4		
5	536	
7	537	1. Steenkamp R, Rao A, Fraser S. UK Renal Registry 18th Annual Report (December 2015) Chapter 5:
8	538	Survival and Causes of Death in UK Adult Patients on Renal Replacement Therapy in 2014:
9	539	National and Centre-specific Analyses. Nephron 2016;132 Suppl 1:111-44. doi:
10	540	10.1159/000444819 [published Online First: 2016/04/27]
11	541	2. Neale J, Smith AC. Cardiovascular risk factors following renal transplant. World J Transplant
12	542	2015;5(4):183-95. doi: 10.5500/wjt.v5.i4.183
13	543	3. UK Renal Registry. UK Renal Registry 21st Annual Report – data to 31/12/2017. Bristol, UK, 2019.
14	544	4. Kasiske BL, Guijarro C, Massy ZA, et al. Cardiovascular disease after renal transplantation. J Am Soc
15	545	Nephrol 1996;7(1):158-65. [published Online First: 1996/01/01]
10	546	5. Carpenter MA, John A, Weir MR, et al. BP, cardiovascular disease, and death in the Folic Acid for
18	547	Vascular Outcome Reduction in Transplantation trial. J Am Soc Nephrol 2014;25(7):1554-62.
19	548	doi: 10.1681/asn.2013040435 [published Online First: 2014/03/15]
20	549	6. Mall G. Huther W. Schneider J. et al. Diffuse intermyocardiocytic fibrosis in uraemic patients.
21	550	Nephrol Dial Transplant 1990:5(1):39-44, doi: 10.1093/ndt/5.1.39 [published Online First:
22	551	1990/01/01]
23	552	7. Bakri RS. Afzali B. Covic A. et al. Cardiovascular disease in renal allograft recipients is associated with
24	553	elevated sialic acid or markers of inflammation <i>Clin Transpl</i> 2004:18(2):201-04 doi:
25	554	10 1111/i 1399-0012 2004 00156 x
26 27	555	8 Liefeldt I Budde K Risk factors for cardiovascular disease in renal transplant recipients and
27 28	556	strategies to minimize risk <i>Transplant International</i> 2010;23(12):1191-204 doi:
20	557	10 1111/i 1432-2277 2010 01159 x
30	558	9 Van Laecke S Malfait T Scheners E et al Cardiovascular disease after transplantation: an emerging
31	559	role of the immune system. Transal Int 2018;31(7):689-99. doi: 10.1111/tri 13160 [nublished
32	560	Online First: 2018/04/04]
33	561	10 Weiner DE Tighiouart H Elsaved EE et al. The Framingham predictive instrument in chronic kidney
34	562	disease 1 Am Coll Cardiol 2007:50(3):217-24 doi: 10.1016/i.jacc.2007.03.037 [published
35	563	Online First: 2007/07/17]
30 27	564	11 Aalten I. Deeters SA, van der Vlugt MI, et al. is standardized cardiac assessment of asymptomatic
27 28	565	high-risk renal transplant candidates heneficial? Nenhrol Dial Transplant 2011;26(9):3006-12
30	566	doi: 10 1003/ndt/gfg822 [nublished Online First: 2011/02/16]
40	567	12 Kasiske BL Enidemiology of cardiovascular disease after repair transplantation. Transplantation
41	507	12. Rasiske BL. Epidemiology of cardiovascular disease after renar transplantation. Transplantation
42	500	2001,72(0 Suppl).55-8. doi: 10.1097/00007890-200109271-00005 [published Offinie Thst.
43	505	12 de Albuquerque Susseurs D. Sanders Dinheire H. de Daula P. Uremis Cardiemvenathy: A New Diese
44	570	in the Chronic Kidney Disease Mineral and Pone Disorder Duzzle Front Med (Lausanne)
45	571	2019:E:206 06 doi: 10.2290/fmod 2018.00206
46	572	2010, 5.200-00. doi: 10.5565/iiileu.2016.00200
47 70	575	in homodialycic nationts <i>Kidney</i> Int 2005;67(1):222.40 doi: 10.1111/j.1522
40 49	574	1755 2005 00086 x [published Opling First: 2004/12/22]
50	5/5	1/55.2005.00086.X [published Online First: 2004/12/22]
51	5/0	15. Mark PB, Doyle A, Biyth KG, et al. Vascular function assessed with cardiovascular magnetic
52	577	Magn Beson 2008:10:20, doi: 10.1186/1522.420y 10.20 [nubliched Online First: 2008/08/10]
53	578	Mugri Reson 2008;10:39. doi: 10.1180/1532-4298-10-39 [published Online First: 2008/08/19]
54	5/9	16. Foley RN, Parirey PS, Harnett JD, et al. Clinical and echocardiographic disease in patients starting
55	580	enu-stage renai disease therapy. <i>Kluney Int</i> 1995;47(1):186-92. doi: 10.1038/Kl.1995.22
56	581	[published Unline First: 1995/U1/U1]
57 58	582	17. FOIEV KIN, Partrey PS, Harnett JD, et al. The prognostic importance of left ventricular geometry in
50 59	583	uremic cardiomyopathy. J Am Soc ivephrol 1995;5(12):2024-31. [published Unline First:
60	Ъ 84	[τη/οη/ςεετ

3 4 5	585 586	 Ali A, Macphee I, Kaski JC, et al. Cardiac and vascular changes with kidney transplantation. Indian J Nephrol 2016;26(1):1-9. doi: 10.4103/0971-4065.165003
6 7	587 588	19. Patel RK, Mark PB, Johnston N, et al. Renal Transplantation Is Not Associated with Regression of Left Ventricular Hypertrophy: A Magnetic Resonance Study. <i>Clin J Am Soc Nephrol</i> 2008;2(6):1807-11. doi: 10.2215 (cir. 01400208
8	202	2008,5(0).1807-11. doi: 10.2215/Cjii.01400508
9 10	590	20. Devine PA, Courtiney AE, Maxwell AP. Carolovascular fisk in renar transplant recipients. <i>J Nephrol</i> 2010;22(2):280.00. doi: 10.1007/c40620.018.0E40.4 [published Opling Eirst: 2018/11/07]
10	591	2019,52(5).569-99. doi: 10.1007/540620-016-0549-4 [published Online First. 2016/11/07]
12	592	21. Granam-Brown MPN, Adenwalia SF, Lai FY, et al. The reproducibility of cardiac magnetic
13	593	resonance imaging measures of adritic stimless and their relationship to cardiac structure in
14	594	prevalent haemoularysis patients. <i>Cliff Klufley J</i> 2018;11(6):864-73. doi: 10.1093/CKJ/Siy042
15	595	22. Granam-Brown MPM, Rutherford E, Levelt E, et al. Native 11 mapping: Inter-Study, Inter-Observer
16	590	and inter-center reproducibility in nemodialysis patients. J Caralovasc Mayn Reson 2017;19(1)
17	597	UUI: 10.1180/S12908-U17-U337-7
18	598	23. Granam-Brown MP, Guisin GS, Parke K, et al. A comparison of the reproducibility of two cine-
19	599	derived strain software programmes in disease states. Eur J Radiol 2019;113:51-58. doi:
20	600	10.1016/J.ejrad.2019.01.026 [published Online First: 2019/04/01]
27	601	24. Jebb SA, Moore MS. Contribution of a sedentary mestyle and mactivity to the etiology of
23	602	overweight and obesity: current evidence and research issues. <i>Med Sci Sports Exerc</i>
24	603	1999;31(11 Suppl):5534-41. doi: 10.1097/00005768-199911001-00008 [published Online
25	604	First: 1999/12/11]
26	605	25. Kriska AM, Saremi A, Hanson RL, et al. Physical activity, obesity, and the incidence of type 2
27	606	diabetes in a nign-risk population. Am J Epidemioi 2003;158(7):669-75. doi:
28	607	10.1093/aje/kwg191 [published Unline First: 2003/09/26]
29	608	26. Pereira MA, Folsom AR, McGovern PG, et al. Physical activity and incident hypertension in black
30 31	609	and white adults: the Atherosclerosis Risk in Communities Study. Prev Med 1999;28(3):304-
32	610	12. doi: 10.1006/pmed.1998.0431 [published Online First: 1999/03/12]
33	611	27. Swift DL, Lavie CJ, Johannsen NM, et al. Physical activity, cardiorespiratory fitness, and exercise
34	612	training in primary and secondary coronary prevention. <i>Circ J</i> 2013;//(2):281-92. doi:
35	613	10.1253/circj.cj-13-0007 [published Online First: 2013/01/19]
36	614	28. Barengo NC, Hu G, Lakka TA, et al. Low physical activity as a predictor for total and cardiovascular
37	615	disease mortality in middle-aged men and women in Finland. Eur Heart J 2004;25(24):2204-
38	616	11. doi: 10.1016/j.enj.2004.10.009 [published Online First: 2004/12/14]
39 40	617	29. Nielens H, Lejeune TM, Lalaoui A, et al. Increase of physical activity level after successful renal
40 41	618	transplantation: a 5 year follow-up study. Nephrol Dial Transplant 2001;16(1):134-40. doi:
42	619	10.1093/ndt/16.1.134 [published Online First: 2001/02/24]
43	620	30. Dontje ML, de Greef MH, Krijnen WP, et al. Longitudinal measurement of physical activity following
44	621	kidney transplantation. <i>Clin Transplant</i> 2014;28(4):394-402. doi: 10.1111/ctr.12325
45	622	[published Online First: 2014/03/19]
46	623	31. Wilkinson IJ, Clarke AL, Nixon DGD, et al. Prevalence and correlates of physical activity across
47	624	kidney disease stages: an observational multicentre study. <i>Nephrol Dial Transpl</i> 2019 doi:
48 40	625	10.1093/ndt/gtz235
49 50	626	32. Booth FW, Roberts CK, Laye MJ. Lack of exercise is a major cause of chronic diseases. <i>Compr Physiol</i>
51	627	2012;2(2):1143-211. doi: 10.1002/cphy.c110025 [published Online First: 2012/04/01]
52	628	33. Booth FW, Laye MJ, Roberts MD. Lifetime sedentary living accelerates some aspects of secondary
53	629	aging. J Appl Physiol 2011;111(5):1497-504. doi: 10.1152/japplphysiol.00420.2011 [published
54	630	Online First: 2011/08/13]
55	631	34. Diasbury M, MicGee RG, Tong A, et al. Exercise training in solid organ transplant recipients: a
56	632	systematic review and meta-analysis. <i>Iransplantation</i> 2013;95(5):679-87. doi:
5/ 50	633	10.1097/TP.0b013e31827a3d3e [published Online First: 2013/02/01]
50 59		
60		

- 35. Mathur S, Janaudis-Ferreira T, Wickerson L, et al. Meeting Report: Consensus Recommendations for a Research Agenda in Exercise in Solid Organ Transplantation. Am J Transplant 2014;14(10):2235-45. doi: 10.1111/ajt.12874
- 36. Masajtis-Zagajewska A, Muras K, Nowicki M. Effects of a Structured Physical Activity Program on Habitual Physical Activity and Body Composition in Patients With Chronic Kidney Disease and in Kidney Transplant Recipients. *Exp Clin Transplant* 2019;17(2):155-64. doi: 10.6002/ect.2017.0305 [published Online First: 2018/05/17]
- 37. O'Connor EM, Koufaki P, Mercer TH, et al. Long-term pulse wave velocity outcomes with aerobic and resistance training in kidney transplant recipients - A pilot randomised controlled trial. PLoS One 2017;12(2):e0171063. doi: 10.1371/journal.pone.0171063 [published Online First: 2017/02/06]
- 38. Moraes Dias CJ, Anaisse Azoubel LM, Araujo Costa H, et al. Autonomic modulation analysis in active and sedentary kidney transplanted recipients. Clin Exp Pharmacol Physiol 2015;42(12):1239-44. doi: 10.1111/1440-1681.12481 [published Online First: 2015/08/19]
- 39. Roi GS, Stefoni S, Mosconi G, et al. Physical activity in solid organ transplant recipients: organizational aspects and preliminary results of the Italian project. Transplant Proc 2014;46(7):2345-9. doi: 10.1016/j.transproceed.2014.07.055 [published Online First: 2014/09/23]
 - 40. Romano G, Simonella R, Falleti E, et al. Physical training effects in renal transplant recipients. Clin Transplant 2010;24(4):510-4. doi: 10.1111/j.1399-0012.2009.01098.x [published Online First: 2009/10/01]
 - 41. Kinnafick FE, Thogersen-Ntoumani C, Shepherd SO, et al. In It Together: A Qualitative Evaluation of Participant Experiences of a 10-Week, Group-Based, Workplace HIIT Program for Insufficiently Active Adults. J Sport Exerc Psychol 2018;40(1):10-19. doi: 10.1123/jsep.2017-0306 [published Online First: 2018/03/10]
- 42. van Baar ME, Dekker J, Oostendorp RA, et al. Effectiveness of exercise in patients with osteoarthritis of hip or knee: nine months' follow up. Ann Rheum Dis 2001;60(12):1123-30. doi: 10.1136/ard.60.12.1123 [published Online First: 2001/11/16]
- 43. Timmons JF, Griffin C, Cogan KE, et al. Exercise Maintenance in Older Adults 1 Year After Completion of a Supervised Training Intervention. J Am Geriatr Soc 2020;68(1):163-69. doi: 10.1111/jgs.16209
 - 44. Hibbard JH, Greene J. What The Evidence Shows About Patient Activation: Better Health Outcomes And Care Experiences; Fewer Data On Costs. Health Affairs 2013;32(2):207-14. doi: 10.1377/hlthaff.2012.1061
 - 45. Skolasky RL, Mackenzie EJ, Wegener ST, et al. Patient activation and adherence to physical therapy in persons undergoing spine surgery. Spine (Phila Pa 1976) 2008;33(21):E784-E91. doi: 10.1097/BRS.0b013e31818027f1
- 46. Buckingham SA, Taylor RS, Jolly K, et al. Home-based versus centre-based cardiac rehabilitation: abridged Cochrane systematic review and meta-analysis. Open Heart 2016;3(2):e000463. doi: 10.1136/openhrt-2016-000463 [published Online First: 2016/10/16]
 - 47. Baggetta R, D'Arrigo G, Torino C, et al. Effect of a home based, low intensity, physical exercise program in older adults dialysis patients: a secondary analysis of the EXCITE trial. BMC Geriatr 2018;18(1):248. doi: 10.1186/s12877-018-0938-5 [published Online First: 2018/10/22]
 - 48. Borg GA. Perceived exertion: a note on "history" and methods. Med Sci Sports 1973;5(2):90-3. [published Online First: 1973/01/01]
- 49. Hunold P, Vogt FM, Heemann UW, et al. Myocardial mass and volume measurement of hypertrophic left ventricles by MRI--study in dialysis patients examined before and after dialysis. J Cardiovasc Magn Reson 2003;5(4):553-61. doi: 10.1081/jcmr-120025230 [published Online First: 2003/12/11]

BMJ Open

 So. Graham-Brown MP, March DS, Churchward DR, et al. Novel cardiac nuclear magnetic resonance method for noninvasive assessment of myocardial fibrosis in hermodialysis patients. <i>Kidney Int</i> 2016;90(4):835-44. doi: 10.1016/j.kint.2016.07.014 [published Online First: 2016/09/17] Xu HY, Yang ZG, Zhang Y, et al. Prognostic value of heart failure in hermodialysis dependent end- stage renal disease patients with myocardial fibrosis (2020/01/12) Gei SD, Stang Y, et al. Prognostic value of heart failure in hermodialysis dependent end- stage renal disease patients with myocardial fibrosis: 2020/01/12] Graham-Brown MP, Singh AS, Gulsin GS, et al. Defining myocardial fibrosis in haemodialysis patients with non-contrast cardiac magnetic resonance. <i>BMC Cordiovasc Disord</i> 2018;18(1):145. doi: 10.1186/s12872-018-0885-2 [published Online First: 2018/07/15] Xue H, Brown L&F, Nielles-Vallespin S, et al. Automatic in-line quantitative myocardial perfusion mapping: Processing algorithm and implementation. <i>Magn Reson Med</i> 2020;83(2):712-30. doi: 10.1002/mm.27954 [published Online First: 2019/08/24] Goi do LW Watson EL, Wilkinson TJ, et al. Ultrasound assessment of muscle mass in response to exercise training in chronic kidney disease: a comparison with MRI. <i>J Cachevia Sarcopenia Muscle</i> 2019;10(4):748-55. doi: 10.1002/jcm.12429 St. XTS/ACCP Statement on Cardiopulmonary Exercise Testing. <i>American Journal of Respiratory and Critical Caree Medicine</i> 2003;167(2):211-77. doi: 10.1164/rccm.167.2.211 Podsiadio D, Richardson S, The timed 'Ups & Go': a test of basic functional mobility for frail elderly persons. <i>J Am Geriatr Soc</i> 1991;39(2):142-8. doi: 10.1111/j.1532-5415.1991.tb01616x. Bublished Online First: 1991/02/01] Hadjioannou J, Wong K, Lindup H, et al. Test-restest reliability for physical function measures in patients with chronic kidney valuesase. <i>J Ren Care</i> 2019 doi: 10.1111/jorc.12310	2		
 644 method for noninvasive assessment of myocardial fibrosis in hemodialysis patients. <i>Kidney Int</i> 2016;90(1):835-44. doi: 10.1016/j.kin.2016.07.014 (published Online First: 2016)09(17) 655 12. Xu HY, Yang ZG, Zhang Y, et al. Prognostic value of heart failure in hemodialysis-dependent end-stage renal disease patients with myocardial fibrosis quantification by extracellular volume on cardiac magnetic resonance. <i>imagine. BMC Cardiovasc Disord</i> 2020;20(1):12. doi: 10.1186/s12872-019-01313-2 (published Online First: 2020/01/12) 659 10.1186/s12872-019-01313-2 (published Online First: 2018/01/12) 651 S. Xue H, Brown LAE, Niellee Y-Allespin S, et al. Automatic in-line quantifative myocardial perfusion mapping: Processing algorithm and implementation. <i>Magn Reson Med</i> 2020;83(2):712-30. doi: 10.1002/mrm.27954 (published Online First: 2019/08/24) 654 Gould DW, Watson EL, Wilkinson TJ, et al. Ultrasound assessment of muscle mass in response to exercise training in chronic kidney disease: a comparison with MRL <i>J Cachevia Sarcopenia Muscle</i> 2019;10(4):748-55. doi: 10.1002/jcsm.1249 659 55. ATS/ACCP Statement on Cardiopulmonary Exercise Testing. <i>American Journal of Respiratory and Critical Care Medicine</i> 2003;167(2):211-77. doi: 10.1164/rccm.167.2.211 701 56. Podsiadol D, Richardson S, The timed "Up & Go": a test of basic functional mobility for frail elderly persons. <i>J Am Geriatr Soc</i> 1991;39(2):142-8. doi: 10.1111/j.1532-5415.1991.101615.x [published Online First: 1991/02/17] 704 57. Hadjioannou I, Wong K, Lindup H, et al. Test-rester reliability for physical function measures in patients with chronic Kidney disease. <i>Ren Care</i> 2019 201: 10.1116/j.758.1. [published Online First: 1991/02/17] 705 58. Wilkinson TJ, Nixon DGD, Smith AC. Postural stability during standing and its association with physical and cognitive functions in non-dialysis chronic kidney disease patients. <i>Int Nephrol</i> 1995;6(1):75-81.	3	683	50. Graham-Brown MP. March DS. Churchward DR. et al. Novel cardiac nuclear magnetic resonance
 2016;90(4):835-44. doi: 10.1016/j.kint.2016.07.014 [published Online First: 2016/09/17] 51. Xu HY, Yang ZG, Zhang Y, et al. Prognostic value of heart failure in hemodialysis dependent end- stage renal disease patients with myocardial fibrosis upstracellular volume on cardiac magnetic resonance imaging. <i>BMC Cardiovasc Disord</i> 2020;20(1):12. doi: 10.1186/512872-019-0131-2 [published Online First: 2020/01/12] 52. Graham-Brown MP, Singh AS, Gulsin GS, et al. Defining myocardial fibrosis in haemodialysis patients with non-contrast cardiac magnetic resonance. <i>BMC Cardiovasc Disord</i> 2020;81(3):145. doi: 10.1186/s1287-019-0885-2 [published Online First: 2021/07/15] 53. Xue H, Brown L&F, Nielles-Vallespin S, et al. Automatic in-line quantitative myocardial perfusion mapping: Processing algorithm and implementation. <i>Magn Reson Med</i> 2020;83(2):712-30. doi: 10.1002/mrm.27954 [published Online First: 2019/08/24] 54. Gould DW, Watson EL, Wilkinson TJ, et al. Ultrasound assessment of muscle mass in response to exercise training in chronic kidney disease: a comparison with MRI. J Cachevia Sarcopenia <i>Muscle</i> 2019;10(4):748-55. doi: 10.1002/j.sm1.2429 55. AtS/ACCP Statement on Cardiopulmonary Exercise Testing. <i>American Journal of Respiratory and Critica Care Medicine</i> 2003;167(2):211-77. doi: 10.1164/rccm.167.2.211 50. Podsiadlo D, Richardson S. The timed "Up & Go': a test of basic functional mobility for physical function measures in patients with chronic kidney disease: a compassion with MI. J Cachevia Sociation with republished Online First: 1991/02/011 50. Kilkinson TJ, Nixon DGD, Smith AC, Postural stability during standing and its association with physical and cognitive functions in non-dialysis chronic kidney disease patients. <i>Int J Nephrol</i> <i>Urol</i> 2019;51(8):1407-14. doi: 10.1007/s11255-019-02192-4 50. Eston RG, Reilly T, Kinanthropometry and exercise physiology laboratory manual : tests, procedures,	4	684	method for noninvasive assessment of myocardial fibrosis in hemodialysis patients. <i>Kidney Int</i>
 Su WH, Yang ZG, Zhang Y, et al. Prognostic value of heart failure in hemodialysis-dependent end-stage renal disease patients with myocardial fibrosis quantification by extracellular volume on cardiac magnetic resonance imaging. <i>BMC Cardiovasc Disord</i> 2020;20(1):12. doi: 10.1186/s12872-019-01313-2 [published Online First: 2020/01/12] Graham-Brown MP, Singh AS, Gulsin GS, et al. Defining myocardial fibrosis in haemodialysis patients with non-contrast cardiac magnetic resonance. <i>BMC Cardiovasc Disord</i> 2018;18(1):145. doi: 10.1186/s12872-018-0883-2 [published Online First: 2018/07/15] Xu eH, Brown LAE, Nieller-Vallespin S, et al. Automatic I-nine quantitative myocardial perfusion mapping: Processing algorithm and implementation. <i>Magn Reson Med</i> 2020;83(2):712-30. doi: 10.1002/mm.72954 [published Online First: 2019/08/24] Gould DW, Watson EL, Wilkinson TJ, et al. Ultrasound assessment of muscle mass in response to exercise training in chronic kidney disease: a comparison with MRI. <i>J Cachevia Sarcopenia Muscle</i> 2019;10(4):748-55. doi: 10.1002/jcsm.12429 StaTS/ACCP Statement on Cardiopulmonary Exercise Testing. <i>American Journal of Respiratory and Critical Care Medicine</i> 2003;167(2):211-77. doi: 10.1114/jcrcn.167.2.211 Podsiadlo D, Richardson S. The timed "Up & Go": a test of basic functional mobility for frail elderly persons. <i>J Am Genotr Sac</i> 1991;39(2):142-8. doi: 10.1111/j.rs2.2415.1991.tb01616 x [published Online First: 1991/02/01] Wilkinson TJ, Nixon DGD, Smith AC. Postural stability during standing and its association with physical and cognitive functions in non-dialysis chronic kidney disease patients. <i>Int J Nephrol Urol</i> 2019;51(8):1407-14. doi: 10.1007/s1125-5019-0219-24 Stor RG, Reilly T. Kinanthropometry and exercise physiology laboratory manual : tests, procedures, and data: Ard ed. Abingdon: Routledge 2009. Chertow GM, Lowrite EG, Wilmore DW, et al. Bioelectrical impedance can be use	5	685	2016:90(4):835-44. doi: 10.1016/i kint 2016.07.014 [published Online First: 2016/09/17]
 stage renal disease patients with myocardial fibrosis quantification by extracellular volume on cardiac magnetic resonance imaging. <i>BMC Cardiovasc Disord</i> 2002;0(1):12. doi: 10.1186/s12872-019-01313-2 [published Online First: 2020/01/12] Sz. Graham-Brown MP, Singh AS, Gulsin GS, et al. Defining myocardial fibrosis in haemodialysis patients with non-contrast cardiac magnetic resonance. <i>BMC Cardiovasc Disord</i> 2018;18(1):145. doi: 10.1186/s12872-018-0885-2 [published Online First: 2019/07/15] Sz. We H, Brown LAE, Nielles-Vallespin S, et al. Automatic in-line quantitative myocardial perfusion mapping: Processing algorithm and implementation. <i>Magn Reson Med</i> 2020;83(2):712-30. doi: 10.1002/mrm.27954 [published Online First: 2019/08/24] Gould DW, Watson EL, Wilkinson TJ, et al. Ultrasound assessment of muscle mass in response to exercise training in chronic kidney disease: a comparison with MRI. <i>J Cachevia Socrogenia</i> <i>Muscle</i> 2019;10(4):748-55. doi: 10.1002/jsm.12429 S. ATS/ACCP Statement on Cardiopulmonary Exercise Testing. <i>American Journal of Respiratory and Critical Care Medicine</i> 2003;167(2):211-77. doi: 10.1164/rccm.167.2.211 Fodsiaalo D, Richardson S, The timed "Up & Ao:: a test of basic functional mobility for frail elderly persons. <i>J Am Geriatr Soc</i> 1991;39(2):142-8. doi: 10.1111/j.1532-5415.1991.b01616.x [published Online First: 1991/Q2/01] Hadjioannou I, Wong K, Lindur H, et al. Test-rester reliability for physical function measures in patients with chronic kidney disease. <i>J Ren Care</i> 2019 doi: 10.1111/j.rcc.12310 Wilkinson TJ, Nixon DGD, Smith AC. Postural stability during standing and its association with physical and cognitive functions in non-dialysis fornic kidney disease patients. <i>Int J Nephrol Urol</i> 2019;51(8):1407-14. doi: 10.1007/s11225-019-02192-4 Eston RG, Reilly T, Kinanthropometry and exercise physiology laboratory manual : tests, procedures, and data. 3rd ed. Abingdon:	6	686	51. Xu HY, Yang ZG, Zhang Y, et al. Prognostic value of heart failure in hemodialysis-dependent end-
 Ger Ger Machine Marken Seiner Steam Structure Disord 2020;20(1):12. doi: 10.1186/s12872-019-01313-2 [published Online First: 2020/03/12] Graham-Brown MP, Singh AS, Gulish GS, et al. Defining myccardial fibrosis in haemodialysis patients with non-contrast cardiac magnetic resonance. <i>BMC Cardiovasc Disord</i> 2018;18(1):145. doi: 10.1186/s12872-018-0885-2 [published Online First: 2018/07/15] Xue H, Brown LAE, Nielles-Vallespin S, et al. Automatic In-line quantitative myccardial perfusion mapping: Processing algorithm and implementation. <i>Magn Reson Med</i> 2020;83(2):712-30. doi: 10.1002/msr.127954 [published Online First: 2019/08/24] Gould DW, Watson EL, Wilkinson TJ, et al. Ultrasound assessment of muscle mass in response to exercise training in chronic kidney disease: a comparison with MRI. <i>J Cachesia Sarcopenia Muscle</i> 2019;10(4):748-55. doi: 10.1002/jrsm.12429 So ATS/ACCP Statement on Cardiopulmonary Exercise Testing. <i>American Journal of Respiratory and Critical Care Medicine</i> 2003;167(2):211-77. doi: 10.1116/jrcc.2.211 Fodsiadlo D, Richardson S. The timed "Up & Go": a test of basic functional mobility for frail elderly persons. <i>J Am Geriatr Soc</i> 1991;39(2):112-8. doi: 10.1111/jorc.12310 Nedsido D, Nichardson S, The timed "Up & Go": a test of basic functional mobility for frail elderly persons. <i>J Am Geriatr Soc</i> 1991;39(2):112-5. doi: 10.1111/jorc.12310 Wilkinson TJ, Nixon DGD, Smith AC, Postural stability during standing and its association with physical and cognitive functions in non-dialysis chronic kidney disease patients. <i>Int J Nephrol Urol</i> 2019;51(8):1407-14. doi: 10.1007/s11255-019-02192-4 Se Ston RG, Reilly T. Kinanthropometry and exercise physiology laboratory manual : tests, procedures, and data. 3rd ed. Abingdon: Routledge 2009. Chertow GM, Lowrie EG, Willmore DW, et al. Nutrifoinal assessment with bioelectrical impedance analysis in maintenance hemodialysis patients.	/	687	stage renal disease natients with myocardial fibrosis quantification by extracellular volume on
 Genome Carlos Construction of the second seco	8	688	cardiac magnetic reconance imaging BMC Cardiovacc Disord 2020/20/1):12 doi:
 10.116/12/01/12 10.116/12/01/12 10.116/12/01/12 11.116/12/01/12 11.	9 10	600	10 1196 (c12972 010 01212 2 [published Opling First: 2020/01/12]
 Sz. Granam-Brown MP, Singh AS, Guisn GS, et al. Defining myocardial mosts in haemodiaysis patients with non-contrast cardiac magnetic resonance. <i>BMC Cardiovasc Disord</i> 2018;18(1):145. doi: 10.1186/s12872-018-0885-2 [published Online First: 2018/07/15] SJ. Xue H, Brown LAE, Nielles-Vallespin S, et al. Automatic in-line quantitative myocardial perfusion mapping: Processing algorithm and implementation. <i>Magn Reson Med</i> 2020;83(2):712-30. doi: 10.1002/mrm.27954 [published Online First: 2019/08/24] Gould DW, Watson EL, Wilkinson TJ, et al. Ultrasound assessment of muscle mass in response to exercise training in chronic kidney disease: a comparison with MRI. <i>J Cachexia Sarcopenia Muscle</i> 2019;10(4):748-55. doi: 10.1002/jrsm.12429 S. ATS/ACCP Statement on Cardiopulmonary Exercise Testing. <i>American Journal of Respiratory and Critical Care Medicine</i> 2003;167(2):211-77. doi: 10.1164/rccm.167.2.211 Fo Pdsiaalo D, Richardson S. The timed "Up & Go": a test of basic functional mobility for frail elderly persons. <i>J Am Genatr Soc</i> 1991;39(2):142-8. doi: 10.1111/j.1532-5415.1991.tb01616.x [published Online First: 1991/02/01] St. Hadjiioannou I, Wong K, Lindup H, et al. Test-restest reliability for physical function measures in patients with chronic kidney disease. <i>J Ren Care</i> 2019 doi: 10.1111/jor.12310 St. Wilkinson TJ, Nixon DGD, Smith AC. Postural stability during standing and its association with physical and cognitive functions in non-dialysis chronic kidney disease patients. <i>Int J Nephrol Urol</i> 2019;51(8):1407-14. doi: 10.1007/s11255-019-02192-4 Steon RG, Reilly T. Kinanthropometry and exercise physiology laboratory manual : tests, proceures, and data. 3rd ed. Abingdon: Routledge 2009. Chertow GM, Lowrie EG, Wilmore DW, et al. Nutritional assessment with bioelectrical impedance analysis in maintenance hemodialysis patients. <i>J Am Soc Nephrol</i> 1995;6(1):75-81. [published Online First: 2050/09/07]	10	689	10.1180/S12872-019-01313-2 [published Online First: 2020/01/12]
 patients with non-contrast cardiac magnetic resonance. <i>BMC Cardiovasc Disord</i> 2018;31(1):145. doi: 10.118/s12872-018-08825 [published Online First: 2018/07/15] St. Xue H, Brown LAE, Nielles-Vallespin S, et al. Automatic in-line quantitative myocardial perfusion mapping: Processing algorithm and implementation. <i>Magn Reson Med</i> 2020;83(2):712-30. doi: 10.1002/mrs.12954 [published Online First: 2018/08/24] Gould DW, Watson EL, Wilkinson TJ, et al. Ultrasound assessment of muscle mass in response to exercise training in chronic kidney disease: a comparison with MRI. <i>J Cachexia Sarcopenia Muscle</i> 2019;10(4):748-55. doi: 10.1002/msn.12429 St. ATS/ACCP Statement on Cardiopulmonary Exercise Testing. <i>American Journal of Respiratory and Critical Care Medicine</i> 2003;167(2):211-77. doi: 10.1164/rccm.167.2.211 Fo Podsiadlo D, Richardson S. The timed "Up & Go": a test of basic functional mobility for frail elderly persons. <i>J Am Geriatr Soc</i> 1991;39(2):142-8. doi: 10.1111/j.1532-5415.1991.tb01616.x [published Online First: 1991/02/01] Hadjiioannou I, Wong K, Lindup H, et al. Test-restest reliability for physical function measures in patients with chronic kidney disease. <i>J Ren Care</i> 2019 doi: 10.1111/j.1512.2110 Ston RG, Reilly T. Kinanthropometry and exercise physiology laboratory manual : tests, procedures, and data. 3rd ed. Abingdon: Routledge 2009. Chertow GM, Lowrie EG, Wilmore DW, et al. Nutritional assessment with bioelectrical impedance analysis in maintenance hemodialysis patients. <i>J Am Soc Nephrol</i> 1995;6(1):75-81. [published Online First: 2096/09/07] Madconald JH, Marcora SM, Jibani M, et al. Bioelectrical impedance can be used to predict muscle mass and hence improve estimation of glomerular filtration rate in non-diabetic patients with chronic kidney disease. <i>Paphrol Dial Transplant</i> 2006;21(12):3481-7. doi: 10.1093/ndt/gf1432 [published Online First: 2096/09/07] Ra R, Ahuja K,	12	690	52. Granam-Brown MP, Singn AS, Guisin GS, et al. Defining myocardial fibrosis in naemodialysis
 2012;18(1):142. doi: 10.1186/s12872-018-088-2 [published Online First: 2018/07/15] 2014;18(1):142. doi: 10.1186/s12872-018-088-2 [published Online First: 2018/07/15] 2014 (Marcine Construction of the Consteconstruction of the Construction of the Construction of the C	13	691	patients with non-contrast cardiac magnetic resonance. BMC Cardiovasc Disord
 53. Xue H, Brown LAE, Nielles-Vallespin S, et al. Automatic in-line quantitative myocardial perfusion mapping: Processing algorithm and implementation. <i>Mogn Reson Med</i> 2020;83(2):712-30. doi: 10.1002/mrm.27954 [published Online First: 2019/08/24] 54. Gould DW, Watson EL, Wilkinson TJ, et al. Ultrasound assessment of muscle mass in response to exercise training in chronic kidney disease: a comparison with MRL <i>J Cachexia Sarcopenia</i> <i>Muscle</i> 2019;10(4):748-55. doi: 10.1002/jcsm.12429 55. ATS/ACCP Statement on Cardiopulmonary Exercise Testing. <i>American Journal of Respiratory and</i> <i>Critical Care Medicine</i> 2003;167(2):211-77. doi: 10.1164/nccm.167.2.211 56. Podsiadlo D, Richardson S. The timed "Up & Go": a test of basic functional mobility for frail elderly persons. <i>J Am Geriatr Soc</i> 1991;39(2):142-8. doi: 10.1111/j.1532-5415.19911.bt01616.x [published Online First: 1992/02/01] 57. Hadjiioannou I, Wong K, Lindup H, et al. Test-restest reliability for physical function measures in patients with chronic kidney disease. <i>J Ren Care</i> 2019 doi: 10.1111/j.rc1.2310 59. Eston RG, Reilly T. Kinanthropometry and exercise physiology laboratory manual : tests, procedures, and data. 3rd ed. Abingdon: Routledge 2009. 60. Chertow GM, Lowrie EG, Wilmore DW, et al. Nutritional assessment with bioelectrical impedance analysis in maintenance hemodialysis patients. <i>J Am Soc Nephrol</i> 1995;6(1):75-81. [published Online First: 1995/07/01] 61. Macdonald JH, Marcora SM, Jibani M, et al. Bioelectrical impedance can be used to predict muscle mass and hence improve estimation of glomerular filtration rate in non-diabetic patients with chronic kidney disease. <i>Nephrol Dial Transplant</i> 2006;21(12):3481-7. doi: 10.1019/nlt/gft432 [published Online First: 2006/09/07] 62. Rai R, Ahuja K, Frandsen M, et al. Validation of the IPOS-Renal Symptom Survey in Advanced Kidney Disease: A Cross-sectional Study. <i>J Pain Symptom Manage</i> 201	14	692	2018;18(1):145. doi: 10.1186/s128/2-018-0885-2 [published Online First: 2018/0//15]
 mapping: Processing algorithm and implementation. <i>Magn Reson Med</i> 2020;83(2):712-30. doi: 10.1002/mrm.27954 [published Online First: 2019/08/24] Gould DW, Watson EL, Wilkinson TJ, et al. Ultrasound assessment of muscle mass in response to exercise training in chronic kidney disease: a comparison with MRI. <i>J Cachexia Sarcopenia Muscle</i> 2019;10(4):748-55. doi: 10.1002/jcsm.12429 SA ATS/ACCP Statement on Cardiopulmonary Exercise Testing. <i>American Journal of Respiratory and Critical Care Medicine</i> 2003;167(2):211-77. doi: 10.1164/rccm.167.2.211 Foodsiadlo D, Richardson S. The timed "Up & Go": a test of basic functional mobility for frail elderly persons. <i>J Am Geriatr Soc</i> 1991;39(2):142-8. doi: 10.1111/j.1532-5415.1991.tb01616.x [published Online First: 1991/02/01] Foodsiadlo D, Nicon DCD, Smith AC. Postural stability during standing and its association with physical and cognitive functions in non-dialysis chronic kidney disease patients. <i>Int J Nephrol Urol</i> 2019;51(8):1407-14. doi: 10.1007/s11255-019-02192-4 Se Stotn RG, Reilly T. Kinanthropometry and exercise physiology laboratory manual : tests, procedures, and data. 3rd ed. Abingdon: Routledge 2009. Chertow GM, Lowrie EG, Wilmore DW, et al. Nutritional assessment with bioelectrical impedance analysis in maintenance hemodialysis patients. <i>J Am Soc Nephrol</i> 1995;6(1):75-81. [published Online First: 1995/07/01] Macconald JH, Marcora SM, Jibani M, et al. Bioelectrical impedance can be used to predict muscle mass and hence improve estimation of glomerular filtration rate in non-diabetic patients with chronic kidney disease. <i>Nephrol Dial Transplant</i> 2006;21(12):3481-7. doi: 10.1093/ndt/gff432 [published Online First: 2005/09/07] Macconald JH, Marcora SM, Jibani M, et al. Bioelectrical impedance can be used to predict muscle mass and hence improve estimation of glomerular filtration rate in non-diabetic patients with chronic kidney d	15	693	53. Xue H, Brown LAE, Nielles-Vallespin S, et al. Automatic in-line quantitative myocardial perfusion
17 695 doi: 10.1002/mrm.27954 [published Online First: 2019/08/24] 18 696 54. Gould DW, Watson EL, Wilkinson TJ, et al. Ultrasound assessment of muscle mass in response to exercise training in chronic kidney disease: a comparison with MRI. J Cachexia Sarcopenia Muscle 2019;10(4):748-55. doi: 10.1002/[csm.12429 16 697 55. ATS/ACCP Statement on Cardiopulmonary Exercise Testing. American Journal of Respiratory and Critical Care Medicine 2003;167(2):211-77. doi: 10.1164/rccm.167.2.211 17 156. Podsiadlo D, Richardson S. The timed "Up & Go": a test of basic functional mobility for frail eldeny persons. J Am Geriatr Soc 1991;39(2):142-8. doi: 10.1111/j.1532-5415.1991.tb01616.x [published Online First: 1991/02/01] 17 704 57. Hadjiioannou I, Wong K, Lindup H, et al. Test-restest reliability for physical function measures in patients with chronic kidney disease. J Aen Care 2019 doi: 10.1111/jorc.12310 170 58. Wilkinson TJ, Nixon DGD, Smith AC. Postural stability during standing and its association with physical and cognitive functions in non-dialysis chronic kidney disease patients. Int J Nephrol Urol 2019;51(8):1407-14. doi: 10.1007/s11255-019-02192-4 170 59. Eston RG, Reilly T. Kinanthropometry and exercise physiology laboratory manual : tests, procedures, and data. 37d ed. Abingdon: Routledge 2009. 171 60. Chertow GM, Lowrie EG, Wilmoro DW, et al. Nutritional assessment with bioelectrical impedance analysis in maintenance hemodialysis patients. J Am Soc Nephrol 1995;6(1):75-81. [published Online First: 1995/07/01] 171 61. Macdona	16	694	mapping: Processing algorithm and implementation. <i>Magn Reson Med</i> 2020;83(2):712-30.
 54. Gould DW, Watson EL, Wilkinson TJ, et al. Ultrasound assessment of muscle mass in response to exercise training in chronic kidney disease: a comparison with MRI. J Cachexia Sarcopenia Muscle 2019;10(4):748-55. doi: 10.1002/jcsm.12429 55. ATS/ACCP Statement on Cardiopulmonary Exercise Testing. American Journal of Respiratory and Critical Care Medicine 2003;167(2):211-77. doi: 10.1164/rccm.167.2.211 700 701 702 703 704 705 705 705 705 706 706 707 706 707 708 709 709 709 704 705 705 706 707 706 707 708 709 709 709 709 709 709 709 700 709 700 700 701 702 703 704 705 705 705 706 706 707 707 708 709 709 709 701 709 701 704 705 705 705 705 706 707 708 709 709 709 701 700 701 702 701 702 703 704 704 705 704 705 705 705 705 705 706 706 707 708 709 709 709 709 701 701 701 702 704<	17	695	doi: 10.1002/mrm.27954 [published Online First: 2019/08/24]
 exercise training in chronic kidney disease: a comparison with MRI. J Cachexia Sarcopenia Muscle 2019;10(4):748-55. doi: 10.1002/jcsm.12429 S. ATS/ACCP Statement on Cardiopulmonary Exercise Testing. American Journal of Respiratory and Critical Care Medicine 2003;167(2):211-77. doi: 10.1164/rccm.167.2.211 Fodsiadlo D, Richardson S. The timed "Up & Go": a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc 1991;39(2):142-8. doi: 10.1111/j.1532-5415.1991.tb01616.x [published Online First: 1991/02/01] Hadjiloannou I, Wong K, Lindup H, et al. Test-restest reliability for physical function measures in patients with chronic kidney disease. J Ren Care 2019 doi: 10.1111/jorc.12310 S. Wilkinson TJ, Nixon DGD, Smith AC. Postural stability during standing and its association with physical and cognitive functions in non-dialysis chronic kidney disease patients. Int J Nephrol Urol 2019;51(8):1407-14. doi: 10.1007/s11255-019-021924 S. Eston RG, Reilly T. Kinanthropometry and exercise physiology laboratory manual : tests, procedures, and data. 3rd ed. Abingdon: Routledge 2009. Chertow GM, Lowrie EG, Wilmore DW, et al. Nutritional assessment with bioelectrical impedance analysis in maintenance hemodialysis patients. J Am Soc Nephrol 1995;6(1):75-81. [published Online First: 1995/07/01] Macdonald JH, Marcora SM, Jibani M, et al. Bioelectrical impedance anb used to predict muscle mass and hence improve estimation of glomerular filtration rate in non-diabetic patients with chronic kidney disease. Nephrol Dial Transplant 2006;21(12):3481-7. doi: 10.103/ndt/gfl432 [published Online First: 2006/09/07] Ra JR, Ahuja K, Frandsen M, et al. Validation of the IPOS-Renal Symptom Manage 2018;56(2):281-87. doi: 10.1016/j.jpainsymman.2018.04.006 Ware JT JE, Kosinski M, Keller SD. A12-Item Short-Form Health Survey: construction of scales and preliminary tests of reliability and validity. Med	18	696	54. Gould DW, Watson EL, Wilkinson TJ, et al. Ultrasound assessment of muscle mass in response to
0 698 Muscle 2019;10(4):748-55. doi: 10.1002/jrsm.12429 11 699 55. ATS/ACCP Statement on Cardiopulmonary Exercise Testing. American Journal of Respiratory and Critical Care Medicine 2003;167(2):211-77. doi: 10.1164/rccm.167.2.211 12 701 56. Podsiadlo D, Richardson S. The timed "Up & Go": a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc 1991/92/01] 17 704 57. Hadjiioannou I, Wong K, Lindup H, et al. Test-restest reliability for physical function measures in patients with chronic kidney disease. J Ren Care 2019 doi: 10.1111/j.orc.12310 18 705 58. Wilkinson TJ, Nixon DGD, Smith AC. Postural stability during standing and its association with physical and cognitive functions in non-dialysis chronic kidney disease patients. Int J Nephrol Urol 2019;51(8):1407-14. doi: 10.1007/s11255-019-02192-4 19 59. Eston RG, Reilly T. Kinanthropometry and exercise physiology laboratory manual : tests, procedures, and data. 3rd ed. Abingdon: Routledge 2009. 11 60. Chertow GM, Lowrie EG, Wilmore DW, et al. Nutritional assessment with bioelectrical impedance analysis in maintenance hemodialysis patients. J Am Soc Nephrol 1995;6(1):75-81. [published Online First: 1995/07/01] 11 61. Macdonald JH, Marcora SM, Jibani M, et al. Bioelectrical impedance can be used to predict muscle mass and hence improve estimation of glomerular filtration rate in non-diabetic patients with chronic kidney disease. Nephrol Diol Transplant 2006;21(12):3481-7. doi: 10.103/ndt/gfl432 [published Online First: 2095/00/07]	19	697	exercise training in chronic kidney disease: a comparison with MRI. J Cachexia Sarcopenia
21 699 55. ATS/ACCP Statement on Cardiopulmonary Exercise Testing. American Journal of Respiratory and Critical Care Medicine 2003;167(2):211-77. doi: 10.1164/rccm.167.211 24 700 Critical Care Medicine 2003;167(2):211-77. doi: 10.1164/rccm.167.211 24 701 56. Podsiadlo D, Richardson S. The timed "Up & 60": a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc 1991;39(2):142-8. doi: 10.1111/j.orc.12310 27 704 57. Hadjiioannou I, Wong K, Lindup H, et al. Test-restest reliability during standing and its association with patients with chronic kidney disease. J Ren Care 2019 doi: 10.1111/jorc.12310 27 58. Wilkinson TJ, Nixon DGD, Smith AC. Postural stability during standing and its association with physical and cognitive functions in non-dialysis chronic kidney disease patients. Int J Nephrol Urol 2019;51(8):1407-14. doi: 10.1007/s11255-019-02192-4 27 59. Eston RG, Reilly T. Kinanthropometry and exercise physiology laboratory manual : tests, procedures, and data. 3rd ed. Abingdon: Routledge 2009. 2711 60. Chertow GM, Lowrie EG, Wilmore DW, et al. Nutritional assessment with bioelectrical impedance analysis in maintenance hemodialysis patients. J Am Soc Nephrol 1995;6(1):75-81. [published Online First: 1995/07/01] 2714 61. Macdonald JH, Marcora SM, Jibani M, et al. Bioelectrical impedance can be used to predict muscle mass and hence improve estimation of glomerular filtration rate in non-diabetic patients with chronic kidney disease. Nephrol Dial Transplant 2006;21(12):3481-7. doi: 10.01093/ndt/gfl432 [published Online First: 2006/09/07]	20	698	<i>Muscle</i> 2019;10(4):748-55. doi: 10.1002/jcsm.12429
 <i>Critical Care Medicine</i> 2003;167(2):211-77. doi: 10.1164/rccm.167.2.211 <i>Critical Care Medicine</i> 2003;167(2):211-77. doi: 10.1164/rccm.167.2.211 <i>Podsiadlo D, Richardson S, The timed "Up & Go": a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc</i> 1991;39(2):142-8. doi: 10.1111/j.1532-5415.1991.tb01616.x [published Online First: 1991/02/01] <i>Tota ST. Hadjiioannou I, Wong K, Lindup H, et al. Test-restest reliability for physical function measures in patients with chronic kidney disease. J Ren Care 2019 doi: 10.1111/jor.12310</i> <i>Wilkinson TJ, Nixon DGD, Smith AC. Postural stability during standing and its association with physical and cognitive functions in non-dialysis chronic kidney disease patients. Int J Nephrol Urol 2019;51(8):1407-14. doi: 10.1007/s11255-019-02192-4</i> <i>Se Eston RG, Reilly T. Kinanthropometry and exercise physiology laboratory manual : tests, procedures, and data. 3rd ed. Abingdon: Routledge 2009.</i> <i>Chertow GM, Lowrie EG, Wilmore DW, et al. Nutritional assessment with bioelectrical impedance analysis in maintenance hemodialysis patients. J Am Soc Nephrol 1995;6(1):75-81. [published Online First: 1995/07/01]</i> <i>Macdonald JH, Marcora SM, Jibani M, et al. Bioelectrical impedance can be used to predict muscle mass and hence improve estimation of glomerular filtration rate in non-diabetic patients with chronic kidney disease. Nephrol Dial Transplant 2006;21(12):481-7. doi: 10.103/ndt/gfl422</i> <i>Ipublished Online First: 2006/09/07</i> <i>Chard Care Jang X-Y, Liu J-D, et al. Psychometric Properties of the Functional Assessment of Chronic Ulness Therapy-Fatigue (FACIT-Fatigue) in Chinese Patients Receiving Maintenance Dialysis. J Pain Symptom Manage 2018;56(2):281-87. doi: 10.1016/j.jpainsymman.2014.04.011</i> <i>Stag K-Y, Liu J-D, et al. Psychometric Properties of the Functional Assessment of Chronic Ulness Therapy-Fatigue (FACIT-Fatigue) in Chinese</i>	21	699	55. ATS/ACCP Statement on Cardiopulmonary Exercise Testing. American Journal of Respiratory and
 701 56. Podsiadlo D, Richardson S. The timed ¹⁷Up & Go": a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc 1991;39(2):142-8. doi: 10.1111/j.1532-5415.1991.tb01616.x [published Online First: 1991/02/01] 703 704 705 706 706 707 707 708 709 709 709 709 709 709 709 701 704 705 706 706 706 707 707 708 709 709 709 709 709 701 708 709 709 709 701 708 709 701 708 709 701 708 709 701 708 701 701 701 702 702 702 703 704 705 704 705 704 705 705 704 705 704 705 705 704 705 705 705 704 705 705 705 704 705 705 705 705 705 704 705 705 705 705 704 705<!--</td--><td>22</td><td>700</td><td>Critical Care Medicine 2003;167(2):211-77. doi: 10.1164/rccm.167.2.211</td>	22	700	Critical Care Medicine 2003;167(2):211-77. doi: 10.1164/rccm.167.2.211
 persons. J Am Geriatr Soc 1991;39(2):142-8. doi: 10.1111/j.1532-5415.1991.tb01616.x [published Online First: 1991/02/01] for patients with chronic kidney disease. J Ren Care 2019 doi: 10.1111/jorc.12310 kilkinson TJ, Nixon DGD, Smith AC. Postural stability during standing and its association with physical and cognitive functions in non-dialysis chronic kidney disease patients. Int J Nephrol Urol 2019;51(8):1407-14. doi: 10.1007/s11255-019-02192-4 for Chertow GM, Lowrie EG, Wilmore DW, et al. Nutritional assessment with bioelectrical impedance analysis in maintenance hemodialysis patients. J Am Soc Nephrol 1995;6(1):75-81. [published Online First: 1995/07/01] for Chertow GM, Lowrie EG, Wilmore DW, et al. Nutritional assessment with bioelectrical impedance analysis in maintenance hemodialysis patients. J Am Soc Nephrol 1995;6(1):75-81. [published Online First: 1995/07/01] for Chertow GM, Lowrie EG, Wilmore DW, et al. Nutritional assessment with bioelectrical impedance analysis in maintenance hemodialysis patients. J Am Soc Nephrol 1995;6(1):75-81. [published Online First: 1995/07/01] for Chertow GM, Lowrie EG, Wilmore DW, et al. Nutritional assessment with bioelectrical impedance analysis in maintenance hemodialysis patients. J Am Soc Nephrol 1995;6(1):75-81. [published Online First: 1995/07/01] for Chertow GM, Lowrie EG, Wilmore DW, et al. Nutritional assessment with duron disdetic patients with chronic kidney disease. Nephrol Dial Transplant 2006;21(12):3481-7. doi: 10.1093/ndt/gfl432 [published Online First: 2006/09/07] for Ga: Raj R, Ahuja K, Frandsen M, et al. Validation of the IPOS-Renal Symptom Survey in Advanced Kidney Disease: A Cross sectional Study. J Pain Symptom Manage 2018;56(2):281-87. doi: 10.1016/j.jpainsymman.2018.04.006 for Horize First: 1997/02/01 for Ware JF, Koinski M, Keller SD. A 12-Item Short-Form Health Survey: construction of scales	23	701	56. Podsiadlo D, Richardson S. The timed "Up & Go": a test of basic functional mobility for frail elderly
 703 [published Online First: 1991/02/01] 704 57. Hadjiioannou I, Wong K, Lindup H, et al. Test-restest reliability for physical function measures in patients with chronic kidney disease. J Ren Care 2019 doi: 10.1111/jorc.12310 705 58. Wilkinson TJ, Nixon DGD, Smith AC. Postural stability during standing and its association with physical and cognitive functions in non-dialysis chronic kidney disease patients. Int J Nephrol Urol 2019;51(8):1407-14. doi: 10.1007/s11255-019-02192-4 709 59. Eston RG, Reilly T. Kinanthropometry and exercise physiology laboratory manual : tests, procedures, and data. 3rd ed. Abingdon: Routledge 2009. 711 60. Chertow GM, Lowrie EG, Wilmore DW, et al. Nutritional assessment with bioelectrical impedance analysis in maintenance hemodialysis patients. J Am Soc Nephrol 1995;6(1):75-81. [published Online First: 1995/07/01] 714 61. Macdonald JH, Marcora SM, Jibani M, et al. Bioelectrical impedance can be used to predict muscle mass and hence improve estimation of glomerular filtration rate in non-diabetic patients with chronic kidney disease. Nephrol Dial Transplant 2006;21(12):3481-7. doi: 10.1093/ndt/gfl432 [published Online First: 2006/09/07] 718 62. Raj R, Ahuja K, Frandsen M, et al. Validation of the IPOS-Renal Symptom Survey in Advanced Kidney Disease: A Cross-sectional Study. J Pain Symptom Manage 2018;56(2):281-87. doi: 10.1016/j.jpainsymman.2018.04.006 720 63. Ware Jr JE, Kosinski M, Keller SD. A 12-Item Short-Form Health Survey: construction of scales and preliminary tests of reliability and validity. Medical care 1996:220-33. 64. Wang S-Y, Zang X-Y, Liu J-D, et al. Psychometric Properties of the Functional Assessment of Chronic Illness Therapy-Fatigue (FACIT-Fatigue) in Chinese Patients Receiving Maintenance Dialysis. J Pain Symptom Manage 2015;49(1):135-43. doi: 10.1016/j.jpainsymman.2014.04.011 755 730 66. Buysse DJ, Reynolds CF, Monk TH, et al. The Pi	24	702	persons. J Am Geriatr Soc 1991:39(2):142-8. doi: 10.1111/i.1532-5415.1991.tb01616.x
 57. Hadjiioannou I, Wong K, Lindup H, et al. Test-restest reliability for physical function measures in patients with chronic kidney disease. <i>J Ren Care</i> 2019 doi: 10.1111/jorc.12310 58. Wilkinson TJ, Nixon DGD, Smith AC. Postural stability during standing and its association with physical and cognitive functions in non-dialysis chronic kidney disease patients. <i>Int J Nephrol Urol</i> 2019;51(8):1407-14. doi: 10.1007/s11255-019-02192-4 59. Eston RG, Reilly T. Kinanthropometry and exercise physiology laboratory manual : tests, procedures, and data. 3rd ed. Abingdon: Routledge 2009. 60. Chertow GM, Lowrie EG, Wilmore DW, et al. Nutritional assessment with bioelectrical impedance analysis in maintenance hemodialysis patients. <i>J Am Soc Nephrol</i> 1995;6(1):75-81. [published Online First: 1995/07/01] 61. Macdonald JH, Marcora SM, Jibani M, et al. Bioelectrical impedance can be used to predict muscle mass and hence improve estimation of glomerular filtration rate in non-diabetic patients with chronic kidney disease. <i>Nephrol Dial Transplant</i> 2006;21(12):3481-7. doi: 10.1093/ndt/gfl432 f22. Raj R, Ahuja K, Frandsen M, et al. Validation of the IPOS-Renal Symptom Survey in Advanced Kidney Disease: A Cross-sectional Study. <i>J Pain Symptom Manage</i> 2018;56(2):281-87. doi: 10.1016/j.jpainsymman.2018.04.006 63. Ware Jr JE, Kosinski M, Keller SD. A 12-Item Short-Form Health Survey: construction of scales and preliminary tests of reliability and validity. <i>Medical care</i> 1996:220-33. 64. Wang S-Y, Zing X-Y, Liu J-D, et al. Psychometric Properties of the Functional Assessment of Chronic Illness Therapy-Fatigue (FACIT-Fatigue) in Chinese Patients Receiving Maintenance Dialysis. <i>J Pain Symptom Manage</i> 2015;49(1):135-43. doi: 10.1016/j.jpainsymman.2014.04.011 65. Yellen SB, Cella DF, Webster K, et al. Measuring fatigue and other anemia-related symptoms with the Functional Assessment of Cancer Therapy (FACT) measurement	25	703	[published Online First: 1991/02/01]
 Parintso, Markov, Marakava, Markov, Markov, Markov, Markov, Markov, Markov, Marko	20 27	704	57. Hadiijoannou I. Wong K. Lindup H. et al. Test-restest reliability for physical function measures in
 Figure Strategy and Strategy an	27	705	natients with chronic kidney disease <i>LRen Care</i> 2019 doi: 10.1111/jorc.12310
 Vinkinson 19, rikan bob, Janka K. Prostana Stability Construction of Stability and the Stability of the Stabilit	20	706	58 Wilkinson TL Nixon DGD Smith AC Postural stability during standing and its association with
 <i>Tors</i> Diphysical and Cognitive functions in indicatalysis chunck values patients. <i>Intel Nephrol Urol</i> 2019;51(8):1407-14. doi: 10.1007/s11255-019-02192-4 59. Eston RG, Reilly T. Kinanthropometry and exercise physiology laboratory manual : tests, procedures, and data. 3rd ed. Abingdon: Routledge 2009. 60. Chertow GM, Lowrie EG, Wilmore DW, et al. Nutritional assessment with bioelectrical impedance analysis in maintenance hemodialysis patients. <i>J Am Soc Nephrol</i> 1995;6(1):75-81. [published Online First: 1995/07/01] 61. Macdonald JH, Marcora SM, Jibani M, et al. Bioelectrical impedance can be used to predict muscle mass and hence improve estimation of glomerular filtration rate in non-diabetic patients with chronic kidney disease. <i>Nephrol Dial Transplant</i> 2006;21(12):3481-7. doi: 10.1093/ndt/gfl432 [published Online First: 2006/09/07] 62. Raj R, Ahuja K, Frandsen M, et al. Validation of the IPOS-Renal Symptom Survey in Advanced Kidney Disease: A Cross-sectional Study. <i>J Pain Symptom Manage</i> 2018;56(2):281-87. doi: 10.1016/j.jpainsymman.2018.04.006 63. Ware Jr JE, Kosinski M, Keller SD. A 12-Item Short-Form Health Survey: construction of scales and preliminary tests of reliability and validity. <i>Medical care</i> 1996;220-33. 64. Wang S-Y, Zang X-Y, Liu J-D, et al. Psychometric Properties of the Functional Assessment of Chronic Illness Therapy-Fatigue (FACIT-Fatigue) in Chinese Patients Receiving Maintenance Dialysis. <i>J Pain Symptom Manage</i> 1997;13(2):63-74. doi: 10.1016/j.jpainsymman.2014.04.011 65. Yellen SB, Cella DF, Webster K, et al. Measuring fatigue and other anemia-related symptoms with the Functional Assessment of Cancer Therapy (FACT) measurement system. <i>J Pain Symptom Manage</i> 1997;13(2):63-74. doi: 10.1016/s0885-3924(96)00274-6 [published Online First: 1997/02/01] 66. Buysse DJ, Reynolds CF, Monk TH, et al. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice	30	700	so. Withison 15, With DOD, Smith AC. Postural stability during standing and its association with
 <i>Dial</i> 2019;31(8):1407-14. doi: 10.1007/S11235-01192-4 59. Eston RG, Reilly T. Kinanthropometry and exercise physiology laboratory manual : tests, procedures, and data. 3rd ed. Abingdon: Routledge 2009. 60. Chertow GM, Lowrie EG, Wilmore DW, et al. Nutritional assessment with bioelectrical impedance analysis in maintenance hemodialysis patients. <i>J Am Soc Nephrol</i> 1995;6(1):75-81. [published Online First: 1995/07/01] 61. Macdonald JH, Marcora SM, Jibani M, et al. Bioelectrical impedance can be used to predict muscle mass and hence improve estimation of glomerular filtration rate in non-diabetic patients with chronic kidney disease. <i>Nephrol Dial Transplant</i> 2006;21(12):3481-7. doi: 10.1093/ndt/gfl432 [published Online First: 2006/09/07] 62. Raj R, Ahuja K, Frandsen M, et al. Validation of the IPOS-Renal Symptom Survey in Advanced Kidney Disease: A Cross-sectional Study. <i>J Pain Symptom Manage</i> 2018;56(2):281-87. doi: 10.1016/j.jpainsymman.2018.04.006 63. Ware Jr JE, Kosinski M, Keller SD. A 12-Item Short-Form Health Survey: construction of scales and preliminary tests of reliability and validity. <i>Medical care</i> 1996:220-33. 64. Wang S-Y, Zang X-Y, Liu J-D, et al. Psychometric Properties of the Functional Assessment of Chronic Illness Therapy-Fatigue (FACIT-Fatigue) in Chinese Patients Receiving Maintenance Dialysis. <i>J Pain Symptom Manage</i> 2015;49(1):135-43. doi: 10.1016/j.jpainsymman.2014.04.011 65. Yellen SB, Cella DF, Webster K, et al. Measuring fatigue and other anemia-related symptoms with the Functional Assessment of Cancer Therapy (FACT) measurement system. <i>J Pain Symptom Manage</i> 1997;13(2):63-74. doi: 10.1016/s0885-3924(96)00274-6 [published Online First: 1997/02/01] 66. Buysse DJ, Reynolds CF, Monk TH, et al. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. <i>Psychiatry Res</i> 1989;28(2):193-213. doi: 10.1016/0165-1781(89)90047-4 [published Online	31	707	physical and cognitive functions in non-dialysis chronic kidney disease patients. Int J wephilor
 709 59. Eston RG, Relly T. Kinanthropometry and exercise physiology laboratory manual : tests, procedures, and data. 3rd ed. Abingdon: Routledge 2009. 711 60. Chertow GM, Lowrie EG, Wilmore DW, et al. Nutritional assessment with bioelectrical impedance analysis in maintenance hemodialysis patients. <i>J Am Soc Nephrol</i> 1995;6(1):75-81. [published Online First: 1995/07/01] 714 61. Macdonald JH, Marcora SM, Jibani M, et al. Bioelectrical impedance can be used to predict muscle mass and hence improve estimation of glomerular filtration rate in non-diabetic patients with chronic kidney disease. <i>Nephrol Dial Transplant</i> 2006;21(12):3481-7. doi: 10.1093/ndt/gfl432 717 [published Online First: 2006/09/07] 62. Raj R, Ahuja K, Frandsen M, et al. Validation of the IPOS-Renal Symptom Survey in Advanced Kidney Disease: A Cross-sectional Study. <i>J Pain Symptom Manage</i> 2018;56(2):281-87. doi: 10.1016/j.jpainsymman.2018.04.006 63. Ware JJ E, Kosinski M, Keller SD. A 12-Item Short-Form Health Survey: construction of scales and preliminary tests of reliability and validity. <i>Medical care</i> 1996:220-33. 64. Wang S-Y, Zang X-Y, Liu J-D, et al. Psychometric Properties of the Functional Assessment of Chronic Illness Therapy-Fatigue (FACIT-Fatigue) in Chinese Patients Receiving Maintenance Dialysis. <i>J Pain Symptom Manage</i> 2015;49(1):135-43. doi: 10.1016/j.jpainsymman.2014.04.011 65. Yellen SB, Cella DF, Webster K, et al. Measuring fatigue and other anemia-related symptoms with the Functional Assessment of Cancer Therapy (FACT) measurement system. <i>J Pain Symptom Manage</i> 1997;13(2):63-74. doi: 10.1016/s0885-3924(96)00274-6 [published Online First: 1997/02/01] 66. Buysse DJ, Reynolds CF, Monk TH, et al. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. <i>Psychiatry Res</i> 1989;28(2):193-213. doi: 10.1016/0165-1781(89)90047-4 [published Online First: 1989/05/01] 	32	708	0707 2019;51(8):1407-14. doi: 10.1007/\$11255-019-02192-4
 710 procedures, and data. <i>str</i> ed. Abingdon: Rottledge 2009. 711 60. Chertow GM, Lowrie EG, Wilmore DW, et al. Nutritional assessment with bioelectrical impedance 712 analysis in maintenance hemodialysis patients. <i>J Am Soc Nephrol</i> 1995;6(1):75-81. [published 713 Online First: 1995/07/01] 714 61. Macdonald JH, Marcora SM, Jibani M, et al. Bioelectrical impedance can be used to predict muscle 715 mass and hence improve estimation of glomerular filtration rate in non-diabetic patients with 716 chronic kidney disease. <i>Nephrol Dial Transplant</i> 2006;21(12):3481-7. doi: 10.1093/ndt/gfl432 717 [published Online First: 2006/09/07] 62. Raj R, Ahuja K, Frandsen M, et al. Validation of the IPOS-Renal Symptom Survey in Advanced Kidney 719 Disease: A Cross-sectional Study. <i>J Pain Symptom Manage</i> 2018;56(2):281-87. doi: 720 10.1016/j.jpainsymman.2018.04.006 63. Ware Jr JE, Kosinski M, Keller SD. A 12-Item Short-Form Health Survey: construction of scales and 723 preliminary tests of reliability and validity. <i>Medical care</i> 1996;220-33. 64. Wang S-Y, Zang X-Y, Liu J-D, et al. Psychometric Properties of the Functional Assessment of Chronic 724 Illness Therapy-Fatigue (FACIT-Fatigue) in Chinese Patients Receiving Maintenance Dialysis. <i>J</i> 725 <i>Pain Symptom Manage</i> 2015;49(1):135-43. doi: 10.1016/j.jpainsymman.2014.04.011 726 65. Yellen SB, Cella DF, Webster K, et al. Measuring fatigue and other anemia-related symptoms with 729 the Functional Assessment of Cancer Therapy (FACT) measurement system. <i>J Pain Symptom</i> 730 66. Buysse DJ, Reynolds CF, Monk TH, et al. The Pittsburgh Sleep Quality Index: a new instrument for 731 psychiatric practice and research. <i>Psychiatry Res</i> 1989;28(2):193-213. doi: 10.1016/0165- 732 1781(89)90047-4 [published Online First: 198	33	709	59. Eston RG, Relly T. Kinanthropometry and exercise physiology laboratory manual : tests,
 b). Chertow GM, Lowrie EG, Wilmore DW, et al. Nutritional assessment with bioelectrical impedance analysis in maintenance hemodialysis patients. J Am Soc Nephrol 1995;6(1):75-81. [published Online First: 1995/07/01] c). Macdonald JH, Marcora SM, Jibani M, et al. Bioelectrical impedance can be used to predict muscle mass and hence improve estimation of glomerular filtration rate in non-diabetic patients with chronic kidney disease. Nephrol Dial Transplant 2006;21(12):3481-7. doi: 10.1093/ndt/gfl432 c). Raj R, Ahuja K, Frandsen M, et al. Validation of the IPOS-Renal Symptom Survey in Advanced Kidney Disease: A Cross-sectional Study. J Pain Symptom Manage 2018;56(2):281-87. doi: 10.1016/j.jpainsymman.2018.04.006 c). Ware Jr JE, Kosinski M, Keller SD. A 12-Item Short-Form Health Survey: construction of scales and preliminary tests of reliability and validity. Medical care 1996:220-33. c). Wang S-Y, Zang X-Y, Liu J-D, et al. Psychometric Properties of the Functional Assessment of Chronic Illness Therapy-Fatigue (FACIT-Fatigue) in Chinese Patients Receiving Maintenance Dialysis. J Pain Symptom Manage 2015;49(1):135-43. doi: 10.1016/j.jpainsymman.2014.04.011 c). Yellen SB, Cella DF, Webster K, et al. Measuring fatigue and other anemia-related symptoms with the Functional Assessment of Cancer Therapy (FACT) measurement system. J Pain Symptom Manage 1997;13(2):63-74. doi: 10.1016/s0885-3924(96)00274-6 [published Online First: 1997/02/01] fo. Buysse DJ, Reynolds CF, Monk TH, et al. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res 1989;28(2):193-213. doi: 10.1016/0165- 1781(89)90047-4 [published Online First: 1989/05/01] 	34	/10	procedures, and data. 3rd ed. Abingdon: Routledge 2009.
 analysis in maintenance hemodialysis patients. J Am Soc Nephrol 1995;6(1):75-81. [published Online First: 1995/07/01] f14 61. Macdonald JH, Marcora SM, Jibani M, et al. Bioelectrical impedance can be used to predict muscle mass and hence improve estimation of glomerular filtration rate in non-diabetic patients with chronic kidney disease. Nephrol Dial Transplant 2006;21(12):3481-7. doi: 10.1093/ndt/gfl432 [published Online First: 2006/09/07] 62. Raj R, Ahuja K, Frandsen M, et al. Validation of the IPOS-Renal Symptom Survey in Advanced Kidney Disease: A Cross-sectional Study. J Pain Symptom Manage 2018;56(2):281-87. doi: 10.1016/j.jpainsymman.2018.04.006 63. Ware Jr JE, Kosinski M, Keller SD. A 12-Item Short-Form Health Survey: construction of scales and preliminary tests of reliability and validity. Medical care 1996:220-33. 64. Wang S-Y, Zang X-Y, Liu J-D, et al. Psychometric Properties of the Functional Assessment of Chronic Illness Therapy-Fatigue (FACIT-Fatigue) in Chinese Patients Receiving Maintenance Dialysis. J Pain Symptom Manage 2015;49(1):135-43. doi: 10.1016/j.jpainsymman.2014.04.011 65. Yellen SB, Cella DF, Webster K, et al. Measuring fatigue and other anemia-related symptoms with the Functional Assessment of Cancer Therapy (FACT) measurement system. J Pain Symptom Manage 1997;13(2):63-74. doi: 10.1016/S085-3924(96)00274-6 [published Online First: 1997/02/01] 66. Buysse DJ, Reynolds CF, Monk TH, et al. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res 1989;28(2):193-213. doi: 10.1016/0165- 1781(89)90047-4 [published Online First: 1989/05/01] 	35	/11	60. Chertow GM, Lowrie EG, Wilmore DW, et al. Nutritional assessment with bioelectrical impedance
 Online First: 1995/07/01] 713 Online First: 1995/07/01] 714 61. Macdonald JH, Marcora SM, Jibani M, et al. Bioelectrical impedance can be used to predict muscle 715 mass and hence improve estimation of glomerular filtration rate in non-diabetic patients with 716 chronic kidney disease. <i>Nephrol Dial Transplant</i> 2006;21(12):3481-7. doi: 10.1093/ndt/gfl432 717 [published Online First: 2006/09/07] 718 62. Raj R, Ahuja K, Frandsen M, et al. Validation of the IPOS-Renal Symptom Survey in Advanced Kidney 719 Disease: A Cross-sectional Study. <i>J Pain Symptom Manage</i> 2018;56(2):281-87. doi: 720 10.1016/j.jpainsymman.2018.04.006 721 63. Ware Jr JE, Kosinski M, Keller SD. A 12-Item Short-Form Health Survey: construction of scales and 722 preliminary tests of reliability and validity. <i>Medical care</i> 1996:220-33. 64. Wang S-Y, Zang X-Y, Liu J-D, et al. Psychometric Properties of the Functional Assessment of Chronic 724 Illness Therapy-Fatigue (FACIT-Fatigue) in Chinese Patients Receiving Maintenance Dialysis. <i>J Pain Symptom Manage</i> 2015;49(1):135-43. doi: 10.1016/j.jpainsymman.2014.04.011 725 Yellen SB, Cella DF, Webster K, et al. Measuring fatigue and other anemia-related symptoms with 727 the Functional Assessment of Cancer Therapy (FACT) measurement system. <i>J Pain Symptom Manage</i> 1997;13(2):63-74. doi: 10.1016/s0885-3924(96)00274-6 [published Online First: 729 1997/02/01] 730 66. Buysse DJ, Reynolds CF, Monk TH, et al. The Pittsburgh Sleep Quality Index: a new instrument for 731 psychiatric practice and research. <i>Psychiatry Res</i> 1989;28(2):193-213. doi: 10.1016/0165- 732 1781(89)90047-4 [published Online First: 1989/05/01] 	36	712	analysis in maintenance hemodialysis patients. J Am Soc Nephrol 1995;6(1):75-81. [published
 714 61. Macdonald JH, Marcora SM, Jibani M, et al. Bioelectrical impedance can be used to predict muscle 715 mass and hence improve estimation of glomerular filtration rate in non-diabetic patients with 716 chronic kidney disease. <i>Nephrol Dial Transplant</i> 2006;21(12):3481-7. doi: 10.1093/ndt/gfl432 717 [published Online First: 2006/09/07] 62. Raj R, Ahuja K, Frandsen M, et al. Validation of the IPOS-Renal Symptom Survey in Advanced Kidney 719 Disease: A Cross-sectional Study. <i>J Pain Symptom Manage</i> 2018;56(2):281-87. doi: 720 10.1016/j.jpainsymman.2018.04.006 721 63. Ware Jr JE, Kosinski M, Keller SD. A 12-Item Short-Form Health Survey: construction of scales and 722 preliminary tests of reliability and validity. <i>Medical care</i> 1996:220-33. 64. Wang S-Y, Zang X-Y, Liu J-D, et al. Psychometric Properties of the Functional Assessment of Chronic 724 Illness Therapy-Fatigue (FACIT-Fatigue) in Chinese Patients Receiving Maintenance Dialysis. <i>J 725 Pain Symptom Manage</i> 2015;49(1):135-43. doi: 10.1016/j.jpainsymman.2014.04.011 726 65. Yellen SB, Cella DF, Webster K, et al. Measuring fatigue and other anemia-related symptoms with 727 the Functional Assessment of Cancer Therapy (FACT) measurement system. <i>J Pain Symptom 728 Manage</i> 1997;13(2):63-74. doi: 10.1016/s0885-3924(96)00274-6 [published Online First: 729 1997/02/01] 730 66. Buysse DJ, Reynolds CF, Monk TH, et al. The Pittsburgh Sleep Quality Index: a new instrument for 731 psychiatric practice and research. <i>Psychiatry Res</i> 1989;28(2):193-213. doi: 10.1016/0165- 732 1781(89)90047-4 [published Online First: 1989/05/01] 	37	713	Online First: 1995/07/01]
 715 mass and hence improve estimation of glomerular filtration rate in non-diabetic patients with 716 chronic kidney disease. Nephrol Dial Transplant 2006;21(12):3481-7. doi: 10.1093/ndt/gfl432 717 [published Online First: 2006/09/07] 718 62. Raj R, Ahuja K, Frandsen M, et al. Validation of the IPOS-Renal Symptom Survey in Advanced Kidney 719 Disease: A Cross-sectional Study. J Pain Symptom Manage 2018;56(2):281-87. doi: 720 10.1016/j.jpainsymman.2018.04.006 721 63. Ware Jr JE, Kosinski M, Keller SD. A 12-Item Short-Form Health Survey: construction of scales and 722 preliminary tests of reliability and validity. Medical care 1996:220-33. 64. Wang S-Y, Zang X-Y, Liu J-D, et al. Psychometric Properties of the Functional Assessment of Chronic 724 Illness Therapy-Fatigue (FACIT-Fatigue) in Chinese Patients Receiving Maintenance Dialysis. J 725 Pain Symptom Manage 2015;49(1):135-43. doi: 10.1016/j.jpainsymman.2014.04.011 726 55. Yellen SB, Cella DF, Webster K, et al. Measuring fatigue and other anemia-related symptoms with 727 the Functional Assessment of Cancer Therapy (FACT) measurement system. J Pain Symptom 728 Manage 1997;13(2):63-74. doi: 10.1016/s0885-3924(96)00274-6 [published Online First: 729 1997/02/01] 730 66. Buysse DJ, Reynolds CF, Monk TH, et al. The Pittsburgh Sleep Quality Index: a new instrument for 731 psychiatric practice and research. Psychiatry Res 1989;28(2):193-213. doi: 10.1016/0165- 732 1781(89)90047-4 [published Online First: 1989/05/01] 	38	714	61. Macdonald JH, Marcora SM, Jibani M, et al. Bioelectrical impedance can be used to predict muscle
 40 716 chronic kidney disease. Nephrol Dial Transplant 2006;21(12):3481-7. doi: 10.1093/ndt/gfl432 41 717 [published Online First: 2006/09/07] 42 718 62. Raj R, Ahuja K, Frandsen M, et al. Validation of the IPOS-Renal Symptom Survey in Advanced Kidney 43 719 Disease: A Cross-sectional Study. J Pain Symptom Manage 2018;56(2):281-87. doi: 10.1016/j.jpainsymman.2018.04.006 46 721 63. Ware Jr JE, Kosinski M, Keller SD. A 12-Item Short-Form Health Survey: construction of scales and preliminary tests of reliability and validity. Medical care 1996:220-33. 47 722 64. Wang S-Y, Zang X-Y, Liu J-D, et al. Psychometric Properties of the Functional Assessment of Chronic Illness Therapy-Fatigue (FACIT-Fatigue) in Chinese Patients Receiving Maintenance Dialysis. J Pain Symptom Manage 2015;49(1):135-43. doi: 10.1016/j.jpainsymman.2014.04.011 45 726 727 728 Pain Symptom Manage 2015;49(1):135-43. doi: 10.1016/j.jpainsymman.2014.04.011 45. Yellen SB, Cella DF, Webster K, et al. Measuring fatigue and other anemia-related symptom swith the Functional Assessment of Cancer Therapy (FACT) measurement system. J Pain Symptom Manage 1997;13(2):63-74. doi: 10.1016/s0885-3924(96)00274-6 [published Online First: 1997/02/01] 473 730 66. Buysse DJ, Reynolds CF, Monk TH, et al. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res 1989;28(2):193-213. doi: 10.1016/0165- 473 732 738 738 739 	39	715	mass and hence improve estimation of glomerular filtration rate in non-diabetic patients with
 717 [published Online First: 2006/09/07] 718 62. Raj R, Ahuja K, Frandsen M, et al. Validation of the IPOS-Renal Symptom Survey in Advanced Kidney 719 Disease: A Cross-sectional Study. J Pain Symptom Manage 2018;56(2):281-87. doi: 720 10.1016/j.jpainsymman.2018.04.006 721 63. Ware Jr JE, Kosinski M, Keller SD. A 12-Item Short-Form Health Survey: construction of scales and 722 preliminary tests of reliability and validity. <i>Medical care</i> 1996:220-33. 723 64. Wang S-Y, Zang X-Y, Liu J-D, et al. Psychometric Properties of the Functional Assessment of Chronic 101106/j.jpainsymptom Manage 2015;49(1):135-43. doi: 10.1016/j.jpainsymman.2014.04.011 725 Pain Symptom Manage 2015;49(1):135-43. doi: 10.1016/j.jpainsymman.2014.04.011 726 65. Yellen SB, Cella DF, Webster K, et al. Measuring fatigue and other anemia-related symptoms with 727 the Functional Assessment of Cancer Therapy (FACT) measurement system. J Pain Symptom 728 Manage 1997;13(2):63-74. doi: 10.1016/s0885-3924(96)00274-6 [published Online First: 729 1997/02/01] 730 66. Buysse DJ, Reynolds CF, Monk TH, et al. The Pittsburgh Sleep Quality Index: a new instrument for 731 psychiatric practice and research. Psychiatry Res 1989;28(2):193-213. doi: 10.1016/0165- 732 1781(89)90047-4 [published Online First: 1989/05/01] 	40	716	chronic kidney disease. <i>Nephrol Dial Transplant</i> 2006;21(12):3481-7. doi: 10.1093/ndt/gfl432
 718 62. Raj R, Ahuja K, Frandsen M, et al. Validation of the IPOS-Renal Symptom Survey in Advanced Kidney Disease: A Cross-sectional Study. J Pain Symptom Manage 2018;56(2):281-87. doi: 10.1016/j.jpainsymman.2018.04.006 720 10.1016/j.jpainsymman.2018.04.006 721 63. Ware Jr JE, Kosinski M, Keller SD. A 12-Item Short-Form Health Survey: construction of scales and preliminary tests of reliability and validity. <i>Medical care</i> 1996:220-33. 64. Wang S-Y, Zang X-Y, Liu J-D, et al. Psychometric Properties of the Functional Assessment of Chronic Illness Therapy-Fatigue (FACIT-Fatigue) in Chinese Patients Receiving Maintenance Dialysis. J <i>Pain Symptom Manage</i> 2015;49(1):135-43. doi: 10.1016/j.jpainsymman.2014.04.011 65. Yellen SB, Cella DF, Webster K, et al. Measuring fatigue and other anemia-related symptom Manage 1997;13(2):63-74. doi: 10.1016/s0885-3924(96)00274-6 [published Online First: 1997/02/01] 66. Buysse DJ, Reynolds CF, Monk TH, et al. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. <i>Psychiatry Res</i> 1989;28(2):193-213. doi: 10.1016/0165- 1781(89)90047-4 [published Online First: 1989/05/01] 	41	717	[published Online First: 2006/09/07]
 719 Disease: A Cross-sectional Study. J Pain Symptom Manage 2018;56(2):281-87. doi: 10.1016/j.jpainsymman.2018.04.006 63. Ware Jr JE, Kosinski M, Keller SD. A 12-Item Short-Form Health Survey: construction of scales and preliminary tests of reliability and validity. <i>Medical care</i> 1996:220-33. 64. Wang S-Y, Zang X-Y, Liu J-D, et al. Psychometric Properties of the Functional Assessment of Chronic Illness Therapy-Fatigue (FACIT-Fatigue) in Chinese Patients Receiving Maintenance Dialysis. J <i>Pain Symptom Manage</i> 2015;49(1):135-43. doi: 10.1016/j.jpainsymman.2014.04.011 65. Yellen SB, Cella DF, Webster K, et al. Measuring fatigue and other anemia-related symptoms with the Functional Assessment of Cancer Therapy (FACT) measurement system. J Pain Symptom Manage 1997;13(2):63-74. doi: 10.1016/s0885-3924(96)00274-6 [published Online First: 1997/02/01] 66. Buysse DJ, Reynolds CF, Monk TH, et al. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. <i>Psychiatry Res</i> 1989;28(2):193-213. doi: 10.1016/0165- 1781(89)90047-4 [published Online First: 1989/05/01] 	42	718	62. Raj R, Ahuja K, Frandsen M, et al. Validation of the IPOS-Renal Symptom Survey in Advanced Kidney
 10.1016/j.jpainsymman.2018.04.006 Ware Jr JE, Kosinski M, Keller SD. A 12-Item Short-Form Health Survey: construction of scales and preliminary tests of reliability and validity. <i>Medical care</i> 1996:220-33. 64. Wang S-Y, Zang X-Y, Liu J-D, et al. Psychometric Properties of the Functional Assessment of Chronic Illness Therapy-Fatigue (FACIT-Fatigue) in Chinese Patients Receiving Maintenance Dialysis. <i>J</i> <i>Pain Symptom Manage</i> 2015;49(1):135-43. doi: 10.1016/j.jpainsymman.2014.04.011 65. Yellen SB, Cella DF, Webster K, et al. Measuring fatigue and other anemia-related symptoms with the Functional Assessment of Cancer Therapy (FACT) measurement system. <i>J Pain Symptom Manage</i> 1997;13(2):63-74. doi: 10.1016/s0885-3924(96)00274-6 [published Online First: 1997/02/01] 66. Buysse DJ, Reynolds CF, Monk TH, et al. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. <i>Psychiatry Res</i> 1989;28(2):193-213. doi: 10.1016/0165- 1781(89)90047-4 [published Online First: 1989/05/01] 	45 11	719	Disease: A Cross-sectional Study. J Pain Symptom Manage 2018;56(2):281-87. doi:
 63. Ware Jr JE, Kosinski M, Keller SD. A 12-Item Short-Form Health Survey: construction of scales and preliminary tests of reliability and validity. <i>Medical care</i> 1996:220-33. 64. Wang S-Y, Zang X-Y, Liu J-D, et al. Psychometric Properties of the Functional Assessment of Chronic Illness Therapy-Fatigue (FACIT-Fatigue) in Chinese Patients Receiving Maintenance Dialysis. <i>J</i> <i>Pain Symptom Manage</i> 2015;49(1):135-43. doi: 10.1016/j.jpainsymman.2014.04.011 65. Yellen SB, Cella DF, Webster K, et al. Measuring fatigue and other anemia-related symptoms with the Functional Assessment of Cancer Therapy (FACT) measurement system. <i>J Pain Symptom Manage</i> 1997;13(2):63-74. doi: 10.1016/s0885-3924(96)00274-6 [published Online First: 1997/02/01] 66. Buysse DJ, Reynolds CF, Monk TH, et al. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. <i>Psychiatry Res</i> 1989;28(2):193-213. doi: 10.1016/0165- 1781(89)90047-4 [published Online First: 1989/05/01] 	44 45	720	10.1016/j.jpainsymman.2018.04.006
 722 preliminary tests of reliability and validity. <i>Medical care</i> 1996:220-33. 64. Wang S-Y, Zang X-Y, Liu J-D, et al. Psychometric Properties of the Functional Assessment of Chronic Illness Therapy-Fatigue (FACIT-Fatigue) in Chinese Patients Receiving Maintenance Dialysis. <i>J</i> <i>Pain Symptom Manage</i> 2015;49(1):135-43. doi: 10.1016/j.jpainsymman.2014.04.011 65. Yellen SB, Cella DF, Webster K, et al. Measuring fatigue and other anemia-related symptoms with the Functional Assessment of Cancer Therapy (FACT) measurement system. <i>J Pain Symptom Manage</i> 1997;13(2):63-74. doi: 10.1016/s0885-3924(96)00274-6 [published Online First: 1997/02/01] 66. Buysse DJ, Reynolds CF, Monk TH, et al. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. <i>Psychiatry Res</i> 1989;28(2):193-213. doi: 10.1016/0165- 1781(89)90047-4 [published Online First: 1989/05/01] 	46	721	63. Ware Jr JE, Kosinski M, Keller SD. A 12-Item Short-Form Health Survey: construction of scales and
 64. Wang S-Y, Zang X-Y, Liu J-D, et al. Psychometric Properties of the Functional Assessment of Chronic Illness Therapy-Fatigue (FACIT-Fatigue) in Chinese Patients Receiving Maintenance Dialysis. J Pain Symptom Manage 2015;49(1):135-43. doi: 10.1016/j.jpainsymman.2014.04.011 65. Yellen SB, Cella DF, Webster K, et al. Measuring fatigue and other anemia-related symptoms with the Functional Assessment of Cancer Therapy (FACT) measurement system. J Pain Symptom Manage 1997;13(2):63-74. doi: 10.1016/s0885-3924(96)00274-6 [published Online First: 1997/02/01] 66. Buysse DJ, Reynolds CF, Monk TH, et al. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res 1989;28(2):193-213. doi: 10.1016/0165- 1781(89)90047-4 [published Online First: 1989/05/01] 	47	722	preliminary tests of reliability and validity. <i>Medical care</i> 1996:220-33.
 ⁴⁹ 724 Illness Therapy-Fatigue (FACIT-Fatigue) in Chinese Patients Receiving Maintenance Dialysis. J ⁵⁰ 725 Pain Symptom Manage 2015;49(1):135-43. doi: 10.1016/j.jpainsymman.2014.04.011 ⁵¹ 726 65. Yellen SB, Cella DF, Webster K, et al. Measuring fatigue and other anemia-related symptoms with ⁵² 727 the Functional Assessment of Cancer Therapy (FACT) measurement system. J Pain Symptom ⁵⁴ 728 Manage 1997;13(2):63-74. doi: 10.1016/s0885-3924(96)00274-6 [published Online First: ⁵⁵ 729 1997/02/01] ⁵⁶ 730 66. Buysse DJ, Reynolds CF, Monk TH, et al. The Pittsburgh Sleep Quality Index: a new instrument for ⁵⁷ 731 psychiatric practice and research. Psychiatry Res 1989;28(2):193-213. doi: 10.1016/0165- ⁵⁸ 732 1781(89)90047-4 [published Online First: 1989/05/01] 	48	723	64. Wang S-Y. Zang X-Y. Liu J-D. et al. Psychometric Properties of the Functional Assessment of Chronic
 Pain Symptom Manage 2015;49(1):135-43. doi: 10.1016/j.jpainsymman.2014.04.011 725 Pain Symptom Manage 2015;49(1):135-43. doi: 10.1016/j.jpainsymman.2014.04.011 726 65. Yellen SB, Cella DF, Webster K, et al. Measuring fatigue and other anemia-related symptoms with the Functional Assessment of Cancer Therapy (FACT) measurement system. J Pain Symptom Manage 1997;13(2):63-74. doi: 10.1016/s0885-3924(96)00274-6 [published Online First: 1997/02/01] 730 66. Buysse DJ, Reynolds CF, Monk TH, et al. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res 1989;28(2):193-213. doi: 10.1016/0165- 1781(89)90047-4 [published Online First: 1989/05/01] 	49	724	Illness Therapy-Fatigue (FACIT-Fatigue) in Chinese Patients Receiving Maintenance Dialysis, J
 Frank Symptom Manage 2015, 45(1):155 43. doi: 10.1016/j.j.painsymmut.2014.04.011 726 65. Yellen SB, Cella DF, Webster K, et al. Measuring fatigue and other anemia-related symptoms with the Functional Assessment of Cancer Therapy (FACT) measurement system. <i>J Pain Symptom</i> <i>Manage</i> 1997;13(2):63-74. doi: 10.1016/s0885-3924(96)00274-6 [published Online First: 1997/02/01] 730 66. Buysse DJ, Reynolds CF, Monk TH, et al. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. <i>Psychiatry Res</i> 1989;28(2):193-213. doi: 10.1016/0165- 1781(89)90047-4 [published Online First: 1989/05/01] 	50	725	Pain Symptom Manage 2015:49(1):135-43. doi: 10.1016/j.jpainsymman.2014.04.011
 52 727 the Functional Assessment of Cancer Therapy (FACT) measurement system. J Pain Symptom 53 728 Manage 1997;13(2):63-74. doi: 10.1016/s0885-3924(96)00274-6 [published Online First: 55 729 1997/02/01] 56 730 66. Buysse DJ, Reynolds CF, Monk TH, et al. The Pittsburgh Sleep Quality Index: a new instrument for 57 731 psychiatric practice and research. Psychiatry Res 1989;28(2):193-213. doi: 10.1016/0165- 58 732 1781(89)90047-4 [published Online First: 1989/05/01] 	51	726	65 Vellen SR Cella DF Webster K et al Measuring fatigue and other anemia-related symptoms with
 <i>Manage</i> 1997;13(2):63-74. doi: 10.1016/s0885-3924(96)00274-6 [published Online First: <i>Manage</i> 1997;13(2):63-74. doi: 10.1016/s0885-3924(96)00274-6 [published Online First: 1997/02/01] 66. Buysse DJ, Reynolds CF, Monk TH, et al. The Pittsburgh Sleep Quality Index: a new instrument for <i>psychiatric practice and research. Psychiatry Res</i> 1989;28(2):193-213. doi: 10.1016/0165- 732 1781(89)90047-4 [published Online First: 1989/05/01] 	52	720	the Europian Assessment of Cancer Therapy (EACT) measurement system J Pain Symptoms with
54 728 Multidge 1997,13(2):05-74: doi: 10.1010/s0885-3924(90)00274-0 [published Online First: 55 729 1997/02/01] 56 730 66. Buysse DJ, Reynolds CF, Monk TH, et al. The Pittsburgh Sleep Quality Index: a new instrument for 57 731 psychiatric practice and research. Psychiatry Res 1989;28(2):193-213. doi: 10.1016/0165- 58 732 1781(89)90047-4 [published Online First: 1989/05/01] 59 60	53	727	Managa 1007:12/2):62 74 doi: 10.1016/s0895.2024/06/00274.6 [published Opling Eirst:
 729 [1997/02/01] 730 66. Buysse DJ, Reynolds CF, Monk TH, et al. The Pittsburgh Sleep Quality Index: a new instrument for 731 psychiatric practice and research. <i>Psychiatry Res</i> 1989;28(2):193-213. doi: 10.1016/0165- 732 1781(89)90047-4 [published Online First: 1989/05/01] 60 	54	720	1007/02/01]
 56 730 bb. Buysse DJ, Reynolds CF, Monk TH, et al. The Pittsburgh Sleep Quality index: a new instrument for 57 731 psychiatric practice and research. <i>Psychiatry Res</i> 1989;28(2):193-213. doi: 10.1016/0165- 58 732 1781(89)90047-4 [published Online First: 1989/05/01] 59 	55	729	1331/U2/U1] 66 Dunces DL Domolds CE Monk TU at al. The Dittahurah Class Quality is domain a subject of the
57 731 psychiatric practice and research. Psychiatry Res 1989;28(2):193-213. doi: 10.1016/0165- 58 732 1781(89)90047-4 [published Online First: 1989/05/01] 59 60	56	/30	oo. Buysse DJ, Reynolds CF, Ivionk TH, et al. The Pittsburgh Sleep Quality Index: a new instrument for
 732 1781(89)90047-4 [published Online First: 1989/05/01] 59 60 	5/	/31	psychiatric practice and research. <i>Psychiatry Res</i> 1989;28(2):193-213. doi: 10.1016/0165-
60	20 50	/32	1781(89)90047-4 [published Online First: 1989/05/01]
	60		

3	733	67. Hibbard JH, Stockard J, Mahoney ER, et al. Development of the Patient Activation Measure (PAM):
4	734	Conceptualizing and Measuring Activation in Patients and Consumers. Health Services
5	735	Research 2004;39(4p1):1005-26. doi: 10.1111/j.1475-6773.2004.00269.x
6 7	736	68. Chew LD, Bradley KA, & Boyko EJ. Brief guestions to identify patients with inadequate health
8	737	literacy. Fam Med. 2004;36(8):588-594.
9	738	69. Cavanaugh KL, Osborn CY, Tentori F, et al. Performance of a brief survey to assess health literacy
10	739	in patients receiving hemodialysis. Clin Kidney J 2015;8(4):462-468. doi:10.1093/ckj/sfv037
11	740	70. Dageforde LA, Cavanaugh KL, Moore DE, et al. Validation of the Written Administration of the
12	741	Short Literacy Survey. J Health Commun 2015;20(7):835-842. doi: 10.1080
13	742	/10810730.2015.1018572
14	743	71. Bull FC, Maslin TS, & Armstrong T. Global Physical Activity Questionnaire (GPAQ): Nine Country
15	744	Reliability and Validity Study. J Phys Activ Health 2009;6(6):790-804.
10	745	72. Hlatky MA, Boineau RE, Higginbotham MB, et al. A brief self-administered questionnaire to
18	746	determine functional capacity (The Duke Activity Status Index). Am J Cardiol 1989;64:651–4.
19	747	73. Dillon CB, Fitzgerald AP, Kearney PM, et al. Number of Days Required to Estimate Habitual Activity
20	748	Using Wrist-Worn GENEActiv Accelerometer: A Cross-Sectional Study. PLOS ONE
21	749	2016:11(5):e0109913. doi: 10.1371/journal.pone.0109913
22	750	74. Moore CG. Carter RE. Nietert PJ. et al. Recommendations for Planning Pilot Studies in Clinical and
23	751	Translational Research. J Clin Transl Sci 2011:4(5):332-37. doi: 10.1111/i.1752-
24	752	8062.2011.00347.x
25	753	75. Sim J. Lewis M. The size of a pilot study for a clinical trial should be calculated in relation to
20 27	754	considerations of precision and efficiency. J Clin Epidemiol 2012:65(3):301-8. doi:
27	755	10.1016/i.iclinepi.2011.07.011 [published Online First: 2011/12/16]
29	756	
30		
31	757	
32	758	
33		
34 25	759	
35	760	
37		
38	761	
39	762	
40	760	
41	763	
42	764	
43 11	765	
44	765	
46	766	
47	767	
48	/6/	
49	768	
50	700	
51	769	
52 52	770	
55 54	771	
55	//1	
56	772	
57	772	
58	115	
59 60	774	
60		

775 Tables and Figures

	Table 1. ECSERT inclusion and exclusion criteria	
	Inclusion Criteria	Exclusion Criteria
	 Prevalent KTR >1 year 	Inability to give informed consent or comply
	 Male or female, aged >18 years old 	with testing and exercise protocol for any
	Willing and able to give informed	reason
	consent for participation in the study	Inable to undergo CMR scanning
	 Increased cardiametabolic rick with at 	(incompatible implants claustrophobia
	Increased cardiometabolic fisk with at least one of:	allergy to agents etc.)
	Piabatas mallitus	Eemale narticinants who are pregnant
	Diabetes mellitus	lactating or planning programmy during the
	Dyslipidaemia	actating, of planning pregnancy during the
	Hypertension	Course of the study
	Obesity (BMI >30)	Scheduled elective surgery or other
	 History of ischaemic heart 	procedures requiring general anaesthesia
	disease/cerebrovascular disease	during the study
		 Any other significant disease or disorder*
	*i.e. significant co-morbidity including unstable hypertension, p unstable angina, active liver disease, uncontrolled diabetes mel	potentially lethal arrhythmia, myocardial infarction within 6 months, llitus (HbA1c > 9%), advanced cerebral or peripheral vascular disease
	which, in the opinion of the patient's own clinician, may either	put the patient at risk because of participation in the study, or may
	influence the result of the study, or the patient's ability to partici	pate in the study.
781		
782		
783		
/05		
784		
784 785		
784 785 786		
784 785 786		
784 785 786 787		
784 785 786 787 788		
784 785 786 787 788 789		
784 785 786 787 788 789		
784 785 786 787 788 789 790		
784 785 786 787 788 789 790 791		
784 785 786 787 788 789 790 791 792		
784 785 786 787 788 789 790 791 791		
784 785 786 787 788 789 790 791 792 793		
784 785 786 787 788 789 790 791 792 793 794		
784 785 786 787 788 789 790 791 792 793 794 795		
784 785 786 787 788 789 790 791 792 793 794 795		
784 785 786 787 788 789 790 791 792 793 794 795 796		
784 785 786 787 788 789 790 791 792 793 794 795 796 797		
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798		
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798		

1 2		
3	800	Additional file details
4 5	801	File name: Additional File 1
6 7	802	File format: Additional File 1.pdf
8	803	Title of data: Original ECSERT flow diagram (pre-COVID-19)
9 10	804	Description of data: Flow diagram prior to COVID-19 amendments
11 12	805	
13 14		
15		
16 17		
18 19		
20		
21 22		
23 24		
24		
26 27		
28 20		
30		
31 32		
33 34		
35		
36 37		
38 39		
40		
41 42		
43 44		
45 46		
40 47		
48 49		
50 51		
52		
53 54		
55 56		
57		
58 59		
60		

BMJ Open

Figure 1. ECSERT study flow diagram

BMJ Open

Standard Protocol Items: Recommendations for Interventional Trials

SPIRIT 2013 Checklist: Recommended items to address in a clinical trial protocol and related documents*

ltem No	Description
forma	tion
1	Descriptive title identifying the study design, population, interventions, and, if applicable, trial acronym (Page 1, lines 1-3)
2a	Trial identifier and registry name. If not yet registered, name of intended registry (Page 2, lines 67)
2b	All items from the World Health Organization Trial Registration Data Set (Yes, throughout)
3	Date and version identifier (page 16, line 494)
4	Sources and types of financial, material, and other support (page 16, line 506 and page 16, lines 511-513)
5a	Names, affiliations, and roles of protocol contributors (page 1 and 15)
5b	Name and contact information for the trial sponsor (page 16, line 488)
5c	Role of study sponsor and funders, if any, in study design; collection, management, analysis, and interpretation of data; writing of the report; and the decision to submit the report for publication, including whether they will have ultimate authority over any of these activities (page 16, 506-509)
5d	Composition, roles, and responsibilities of the coordinating centre, steering committee, endpoint adjudication committee, data management team, and other individuals or groups overseeing the trial, if applicable (see Item 21a for data monitoring committee) N/A
6a	Description of research question and justification for undertaking the trial, including summary of relevant studies (published and unpublished) examining benefits and harms for each intervention (Introduction, page 3)
6b	Explanation for choice of comparators (Introduction, page 3)
7	Specific objectives or hypotheses (Page 4)
	Item No forma 1 2a 2b 3 4 5a 5b 5c 5d 5d 6a 6b 7

pants , 9	interventions, and outcomes Description of study settings (eg, community clinic, academic
9	Description of study settings (eg, community clinic, academic
	hospital) and list of countries where data will be collected. Reference to where list of study sites can be obtained (Page 5, line 141-143)
10	Inclusion and exclusion criteria for participants. If applicable, eligibility criteria for study centres and individuals who will perform the interventions (eg, surgeons, psychotherapists) (Table 1)
11a	Interventions for each group with sufficient detail to allow replication including how and when they will be administered (Page 5 and 6)
11b	Criteria for discontinuing or modifying allocated interventions for a given trial participant (eg, drug dose change in response to harms, participant request, or improving/worsening disease) (Page 6, lines 176-178)
11c	Strategies to improve adherence to intervention protocols, and any procedures for monitoring adherence (eg, drug tablet return, laboratory tests) (Page 10, lines 323-327)
11d	Relevant concomitant care and interventions that are permitted or prohibited during the trial (Page 5, line 164)
12	Primary, secondary, and other outcomes, including the specific measurement variable (eg, systolic blood pressure), analysis metric (eg, change from baseline, final value, time to event), method of aggregation (eg, median, proportion), and time point for each outcome. Explanation of the clinical relevance of chosen efficacy an harm outcomes is strongly recommended (Study timeline, page 7)
13	Time schedule of enrolment, interventions (including any run-ins and washouts), assessments, and visits for participants. A schematic diagram is highly recommended (see Figure) (Figure 1)
14	Estimated number of participants needed to achieve study objective and how it was determined, including clinical and statistical assumptions supporting any sample size calculations (Page 11, line 346-348)
15	Strategies for achieving adequate participant enrolment to reach target sample size (Page 5, 140+)
	 11a 11b 11c 11d 12 13 14 15 ment

Sequence generation	16a	Method of generating the allocation sequence (eg, computer- generated random numbers), and list of any factors for stratification. To reduce predictability of a random sequence, details of any planned restriction (eg, blocking) should be provided in a separate document that is unavailable to those who enrol participants or assign interventions (Page 5, 154-159)
Allocation concealment mechanism	16b	Mechanism of implementing the allocation sequence (eg, central telephone; sequentially numbered, opaque, sealed envelopes), describing any steps to conceal the sequence until interventions are assigned (Page 5, 154-159)
Implementatio n	16c	Who will generate the allocation sequence, who will enrol participants, and who will assign participants to interventions (Page 5, 158)
Blinding (masking)	17a	Who will be blinded after assignment to interventions (eg, trial participants, care providers, outcome assessors, data analysts), and how N/A
	17b	If blinded, circumstances under which unblinding is permissible, and procedure for revealing a participant's allocated intervention during the trial N/A
Methods: Data c	ollectio	on, management, and analysis
Data collection methods	18a	Plans for assessment and collection of outcome, baseline, and other trial data, including any related processes to promote data quality (eg, duplicate measurements, training of assessors) and a description of study instruments (eg, questionnaires, laboratory tests) along with their reliability and validity, if known. Reference to where data collection forms can be found, if not in the protocol (Page 7-11)
	18b	Plans to promote participant retention and complete follow-up, including list of any outcome data to be collected for participants who discontinue or deviate from intervention protocols (Page 11)
Data management	19	Plans for data entry, coding, security, and storage, including any related processes to promote data quality (eg, double data entry;
		range checks for data values). Reference to where details of data management procedures can be found, if not in the protocol (Page 11, lines 349- 354)
Statistical methods	20a	range checks for data values). Reference to where details of data management procedures can be found, if not in the protocol (Page 11, lines 349- 354) Statistical methods for analysing primary and secondary outcomes. Reference to where other details of the statistical analysis plan can be found, if not in the protocol (Page 11 and 12)
Statistical methods	20a 20b	range checks for data values). Reference to where details of data management procedures can be found, if not in the protocol (Page 11, lines 349- 354) Statistical methods for analysing primary and secondary outcomes. Reference to where other details of the statistical analysis plan can be found, if not in the protocol (Page 11 and 12) Methods for any additional analyses (eg, subgroup and adjusted analyses) N/A

	20c	Definition of analysis population relating to protocol non-adherence (eg, as randomised analysis), and any statistical methods to handle missing data (eg, multiple imputation) (Page 12)		
Methods: Monitoring				
Data monitoring	21a	Composition of data monitoring committee (DMC) or Data and Safety Monitoring Board (DCMB); summary of its role and reporting structure; statement of whether it is independent from the sponsor and competing interests; and reference to where further details about its charter can be found, if not in the protocol. Alternatively, an explanation of why a DMC is not needed		
		A DSMB is indicated, from a practical perspective in the following circumstances:		
		 If the trial is intended to provide definitive information about effectiveness and/or safety of a medical or bio-behavioral intervention If there are prior data to suggest that the intervention being studied has the potential to induce potentially unacceptable toxicity If the trial is evaluating mortality or another major endpoint, such that inferiority of one treatment arm has safety as well as effectiveness implications 		
		4. If it would ethically be important for the trial to stop early if the primary question addressed has been definitively answered, even if secondary questions or complete safety information were not yet fully addressed		
		The ECSERT study does not meet any of these criteria as a pilot/feasibility study		
	21b	Description of any interim analyses and stopping guidelines, including who will have access to these interim results and make the final decision to terminate the trial N/A		
Harms	22	Plans for collecting, assessing, reporting, and managing solicited and spontaneously reported adverse events and other unintended effects of trial interventions or trial conduct (Page 12, safety reporting)		
Auditing	23	Frequency and procedures for auditing trial conduct, if any, and whether the process will be independent from investigators and the sponsor N/A aside from usual sponsor audits		
Ethics and disse	minati	on		
Research ethics approval	24	Plans for seeking research ethics committee/institutional review board (REC/IRB) approval (Page 16, ethical issues)		
Protocol amendments	25	Plans for communicating important protocol modifications (eg, changes to eligibility criteria, outcomes, analyses) to relevant parties (eg, investigators, REC/IRBs, trial participants, trial registries, journals, regulators) (Page 16, ethical issues)		

Consent or assent	26a	Who will obtain informed consent or assent from potential trial participants or authorised surrogates, and how (see Item 32) (page 5)
	26b	Additional consent provisions for collection and use of participant data and biological specimens in ancillary studies, if applicable (consent form)
Confidentiality	27	How personal information about potential and enrolled participants will be collected, shared, and maintained in order to protect confidentiality before, during, and after the trial (Page 11)
Declaration of interests	28	Financial and other competing interests for principal investigators for the overall trial and each study site (Page 16, line 515)
Access to data	29	Statement of who will have access to the final trial dataset, and disclosure of contractual agreements that limit such access for investigators (Page 17, availability of data)
Ancillary and post-trial care	30	Provisions, if any, for ancillary and post-trial care, and for compensation to those who suffer harm from trial participation N/A
Dissemination policy	31a	Plans for investigators and sponsor to communicate trial results to participants, healthcare professionals, the public, and other relevant groups (eg, via publication, reporting in results databases, or other data sharing arrangements), including any publication restrictions (Page 17, availability of data)
	31b	Authorship eligibility guidelines and any intended use of professional writers (Page 17, availability of data)
	31c	Plans, if any, for granting public access to the full protocol, participant-level dataset, and statistical code (Page 17, availability of data)
Appendices		
Informed consent materials	32	Model consent form and other related documentation given to participants and authorised surrogates Yes
Biological specimens	33	Plans for collection, laboratory evaluation, and storage of biological specimens for genetic or molecular analysis in the current trial and for future use in ancillary studies, if applicable (Page 10)

*It is strongly recommended that this checklist be read in conjunction with the SPIRIT 2013 Explanation & Elaboration for important clarification on the items. Amendments to the protocol should be tracked and dated. The SPIRIT checklist is copyrighted by the SPIRIT Group under the Creative Commons "<u>Attribution-NonCommercial-NoDerivs 3.0 Unported</u>" license.
BMJ Open

A pilot randomised controlled trial of a structured, homebased exercise program on cardiovascular structure and function in kidney transplant recipients: The ECSERT study design and methods

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-046945.R1
Article Type:	Protocol
Date Submitted by the Author:	21-Apr-2021
Complete List of Authors:	Billany, Roseanne; University of Leicester, Department of Cardiovascular Sciences; University Hospitals of Leicester NHS Trust, John Walls Renal Unit Vadaszy, Noemi; University of Leicester, Department of Health Sciences Bishop , Nicolette ; Loughborough University, School of Sport, Exercise and Health Sciences Wilkinson, Thomas ; University of Leicester, Department of Health Sciences Adenwalla, Sherna; University of Leicester, Department of Cardiovascular Sciences; University Hospitals of Leicester NHS Trust, John Walls Renal Unit Robinson, Katherine; University of Leicester, Department of Cardiovascular Sciences Croker , Kathryn; University Hospitals of Leicester NHS Trust, John Walls Renal Unit Brady, Emer; University of Leicester, Department of Cardiovascular Sciences Wormleighton, Joanne; University Hospitals of Leicester NHS Trust, Department of Radiology Parke, Kelly; University of Leicester, Department of Cardiovascular Sciences; University of Leicester, Department of Cardiovascular Sciences; University of Leicester, Department of Health Sciences Webster, Angela; The University of Sydney, School of Public Health; Westmead Hospital, Centre for Renal and Transplant Research Barratt, Jonathan; University of Leicester, Department of Cardiovascular Sciences; University Hospitals of Leicester NHS Trust, John Walls Renal Unit McCann, Gerry; University of Leicester, Department of Cardiovascular Sciences Burton, James; University of Leicester, Department of Cardiovascular Sciences; University of Leicester, Department of Cardiovascular Sciences Burton, James; University of Leicester, Department of Cardiovascular Sciences; University of Leicester, Department of Cardiovascular Sciences; University of Leicester, Department of Cardiovascular Sciences Burton, James; University of Leicester, Department of Cardiovascular Sciences; University of Leicester, Department of Cardiovascular Sciences; University of Leicester, Department of Health Sciences Graham-Brown, Matthew ; University of Leicester, Department of Cardiovasc

Primary Subject Heading :	Renal medicine
Secondary Subject Heading:	Rehabilitation medicine, Cardiovascular medicine
Keywords:	Renal transplantation < NEPHROLOGY, CARDIOLOGY, PUBLIC HEALTH
	SCHOLARONE [™] Manuscripts

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

Page 3 of 33

Matthew PM Graham-Brown^{1,2}

1

BMJ Open

2	
3 ⊿	1
5	2
6 7	3
8 9	4
10	5
11 12	6
13 14	7
15	8
16 17	9
18 19	10
20	11
21 22	12
23 24	13
25	14
26 27	15
28 29	16
30	17
32	18
33 34	19
35 36	20
37	21
38 39	22
40 41	23
42	24
43 44	25
45 46	26
47	27
48 49	28
50 51	29
52	30
53 54	31
55 56	32
57	33
20	

46	26		
47 48	27	Keywords: kidney transplantation, home-based exercise, cardiovascular disease, feasibility, card	liac
49	28	MRI	
50 51	29		
52 53	30	Abstract: 300	
54 55	31	Word count: 4402	
56	32		
57 58	33		
59 60	34		
00			
			1

Corresponding author:

University of Leicester

mgb23@leicester.ac.uk

Leicester

United Kingdom

Dr Matthew Graham-Brown

Department of Cardiovascular Sciences

Roseanne E Billany^{1,2}, Noemi Vadaszy³, Nicolette C Bishop⁴, Thomas J Wilkinson³, Sherna Adenwalla^{1,2},

Katherine A Robinson¹, Kathryn Croker², Emer M Brady¹, Joanne Wormleighton⁵, Kelly Parke^{1,5}, Nicola

J Cooper³, Angela C Webster⁶, Jonathan Barratt^{1,2}, Gerry P McCann¹, James O Burton^{1,2,5}, Alice C Smith³,

¹ Department of Cardiovascular Sciences, University of Leicester, Leicester, UK

³ Department of Health Sciences, University of Leicester, Leicester, UK

Transplant Research, Westmead Hospital, Sydney, NSW, Australia.

² John Walls Renal Unit, University Hospitals of Leicester NHS Trust, Leicester, UK

⁵ Department of Radiology, University Hospitals of Leicester NHS Trust, Leicester, UK

⁴ School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK

⁶ Sydney School of Public Health, University of Sydney, Sydney, NSW, Australia; Centre for Renal and

.y, , NSW, A

35 ABSTRACT

Background: Cardiovascular disease (CVD) is a major cause of morbidity and mortality in kidney transplant recipients (KTRs). CVD risk scores underestimate risk in this population as CVD is driven by clustering of traditional and non-traditional risk factors, which lead to prognostic pathological changes in cardiovascular structure and function. Whilst exercise may mitigate CVD in this population, evidence is limited, and physical activity levels and patient activation towards exercise and self-management are low. This pilot study will assess the feasibility of delivering a structured, home-based exercise intervention in a population of KTRs at increased cardiometabolic risk and evaluate the putative effects on cardiovascular structural and functional changes, cardiorespiratory fitness, quality of life, patient activation, healthcare utilisation, and engagement with the prescribed exercise program.

Methods and analysis: Fifty KTRs will be randomised 1:1 to: (1) the intervention; a 12-week homebased combined resistance and aerobic exercise intervention or; (2) the control; usual care. Intervention participants will have one introductory session for instruction and practice of the recommended exercises prior to receiving an exercise diary, dumbbells, resistance bands, and access to instructional videos. The study will evaluate the feasibility of recruitment, randomisation, retention, assessment procedures, and the intervention implementation. Outcomes, to be assessed prior to randomisation and post-intervention, include: cardiac structure and function with stress-perfusion cardiac magnetic resonance imaging, cardiorespiratory fitness, physical function, blood biomarkers of cardiometabolic health, quality of life, and patient activation. These data will be used to inform the power calculations for future definitive trials.

Ethics and dissemination: The protocol was reviewed and given favourable opinion by the East 60 Midlands-Nottingham 2 research ethics committee (ref 19/EM/0209; 14/10/2019). Results will be 61 published in peer-reviewed academic journals and will be disseminated to the patient and public 62 community via social media, newsletter articles, and presentations at conferences.

Trial registration number: NCT04123951; prospectively registered.

1 2		
3 4	67	ARTICLE SUMMARY
5	68	Strengths and limitations of this study:
6 7	69	
8 9	70	• Data on the effects of exercise interventions on the cardiac structural and functional aspects
10	71	of CVD in this population are lacking and baseline values of multiparametric cardiac magnetic
11 12	72	resonance imaging in KTRs are previously undefined.
13 14	73	• This study uses a novel home-based exercise intervention with the potential to translate into
15	74	a widespread, low-resource intervention compared to in-centre, supervised interventions
16 17	75	that are costly and labour intensive.
18 19	76	As it can be difficult to ensure control groups are not influenced to change their lifestyle as a
20	77	result of being part of the study; control participants will be offered the intervention after
21 22	78	completion of the study.
23 24	79	• This study will provide quantitative and qualitative feasibility and pilot data to inform a
25	80	definitive randomised controlled trial that will explore longer-term engendered lifestyle
26 27	81	change in this population in response to a complex, home-based, lifestyle intervention.
28 29	82	• Secondary outcome analysis will identify the putative cardiometabolic and muscular effects
30	83	of the intervention, although these results would need confirming in adequately powered
31	84	studies due to the small sample size of this pilot study.
33 34	85	
35		
36 37		
38 39		
40		
41		
43 44		
45 46		
40 47		
48 49		
50 51		
52		
53 54		
55 56		
57		
58 59		
60		

86 BACKGROUND

Kidney transplantation is the preferred modality of renal replacement therapy for patients with end stage kidney disease (ESKD). Although kidney transplantation confers a significant survival advantage over remaining on dialysis,¹ cardiovascular disease (CVD) is a leading cause of morbidity, mortality, and graft loss.²⁻⁴ Since 2015, mortality rates attributed to CVD have been rising.⁴ Cardiovascular disease in kidney transplant recipients (KTRs) associates with traditional cardiometabolic risk factors,³ ⁵ ⁶ which drive classical atheromatous coronary artery disease, and non-traditional risk factors resulting in pathological changes in cardiovascular structure and function that associate with mortality.⁷ Immunosuppressive agents are well known to drive traditional³ and non-traditional cardiometabolic risk factors.^{8 9} Non-traditional cardiometabolic risk factors, including endothelial dysfunction, systemic inflammation, acute rejection, anaemia, and deranged bone-mineral metabolism,¹⁰⁻¹² are of at least equal importance in the pathogenesis of CVD in KTRs.⁷ This is further illustrated by the fact that traditional CVD risk-stratification tools dramatically underestimate cardiovascular risk in patients with chronic kidney disease (CKD);¹¹¹³⁻¹⁵ coronary revascularisation does not improve outcomes for KTRs as it does in the general population¹² and cardiac events are more likely to be fatal in KTRs.¹⁶

Chronic kidney disease-related cardiomyopathy, which has been termed "Uremic Cardiomyopathy", is characterised by stereotypical changes in the cardiovascular structure and function of the heart such as left ventricular hypertrophy (LVH), left ventricular dilatation, left ventricular systolic dysfunction,¹⁷ myocardial fibrosis,¹⁸ and aortic stiffness¹⁹; all of which relate to poor cardiovascular outcomes.^{20 21} Although structural and functional improvements of the heart and vessels have been seen post-transplantation in some studies,²² others have shown no regression²³ and parameters such as LVH are independent factors for cardiac failure and mortality in KTRs.¹⁵ Cardiac magnetic resonance imaging (CMR) is the gold-standard for assessment of ventricular structure and function and we have shown methods for assessment of tissue characterisation, aortopathy, and sub-clinical systolic and diastolic function to be reproducible in patients with kidney disease,²⁴⁻²⁶ making CMR the ideal imaging modality for assessing multiple aspects of prognostically relevant measures of CVD in clinical studies.

Numerous epidemiological studies have observed the association between low levels of physical activity and increased prevalence of CVD risk factors,²⁷⁻²⁹ and an inverse relationship between physical activity and all-cause and CVD mortality.^{30 31} Physical activity levels in KTRs are lower than the general population,^{32 33} with only 27% classified as meeting the UK national recommended physical activity levels.³⁴ Whilst physical activity levels improve in the year following transplantation, they plateau after one-year.³³ In the general population, lifestyle changes that increase physical activity through structured exercise lower mortality.^{35 36} Despite this evidence, there is a lack of rigorous research into Page 7 of 33

1

BMJ Open

2		
3 4	120	the role of increased physical activity in mitigating cardiovascular risk in KTRs. ³⁷ Recent consensus
5	121	recommendations from experts and stakeholders highlighted the need for a priority research agenda
6 7	122	in exercise for solid organ transplant recipients (SOTRs) to improve cardiovascular outcomes in this
8 9	123	patient population. ³⁸ Whilst supervised exercise interventions in KTRs improve cardiorespiratory
10	124	fitness and a variety of traditional and non-traditional risk factors for CVD, including metabolic
11 12	125	profile, ³⁹⁻⁴¹ strength, ⁴² vascular stiffening, ⁴⁰ weight, ⁴³ and inflammation, ⁴⁴ they are not realistically
13	126	deliverable in the current financial climate and have not translated to clinical practice. Furthermore,
14	127	exercise habits following in-centre supervised programs are not maintained ⁴⁵⁻⁴⁷ which can be
16 17	128	potentially attributed to low levels of patient activation (a measure of a person's skills, confidence,
18	129	and knowledge to manage their own health) and a failure for such programs to engender sustained
19 20	130	lifestyle changes. ^{48 49} Home-based exercise training programs have been shown to be deliverable in
21 22	131	patients on dialysis and patients undergoing cardiac rehabilitation, 50-53 but the effectiveness and
23	132	deliverability of home-based exercise interventions are largely untested in KTRs. It cannot be assumed
24 25	133	that such programs will be acceptable to KTRs, whose home-lives, social and occupational
26 27	134	circumstances are significantly different to dialysis and cardiac patients. Many KTRs have had enforced
28	135	sedentary lifestyles prior to transplantation as dialysis patients and their goals for rehabilitation as
29 30	136	well as the disease processes at work may be different. ^{54 55}
31 32	407	
33	137	Objectives
34 35	138	The aims of this study are to evaluate the impact of a 12-week, home-based exercise intervention in
36 37	139	KTRs with increased cardiometabolic risk, specifically addressing:
38	140	1. The deliverability and feasibility of the home-based exercise intervention in KTRs, defining
39 40	141	recruitment, retention, compliance, and adverse events;
41 42	142	2. Potential cardiovascular structural and functional parameters measured using stress-
43	143	perfusion CMR;
44 45	144	3. Cardiorespiratory fitness and strength;
46 47	145	4. Biochemical markers of cardiometabolic health, body composition, physical function, and
48	146	quality of life;
49 50	147	5. Patient activation and continued adherence to the prescribed home-based exercise program.
51 52		–
53	148	I wo sub-studies will assess:
54 55	149	1. The acceptability of the intervention through qualitative semi-structured interviews post-
56	150	intervention.
* *		

intervention. 2. The differences between cardiorespiratory fitness in 'healthy controls' versus KTRs. 151

59 152 60

58

153 METHODS AND ANALYSIS

154 ECSERT trial design

This study is a prospective, randomised, open-label, blinded endpoint (PROBE) pilot study. The studyflowchart is presented in Figure 1.

11157Participant identification and recruitment

Fifty KTRs with a stable kidney transplant of >1 year will be recruited from University Hospitals of Leicester NHS Trust (UHL) kidney transplant outpatient clinic lists. There are approximately 400-420 KTRs registered in UHL kidney transplant outpatient clinics. Full lists of inclusion and exclusion criteria for KTRs are included in Table 1. Patients will be screened by a clinician for eligibility to enter the study. Eligible patients will be approached (via telephone, post, or during their routine clinical appointment) and will be provided with verbal and written study information and time to consider without further contact (at least 24 h). Additionally, eligible patients who have given prior consent to be contacted regarding research opportunities will be contacted via post. All patients will be given the opportunity to discuss the study in more detail and to consider their participation. Consent will be performed by the Chief Investigator (MBG) according to the rules of good clinical practice. Inclusion and exclusion criteria for healthy controls is included within Table 1.

32 169 Randomisation 33

Following baseline assessment, participants will be randomly allocated (1:1) to either; (1) a 12-week home-based combined resistance and aerobic exercise intervention (n=25) or; (2) control (n=25; receiving usual care). Randomisation will be blocked (using computer-generated random permuted blocks with allocation concealment; https://www.sealedenvelope.com/simple-randomiser/v1/) to ensure periodic balancing. The Clinical Trials Facilitator will perform the randomisation. Given the nature of the intervention, it is not possible for the participants to be blinded to their allocation.

45 176 Intervention and comparator arms

47 177 Intervention Group: 12-week home-based combined aerobic and resistance training
 48

The 12-week, home-based, structured exercise program includes aerobic and resistance training (4-5
 try sessions in total per week). Participants will be advised to complete a warm-up and cool-down prior
 to and following each session, respectively. Participants will continue to receive usual clinical care.

55 181 Aerobic component

57182The aerobic component of the intervention will be walking, jogging, cycling, or similar, depending on58183resources available and participant preference. Participants will be asked to complete 2-3 sessions per60184week using a rating of perceived of exertion (RPE)⁵⁶ of 13-15 (somewhat hard) for 20-30 min. RPE will

Page 9 of 33

BMJ Open

be collected throughout cardiopulmonary exercise tests (CPET) and participants will be educated on its use during the instructional session(s). RPE will be utilised rather than heart rate for two reasons: (1) Many patients are on medication which impacts heart rate (e.g. beta-blockers). We therefore cannot ascertain a true maximal heart rate from the exercise test in order for them to safely (and reliably) monitor intensity this way without supervision. (2) This is a pragmatic decision based on the potential for translation into low-cost future studies and clinical practice. However, should participants in the trial already own a smart watch or heart rate monitor, we would not discourage them from using it if they desire.

193 Resistance component

The resistance component of the exercise intervention will include a combination of 6-8 exercises per session chosen by the participant from a pool of twelve exercises (to provide variety) targeting upper and lower body and core muscle groups, using free weights and/or resistance bands. The chosen pool of exercises include: squat, hip abduction, lunge, calf-raise, side-lunge, bicep-curl, bent-over row, reverse-fly, lateral-raise, chest-press, side-bends, and standing trunk rotation. Each exercise has modifications for different abilities and may be pragmatically adjusted or changed throughout the study as required. These exercises were chosen based on their ability to be modified, their subjective difficulty, and their safety when being performed by participants new to exercise in an unsupervised environment. Participants will aim to complete 6-8 resistance exercises twice a week (but not on consecutive days to allow appropriate recovery). Initially they will be advised to complete 1-2 sets of 10 repetitions (at approximately 60% of estimated 1 repetition maximum (RM)⁵⁷), gradually increasing to 3-6 sets of 10 repetitions over the study period with a minimum of 30 sec rest between sets. These figures may be adjusted to accommodate different abilities and different rates of progression. Where equipment is limited (e.g. participants reach the highest provided dumbbell weight), participants will be advised to increase the number of sets performed. The load chosen was based on previous research which suggests whilst heavier loads (>60% of 1RM) are favoured for increasing strength, the effect size is still large for lighter loads (<60% of 1RM) and both are effective for increasing muscle size.⁵⁸ It is important not to discourage inactive or inexperienced participants with very heavy loads. Participants will be provided with an exercise diary which includes additional instructions, dumbbells and resistance bands, and access to educational and instructional videos. Instructional videos will include: the importance of an active and healthy lifestyle, the importance of warming up and cooling down and how to do it, a reminder of how to use the RPE scale, demonstrations of each resistance exercise, and information about the aerobic component (videos can be viewed here: https://www.youtube.com/playlist?list=PLwbE3AF9Ej_Vul5uoiF-C9Cl8wrgKz5Nv). Participants will receive a telephone call from a member of the research team every two weeks in order to discuss

219 progression of the exercise and address any issues that may arise. Participants will also be able to
 220 contact the research team at any time should they require and will continue to attend any scheduled
 221 clinic appointments and take prescribed medication as normal.

9 222 Control group: 'Usual care'

Participants in the control group will be asked to maintain their current lifestyle and exercise habits throughout the study. This includes continuing to attend any scheduled clinic appointments and taking prescribed medication as normal. As part of routine care, KTRs are recommended to take regular exercise and maintain a healthy lifestyle. This advice will be reiterated to patients in the control group to ensure the intervention is being appropriately compared to best-practice standard care. Participants will be asked to complete a 'control diary' to note any exercise, medication changes, illness, and other relevant information. Once control participants complete the post-intervention assessments, they will be offered the opportunity to complete the same intervention as the exercise group.

27 232 **Study timeline**

233 Baseline assessments

The ECSERT study timeline is shown in Figure 1. Baseline assessments described below will be carried
 out on the same day and in conjunction with routine clinical appointments to prevent additional
 travel.

36
37237Collection of routine clinical information and cost-effectiveness

Clinical information will be extracted from the medical notes including: age, gender, ethnicity, primary
 cause of kidney failure, transplant type, transplant vintage, dialysis duration, comorbidities,
 blood/urine results, current medication, and smoking habits. This information will be used to primarily
 capture cofounding variables and during analyses of differences and similarities between groups.

A questionnaire will be administered at baseline to capture the previous 3 months of self-reported healthcare utilisation including: inpatient and outpatient appointments, emergency care, community and primary care services, support services, and changes in medications. This will be compared to data gathered from healthcare records allowing validation of the questionnaire for future cost-effectiveness analyses.

55 247 Cardiac stress MRI

All participants will undergo a comprehensive adenosine-stress perfusion CMR scans at baseline and
 on study-completion. Participants will be scanned on a 3T platform (Skyra, Siemens Medical Imaging,
 Erlangen, Germany) with an 18-channel phased-array receiver coil. New-generation gadolinium-based

1 2		
3	251	contrast agent with a licence for use in patients with an eGFR >30 ml/min/1.73 m ² will be given for
4 5 6 7	252	perfusion and delayed enhancement imaging. Patients with an eGFR <40 ml/min/1.73 m ² will undergo
	253	non-contrast CMR scanning without gadolinium. Scans will quantitatively define:
8 9	254	• Left and right-ventricular structure and function (left ventricular mass, left and right
10 11	255	ventricular volumes and ejection fractions); ⁵⁹
12	256	• Tissue-characterisation with native and post-contrast T1 mapping and delayed gadolinium
13 14	257	enhancement; ⁶⁰⁻⁶²
15 16	258	 Myocardial systolic-strain and peak early-diastolic strain rate;²⁶
17	259	• Quantitative perfusion imaging (coronary blood-flow to quantify coronary reserve and
18 19	260	ischaemia); ⁶³
20 21	261	Aortic distensibility. ²⁴
22 23	262	Quadriceps MRI
24 25	263	At the end of the CMR scan, participants will immediately undergo an MRI scan of the quadriceps
26 27 28 29	264	muscle in their right leg to assess muscle size (volume) as previously described ⁶⁴
	265	Cardiopulmonary exercise test
30 31	266	A CPET utilising a standardised ramp protocol will be performed on a stationary electronically braked
32 33	267	cycle ergometer (Lode Excalibur Sport, Groningen, Netherlands) with increasing workload (1 watt (W)
34	268	every 4 sec (10-15 w/min)) ensuring volitional exhaustion within 12-15 min ⁶⁵ . Participants will be
35 36	269	encouraged to cycle at a continuous cadence (~70 rpm). The highest oxygen uptake will be measured
37 38	270	(VO2peak) using a simultaneous gas analyser (Metalyser 3B CPX System, CORTEX, Germany) as true
39	271	maximal (plateau) VO_2 (VO_2 max) is less commonly achieved in deconditioned and/or clinical patients.
40 41	272	Test data will be considered usable if respiratory exchange ratio is ≥1.00 and RPE is ≥18. The test will
42 43	273	be in the presence of a cardiac nurse to confirm safety to commence exercise training. Blood pressure
44	274	will be assessed at baseline and every two minutes throughout the test. A continuous 12-lead
45 46	275	electrocardiogram (ECG) will be monitored throughout. A non-invasive monitor (Moxy, Fortiori Design
47 48	276	LLC., Minnesota, USA) will be worn on the quadriceps muscle which uses near infrared spectroscopy
49 50	277	(NIRS) to measure local oxygen saturation (SmO $_2$) and total haemoglobin (THb) of the muscle.
51 52	278	Lower limb Strength and muscular endurance
53 54	279	Isometric and isokinetic muscle (knee extension) strength, of the dominant leg, will be assessed using
55 56	280	a dynamometer (Biodex System 4, Biodex Medical Systems Inc., New York, USA). Peak isometric
57	281	strength (torque, Nm) will be assessed from three repetitions of maximum effort at 90° knee flexion
58 59	282	for ~3-5 sec with 60 sec rest. Isokinetic strength will be assessed at three speeds for one set of five

- repetitions at each speed: 60°/sec, 90°/sec, and 120°/sec. Participants will perform a 'sit-to-stand-60' (STS-60) test measuring how many sit-to-stand cycles can be performed over 60 sec. Handgrip strength Peak grip strength of the left and right hands will be assessed with a hand dynamometer (Jamar Plus+; Sammons Preston, Bolingbrook, IL). Each hand will be alternatively tested for three attempts each and the highest value on each hand with be recorded. Gait speed A 4 m walk test will be used to assess gait speed. Participants will be asked to walk 4 m at their 'usual walking pace' for one practice and two, timed trials. The average score (m/sec) of the timed trials will be recorded. Functional mobility The 'timed-up-and-go' test (TUAG) will be used to assess functional mobility.^{66 67} The participant is timed whilst rising from the seated position on a chair, walking 3 m, turning around, and returning to a seated position. Balance and postural stability Postural stability and balance will be assessed using a previously reported method⁶⁸ with a FysioMeter device (modified Nintendo Wii balance-board (Nintendo, Kyoto, Japan)) connected via Bluetooth to software on a portable computer (FysioMeter ApS, Brønderslev, Denmark). Total centre of pressure ellipse area (mm²) will be obtained. *Quadriceps ultrasound and myotonometry* Rectus femoris anatomical cross-sectional area will be measured from the right leg using B-mode 2D ultrasonography (Hitachi EUB-6500; probe frequency, 7.5 MHz) under resting conditions with the participant lying prone at a 45° as previously described.⁶⁴ Rectus femoris and vastus lateralis thickness, subcutaneous fat thickness, and fibre pennation angles will be obtained. Measurements of the viscoelastic properties of the soft tissue above the mid-point of the rectus femoris muscle will be obtained using a myotonometry device (MyotonPro, Tallinn, Estonia). Anthropometric measures Anthropometric measures of height, body mass, and waist and hip circumference will be attained in accordance with standard protocols.⁶⁹ Bioelectrical impedance analysis (BIA) performed on an InBody analyser (InBody 370, Chicago, Illinois, USA) will be used to estimate body composition (eg. body fat
- 60 313 percentage, fat-free mass).^{70 71}

~			
3 4	314	Survey	pack
5 6	315	Particip	ants
7 8	316	(1)	Inte
9	317		pres
10 11	318		tho
12	310		the
13	319		com
14 15	320	(2)	12-li
16	321		gene
17 18	322	(3)	Fund
19 20	323		mult
20 21	324		scale
22	275		cond
23 24	525		COILS
25	326	(4)	Pitts
26	327		and
27 28	328	(5)	Patie
29 30	329		knov
31	330		enga
32 33	331	(6)	Brie
34	222	(0)	liter
35	332		itter
36 37	333	(7)	The
38	334		Orga
39 40	335		phys
41	336		plac
42	227	(9)	' Duk
43 44	227	(8)	Duk
45	338		wor
46 47	339		mea
48	3/10	Hahitu	al nhi
49 50	540	nabitat	ii piiy
50 51	341	Objecti	ve da
52	342	gained	from
53 54	343	receive	the
55	244		
56	344	mianigi	nt tha
57 58	345	Blood a	nd u
59			
60			

315 Participants will be provided with a survey pack containing the following questionnaire

- (1) Integrated Palliative Outcome Scale (I-POS-Renal): a validated guestionnaire measuring the presence and severity of disease related symptoms. The I-POS-Renal was developed based on the POS and IPOS palliative care surveys, but with the additional inclusion of symptoms common in CKD such as pruritus and restless legs.⁷²
- (2) 12-Item Short Form Health Survey (SF-12): a validated 12-item questionnaire used to assess generic health outcomes from the patient's perspective.73
- (3) Functional Assessment of Chronic Illness Therapy-Fatigue (FACIT-F): a validated 13-item multidimensional scale that assesses fatigue over the past seven days using a 5-point Likert scale that covers physical fatigue, functional fatigue, emotional fatigue, and social consequences of fatigue with excellent internal consistency and test-retest reliability.⁷⁴⁷⁵
 - (4) Pittsburgh Sleep Quality Index (PSQI): self-rated questionnaire which assesses sleep quality and disturbances over a 1-month time interval.⁷⁶
 - (5) Patient Activation Measure (PAM): a validated, licenced tool measuring the spectrum of knowledge, skills, and confidence in patients and capturing the extent to which they feel engaged and confident in taking care of their condition ('activation').77
 - (6) Brief Health Literacy Screen (BHLS): a 3-item questionnaire to identify inadequate health literacy,⁷⁸ validated against longer screening tools in populations with ESKD.^{79 80}
- (7) The Global Physical Activity Questionnaire (GPAQ): developed by the World Health Organisation (WHO) for physical activity surveillance in countries. It collects information on physical activity participation in three settings or domains (activity at work, travel to and from places, and recreational activities) as well as sedentary behaviour, comprising 16 questions.⁸¹
- (8) Duke Activity Status Index (DASI): a 12-item questionnaire that uses self-reported physical work capacity to estimate peak metabolic equivalents and has been shown to be a valid measurement of functional capacity.82

abitual physical activity

- bjective data on habitual physical activity levels over a 7-day period (ideal minimum 6-days)⁸³ will be nined from tri-axial accelerometers (GENEActiv, ActivInsights Ltd., Cambridge, UK). Participants will ceive the monitor at the baseline and follow-up assessments and will be asked to wear it from idnight that evening for 7 days.
- ood and urine sampling

Page 14 of 33

BMJ Open

346 Venous blood (30 ml) will be collected using venepuncture of the antecubital vein and prepared	and
--	-----

- 347 stored appropriately for the following analysis:
 - Circulating markers of cardiovascular disease
 - Circulating markers of systemic inflammation and oxidative stress
 - Blood glucose and HbA1c
 - Lipids and triglycerides
- Full blood count and renal profile

- A urine sample will be requested to ascertain urinary protein:creatinine ratio.
- 354 Follow-up assessments

Follow up visits are summarised in Figure 1. An instructional session (or more if required) following baseline assessments will allow the intervention group to become familiar with the exercise requirements and allow the research team to ensure safety and competence before commencing the 12-week home-based training program. This can be via video call or in-person. At 6 weeks into the 12-week period for the intervention group only, participants will be invited to review exercise progression (via video call or in-person), particularly if participants are struggling to undertake the requisite amount of exercise, and as a refresher of the intervention. This combined with regular contact from research staff should aid participant compliance and monitoring.

Final assessments will be conducted for the exercise and control groups within 7 days of completing the 12-week exercise or control period. Assessments completed will be identical to the baseline visit with the addition of a 'patient satisfaction questionnaire' to allow pragmatic future development of the study. This will also be offered to participants who withdraw from the trial. Three months after completing the exercise intervention, participants will be contacted for a semi-structured one-to-one telephone interview. This will aim to understand the impact of the intervention, if any, on subsequent lifestyle and exercise habits.

47 370 **Sub-studies**

- 49 371 Additional informed consent will be sought for:50
 - Ten 'healthy' control participants to undertake a CPET to assess the differences, if any,
 between CPET parameters in 'healthy controls' versus KTRs, particularly during the recovery
 period.
- 56
57
58375
572. KTRs completing the exercise intervention will be invited to undertake a semi-structured
interview (via telephone, video call, or in-person) incorporating exercise self-efficacy,
enjoyment, difficulties encountered, perceived advantages and disadvantages of the

1
2
- २
1
4
5
6
7
8
9
10
11
12
13
14
15
16
10
1/
18
19
20
21
22
23
24
25
26
27
27
20
29
30
31
32
33
34
35
36
37
38
39
40
Δ1
יד גע
42 12
45 44
44
45
46

378	intervention, and study design. Participants who withdraw before the end of the intervention
379	will also be invited to attend, although in line with ethical standards, this will be optional.

380 Sample size

381 The purpose of this pilot study is to obtain appropriate data to adequately power future definitive 382 trials;⁸⁴ a power calculation is neither relevant nor possible. A minimum sample size of 50 is based on 383 accepted values to provide adequate estimates of standard deviations for future power calculations.⁸⁵

5 384 Data collection and management

Data from all time points will be collected in case report forms (CRFs) by the trial team. All data will
be entered into a secure database and will only be accessible on password-protected computers at
UHL and University of Leicester by relevant members of the study team. No identifying information
will be kept in electronic form. All source data and original participant identities will be kept in a locked
office in the trial site file only at UHL.

6 390 Data analysis

Data will be assessed for normality using histograms, the Shapiro-Wilk test and Q-Q plots. Continuous data to be expressed as mean (± standard deviation), if normally distributed or median (interquartile range) if not. To investigate the differences between interventions we will use analysis of (co-) variance. Independent samples t-tests and Mann-Whitney U tests will be used assess for baseline differences between variables for normally and non-normally distributed data respectively. These data will be used to inform the power calculation for future definitive trials.

397 Qualitative data will be transcribed verbatim and analysed according to the principles of interpretive
 398 thematic analysis to explore themes emerging from patient journeys through, and experiences of, the
 399 interventions and outcome measures.

 $\frac{4}{2}$ 400 Outcomes pertaining to the feasibility of the intervention and trial will be assessed and include:

401 •

402

403

47 48

49

50 51

52 53

54

58

- *Eligibility:* the percentage of patients screened who are eligible.
- *Recruitment rate:* the percentage of patients eligible who consent to the trial and the monthly recruitment rate.
- Adherence to the exercise intervention: the number of completed sessions per week and
 specific intensity and durations achieved.
- 406
 Acceptability of randomisation: comparison of the final group characteristics and identification of any stratification variables, if applicable.
 - Attrition rate: the number of participants that drop-out of the study.
 - 409 *Outcome acceptability:* the percentage of missing data for each outcome measure.

3 4	410	• <i>Safety:</i> The number of self-reported injuries or adverse events throughout the trial.				
5 6	411	The <i>a priori</i> thresholds for specific feasibility and acceptability criteria are as follows: eligibility (≥50%),				
7	412	recruitment success of 20% of eligible participants (≥2 participants per month), adherence (an average				
8 9	413	of 3 exercise sessions per week) and attrition (\leq 30%).				
10 11 12	414	Safety reporting				
13 14 15	415	All adverse events (AEs) or adverse reactions (ARs) and serious adverse events (SAEs) or serious				
	416	adverse reactions (SARs) will be recorded from the time a patient enters the study to the final study				
16 17	417	visit. Each AE or AR will be considered for severity, causality, and expectedness and may be reclassified				
18 10	418	as an SAE or SAR if required.				
20	419	An SAE is any AE that:				
21 22	420	is life threatening				
23 24	421	 requires hospitalization or prolongation of a hospital admission 				
24 25	422	 results in a persistent or significant disability/incapacity 				
26 27	423	is a congenital anomaly				
28 29	424	results in death				
30 31 32 33 34 35 36 37 38	425	All AEs and ARs will be documented in participants CRFs, medical notes, and an AE log and will record				
	426	the following information: description, date of onset and end date, severity, assessment of				
	427	relatedness to study, other suspect device and action taken. Only AEs that are judged to be related to				
	428	the study intervention or procedures will be reported to the sponsor.				
	429	All SAEs will be reported by the investigators to the sponsor within 24 hours of discovery or notification				
39 40	430	and the report will be signed by the chief investigator within 7 days. If the SAE is deemed related to				
40 41	431	the research procedures or intervention and is unexpected, a report will be sent to the research ethics				
42 43	432	committee (REC) within 15 days.				
44 45	433	Patient and public involvement				
46 47	434	A patient and public involvement (PPI) group has been convened and will meet with the research team				
48 49	435	to review progress and address issues that arise throughout the duration of the study. The PPI partners				
49 50	436	will assist in the interpretation and dissemination of results. The trial was designed in consultation				
51 52	437	with PPI partners who advised on intervention content and outcome measure acceptability, paying				
52 53 54 55 56 57	438	particular attention to patient burden, ensuring outcome measures would not over-burden				
	439	participants. The PPI group approved the final design and duration of this intervention and advised				
	440	the inclusion of an initial supervised intervention familiarisation period to build confidence in exercise				
58 59	441	capability.				
60	442	Changes to the study protocol following the COVID-19 pandemic				

BMJ Open

The COVID-19 pandemic has made us all review the ways we design and deliver clinical studies. Whilst patient safety remains the absolute priority of clinical and research teams, there is a need for research to continue in a safe way that balances the benefits of continuing programs of research against the risks from COVID-19. We have amended the study protocol in several ways to reduce any additional exposure of patients to clinical environments where COVID-19 may be present:

- We have reduced the number of study visits to a minimum. The original study flow diagram is included in Additional file 1. All interim assessments have been removed in the modified protocol (Fig. 1) and the baseline and final study visits are now wrapped into part of patient clinical care. That is to say, when they attend for their baseline and follow-up study visits they will have their clinical review and clinical blood tests as they would for their normal clinical care with a transplant nephrologist (MGB), so there is no increase in-patient visits to a clinical environment over-and-above their normal care.
- 455
 456
 456
 456
 456
 456
 456
 457
 457
 457
 458
 458
 458
 459
 459
 The original study design included a 2-week face-to-face training period where participants a volute of the non-based exercises and the exercise program with a member of the research team. This training period will now be done remotely, via video conferencing, with discussion and feedback over the telephone and using the instructional videos and literature that support the home-based exercise intervention.
- 460
 When participants attend for their study visits, departmental procedures have been updated
 461
 461
 462
 462
 463
 463
 When participants attend for their study visits, departmental procedures have been updated
 461
 462
 463
 463
 463
 464
 465
 465
 463
 463
 464
 465
 465
 465
 466
 467
 468
 468
 469
 469
 460
 460
 461
 461
 463
 463
 463
 464
 464
 465
 465
 465
 466
 467
 468
 468
 469
 469
 469
 469
 460
 460
 461
 461
 461
 462
 463
 463
 464
 464
 465
 465
 466
 467
 468
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469</l
- 464 The above changes have been agreed with the local REC and the study sponsor and have allowed $\frac{1}{2}$ 465 recommencement of study recruitment and procedures.

DISCUSSION

This pilot study is designed to assess the feasibility of delivering a structured, home-based, exercise intervention in KTRs at increased cardiometabolic risk and evaluate the putative effects on cardiovascular structure and functional changes, cardiorespiratory fitness, quality of life, healthcare utilisation, patient activation, and engagement with the prescribed exercise program. It is the first trial to use a pragmatic home-based program of exercise this patient group. It is also the first to use CMR to evaluate the structural and functional changes of the heart in this at risk population.

473 Qualitative data will provide valuable personal perspectives on the acceptability of this specific
 474 exercise program. Transplant recipients experience complex medical journeys and are likely to have
 59

specific unmet needs in the area of exercise and lifestyle. This will be valuable information for future randomised controlled trials (RCTs) and exercise guideline development.

Home-based intervention outcomes are reliant on accurate reporting by participants with regards to frequency, intensity, and duration of exercise performed. This under-reporting is often a limitation of unsupervised interventions. We will ensure participants are correctly advised of how to monitor and report their exercise completion throughout the trial and encourage this through telephone communications.

We anticipate that a positive outcome will lead to both an increased understanding of the specific exercise requirements of KTRs and the development of new programs that promote longer-term engendered lifestyle change that can be incorporated into standard practice with much lower financial implications than in-centre supervised rehabilitation.

DECLARATIONS

Ethical issues

University of Leicester are the sponsor for this study (UOL 0714). The protocol was reviewed by the East Midlands-Nottingham 2 research ethics committee and was given a favourable opinion (REC ref 19/EM/0209) on 14/10/2019. Health Research Authority regulatory approval was given on 14/10/2019, and the study was adopted on the National Institute for Health Research (NIHR) portfolio on 26/09/2019. Local governance approval was granted by UHL R&I on 31/01/2020. This study was prospectively registered with ClinicalTrials.gov (NCT04123951; 11.10.2019). The first participant was recruited on 09/03/2020. The predicted study end date is 31/12/2022. This manuscript is guorate with the most recent approved protocol (version 6 26.08.2020). Relevant parties will be informed of any substantial protocol modifications. Steps have been taken when designing this protocol to minimise the ethical implications and ensure patient welfare. The study will comply with the International Conference for Harmonisation of Good Clinical Practice (ICH GCP) guidelines and the Research Governance Framework for Health and Social Care.

Dissemination: On completion the results of this study will be published in peer-reviewed journals and presented at national and international conferences. Contributions of all authors to manuscripts arising from this study will be made explicit in the relevant of each individual journal. Participant level data will be available following publication of results on request to the Chief Investigator. Results will also be disseminated to the patient and public community via social media and newsletter articles and presentations at patient conferences and forums, led by the patient partners. It is anticipated that the results of this study will inform future design of larger RCTs in this subject area and contribute to future specific physical activity guidelines in this population.

- Twitter: REB, @RBillany; MGB, @DrMattGB.

Author contributions: MGB is the chief investigator for this trial. REB and MGB are responsible for the study design, study setup, completion of study visits, drafting the manuscript, revision of the manuscript, and finalising the manuscript. NCB, TJW, KAR, KC, EMB, NJC, ACW, JB, GPM, JOB, and ACS are responsible for the study design, drafting the manuscript, and revision of the manuscript. NV, SA, JW, and KP are responsible for completion of study visits, drafting the manuscript, and revision of manuscript.

1 ว		
2 3 4	523	
5	524	Funding: This study is funded by a project grant from Kidney Research UK (ref: KS_RP_003_20180913).
6 7	525	Neither the sponsor nor the funder had or will have any input into study design; collection,
8	526	management, analysis, and interpretation of data; writing of the report; or the decision to submit the
9 10 11 12 13 14 15 16 17	527	report for publication.
	528	
	529	Acknowledgements: This research is supported by the National Institute for Health Research (NIHR)
	530	Leicester Biomedical Research Centre. The views expressed are those of the authors and not
	531	necessarily those of the NHS, the NIHR or the Department of Health.
18 10	532	
19 20	533	Competing interests: None declared.
21 22	534	
23	535	Consent for publication: Not applicable.
24 25	536	
26 27	530	
28	537	
29 30	538	
31 32	539	
33	E 4 0	
34 35	540	
36 37	541	
38	542	
39 40	543	
41 42		
43	544	
44 45	545	
46 47	546	
48 40	547	
49 50 51 52 53 54 55 56 57	547	
	548	
	549	
	550	
	661	
58 50	221	
60	552	

1		
2		
3	553	REFERENCES
4 5	554	
6	551	
7	555	1. Oniscu GC, Brown H, Forsythe JLR. How great is the survival advantage of transplantation over
8	556	dialysis in elderly patients? <i>Nephrol Dial Transpl</i> 2004;19(4):945-51. doi: 10.1093/ndt/gfh022
9	557	2. Steenkamp R, Rao A, Fraser S. UK Renal Registry 18th Annual Report (December 2015) Chapter 5:
10	558	Survival and Causes of Death in UK Adult Patients on Renal Replacement Therapy in 2014:
11	559	National and Centre-specific Analyses. Nephron 2016;132 Suppl 1:111-44. doi:
12	560	10.1159/000444819
15 1/1	561	3. Neale J, Smith AC. Cardiovascular risk factors following renal transplant. World J Transplant
15	562	2015;5(4):183-95. doi: 10.5500/wjt.v5.i4.183
16	563	4. UK Renal Registry (2020) UK Renal Registry 22nd Annual Report – data to 31/12/2018, Bristol, UK.
17	564	Available from renal.org/audit-research/annual-report
18	565	5. Kasiske BL, Guijarro C, Massy ZA, et al. Cardiovascular disease after renal transplantation. J Am Soc
19	566	Nephrol 1996;7(1):158-65
20	567	6. Carpenter MA, John A, Weir MR, et al. BP, cardiovascular disease, and death in the Folic Acid for
21	568	Vascular Outcome Reduction in Transplantation trial. J Am Soc Nephrol 2014;25(7):1554-62.
22	569	doi: 10.1681/asn.2013040435
23	570	7. Mall G, Huther W, Schneider J, et al. Diffuse intermyocardiocytic fibrosis in uraemic patients.
24 25	571	Nephrol Dial Transplant 1990;5(1):39-44. doi: 10.1093/ndt/5.1.39
26	572	8. Bakri RS, Afzali B, Covic A, et al. Cardiovascular disease in renal allograft recipients is associated with
27	573	elevated sialic acid or markers of inflammation. Clin Transpl 2004;18(2):201-04. doi:
28	574	10.1111/j.1399-0012.2004.00156.x
29	575	9. Liefeldt L, Budde K. Risk factors for cardiovascular disease in renal transplant recipients and
30	576	strategies to minimize risk. <i>Transpl Int</i> 2010;23(12):1191-204. doi: 10.1111/j.1432-
31	577	2277.2010.01159.x
32	578	10. Van Laecke S, Malfait T, Schepers E, et al. Cardiovascular disease after transplantation: an
33 24	579	emerging role of the immune system. <i>Transpl Int</i> 2018;31(7):689-99. doi: 10.1111/tri.13160
34	580	11. Weiner DE, Tighiouart H, Elsayed EF, et al. The Framingham predictive instrument in chronic kidney
36	581	disease. <i>J Am Coll Cardiol</i> 2007;50(3):217-24. doi: 10.1016/j.jacc.2007.03.037
37	582	12. Aalten J, Peeters SA, van der Vlugt MJ, et al. Is standardized cardiac assessment of asymptomatic
38	583	high-risk renal transplant candidates beneficial? Nephrol Dial Transplant 2011;26(9):3006-12.
39	584	doi: 10.1093/ndt/gfq822
40	585	13. Mansell H, Rosaasen N, Dean J, et al. Evidence of enhanced systemic inflammation in stable kidney
41	586	transplant recipients with low Framingham risk scores. Clin Transpl 2013;27(4):E391-E99
42	587	14. Mansell H, Stewart SA, Shoker A. Validity of cardiovascular risk prediction models in kidney
43 11	588	transplant recipients. Sci World J 2014;2014:750579. doi: 10.1155/2014/750579
45	589	15. Devine PA, Courtney AE, Maxwell AP. Cardiovascular risk in renal transplant recipients. J Nephrol
46	590	2019;32(3):389-99. doi: 10.1007/s40620-018-0549-4
47	591	16. Kasiske BL. Epidemiology of cardiovascular disease after renal transplantation. Transplantation
48	592	2001;72(6 Suppl):S5-8. doi: 10.1097/00007890-200109271-00003
49	593	17. de Albuquerque Suassuna P, Sanders-Pinheiro H, de Paula R. Uremic Cardiomyopathy: A New Piece
50	594	in the Chronic Kidney Disease-Mineral and Bone Disorder Puzzle. Front Med (Lausanne)
51	595	2018;5:206-06. doi: 10.3389/fmed.2018.00206
52	596	18. Aoki J, Ikari Y, Nakajima H, et al. Clinical and pathologic characteristics of dilated cardiomyopathy
53 54	597	in hemodialysis patients. <i>Kidney Int</i> 2005;67(1):333-40. doi: 10.1111/j.1523-
55	598	1755.2005.00086.x
56	599	19. Mark PB, Doyle A, Blyth KG, et al. Vascular function assessed with cardiovascular magnetic
57	600	resonance predicts survival in patients with advanced chronic kidney disease. J Cardiovasc
58	601	Magn R 2008;10:39. doi: 10.1186/1532-429x-10-39
59		
60		

20. Foley RN, Parfrey PS, Harnett JD, et al. Clinical and echocardiographic disease in patients starting end-stage renal disease therapy. Kidney Int 1995;47(1):186-92. doi: 10.1038/ki.1995.22 21. Foley RN, Parfrey PS, Harnett JD, et al. The prognostic importance of left ventricular geometry in uremic cardiomyopathy. J Am Soc Nephrol 1995;5(12):2024-31 22. Ali A, Macphee I, Kaski JC, et al. Cardiac and vascular changes with kidney transplantation. Indian J Nephrol 2016;26(1):1-9. doi: 10.4103/0971-4065.165003 23. Patel RK, Mark PB, Johnston N, et al. Renal Transplantation Is Not Associated with Regression of Left Ventricular Hypertrophy: A Magnetic Resonance Study. Clin J Am Soc Nephrol 2008;3(6):1807-11. doi: 10.2215/cjn.01400308 24. Graham-Brown MPM, Adenwalla SF, Lai FY, et al. The reproducibility of cardiac magnetic resonance imaging measures of aortic stiffness and their relationship to cardiac structure in prevalent haemodialysis patients. Clin Kidney J 2018;11(6):864-73. doi: 10.1093/ckj/sfy042 25. Graham-Brown MPM, Rutherford E, Levelt E, et al. Native T1 mapping: inter-study, inter-observer and inter-center reproducibility in hemodialysis patients. J Cardiovasc Magn R 2017;19(1) doi: 10.1186/s12968-017-0337-7 26. Graham-Brown MP, Gulsin GS, Parke K, et al. A comparison of the reproducibility of two cine-derived strain software programmes in disease states. Eur J Radiol 2019;113:51-58. doi: 10.1016/j.ejrad.2019.01.026 27. Kriska AM, Saremi A, Hanson RL, et al. Physical activity, obesity, and the incidence of type 2 diabetes in a high-risk population. Am J Epidemiol 2003;158(7):669-75. doi: 10.1093/aje/kwg191 28. Stamatakis E, Gale J, Bauman A, et al. Sitting Time, Physical Activity, and Risk of Mortality in Adults. J Am Coll Cardiol 2019;73(16):2062-72. doi: doi:10.1016/j.jacc.2019.02.031 29. Koolhaas CM, Dhana K, Schoufour JD, et al. Impact of physical activity on the association of overweight and obesity with cardiovascular disease: The Rotterdam Study. Eur J Prev Cardiol 2017;24(9):934-41. doi: 10.1177/2047487317693952 30. Swift DL, Lavie CJ, Johannsen NM, et al. Physical activity, cardiorespiratory fitness, and exercise training in primary and secondary coronary prevention. Circ J 2013;77(2):281-92. doi: 10.1253/circj.cj-13-0007 31. Barengo NC, Hu G, Lakka TA, et al. Low physical activity as a predictor for total and cardiovascular disease mortality in middle-aged men and women in Finland. Eur Heart J 2004;25(24):2204-11. doi: 10.1016/j.ehj.2004.10.009 32. Nielens H, Lejeune TM, Lalaoui A, et al. Increase of physical activity level after successful renal transplantation: a 5 year follow-up study. Nephrol Dial Transpl 2001;16(1):134-40. doi: 10.1093/ndt/16.1.134 33. Dontje ML, de Greef MH, Krijnen WP, et al. Longitudinal measurement of physical activity following kidney transplantation. Clin Transplant 2014;28(4):394-402. doi: 10.1111/ctr.12325 34. Wilkinson TJ, Clarke AL, Nixon DGD, et al. Prevalence and correlates of physical activity across kidney disease stages: an observational multicentre study. Nephrol Dial Transpl 2019 doi: 10.1093/ndt/gfz235 35. Booth FW, Roberts CK, Laye MJ. Lack of exercise is a major cause of chronic diseases. Compr Physiol 2012;2(2):1143-211. doi: 10.1002/cphy.c110025 36. Booth FW, Laye MJ, Roberts MD. Lifetime sedentary living accelerates some aspects of secondary aging. J Appl Physiol 2011;111(5):1497-504. doi: 10.1152/japplphysiol.00420.2011 37. Oguchi H, Tsujita M, Yazawa M, et al. The efficacy of exercise training in kidney transplant recipients: a meta-analysis and systematic review. Clin Exp Nephrol 2019;23(2):275-84. doi: 10.1007/s10157-018-1633-8 38. Mathur S, Janaudis-Ferreira T, Wickerson L, et al. Meeting Report: Consensus Recommendations for a Research Agenda in Exercise in Solid Organ Transplantation. Am J Transplant 2014;14(10):2235-45. doi: 10.1111/ajt.12874

653

654

655

656

657

658

659

660

661

662

663

664

665

in

10.6002/ect.2017.0305

44. doi: 10.1111/1440-1681.12481

10.1016/j.jcjd.2015.08.014

39. Masajtis-Zagajewska A, Muras K, Nowicki M. Effects of a Structured Physical Activity Program on

40. O'Connor EM, Koufaki P, Mercer TH, et al. Long-term pulse wave velocity outcomes with aerobic

41. Moraes Dias CJ, Anaisse Azoubel LM, Araujo Costa H, et al. Autonomic modulation analysis in active

42. Karelis AD, Hébert MJ, Rabasa-Lhoret R, et al. Impact of Resistance Training on Factors Involved in

PLoS One 2017;12(2):e0171063. doi: 10.1371/journal.pone.0171063

Habitual Physical Activity and Body Composition in Patients With Chronic Kidney Disease and

and resistance training in kidney transplant recipients - A pilot randomised controlled trial.

and sedentary kidney transplanted recipients. Clin Exp Pharmacol Physiol 2015;42(12):1239-

the Development of New-Onset Diabetes After Transplantation in Renal Transplant

Recipients: An Open Randomized Pilot Study. Can J Diabetes 2016;40(5):382-88. doi:

Kidney Transplant Recipients. Exp Clin Transplant 2019;17(2):155-64. doi:

1

- 16 17
- 18 19
- 20 21

22 23

29

30

31

43. Roi GS, Stefoni S, Mosconi G, et al. Physical activity in solid organ transplant recipients:
 organizational aspects and preliminary results of the Italian project. *Transplant Proc* 2014;46(7):2345-9. doi: 10.1016/j.transproceed.2014.07.055

- 44. Romano G, Simonella R, Falleti E, et al. Physical training effects in renal transplant recipients. *Clin Transplant* 2010;24(4):510-4. doi: 10.1111/j.1399-0012.2009.01098.x
- 45. Kinnafick FE, Thogersen-Ntoumani C, Shepherd SO, et al. In It Together: A Qualitative Evaluation
 672 of Participant Experiences of a 10-Week, Group-Based, Workplace HIIT Program for
 673 Insufficiently Active Adults. J Sport Exerc Psychol 2018;40(1):10-19. doi: 10.1123/jsep.2017 674 0306
 - 46. van Baar ME, Dekker J, Oostendorp RA, et al. Effectiveness of exercise in patients with
 osteoarthritis of hip or knee: nine months' follow up. *Ann Rheum Dis* 2001;60(12):1123-30.
 doi: 10.1136/ard.60.12.1123
- 47. Timmons JF, Griffin C, Cogan KE, et al. Exercise Maintenance in Older Adults 1 Year After
 679
 679
 680
 47. Timmons JF, Griffin C, Cogan KE, et al. Exercise Maintenance in Older Adults 1 Year After
 Completion of a Supervised Training Intervention. J Am Geriatr Soc 2020;68(1):163-69. doi:
 10.1111/jgs.16209
- 10.1111/JgS.16209
 681 48. Hibbard JH, Greene J. What The Evidence Shows About Patient Activation: Better Health Outcomes
 682 And Care Experiences; Fewer Data On Costs. *Health Affairs* 2013;32(2):207-14. doi:
 683 10.1377/hlthaff.2012.1061
- 49. Skolasky RL, Mackenzie EJ, Wegener ST, et al. Patient activation and adherence to physical therapy
 685
 686
 686
 686
 10.1097/BRS.0b013e31818027f1
 687
 688
 687
 688
 688
 688
 688
 688
 688
 688
 688
 688
 688
 688
 688
 688
 688
 688
 688
 688
 688
 688
 688
 688
 688
 688
 688
 688
 688
 688
 688
 688
 688
 688
 688
 688
 688
 688
 688
 688
 688
 688
 688
 688
 688
 688
 688
 688
 688
 688
 688
 688
 688
 688
 688
 688
 688
 688
 688
 688
 688
 788
 788
 788
 788
 788
 788
 788
 788
 788
 788
 788
 788
 788
 788
 788
 788
 788
 788
 788
 788
 788
 788
 788
 788
 788
 788
 788
 788
 788
 788
 788
 788
 788
 788
 788
 788
 788
 788
 788
 788
 788
 788
 788
 788
 788
 788
 788
 788
 788
 788
 788
 788
 788
 788
 788
 788
 788
 788
 788
 788
 788
 788
 788
 788
 788
 788
 788
 788
 788
 788
 788
 788
 788
 788
 788
 788
 788
 788
 788
 788
 78
- 42
43
43
44687
688
4450. Baggetta R, D'Arrigo G, Torino C, et al. Effect of a home based, low intensity, physical exercise
program in older adults dialysis patients: a secondary analysis of the EXCITE trial. BMC Geriatr
2018;18(1):248. doi: 10.1186/s12877-018-0938-5
- 46 690 51. Imran HM, Baig M, Erqou S, et al. Home-Based Cardiac Rehabilitation Alone and Hybrid With
 47 691 Center-Based Cardiac Rehabilitation in Heart Failure: A Systematic Review and Meta-Analysis.
 48 692 J Am Heart Assoc 2019;8(16):e012779. doi:10.1161/JAHA.119.012779
- 4969352. Uchiyama K, Washida N, Morimoto K, et al. Home-based Aerobic Exercise and Resistance Training50694in Peritoneal Dialysis Patients: A Randomized Controlled Trial. Sci Rep 2019;9(1):2632. doi:5169510.1038/s41598-019-39074-9
- 5269653. Aoike DT, Baria F, Kamimura MA, et al. Home-based versus center-based aerobic exercise on53697cardiopulmonary performance, physical function, quality of life and quality of sleep of55698overweight patients with chronic kidney disease. Clin Exp Nephrol 2018;22(1):87-98. doi:5669910.1007/s10157-017-1429-2
- 57 700 54. Majchrzak KM, Pupim LB, Chen K, et al. Physical activity patterns in chronic hemodialysis patients:
 58 701 comparison of dialysis and nondialysis days. *J Ren Nutr* 2005;15(2):217-24. doi:
 59 702 10.1053/j.jrn.2004.08.002

55. Carvalho EV, Reboredo MM, Gomes EP, et al. Physical activity in daily life assessed by an

accelerometer in kidney transplant recipients and hemodialysis patients. Transplant Proc 2014;46(6):1713-7. doi: 10.1016/j.transproceed.2014.05.019 56. Borg GA. Perceived exertion: a note on "history" and methods. Med Sci Sports 1973;5(2):90-3. 57. Brzycki M. Strength Testing—Predicting a One-Rep Max from Reps-to-Fatigue. Journal of Physical Education, Recreation & Dance 1993;64(1):88-90. doi: 10.1080/07303084.1993.10606684 58. Schoenfeld BJ, Grgic J, Ogborn D, et al. Strength and Hypertrophy Adaptations Between Low- vs. High-Load Resistance Training: A Systematic Review and Meta-analysis. J Strength Cond Res 2017;31(12):3508-23. doi: 10.1519/jsc.000000000002200 59. Hunold P, Vogt FM, Heemann UW, et al. Myocardial mass and volume measurement of hypertrophic left ventricles by MRI--study in dialysis patients examined before and after dialysis. J Cardiovasc Magn R 2003;5(4):553-61. doi: 10.1081/jcmr-120025230 60. Graham-Brown MP, March DS, Churchward DR, et al. Novel cardiac nuclear magnetic resonance method for noninvasive assessment of myocardial fibrosis in hemodialysis patients. Kidney Int 2016;90(4):835-44. doi: 10.1016/j.kint.2016.07.014 61. Xu HY, Yang ZG, Zhang Y, et al. Prognostic value of heart failure in hemodialysis-dependent end-stage renal disease patients with myocardial fibrosis quantification by extracellular volume on cardiac magnetic resonance imaging. BMC Cardiovasc Disord 2020;20(1):12. doi: 10.1186/s12872-019-01313-2 62. Graham-Brown MP, Singh AS, Gulsin GS, et al. Defining myocardial fibrosis in haemodialysis patients with non-contrast cardiac magnetic resonance. BMC Cardiovasc Disord 2018;18(1):145. doi: 10.1186/s12872-018-0885-2 63. Xue H, Brown LAE, Nielles-Vallespin S, et al. Automatic in-line quantitative myocardial perfusion mapping: Processing algorithm and implementation. Magn Reson Med 2020;83(2):712-30. doi: 10.1002/mrm.27954 64. Gould DW, Watson EL, Wilkinson TJ, et al. Ultrasound assessment of muscle mass in response to exercise training in chronic kidney disease: a comparison with MRI. J Cachexia Sarcopenia Muscle 2019;10(4):748-55. doi: 10.1002/jcsm.12429 65. ATS/ACCP Statement on Cardiopulmonary Exercise Testing. Am J Resp Crit Care 2003;167(2):211-77. doi: 10.1164/rccm.167.2.211 66. Podsiadlo D, Richardson S. The timed "Up & Go": a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc 1991;39(2):142-8. doi: 10.1111/j.1532-5415.1991.tb01616.x 67. Hadjiioannou I, Wong K, Lindup H, et al. Test-restest reliability for physical function measures in patients with chronic kidney disease. J Ren Care 2019 doi: 10.1111/jorc.12310 68. Wilkinson TJ, Nixon DGD, Smith AC. Postural stability during standing and its association with physical and cognitive functions in non-dialysis chronic kidney disease patients. Int J Nephrol Urol 2019;51(8):1407-14. doi: 10.1007/s11255-019-02192-4 69. Eston RG, Reilly T. Kinanthropometry and exercise physiology laboratory manual: tests, procedures, and data. 3rd ed. Abingdon: Routledge 2009. 70. Chertow GM, Lowrie EG, Wilmore DW, et al. Nutritional assessment with bioelectrical impedance analysis in maintenance hemodialysis patients. J Am Soc Nephrol 1995;6(1):75-81. 71. Macdonald JH, Marcora SM, Jibani M, et al. Bioelectrical impedance can be used to predict muscle mass and hence improve estimation of glomerular filtration rate in non-diabetic patients with chronic kidney disease. Nephrol Dial Transpl 2006;21(12):3481-7. doi: 10.1093/ndt/gfl432 72. Raj R, Ahuja K, Frandsen M, et al. Validation of the IPOS-Renal Symptom Survey in Advanced Kidney Disease: A Cross-sectional Study. J Pain Symptom Manage 2018;56(2):281-87. doi: 10.1016/j.jpainsymman.2018.04.006 73. Ware Jr JE, Kosinski M, Keller SD. A 12-Item Short-Form Health Survey: construction of scales and preliminary tests of reliability and validity. Med Care 1996:220-33. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2		
3	752	74. Wang S-Y, Zang X-Y, Liu J-D, et al. Psychometric Properties of the Functional Assessment of Chronic
4	753	Illness Therapy-Fatigue (FACIT-Fatigue) in Chinese Patients Receiving Maintenance Dialysis. J
5	75/	Pain Symptom Manage 2015:49(1):135-43, doi: 10.1016/j.jpainsymman 2014.04.011
6	755	75 Vellen SR Cella DE Webster K et al Measuring fatigue and other anemia-related symptoms with
7	755	75. Telleri 56, Cella Di, Webster K, et al. Measuring latigue and other allerina-related symptoms with
8	/50	the Functional Assessment of Cancer Therapy (FACT) measurement system. J Pain Symptom
9	757	Manage 1997;13(2):63-74. doi: 10.1016/s0885-3924(96)00274-6
10	758	76. Buysse DJ, Reynolds CF, Monk TH, et al. The Pittsburgh Sleep Quality Index: a new instrument for
11	759	psychiatric practice and research. Psychiatry Res 1989;28(2):193-213. doi: 10.1016/0165-
12	760	1781(89)90047-4
13	761	77. Hibbard JH, Stockard J, Mahoney ER, et al. Development of the Patient Activation Measure (PAM):
14	762	Conceptualizing and Measuring Activation in Patients and Consumers. Health Serv Res
15	763	2004:39(4n1):1005-26 doi: 10 1111/i 1475-6773 2004 00269 x
16	764	78 Chew ID Bradley KA Boyko EL Brief questions to identify patients with inadequate health literacy
1/	765	For Mod 2004-26/9):E99 04
18	705	Fulli Meu 2004,50(8).588-94
19	766	79. Cavanaugh KL, Osborn CY, Tentori F, et al. Performance of a brief survey to assess health literacy
20	/6/	in patients receiving nemodialysis. <i>Clinical Klaney Journal</i> 2015;8(4):462-8. doi:
21	768	https://dx.doi.org/10.1093/ckj/sfv037
22	769	80. Dageforde LA, Cavanaugh KL, Moore DE, et al. Validation of the written administration of the short
25	770	literacy survey. J Health Commun 2015;20(7):835-42. doi: 10.1080/10810730.2015.1018572
24	771	81. Bull FC, Maslin TS, Armstrong T. Global physical activity questionnaire (GPAQ): nine country
25	772	reliability and validity study. J Phys Act Health 2009;6(6):790-804. doi: 10.1123/jpah.6.6.790
20	773	82. Hlatky MA. Boineau RE. Higginbotham MB. et al. A brief self-administered questionnaire to
27	774	determine functional capacity (the Duke Activity Status Index) Am I Cardiol 1989:64(10):651-
20	775	4 doi: 10 1016/0002-0140/80/0046-7
30	775	4. Uol. 10.1010/0002-5145(85)50450-7
31	770	83. Dillon CB, Fitzgerald AP, Kearney PW, et al. Number of Days Required to Estimate Habitual Activity
32	///	Using Wrist-Worn GENEACTIV Accelerometer: A Cross-Sectional Study. PLOS ONE
33	778	2016;11(5):e0109913. doi: 10.1371/journal.pone.0109913
34	779	84. Moore CG, Carter RE, Nietert PJ, et al. Recommendations for Planning Pilot Studies in Clinical and
35	780	Translational Research. J Clin Transl Sci 2011;4(5):332-37. doi: 10.1111/j.1752-
36	781	8062.2011.00347.x
37	782	85. Sim J, Lewis M. The size of a pilot study for a clinical trial should be calculated in relation to
38	783	considerations of precision and efficiency. J Clin Epidemiol 2012;65(3):301-8. doi:
39	784	10.1016/i.iclinepi.2011.07.011
40	785	
41		
42		
43		
44		
45		
46		
47		
48		
49		
50		
51		
52		
53		
54		
22 54		
50 57		
57 50		
50 50		
60		
~ ~		

1 2		
3	786	Tables and Figures
4 5	787	
6 7	788	See uploaded.
8	-00	
10	789	Figure 1. ECSERT study flow diagram
11 12		
13 14		
15		
16 17		
18 19		
20		
21		
23 24		
25 26		
27		
28 29		
30 31		
32		
33 34		
35 36		
37 38		
39		
40 41		
42 43		
44 45		
46		
47 48		
49 50		
51 52		
53		
54 55		
56 57		
58		
59 60		

2 3	790				
4 5					
6		Table 1. ECSERT inclusion and exclusion criteria			
7		Inclusion Criteria	Exclusion Criteria		
8 9		RTRs			
10		 Prevalent KTR >1 year 	 Inability to give informed consent or comply 		
11		 Male or female aged >18 years old 	with testing and exercise protocol for any		
12		• Willing and able to give informed	reason		
13		• while and able to give informed	• Unable to undergo CMD coopping		
14 15		consent for participation in the study	Onable to undergo Civir scanning		
16		 Increased cardiometabolic risk with at 	(incompatible implants, claustrophobia,		
17		least one of:	allergy to agents etc.)		
18		 Diabetes mellitus 	 Female participants who are pregnant, 		
19		Dyslipidaemia	lactating, or planning pregnancy during the		
20		Hypertension	course of the study		
21		Obesity (BMI >30)	• Scheduled elective surgery or other		
22		• Obesity (DMI >30)	procedures requiring general anaesthesia		
24		History of Ischaemic heart	during the study		
25		disease/cerebrovascular disease			
26			 Any other significant disease or disorder* 		
27		Healthy controls			
28		Age <18 years	Unable to undertake exercise testing due to		
29 30		No documented history of major	physical or psychological barriers		
31		cardiorespiratory chronic condition	• Scheduled elective surgery or other		
32		None of the following cardiometabolic	procedures requiring general anaesthesia		
33		None of the following cardiometabolic	during the study		
34		risk factors:	a lookility to give informed concert or comply		
35		 Diabetes mellitus 	Inability to give informed consent or comply		
30 27		 Dyslipidaemia 	with testing and exercise protocol for any		
38		Hypertension	reason		
39		 History of ischaemic heart 	 Any other significant disease or disorder* 		
40		, disease/cerebrovascular disease			
41					
42		• Obesity (BMI/-50)			
43 44		Not on any medication			
45		*i.e. significant co-morbidity including unstable hypertension, p	otentially lethal arrhythmia, myocardial infarction within 6 months, itus (HbA1c $> 9\%$) advanced carebral or peripheral vascular disease		
46		which, in the opinion of the patient's own clinician, may either	put the patient at risk because of participation in the study, or may		
47		influence the result of the study, or the patient's ability to particip	ate in the study.		
48	791				
49 50	792				
50 51	132				
52	793				
53	794				
54					
55	795				
56 57	796				
57 58	707				
	131				

2		
3 4	799	Additional file details
5	800	File name: Additional File 1
6 7	801	File format: Additional File 1.pdf
8 9	802	Title of data: Original ECSERT flow diagram (pre-COVID-19)
10	803	Description of data: Flow diagram prior to COVID-19 amendments
11 12	804	
13 14	805	
14	806	
16 17		
18 10		
19 20		
21 22		
23		
24 25		
26 27		
28		
29 30		
31 32		
33		
34 35		
36 27		
38		
39 40		
41 42		
42 43		
44 45		
46		
47 48		
49 50		
51		
52 53		
54 55		
56		
57 58		
59 60		
00		

BMJ Open

SPIRIT 2013 Checklist: Recommended items to address in a clinical trial protocol and related documents*

Section/item	ltem No	Description		
Administrative information				
Title	1	Descriptive title identifying the study design, population, interventions, and, if applicable, trial acronym (Page 1, lines 1-3)		
Trial registration	2a	Trial identifier and registry name. If not yet registered, name of intended registry (Page 2, lines 67)		
	2b	All items from the World Health Organization Trial Registration Data Set (Yes, throughout)		
Protocol version	3	Date and version identifier (page 16, line 494)		
Funding	4	Sources and types of financial, material, and other support (page 16, line 506 and page 16, lines 511-513)		
Roles and	5a	Names, affiliations, and roles of protocol contributors (page 1 and 15)		
responsibilities	5b	Name and contact information for the trial sponsor (page 16, line 488)		
	5c	Role of study sponsor and funders, if any, in study design; collection, management, analysis, and interpretation of data; writing of the report; and the decision to submit the report for publication, including whether they will have ultimate authority over any of these activities (page 16, 506-509)		
	5d	Composition, roles, and responsibilities of the coordinating centre, steering committee, endpoint adjudication committee, data management team, and other individuals or groups overseeing the trial, if applicable (see Item 21a for data monitoring committee) N/A		
Introduction				
Background and rationale	6a	Description of research question and justification for undertaking the trial, including summary of relevant studies (published and unpublished) examining benefits and harms for each intervention (Introduction, page 3)		
	6b	Explanation for choice of comparators (Introduction, page 3)		
Objectives	7	Specific objectives or hypotheses (Page 4)		

Methods: Particip Study setting		
Study setting	oants,	interventions, and outcomes
	9	Description of study settings (eg, community clinic, academic hospital) and list of countries where data will be collected. Reference to where list of study sites can be obtained (Page 5, line 141-143)
Eligibility criteria	10	Inclusion and exclusion criteria for participants. If applicable, eligib criteria for study centres and individuals who will perform the interventions (eg, surgeons, psychotherapists) (Table 1)
Interventions	11a	Interventions for each group with sufficient detail to allow replication including how and when they will be administered (Page 5 and 6)
	11b	Criteria for discontinuing or modifying allocated interventions for a given trial participant (eg, drug dose change in response to harms, participant request, or improving/worsening disease) (Page 6, lines 176-178)
	11c	Strategies to improve adherence to intervention protocols, and any procedures for monitoring adherence (eg, drug tablet return, laboratory tests) (Page 10, lines 323-327)
	11d	Relevant concomitant care and interventions that are permitted or prohibited during the trial (Page 5, line 164)
Outcomes	12	Primary, secondary, and other outcomes, including the specific measurement variable (eg, systolic blood pressure), analysis metri (eg, change from baseline, final value, time to event), method of aggregation (eg, median, proportion), and time point for each outcome. Explanation of the clinical relevance of chosen efficacy a harm outcomes is strongly recommended (Study timeline, page 7)
Participant timeline	13	Time schedule of enrolment, interventions (including any run-ins a washouts), assessments, and visits for participants. A schematic diagram is highly recommended (see Figure) (Figure 1)
Sample size	14	Estimated number of participants needed to achieve study objective and how it was determined, including clinical and statistical assumptions supporting any sample size calculations (Page 11, line 346-348)
Recruitment	15	Strategies for achieving adequate participant enrolment to reach target sample size (Page 5, 140+)

Allocation:

2 3 4 5 6 7 8	Sequence generation	16a	Method of generating the allocation sequence (eg, computer- generated random numbers), and list of any factors for stratification. To reduce predictability of a random sequence, details of any planned restriction (eg, blocking) should be provided in a separate document that is unavailable to those who enrol participants or assign interventions (Page 5, 154-159)					
10 11 12 13 14	Allocation concealment mechanism	16b	Mechanism of implementing the allocation sequence (eg, central telephone; sequentially numbered, opaque, sealed envelopes), describing any steps to conceal the sequence until interventions are assigned (Page 5, 154-159)					
15 16 17 18 19	Implementatio n	16c	Who will generate the allocation sequence, who will enrol participants, and who will assign participants to interventions (Page 5, 158)					
20 21 22 23	Blinding (masking)	17a	Who will be blinded after assignment to interventions (eg, trial participants, care providers, outcome assessors, data analysts), and how N/A					
24 25 26 27		17b	If blinded, circumstances under which unblinding is permissible, and procedure for revealing a participant's allocated intervention during the trial N/A					
20 29	Methods: Data co	Methods: Data collection, management, and analysis						
30 31 32 33 34 35 36 37 38	Data collection methods	18a	Plans for assessment and collection of outcome, baseline, and other trial data, including any related processes to promote data quality (eg, duplicate measurements, training of assessors) and a description of study instruments (eg, questionnaires, laboratory tests) along with their reliability and validity, if known. Reference to where data collection forms can be found, if not in the protocol (Page 7-11)					
39 40 41 42		18b	Plans to promote participant retention and complete follow-up, including list of any outcome data to be collected for participants who discontinue or deviate from intervention protocols (Page 11)					
43 44 45 46 47 48 49 50	Data management	19	Plans for data entry, coding, security, and storage, including any related processes to promote data quality (eg, double data entry; range checks for data values). Reference to where details of data management procedures can be found, if not in the protocol (Page 11, lines 349-354)					
51 52 53 54 55	Statistical methods	20a	Statistical methods for analysing primary and secondary outcomes. Reference to where other details of the statistical analysis plan can be found, if not in the protocol (Page 11 and 12)					
56 57 58 59 60		20b	Methods for any additional analyses (eg, subgroup and adjusted analyses) N/A					

	20c	Definition of analysis population relating to protocol non-adherence (eg, as randomised analysis), and any statistical methods to handle missing data (eg, multiple imputation) (Page 12)		
Methods: Monitoring				
Data monitoring	21a	Composition of data monitoring committee (DMC) or Data and Safety Monitoring Board (DCMB); summary of its role and reporting structure; statement of whether it is independent from the sponsor and competing interests; and reference to where further details about its charter can be found, if not in the protocol. Alternatively, an explanation of why a DMC is not needed		
		A DSMB is indicated, from a practical perspective in the following circumstances:		
		 If the trial is intended to provide definitive information about effectiveness and/or safety of a medical or bio-behavioral intervention If there are prior data to suggest that the intervention being studied has the potential to induce potentially unacceptable toxicity If the trial is evaluating mortality or another major endpoint, such that inferiority of one treatment arm has safety as well as effectiveness implications If it would ethically be important for the trial to stop early if the primary question addressed has been definitively answered, even if secondary questions or complete safety information were not yet fully addressed 		
		The ECSERT study does not meet any of these criteria as a pilot/feasibility study		
	21b	Description of any interim analyses and stopping guidelines, including who will have access to these interim results and make the final decision to terminate the trial N/A		
Harms	22	Plans for collecting, assessing, reporting, and managing solicited and spontaneously reported adverse events and other unintended effects of trial interventions or trial conduct (Page 12, safety reporting)		
Auditing	23	Frequency and procedures for auditing trial conduct, if any, and whether the process will be independent from investigators and the sponsor N/A aside from usual sponsor audits		
Ethics and disse	minati	on		
Research ethics approval	24	Plans for seeking research ethics committee/institutional review board (REC/IRB) approval (Page 16, ethical issues)		
Protocol amendments	25	Plans for communicating important protocol modifications (eg, changes to eligibility criteria, outcomes, analyses) to relevant parties (eg, investigators, REC/IRBs, trial participants, trial registries, journals, regulators) (Page 16, ethical issues)		

2 3 4	Consent or assent	26a	Who will obtain informed consent or assent from potential trial participants or authorised surrogates, and how (see Item 32) (page 5)
5 6 7 8		26b	Additional consent provisions for collection and use of participant data and biological specimens in ancillary studies, if applicable (consent form)
9 10 11 12	Confidentiality	27	How personal information about potential and enrolled participants will be collected, shared, and maintained in order to protect confidentiality before, during, and after the trial (Page 11)
13 14 15 16	Declaration of interests	28	Financial and other competing interests for principal investigators for the overall trial and each study site (Page 16, line 515)
17 18 19 20	Access to data	29	Statement of who will have access to the final trial dataset, and disclosure of contractual agreements that limit such access for investigators (Page 17, availability of data)
21 22 23	Ancillary and post-trial care	30	Provisions, if any, for ancillary and post-trial care, and for compensation to those who suffer harm from trial participation N/A
24 25 26 27 28 29 30	Dissemination policy	31a	Plans for investigators and sponsor to communicate trial results to participants, healthcare professionals, the public, and other relevant groups (eg, via publication, reporting in results databases, or other data sharing arrangements), including any publication restrictions (Page 17, availability of data)
31 32 33		31b	Authorship eligibility guidelines and any intended use of professional writers (Page 17, availability of data)
34 35 36 37 38		31c	Plans, if any, for granting public access to the full protocol, participant-level dataset, and statistical code (Page 17, availability of data)
39 40	Appendices		
41 42 43	Informed consent materials	32	Model consent form and other related documentation given to participants and authorised surrogates Yes
44 45 46 47 48	Biological specimens	33	Plans for collection, laboratory evaluation, and storage of biological specimens for genetic or molecular analysis in the current trial and for future use in ancillary studies, if applicable (Page 10)
49 50	*It is strongly recor	nmenc	led that this checklist be read in conjunction with the SPIRIT 2013

Explanation & Elaboration for important clarification on the items. Amendments to the protocol should be tracked and dated. The SPIRIT checklist is copyrighted by the SPIRIT Group under the Creative Commons "Attribution-NonCommercial-NoDerivs 3.0 Unported" license.
BMJ Open

BMJ Open

A pilot randomised controlled trial of a structured, homebased exercise program on cardiovascular structure and function in kidney transplant recipients: The ECSERT study design and methods

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-046945.R2
Article Type:	Protocol
Date Submitted by the Author:	05-Aug-2021
Complete List of Authors:	Billany, Roseanne; University of Leicester, Department of Cardiovascular Sciences; University Hospitals of Leicester NHS Trust, John Walls Renal Unit Vadaszy, Noemi; University of Leicester, Department of Health Sciences Bishop , Nicolette ; Loughborough University, School of Sport, Exercise and Health Sciences Wilkinson, Thomas ; University of Leicester, Department of Health Sciences Adenwalla, Sherna; University of Leicester, Department of Cardiovascular Sciences; University Hospitals of Leicester NHS Trust, John Walls Renal Unit Robinson, Katherine; University of Leicester, Department of Cardiovascular Sciences Croker , Kathryn; University Hospitals of Leicester NHS Trust, John Walls Renal Unit Brady, Emer; University of Leicester, Department of Cardiovascular Sciences Wormleighton, Joanne; University Hospitals of Leicester NHS Trust, Department of Radiology Parke, Kelly; University of Leicester, Department of Cardiovascular Sciences; University of Leicester, Department of Cardiovascular Sciences; University of Leicester, Department of Health Sciences Webster, Angela; The University of Sydney, School of Public Health; Westmead Hospital, Centre for Renal and Transplant Research Barratt, Jonathan; University of Leicester, Department of Cardiovascular Sciences; University Hospitals of Leicester NHS Trust, John Walls Renal Unit McCann, Gerry; University of Leicester, Department of Cardiovascular Sciences; University of Leicester, Department of Health Sciences Graham-Brown, Matthew ; University of Leicester, Department of Health Sciences Graham-Brown, Matthew ; University of Leicester, Department of Cardiovascular Sciences; University H

Rehabilitation medicine, Cardiovascular medicine

SCHOLARONE[™] Manuscripts

Renal transplantation < NEPHROLOGY, CARDIOLOGY, PUBLIC HEALTH

Renal medicine

1 2	
3 4 5	Primary Subject Heading :
6	Secondary Subject Heading:
7 8	Keywords:
9 10	
1112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960	For peer review

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

Page 3 of 32

1

BMJ Open

2	
3 4	1
5	2
6 7	3
8 9	4
10	5
11 12	6
13 14	7
15	8
16 17	9
18 19	10
20	11
21 22	12
23 24	13
25	14
26 27	15
28 29	16
29 30	10
31 32	10
33	10
34 35	19
36 37	20
38	21
39 40	22
41 42	23
42 43	24
44 45	25
46	26
47 48	27
49 50	28
51	29
52 53	30
54 55	31
56	32
57 58	33

1 A pilot randomised controlled trial of a structured, home-based exercise program on 2 cardiovascular structure and function in kidney transplant recipients: The ECSERT study 3 design and methods

5 Roseanne E Billany^{1,2}, Noemi Vadaszy³, Nicolette C Bishop⁴, Thomas J Wilkinson³, Sherna F 6 Adenwalla^{1,2}, Katherine A Robinson¹, Kathryn Croker², Emer M Brady¹, Joanne Wormleighton⁵, Kelly 7 Parke^{1,5}, Nicola J Cooper³, Angela C Webster⁶, Jonathan Barratt^{1,2}, Gerry P McCann¹, James O 8 Burton^{1,2,5}, Alice C Smith³, Matthew PM Graham-Brown^{1,2}

- 10 ¹ Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- 11 ² John Walls Renal Unit, University Hospitals of Leicester NHS Trust, Leicester, UK
- 12 ³ Department of Health Sciences, University of Leicester, Leicester, UK
- 13 ⁴ School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- 14 ⁵ Department of Radiology, University Hospitals of Leicester NHS Trust, Leicester, UK
- ⁶ Sydney School of Public Health, University of Sydney, Sydney, NSW, Australia; Centre for Renal and 15
- 16 Transplant Research, Westmead Hospital, Sydney, NSW, Australia.

2	18	
4	19	Corresponding author:
5 6	20	Dr Matthew Graham-Brown
7	21	Department of Cardiovascular Sciences
o 9	22	University of Leicester
0 1	23	Leicester
2	24	United Kingdom
3 4	25	mgb23@leicester.ac.uk
5 6	26	
7 0	27	Keywords: kidney transplantation, home-based exercise, cardiovascular disease, feasibility, cardiac
o 9	28	MRI
0 1	29	
2 3	30	Abstract: 300

- 31 Word count: 4402
- 32 33

35 ABSTRACT

Background: Cardiovascular disease (CVD) is a major cause of morbidity and mortality in kidney transplant recipients (KTRs). CVD risk scores underestimate risk in this population as CVD is driven by clustering of traditional and non-traditional risk factors, which lead to prognostic pathological changes in cardiovascular structure and function. Whilst exercise may mitigate CVD in this population, evidence is limited, and physical activity levels and patient activation towards exercise and self-management are low. This pilot study will assess the feasibility of delivering a structured, home-based exercise intervention in a population of KTRs at increased cardiometabolic risk and evaluate the putative effects on cardiovascular structural and functional changes, cardiorespiratory fitness, quality of life, patient activation, healthcare utilisation, and engagement with the prescribed exercise program.

Methods and analysis: Fifty KTRs will be randomised 1:1 to: (1) the intervention; a 12-week homebased combined resistance and aerobic exercise intervention or; (2) the control; usual care. Intervention participants will have one introductory session for instruction and practice of the recommended exercises prior to receiving an exercise diary, dumbbells, resistance bands, and access to instructional videos. The study will evaluate the feasibility of recruitment, randomisation, retention, assessment procedures, and the intervention implementation. Outcomes, to be assessed prior to randomisation and post-intervention, include: cardiac structure and function with stress-perfusion cardiac magnetic resonance imaging, cardiorespiratory fitness, physical function, blood biomarkers of cardiometabolic health, quality of life, and patient activation. These data will be used to inform the power calculations for future definitive trials.

Ethics and dissemination: The protocol was reviewed and given favourable opinion by the East 60 Midlands-Nottingham 2 research ethics committee (ref 19/EM/0209; 14/10/2019). Results will be 61 published in peer-reviewed academic journals and will be disseminated to the patient and public 62 community via social media, newsletter articles, and presentations at conferences.

Trial registration number: NCT04123951; prospectively registered.

1 2		
3 4	67	ARTICLE SUMMARY
5	68	Strengths and limitations of this study:
6 7	69	
8 9	70	• Data on the effects of exercise interventions on the cardiac structural and functional aspects
10	71	of CVD in this population are lacking and baseline values of multiparametric cardiac magnetic
11 12	72	resonance imaging in KTRs are previously undefined.
13 14	73	• This study uses a novel home-based exercise intervention with the potential to translate into
15	74	a widespread, low-resource intervention compared to in-centre, supervised interventions
16 17	75	that are costly and labour intensive.
18 19	76	As it can be difficult to ensure control groups are not influenced to change their lifestyle as a
20	77	result of being part of the study; control participants will be offered the intervention after
21 22	78	completion of the study.
23 24	79	• This study will provide quantitative and qualitative feasibility and pilot data to inform a
25	80	definitive randomised controlled trial that will explore longer-term engendered lifestyle
26 27	81	change in this population in response to a complex, home-based, lifestyle intervention.
28 29	82	• Secondary outcome analysis will identify the putative cardiometabolic and muscular effects
30	83	of the intervention, although these results would need confirming in adequately powered
31	84	studies due to the small sample size of this pilot study.
33 34	85	
35		
36 37		
38 39		
40		
41		
43 44		
45 46		
40 47		
48 49		
50 51		
52		
53 54		
55 56		
57		
58 59		
60		

86 BACKGROUND

Kidney transplantation is the preferred modality of renal replacement therapy for patients with end stage kidney disease (ESKD). Although kidney transplantation confers a significant survival advantage over remaining on dialysis,¹ cardiovascular disease (CVD) is a leading cause of morbidity, mortality, and graft loss.²⁻⁴ Since 2015, mortality rates attributed to CVD have been rising.⁴ Cardiovascular disease in kidney transplant recipients (KTRs) associates with traditional cardiometabolic risk factors,³ ⁵ ⁶ which drive classical atheromatous coronary artery disease, and non-traditional risk factors resulting in pathological changes in cardiovascular structure and function that associate with mortality.⁷ Immunosuppressive agents are well known to drive traditional³ and non-traditional cardiometabolic risk factors.^{8 9} Non-traditional cardiometabolic risk factors, including endothelial dysfunction, systemic inflammation, acute rejection, anaemia, and deranged bone-mineral metabolism,¹⁰⁻¹² are of at least equal importance in the pathogenesis of CVD in KTRs.⁷ This is further illustrated by the fact that traditional CVD risk-stratification tools dramatically underestimate cardiovascular risk in patients with chronic kidney disease (CKD);¹¹¹³⁻¹⁵ coronary revascularisation does not improve outcomes for KTRs as it does in the general population¹² and cardiac events are more likely to be fatal in KTRs.¹⁶

Chronic kidney disease-related cardiomyopathy, which has been termed "Uremic Cardiomyopathy", is characterised by stereotypical changes in the cardiovascular structure and function of the heart such as left ventricular hypertrophy (LVH), left ventricular dilatation, left ventricular systolic dysfunction,¹⁷ myocardial fibrosis,¹⁸ and aortic stiffness¹⁹; all of which relate to poor cardiovascular outcomes.^{20 21} Although structural and functional improvements of the heart and vessels have been seen post-transplantation in some studies,²² others have shown no regression²³ and parameters such as LVH are independent factors for cardiac failure and mortality in KTRs.¹⁵ Cardiac magnetic resonance imaging (CMR) is the gold-standard for assessment of ventricular structure and function and we have shown methods for assessment of tissue characterisation, aortopathy, and sub-clinical systolic and diastolic function to be reproducible in patients with kidney disease,²⁴⁻²⁶ making CMR the ideal imaging modality for assessing multiple aspects of prognostically relevant measures of CVD in clinical studies.

Numerous epidemiological studies have observed the association between low levels of physical activity and increased prevalence of CVD risk factors,²⁷⁻²⁹ and an inverse relationship between physical activity and all-cause and CVD mortality.^{30 31} Physical activity levels in KTRs are lower than the general population,³²⁻³⁴ with only 27% classified as meeting the UK national recommended physical activity levels.³⁵ Whilst physical activity levels improve in the year following transplantation, they plateau after one-year.³³ In the general population, lifestyle changes that increase physical activity through structured exercise lower mortality.^{36 37} Despite this evidence, there is a lack of rigorous research into Page 7 of 32

1

BMJ Open

2		
3 4	120	the role of increased physical activity in mitigating cardiovascular risk in KTRs. ³⁸ Recent consensus
5	121	recommendations from experts and stakeholders highlighted the need for a priority research agenda
6 7	122	in exercise for solid organ transplant recipients (SOTRs) to improve cardiovascular outcomes in this
8 9	123	patient population. ³⁹ Whilst supervised exercise interventions in KTRs improve cardiorespiratory
10	124	fitness and a variety of traditional and non-traditional risk factors for CVD, including metabolic
11 12	125	profile, ⁴⁰⁻⁴² strength, ⁴³ vascular stiffening, ⁴¹ weight, ⁴⁴ and inflammation, ⁴⁵ they are not realistically
13 14	126	deliverable in the current financial climate and have not translated to clinical practice. Furthermore,
15	127	exercise habits following in-centre supervised programs are not maintained ⁴⁶⁻⁴⁸ which can be
16 17	128	potentially attributed to low levels of patient activation (a measure of a person's skills, confidence,
18 19	129	and knowledge to manage their own health) and a failure for such programs to engender sustained
20	130	lifestyle changes. ^{49 50} Home-based exercise training programs have been shown to be deliverable in
21 22	131	patients on dialysis and patients undergoing cardiac rehabilitation,51-54 but the effectiveness and
23 24	132	deliverability of home-based exercise interventions are largely untested in KTRs. It cannot be assumed
25	133	that such programs will be acceptable to KTRs, whose home-lives, social and occupational
26 27	134	circumstances are significantly different to dialysis and cardiac patients. Many KTRs have had enforced
28 29	135	sedentary lifestyles prior to transplantation as dialysis patients and their goals for rehabilitation as
30	136	well as the disease processes at work may be different. ^{55 56}
31 32	137	Objectives
33 34		
35	138	The aims of this study are to evaluate the impact of a 12-week, home-based exercise intervention in
36 37	139	KTRs with increased cardiometabolic risk, specifically addressing:
38 39	140	1. The deliverability and feasibility of the home-based exercise intervention in KTRs, defining
40	141	recruitment, retention, compliance, and adverse events;
41 42	142	2. Potential cardiovascular structural and functional parameters measured using stress-
43 44	143	perfusion CMR;
45	144	3. Cardiorespiratory fitness and strength;
46 47	145	4. Biochemical markers of cardiometabolic health, body composition, physical function, and
48 49	146	quality of life;
50	147	5. Patient activation and continued adherence to the prescribed home-based exercise program.
51 52	148	Two sub-studies will assess:
53	•	

- 54 149 1. The acceptability of the intervention through qualitative semi-structured interviews post-55 56 150 intervention. 57
- 2. The differences between cardiorespiratory fitness in 'healthy controls' without a kidney 151 58 59 152 transplant versus KTRs. 60

1 ว		
2 3 4	153	
5 6	154	METHODS AND ANALYSIS
7 8	155	ECSERT trial design
9 10	156	This study is a prospective, randomised, open-label, blinded endpoint (PROBE) pilot study. The study
11 12	157	flowchart is presented in Figure 1.
13 14	158	Participant identification and recruitment
15 16	159	Fifty KTRs with a stable kidney transplant of >1 year will be recruited from University Hospitals of
17 18	160	Leicester NHS Trust (UHL) kidney transplant outpatient clinic lists. There are approximately 400-420
19	161	KTRs registered in UHL kidney transplant outpatient clinics. Full lists of inclusion and exclusion criteria
20 21	162	for KTRs are included in Table 1. Patients will be screened by a clinician for eligibility to enter the study.
22 23	163	Eligible patients will be approached (via telephone, post, or during their routine clinical appointment)
24	164	and will be provided with verbal and written study information and time to consider without further
25 26	165	contact (at least 24 h). Additionally, eligible patients who have given prior consent to be contacted
27 28	166	regarding research opportunities will be contacted via post. All patients will be given the opportunity
29	167	to discuss the study in more detail and to consider their participation. Consent will be performed by
30 31	168	the Chief Investigator (MBG) according to the rules of good clinical practice. Inclusion and exclusion
32 33	169	criteria for healthy controls is included within Table 1.
34 35	170	Randomisation
36 37	171	Following baseline assessment, participants will be randomly allocated (1:1) to either; (1) a 12-week
37 38 39 40	172	home-based combined resistance and aerobic exercise intervention (n=25) or; (2) control (n=25;
	173	receiving usual care). Randomisation will be blocked (using computer-generated random permuted
41 42	174	blocks with allocation concealment; https://www.sealedenvelope.com/simple-randomiser/v1/) to
43 44 45 46 47 48 49 50	175	ensure periodic balancing. The Clinical Trials Facilitator will perform the randomisation. Given the
	176	nature of the intervention, it is not possible for the participants to be blinded to their allocation.
	177	Intervention and comparator arms
	178	Intervention Group: 12-week home-based combined aerobic and resistance training
51 52	179	The 12-week, home-based, structured exercise program includes aerobic and resistance training (4-5
53	180	sessions in total per week). Participants will be advised to complete a warm-up and cool-down prior
54 55 56	181	to and following each session, respectively. Participants will continue to receive usual clinical care.
57 58 59 60	182	Aerobic component

BMJ Open

The aerobic component of the intervention will be walking, jogging, cycling, or similar, depending on resources available and participant preference. Participants will be asked to complete 2-3 sessions per week using a rating of perceived of exertion (RPE)⁵⁷ of 13-15 (somewhat hard) for 20-30 min. RPE will be collected throughout cardiopulmonary exercise tests (CPET) and participants will be educated on its use during the instructional session(s). RPE will be utilised rather than heart rate for two reasons: (1) Many patients are on medication which impacts heart rate (e.g. beta-blockers). We therefore cannot ascertain a true maximal heart rate from the exercise test in order for them to safely (and reliably) monitor intensity this way without supervision. (2) This is a pragmatic decision based on the potential for translation into low-cost future studies and clinical practice. However, should participants in the trial already own a smart watch or heart rate monitor, we would not discourage them from using it if they desire.

¹² 194 *Resistance component*

The resistance component of the exercise intervention will include a combination of 6-8 exercises per session chosen by the participant from a pool of twelve exercises (to provide variety) targeting upper and lower body and core muscle groups, using free weights and/or resistance bands. The chosen pool of exercises include: squat, hip abduction, lunge, calf-raise, side-lunge, bicep-curl, bent-over row, reverse-fly, lateral-raise, chest-press, side-bends, and standing trunk rotation. Each exercise has modifications for different abilities and may be pragmatically adjusted or changed throughout the study as required. These exercises were chosen based on their ability to be modified, their subjective difficulty, and their safety when being performed by participants new to exercise in an unsupervised environment. Participants will aim to complete 6-8 resistance exercises twice a week (but not on consecutive days to allow appropriate recovery). Initially they will be advised to complete 1-2 sets of 10 repetitions (at approximately 60% of estimated 1 repetition maximum (RM)⁵⁸), gradually increasing to 3-6 sets of 10 repetitions over the study period with a minimum of 30 sec rest between sets. The 1RM will be determined after randomisation by an exercise physiologist. These figures may be adjusted to accommodate different abilities and different rates of progression. Where equipment is limited (e.g. participants reach the highest provided dumbbell weight), participants will be advised to increase the number of sets performed. The load chosen was based on previous research which suggests whilst heavier loads (>60% of 1RM) are favoured for increasing strength, the effect size is still large for lighter loads (<60% of 1RM) and both are effective for increasing muscle size.⁵⁹ It is important not to discourage inactive or inexperienced participants with very heavy loads. Participants will be provided with an exercise diary which includes additional instructions, dumbbells and resistance bands, and access to educational and instructional videos. Instructional videos will include: the importance of an active and healthy lifestyle, the importance of warming up and cooling down and

BMJ Open

how to do it, a reminder of how to use the RPE scale, demonstrations of each resistance exercise, and information viewed about the aerobic component (videos can be here: https://www.youtube.com/playlist?list=PLwbE3AF9Ej Vul5uoiF-C9Cl8wrgKz5Nv). Participants will receive a telephone call from a member of the research team every two weeks in order to discuss progression of the exercise and address any issues that may arise. Participants will also be able to contact the research team at time should they require and will continue to attend any scheduled clinic appointments and take prescribed medication as normal.

16 224 Control group: 'Usual care'

Participants in the control group will be asked to maintain their current lifestyle and exercise habits throughout the study. This includes continuing to attend any scheduled clinic appointments and taking prescribed medication as normal. As part of routine care, KTRs are recommended to take regular exercise and maintain a healthy lifestyle. This advice will be reiterated to patients in the control group to ensure the intervention is being appropriately compared to best-practice standard care. Participants will be asked to complete a 'control diary' to note any exercise, medication changes, illness, and other relevant information. Once control participants complete the post-intervention assessments, they will be offered the opportunity to complete the same intervention as the exercise group.

33 234 Study timeline

35
36235Baseline assessments

The ECSERT study timeline is shown in Figure 1. Baseline assessments described below will be carried
 out on the same day and in conjunction with routine clinical appointments to prevent additional
 travel.

43 239 Collection of routine clinical information and cost-effectiveness
 44

Clinical information will be extracted from the medical notes including: age, gender, ethnicity, primary
 cause of kidney failure, transplant type, transplant vintage, dialysis duration, comorbidities,
 blood/urine results, current medication, and smoking habits. This information will be used to primarily
 capture cofounding variables and during analyses of differences and similarities between groups.

A questionnaire will be administered at baseline to capture the previous 3 months of self-reported healthcare utilisation including: inpatient and outpatient appointments, emergency care, community and primary care services, support services, and changes in medications. This will be compared to data gathered from healthcare records allowing validation of the questionnaire for future cost-effectiveness analyses.

2		
3 4	249	С
5 6	250	А
7	251	0
8 9	252	E
10 11	253	с
12	254	р
13 14	255	n
15 16	256	
17 18	257	
19 20	258	
20	259	
22 23	260	
24 25	261	
26	262	
27 28	263	
29 30	264	C
31	265	А
33 34	266	n
35 36 27	267	С
37 38 30	268	А
39 40	269	С
41 42	270	e
43	271	e
44 45	272	()
46 47	273	n
48 40	274	Т
49 50	275	b
51 52	276	v
53 54	277	e
55	278	L
56 57	279	(1
58 59	280	L
00		

49 Cardiac stress MRI

All participants will undergo a comprehensive adenosine-stress perfusion CMR scans at baseline and on study-completion. Participants will be scanned on a 3T platform (Skyra, Siemens Medical Imaging, Erlangen, Germany) with an 18-channel phased-array receiver coil. New-generation gadolinium-based contrast agent with a licence for use in patients with an eGFR >30 ml/min/1.73 m² will be given for perfusion and delayed enhancement imaging. Patients with an eGFR <40 ml/min/1.73 m² will undergo non-contrast CMR scanning without gadolinium. Scans will quantitatively define:

- Left and right-ventricular structure and function (left ventricular mass, left and right ventricular volumes and ejection fractions);⁶⁰
- P 258
 Tissue-characterisation with native and post-contrast T1 mapping and delayed gadolinium
 1 259
 enhancement;⁶¹⁻⁶³
 - Myocardial systolic-strain and peak early-diastolic strain rate;²⁶
- Quantitative perfusion imaging (coronary blood-flow to quantify coronary reserve and ischaemia);⁶⁴
- 8 263 Aortic distensibility.²⁴
- 0 264 Quadriceps MRI

At the end of the CMR scan, participants will immediately undergo an MRI scan of the quadriceps
 muscle in their right leg to assess muscle size (volume) as previously described⁶⁵

6 267 *Cardiopulmonary exercise test*

A CPET utilising a standardised ramp protocol will be performed on a stationary electronically braked
cycle ergometer (Lode Excalibur Sport, Groningen, Netherlands) with increasing workload (1 watt (W)
every 4 sec (10-15 w/min)) ensuring volitional exhaustion within 12-15 min⁶⁶. Participants will be
encouraged to cycle at a continuous cadence (~70 rpm). The highest oxygen uptake will be measured
(VO₂peak) using a simultaneous gas analyser (Metalyser 3B CPX System, CORTEX, Germany) as true
maximal (plateau) VO₂ (VO₂max) is less commonly achieved in deconditioned and/or clinical patients.
Test data will be considered usable if respiratory exchange ratio is ≥1.00 and RPE is ≥18. The test will
be in the presence of a cardiac nurse to confirm safety to commence exercise training. Blood pressure
will be assessed at baseline and every two minutes throughout the test. A continuous 12-lead
electrocardiogram (ECG) will be monitored throughout. A non-invasive monitor (Moxy, Fortiori Design
LLC., Minnesota, USA) will be worn on the quadriceps muscle which uses near infrared spectroscopy
(NIRS) to measure local oxygen saturation (SmO₂) and total haemoglobin (THb) of the muscle.

9 280 Lower limb Strength and muscular endurance

BMJ Open

Isometric and isokinetic muscle (knee extension) strength, of the dominant leg, will be assessed using a dynamometer (Biodex System 4, Biodex Medical Systems Inc., New York, USA).⁶⁷ Peak isometric strength (torque, Nm) will be assessed from three repetitions of maximum effort at 90º knee flexion for ~3-5 sec with 60 sec rest. Isokinetic strength will be assessed at three speeds for one set of five repetitions at each speed: 60°/sec, 90°/sec, and 120°/sec. Participants will perform a 'sit-to-stand-60' (STS-60) test measuring how many sit-to-stand cycles can be performed over 60 seconds to assess lower limb muscular endurance.68 Handgrip strength Peak grip strength of the left and right hands will be assessed with a hand dynamometer (Jamar Plus+; Sammons Preston, Bolingbrook, IL). Each hand will be alternatively tested for three attempts each and the highest value on each hand with be recorded.⁶⁹ Gait speed A 4 m walk test will be used to assess gait speed. Participants will be asked to walk 4 m at their 'usual walking pace' for one practice and two, timed trials. The average score (m/sec) of the timed trials will be recorded. Functional mobility The 'timed-up-and-go' test (TUAG) will be used to assess functional mobility.^{70 71} The participant is timed whilst rising from the seated position on a chair, walking 3 m, turning around, and returning to a seated position. Balance and postural stability Postural stability and balance will be assessed using a previously reported method⁷² with a FysioMeter device (modified Nintendo Wii balance-board (Nintendo, Kyoto, Japan)) connected via Bluetooth to software on a portable computer (FysioMeter ApS, Brønderslev, Denmark). Total centre of pressure ellipse area (mm²) will be obtained. Quadriceps ultrasound and myotonometry Rectus femoris anatomical cross-sectional area will be measured from the right leg using B-mode 2D ultrasonography (Hitachi EUB-6500; probe frequency, 7.5 MHz) under resting conditions with the participant lying prone at a 45° as previously described.⁶⁵ Rectus femoris and vastus lateralis thickness,

subcutaneous fat thickness, and fibre pennation angles will be obtained. Measurements of the viscoelastic properties of the soft tissue above the mid-point of the rectus femoris muscle will be obtained using a myotonometry device (MyotonPro, Tallinn, Estonia).

2		
3 4	312	Anthropometric measures
5 6	313	Anthropometric measures of height, body mass, and waist and hip circumference will be attained in
7 8	314	accordance with standard protocols. ⁷³ Bioelectrical impedance analysis (BIA) performed on an InBody
9	315	analyser (InBody 370, Chicago, Illinois, USA) will be used to estimate body composition (eg. body fat
10 11	316	percentage, fat-free mass). ^{74 75}
12 13	317	Survey pack
14 15 16	318	Participants will be provided with a survey pack containing the following questionnaires:
17	319	(1) Integrated Palliative Outcome Scale (I-POS-Renal): a validated questionnaire measuring the
18 19	320	presence and severity of disease related symptoms. The I-POS-Renal was developed based on
20 21	321	the POS and IPOS palliative care surveys, but with the additional inclusion of symptoms
22	322	common in CKD such as pruritus and restless legs. ⁷⁶
23 24	323	(2) 12-Item Short Form Health Survey (SF-12): a validated 12-item questionnaire used to assess
25 26	324	generic health outcomes from the patient's perspective.77
27	325	(3) Functional Assessment of Chronic Illness Therapy-Fatigue (FACIT-F): a validated 13-item
28 29	326	multidimensional scale that assesses fatigue over the past seven days using a 5-point Likert
30 31	327	scale that covers physical fatigue, functional fatigue, emotional fatigue, and social
32	328	consequences of fatigue with excellent internal consistency and test-retest reliability. ^{78 79}
33 34	329	(4) Pittsburgh Sleep Quality Index (PSQI): self-rated questionnaire which assesses sleep quality
35 36	330	and disturbances over a 1-month time interval. ⁸⁰
37	331	(5) Patient Activation Measure (PAM): a validated, licenced tool measuring the spectrum of
38 39	332	knowledge, skills, and confidence in patients and capturing the extent to which they feel
40 41	333	engaged and confident in taking care of their condition ('activation'). ⁸¹
42	334	(6) Brief Health Literacy Screen (BHLS): a 3-item questionnaire to identify inadequate health
45 44	335	literacy, ⁸² validated against longer screening tools in populations with ESKD. ^{83 84}
45 46	336	(7) The Global Physical Activity Questionnaire (GPAQ): developed by the World Health
47 48	337	Organisation (WHO) for physical activity surveillance in countries. It collects information on
40 49	338	physical activity participation in three settings or domains (activity at work, travel to and from
50 51	339	places, and recreational activities) as well as sedentary behaviour, comprising 16 questions. ⁸⁵
52 53	340	(8) Duke Activity Status Index (DASI): a 12-item questionnaire that uses self-reported physical
54	341	work capacity to estimate peak metabolic equivalents and has been shown to be a valid
55 56	342	measurement of functional capacity. ⁸⁶
57 58	343	Habitual physical activity
59 60		

BMJ Open

2		
3 ⊿	344	Objective data on habitual physical activity levels over a 7-day period (ideal minimum 6-days) ⁸⁷ will be
5	345	gained from tri-axial accelerometers (GENEActiv, ActivInsights Ltd., Cambridge, UK). Participants will
6 7	346	receive the monitor at the baseline and follow-up assessments and will be asked to wear it from
8 9	347	midnight that evening for 7 days.
10 11	348	Blood and urine sampling
12 13	349	Venous blood (30 ml) will be collected using venepuncture of the antecubital vein and prepared and
14 15	350	stored appropriately for the following analysis:
16 17	351	Circulating markers of cardiovascular disease
18	352	 Circulating markers of systemic inflammation and oxidative stress
20	353	Blood glucose and HbA1c
21 22	354	Lipids and triglycerides
23 24	355	Full blood count and renal profile
25 26 27	356	A urine sample will be requested to ascertain urinary protein:creatinine ratio.
27 28 29	357	Follow-up assessments
30	358	Follow up visits are summarised in Figure 1. An instructional session (or more if required) following
31 32	359	baseline assessments will allow the intervention group to become familiar with the exercise
33 34	360	requirements and allow the research team to ensure safety and competence before commencing the
35	361	12-week home-based training program. This can be via video call or in-person. At 6 weeks into the 12-
36 37	362	week period for the intervention group only, participants will be invited to review exercise progression
38 39	363	(via video call or in-person), particularly if participants are struggling to undertake the requisite
40	364	amount of exercise, and as a refresher of the intervention. This combined with regular contact from
41 42 43	365	research staff should aid participant compliance and monitoring.
44	366	Final assessments will be conducted for the exercise and control groups within 7 days of completing
45 46	367	the 12-week exercise or control period. Assessments completed will be identical to the baseline visit
47 48	368	with the addition of a 'patient satisfaction questionnaire' to allow pragmatic future development of
49	369	the study. This will also be offered to participants who withdraw from the trial. Three months after
50 51	370	completing the exercise intervention, participants will be contacted for a semi-structured one-to-one
52 53	371	telephone interview. This will aim to understand the impact of the intervention, if any, on subsequent
54 55	372	lifestyle and exercise habits.
56 57	373	Sub-studies
58 59 60	374	Additional informed consent will be sought for:

Page 15 of 32

BMJ Open

Ten 'healthy' control participants to undertake a CPET to assess the differences, if any,
 between CPET parameters in 'healthy controls' versus KTRs, particularly during the recovery
 period.

 KTRs completing the exercise intervention will be invited to undertake a semi-structured interview (via telephone, video call, or in-person) incorporating exercise self-efficacy, enjoyment, difficulties encountered, perceived advantages and disadvantages of the intervention, and study design. Participants who withdraw before the end of the intervention will also be invited to attend, although in line with ethical standards, this will be optional.

383 Sample size

The purpose of this pilot study is to obtain appropriate data to adequately power future definitive trials;⁸⁸ a power calculation is neither relevant nor possible. A minimum sample size of 50 is based on accepted values to provide adequate estimates of standard deviations for future power calculations.⁸⁹

25 387 Data collection and management

Data from all time points will be collected in case report forms (CRFs) by the trial team. All data will be entered into a secure database and will only be accessible on password-protected computers at UHL and University of Leicester by relevant members of the study team. No identifying information will be kept in electronic form. All source data and original participant identities will be kept in a locked office in the trial site file only at UHL.

36 393 Data analysis

Data will be assessed for normality using histograms, the Shapiro-Wilk test and Q-Q plots. Continuous data to be expressed as mean (± standard deviation), if normally distributed or median (interquartile range) if not. To investigate the differences between interventions we will use analysis of (co-) variance. Independent samples t-tests and Mann-Whitney U tests will be used assess for baseline differences between variables for normally and non-normally distributed data respectively. These data will be used to inform the power calculation for future definitive trials.

48
 400 Qualitative data will be transcribed verbatim and analysed according to the principles of interpretive
 50
 401 thematic analysis to explore themes emerging from patient journeys through, and experiences of, the
 52
 402 interventions and outcome measures.

- 54 403 Outcomes pertaining to the feasibility of the intervention and trial will be assessed and include:
 - *Eligibility:* the percentage of patients screened who are eligible.
 - 405 *Recruitment rate:* the percentage of patients eligible who consent to the trial and the monthly
 406 recruitment rate.

Page 16 of 32

BMJ Open

2		
3 4	407	• Adherence to the exercise intervention: the number of completed sessions per week and
5	408	specific intensity and durations achieved.
6 7	409	Acceptability of randomisation: comparison of the final group characteristics and
8 9	410	identification of any stratification variables, if applicable.
10	411	• <i>Attrition rate:</i> the number of participants that drop-out of the study.
11	412	• Outcome acceptability: the percentage of missing data for each outcome measure.
13 14	413	• <i>Safety:</i> The number of self-reported injuries or adverse events throughout the trial.
15 16	414	The <i>a priori</i> thresholds for specific feasibility and acceptability criteria are as follows: eligibility (≥50%),
17 18	415	recruitment success of 20% of eligible participants (≥2 participants per month), adherence (an average
19	416	of 3 exercise sessions per week) and attrition (\leq 30%).
20 21	417	Safety reporting
22 23	117	
24	418	All adverse events (AEs) or adverse reactions (ARs) and serious adverse events (SAEs) or serious
25 26	419	adverse reactions (SARs) will be recorded from the time a patient enters the study to the final study
27 28	420	visit. Each AE or AR will be considered for severity, causality, and expectedness and may be reclassified
28 29	421	as an SAE or SAR if required.
30 31	422	An SAE is any AE that:
32	423	is life threatening
33 34	424	 requires hospitalization or prolongation of a hospital admission
35 36	425	 results in a persistent or significant disability/incapacity
37	426	is a congenital anomaly
38 39	427	results in death
40 41	428	All AEs and ARs will be documented in participants CRFs, medical notes, and an AE log and will record
42 43	429	the following information: description, date of onset and end date, severity, assessment of
44 45	430	relatedness to study, other suspect device and action taken. Only AEs that are judged to be related to
46	431	the study intervention or procedures will be reported to the sponsor.
47 48	432	All SAEs will be reported by the investigators to the sponsor within 24 hours of discovery or notification
49 50	433	and the report will be signed by the chief investigator within 7 days. If the SAE is deemed related to
51	434	the research procedures or intervention and is unexpected, a report will be sent to the research ethics
52 53	435	committee (REC) within 15 days.
54 55	436	Patient and public involvement
56 57	437	A patient and public involvement (PPI) group has been convened and will meet with the research team
58 59	438	to review progress and address issues that arise throughout the duration of the study. The PPI partners
60	439	will assist in the interpretation and dissemination of results. The trial was designed in consultation

BMJ Open

with PPI partners who advised on intervention content and outcome measure acceptability, paying particular attention to patient burden, ensuring outcome measures would not over-burden participants. The PPI group approved the final design and duration of this intervention and advised the inclusion of an initial supervised intervention familiarisation period to build confidence in exercise capability. Changes to the study protocol following the COVID-19 pandemic The COVID-19 pandemic has made us all review the ways we design and deliver clinical studies. Whilst patient safety remains the absolute priority of clinical and research teams, there is a need for research to continue in a safe way that balances the benefits of continuing programs of research against the risks from COVID-19. We have amended the study protocol in several ways to reduce any additional exposure of patients to clinical environments where COVID-19 may be present: We have reduced the number of study visits to a minimum. The original study flow diagram is • included in Additional file 1. All interim assessments have been removed in the modified protocol (Fig. 1) and the baseline and final study visits are now wrapped into part of patient clinical care. That is to say, when they attend for their baseline and follow-up study visits they will have their clinical review and clinical blood tests as they would for their normal clinical care with a transplant nephrologist (MGB), so there is no increase in-patient visits to a clinical environment over-and-above their normal care. The original study design included a 2-week face-to-face training period where participants would attend the hospital to learn how to complete the exercises and the exercise program with a member of the research team. This training period will now be done remotely, via video conferencing, with discussion and feedback over the telephone and using the instructional videos and literature that support the home-based exercise intervention. When participants attend for their study visits, departmental procedures have been updated to now include meticulous cleaning of all equipment before and after use, one-way flows of participants to ensure participants do not mix, and the use of personal protective equipment for all staff and participants. The above changes have been agreed with the local REC and the study sponsor and have allowed recommencement of study recruitment and procedures. DISCUSSION

This pilot study is designed to assess the feasibility of delivering a structured, home-based, exercise
 intervention in KTRs at increased cardiometabolic risk and evaluate the putative effects on
 cardiovascular structure and functional changes, cardiorespiratory fitness, quality of life, healthcare

473 utilisation, patient activation, and engagement with the prescribed exercise program. It is the first trial
474 to use a pragmatic home-based program of exercise this patient group. It is also the first to use CMR
475 to evaluate the structural and functional changes of the heart in this at risk population.

9 476 Qualitative data will provide valuable personal perspectives on the acceptability of this specific 10 477 exercise program. Transplant recipients experience complex medical journeys and are likely to have 12 478 specific unmet needs in the area of exercise and lifestyle.⁹⁰ This will be valuable information for future 13 randomised controlled trials (RCTs) and exercise guideline development.

Home-based intervention outcomes are reliant on accurate reporting by participants with regards to frequency, intensity, and duration of exercise performed. This under-reporting is often a limitation of unsupervised interventions. We will ensure participants are correctly advised of how to monitor and report their exercise completion throughout the trial and encourage this through telephone communications.

485 We anticipate that a positive outcome will lead to both an increased understanding of the specific
 486 exercise requirements of KTRs and the development of new programs that promote longer-term
 487 engendered lifestyle change that can be incorporated into standard practice with much lower financial
 488 implications than in-centre supervised rehabilitation.

N.C.Z.O.J.L

ETHICS AND DISSEMINATION

Ethical issues

University of Leicester are the sponsor for this study (UOL 0714). The protocol was reviewed by the East Midlands-Nottingham 2 research ethics committee and was given a favourable opinion (REC ref 19/EM/0209) on 14/10/2019. Health Research Authority regulatory approval was given on 14/10/2019, and the study was adopted on the National Institute for Health Research (NIHR) portfolio on 26/09/2019. Local governance approval was granted by UHL R&I on 31/01/2020. This study was prospectively registered with ClinicalTrials.gov (NCT04123951; 11.10.2019). The first participant was recruited on 09/03/2020. The predicted study end date is 31/12/2022. This manuscript is guorate with the most recent approved protocol (version 6 26.08.2020). Relevant parties will be informed of any substantial protocol modifications. Steps have been taken when designing this protocol to minimise the ethical implications and ensure patient welfare. The study will comply with the International Conference for Harmonisation of Good Clinical Practice (ICH GCP) guidelines and the Research Governance Framework for Health and Social Care.

Dissemination: On completion the results of this study will be published in peer-reviewed journals and presented at national and international conferences. Contributions of all authors to manuscripts arising from this study will be made explicit in the relevant of each individual journal. Participant level data will be available following publication of results on request to the Chief Investigator. Results will also be disseminated to the patient and public community via social media and newsletter articles and presentations at patient conferences and forums, led by the patient partners. It is anticipated that the results of this study will inform future design of larger RCTs in this subject area and contribute to future specific physical activity guidelines in this population.

- Twitter: REB, @RBillany; MGB, @DrMattGB.

Author contributions: REB and MGB: study design, study setup, completion of study visits, drafting manuscript, revision of manuscript, finalising manuscript. NCB, TJW, ACW, SFA, KAR, KC, EMB, NJC, JB, GPM, JOB, and ACS: study design, drafting manuscript, revision of manuscript. NV, KP, JW: completion of study visits, drafting manuscript, revision of manuscript.

3 ⊿	525	Funding: This study is funded by a project grant from Kidney Research UK (ref: KS_RP_003_20180913).
5	526	Neither the sponsor nor the funder had or will have any input into study design; collection,
6 7	527	management, analysis, and interpretation of data; writing of the report; or the decision to submit the
8	528	report for publication.
9 10	529	
11 12	530	Acknowledgements: This research is supported by the National Institute for Health Research (NIHR)
13	531	Leicester Biomedical Research Centre. The views expressed are those of the authors and not
14 15	532	necessarily those of the NHS, the NIHR or the Department of Health
16	533	
17 18	222	Compating interactor Name declared
19	534	Competing Interests: None declared.
20 21	535	
22	536	Consent for publication: Not applicable.
23 24	537	
25		
26 27	538	Figure Caption:
28	539	Figure 1. ECSERT study flow diagram
29 30		
31	540	
32	541	
33 34	F 4 2	
35	542	
36 37	543	
38	F 4 4	
39 40	544	
40 41	545	
42	F 4 C	
43 44	546	
45	547	
46 47	- 40	
47 48	548	
49	549	
50 51		
52	550	
53	551	
54 55		
56	552	
57 58	553	
59	200	
60	554	

1		
2		
3 4	555	REFERENCES
5	556	
6 7	557	1. Oniscu GC, Brown H, Forsythe JLR. How great is the survival advantage of transplantation over
8	558	dialysis in elderly patients? Nephrol Dial Transpl 2004;19(4):945-51. doi: 10.1093/ndt/gfh022
9	559	2. Steenkamp R, Rao A, Fraser S. UK Renal Registry 18th Annual Report (December 2015) Chapter 5:
10	560	Survival and Causes of Death in UK Adult Patients on Renal Replacement Therapy in 2014:
11	561	National and Centre-specific Analyses. Nephron 2016;132 Suppl 1:111-44. doi:
12	562	10.1159/000444819
13	563	3. Neale J, Smith AC. Cardiovascular risk factors following renal transplant. World J Transplant
14 15	564	2015;5(4):183-95. doi: 10.5500/wjt.v5.i4.183
16	565	4. UK Renal Registry (2020) UK Renal Registry 22nd Annual Report – data to 31/12/2018, Bristol, UK.
17	566	Available from renal.org/audit-research/annual-report
18	567	5. Kasiske BL, Guijarro C, Massy ZA, et al. Cardiovascular disease after renal transplantation. J Am Soc
19	568	Nephrol 1996;7(1):158-65
20	569	6. Carpenter MA, John A, Weir MR, et al. BP, cardiovascular disease, and death in the Folic Acid for
21	570	Vascular Outcome Reduction in Transplantation trial. J Am Soc Nephrol 2014;25(7):1554-62.
22	571	doi: 10.1681/asn.2013040435
24	572	7. Mall G, Huther W, Schneider J, et al. Diffuse intermyocardiocytic fibrosis in uraemic patients.
25	573	Nephrol Dial Transplant 1990;5(1):39-44. doi: 10.1093/ndt/5.1.39
26	574	8. Bakri RS, Afzali B, Covic A, et al. Cardiovascular disease in renal allograft recipients is associated with
27	575	elevated sialic acid or markers of inflammation. <i>Clin Transpl</i> 2004;18(2):201-04. doi:
28	5/6	10.1111/J.1399-0012.2004.00156.X
29 30	5//	9. Liefeldt L, Budde K. Risk factors for cardiovascular disease in renal transplant recipients and
31	5/8	strategies to minimize risk. <i>Transpi Int</i> 2010;23(12):1191-204. doi: 10.1111/J.1432-
32	579	2277.2010.01159.X
33	580	10. Vali Laecke S, Maliali T, Schepers E, et al. Cardiovascular disease after transplantation. an
34	501	11 Weiner DE Tigbiouart H. Elsaved EE, et al. The Framingham predictive instrument in chronic kidney
35	582	disease 1 Am Coll Cardiol 2007;50(3):217-24 doi: 10 1016/i jacc 2007 03 037
30 27	584	12 Aalten L Peeters SA van der Vlugt ML et al. Is standardized cardiac assessment of asymptomatic
38	585	high-risk renal transplant candidates beneficial? Nenhrol Digl Transplant 2011:26(9):3006-12
39	586	doi: 10.1093/ndt/gfa822
40	587	13. Mansell H. Rosaasen N. Dean J. et al. Evidence of enhanced systemic inflammation in stable kidney
41	588	transplant recipients with low Framingham risk scores. Clin Transpl 2013;27(4):E391-E99
42	589	14. Mansell H, Stewart SA, Shoker A. Validity of cardiovascular risk prediction models in kidney
43 11	590	transplant recipients. Sci World J 2014;2014:750579. doi: 10.1155/2014/750579
44 45	591	15. Devine PA, Courtney AE, Maxwell AP. Cardiovascular risk in renal transplant recipients. J Nephrol
46	592	2019;32(3):389-99. doi: 10.1007/s40620-018-0549-4
47	593	16. Kasiske BL. Epidemiology of cardiovascular disease after renal transplantation. Transplantation
48	594	2001;72(6 Suppl):S5-8. doi: 10.1097/00007890-200109271-00003
49	595	17. de Albuquerque Suassuna P, Sanders-Pinheiro H, de Paula R. Uremic Cardiomyopathy: A New Piece
50	596	in the Chronic Kidney Disease-Mineral and Bone Disorder Puzzle. Front Med (Lausanne)
51	597	2018;5:206-06. doi: 10.3389/fmed.2018.00206
53	598	18. Aoki J, Ikari Y, Nakajima H, et al. Clinical and pathologic characteristics of dilated cardiomyopathy
54	599	in hemodialysis patients. <i>Kidney Int</i> 2005;67(1):333-40. doi: 10.1111/j.1523-
55	600	1755.2005.00086.x
56	601	19. Mark PB, Doyle A, Blyth KG, et al. Vascular function assessed with cardiovascular magnetic
57	602	resonance predicts survival in patients with advanced chronic kidney disease. J Cardiovasc
58 50	603	Magn R 2008;10:39. doi: 10.1186/1532-429x-10-39
60		

- 20. Foley RN, Parfrey PS, Harnett JD, et al. Clinical and echocardiographic disease in patients starting end-stage renal disease therapy. Kidney Int 1995;47(1):186-92. doi: 10.1038/ki.1995.22 21. Foley RN, Parfrey PS, Harnett JD, et al. The prognostic importance of left ventricular geometry in uremic cardiomyopathy. J Am Soc Nephrol 1995;5(12):2024-31 22. Ali A, Macphee I, Kaski JC, et al. Cardiac and vascular changes with kidney transplantation. Indian J Nephrol 2016;26(1):1-9. doi: 10.4103/0971-4065.165003 23. Patel RK, Mark PB, Johnston N, et al. Renal Transplantation Is Not Associated with Regression of Left Ventricular Hypertrophy: A Magnetic Resonance Study. Clin J Am Soc Nephrol 2008;3(6):1807-11. doi: 10.2215/cjn.01400308 24. Graham-Brown MPM, Adenwalla SF, Lai FY, et al. The reproducibility of cardiac magnetic resonance imaging measures of aortic stiffness and their relationship to cardiac structure in prevalent haemodialysis patients. Clin Kidney J 2018;11(6):864-73. doi: 10.1093/ckj/sfy042 25. Graham-Brown MPM, Rutherford E, Levelt E, et al. Native T1 mapping: inter-study, inter-observer and inter-center reproducibility in hemodialysis patients. J Cardiovasc Magn R 2017;19(1) doi: 10.1186/s12968-017-0337-7 26. Graham-Brown MP, Gulsin GS, Parke K, et al. A comparison of the reproducibility of two cine-derived strain software programmes in disease states. Eur J Radiol 2019;113:51-58. doi: 10.1016/j.ejrad.2019.01.026 27. Kriska AM, Saremi A, Hanson RL, et al. Physical activity, obesity, and the incidence of type 2 diabetes in a high-risk population. Am J Epidemiol 2003;158(7):669-75. doi: 10.1093/aje/kwg191 28. Stamatakis E, Gale J, Bauman A, et al. Sitting Time, Physical Activity, and Risk of Mortality in Adults. *J Am Coll Cardiol* 2019;73(16):2062-72. doi: doi:10.1016/j.jacc.2019.02.031 29. Koolhaas CM, Dhana K, Schoufour JD, et al. Impact of physical activity on the association of overweight and obesity with cardiovascular disease: The Rotterdam Study. Eur J Prev Cardiol 2017;24(9):934-41. doi: 10.1177/2047487317693952 30. Swift DL, Lavie CJ, Johannsen NM, et al. Physical activity, cardiorespiratory fitness, and exercise training in primary and secondary coronary prevention. Circ J 2013;77(2):281-92. doi: 10.1253/circj.cj-13-0007 31. Barengo NC, Hu G, Lakka TA, et al. Low physical activity as a predictor for total and cardiovascular disease mortality in middle-aged men and women in Finland. Eur Heart J 2004;25(24):2204-11. doi: 10.1016/j.ehj.2004.10.009 32. Nielens H, Lejeune TM, Lalaoui A, et al. Increase of physical activity level after successful renal transplantation: a 5 year follow-up study. Nephrol Dial Transpl 2001;16(1):134-40. doi: 10.1093/ndt/16.1.134 33. Dontje ML, de Greef MH, Krijnen WP, et al. Longitudinal measurement of physical activity following kidney transplantation. Clin Transplant 2014;28(4):394-402. doi: 10.1111/ctr.12325 34. Masiero L, Puoti F, Bellis L, et al. Physical activity and renal function in the Italian kidney transplant population. Ren Fail 2020;42(1):1192-204. doi: 10.1080/0886022x.2020.1847723 35. Wilkinson TJ, Clarke AL, Nixon DGD, et al. Prevalence and correlates of physical activity across kidney disease stages: an observational multicentre study. Nephrol Dial Transpl 2019 doi: 10.1093/ndt/gfz235 36. Booth FW, Roberts CK, Laye MJ. Lack of exercise is a major cause of chronic diseases. Compr Physiol 2012;2(2):1143-211. doi: 10.1002/cphy.c110025 37. Booth FW, Laye MJ, Roberts MD. Lifetime sedentary living accelerates some aspects of secondary aging. J Appl Physiol 2011;111(5):1497-504. doi: 10.1152/japplphysiol.00420.2011 38. Oguchi H, Tsujita M, Yazawa M, et al. The efficacy of exercise training in kidney transplant recipients: a meta-analysis and systematic review. Clin Exp Nephrol 2019;23(2):275-84. doi: 10.1007/s10157-018-1633-8

2		
3	653	39. Mathur S. Janaudis-Ferreira T. Wickerson L. et al. Meeting Report: Consensus Recommendations
4	654	for a Research Agenda in Exercise in Solid Organ Transplantation. Am J Transplant
5	655	2014:14(10):2235-45. doi: 10.1111/ait.12874
6	656	40. Masaitis-Zagaiewska A. Muras K. Nowicki M. Effects of a Structured Physical Activity Program on
/	657	Habitual Physical Activity and Body Composition in Patients With Chronic Kidney Disease and
8	658	in Kidney Transplant Recipients Evn Clin Transplant 2010:17(2):155-64 doi:
9 10	650	10 6002 /oct 2017 020E
10	059	10.0002/ett.2017.0505
12	660	41. O Connor Elvi, Kouraki P, Mercer TH, et al. Long-term pulse wave velocity outcomes with aerobic
13	661	and resistance training in kidney transplant recipients - A pilot randomised controlled trial.
14	662	<i>PLoS One</i> 2017;12(2):e0171063. doi: 10.1371/journal.pone.0171063
15	663	42. Moraes Dias CJ, Anaisse Azoubel LM, Araujo Costa H, et al. Autonomic modulation analysis in active
16	664	and sedentary kidney transplanted recipients. <i>Clin Exp Pharmacol Physiol</i> 2015;42(12):1239-
17	665	44. doi: 10.1111/1440-1681.12481
18	666	43. Karelis AD, Hébert MJ, Rabasa-Lhoret R, et al. Impact of Resistance Training on Factors Involved in
19	667	the Development of New-Onset Diabetes After Transplantation in Renal Transplant
20	668	Recipients: An Open Randomized Pilot Study. Can J Diabetes 2016;40(5):382-88. doi:
21	669	10.1016/j.jcjd.2015.08.014
22	670	44. Roi GS, Stefoni S, Mosconi G, et al. Physical activity in solid organ transplant recipients:
23	671	organizational aspects and preliminary results of the Italian project. Transplant Proc
24	672	2014;46(7):2345-9. doi: 10.1016/j.transproceed.2014.07.055
25	673	45. Romano G. Simonella R. Falleti E. et al. Physical training effects in renal transplant recipients. <i>Clin</i>
20 27	674	Transplant 2010:24(4):510-4. doi: 10.1111/j.1399-0012.2009.01098.x
27	675	46 Kinnafick FE Thogersen-Ntoumani C Shenherd SO et al. In It Together: A Qualitative Evaluation
20	676	of Particinant Experiences of a 10-Week Groun-Based Workplace HIIT Program for
30	677	Insufficiently Active Adults, I Sport Every Brychol 2018;40(1):10-10, doi: 10.1123/isen.2017-
31	670	
32	670	USUO 47 van Baar ME Dekker I. Oestendern BA et al. Effectiveness of eversise in nationts with
33	079	47. Vali Baar IVIE, Dekker J, Oostenuorp RA, et al. Effectiveness of exercise in patients with
34	680	osteoarthritis of hip or knee: hine months follow up. Ann kneum Dis 2001;60(12):1123-30.
35	681	doi: 10.1136/ard.60.12.1123
36	682	48. Timmons JF, Griffin C, Cogan KE, et al. Exercise Maintenance in Older Adults 1 Year After
37	683	Completion of a Supervised Training Intervention. J Am Geriatr Soc 2020;68(1):163-69. doi:
38	684	10.1111/jgs.16209
39	685	49. Hibbard JH, Greene J. What The Evidence Shows About Patient Activation: Better Health Outcomes
40	686	And Care Experiences; Fewer Data On Costs. <i>Health Affairs</i> 2013;32(2):207-14. doi:
41 42	687	10.1377/hlthaff.2012.1061
4Z 13	688	50. Skolasky RL, Mackenzie EJ, Wegener ST, et al. Patient activation and adherence to physical therapy
45 44	689	in persons undergoing spine surgery. Spine (Phila Pa 1976) 2008;33(21):E784-E91. doi:
45	690	10.1097/BRS.0b013e31818027f1
46	691	51. Baggetta R, D'Arrigo G, Torino C, et al. Effect of a home based, low intensity, physical exercise
47	692	program in older adults dialysis patients: a secondary analysis of the EXCITE trial. BMC Geriatr
48	693	2018;18(1):248. doi: 10.1186/s12877-018-0938-5
49	694	52. Imran HM, Baig M, Ergou S, et al. Home-Based Cardiac Rehabilitation Alone and Hybrid With
50	695	Center-Based Cardiac Rehabilitation in Heart Failure: A Systematic Review and Meta-Analysis.
51	696	I Am Heart Assoc 2019:8(16):e012779 doi:10.1161/JAHA 119.012779
52	697	53 Uchivama K. Washida N. Morimoto K. et al. Home-based Aerobic Exercise and Resistance Training
53	698	in Peritoneal Dialysis Patients: A Randomized Controlled Trial Sci Ren 2019;9(1):2632 doi:
54	600	10 1038/c/1508-010-3007/-0
55	700	54 Anike DT Baria E Kamimura MA et al Home-based versus conter based aerobic eversion on
50 57	700	cardionulmonary performance physical function quality of life and quality of clean of
57 58	701	carulopulitionary performance, physical function, quality of file and quality of sleep of
59	702	overweight patients with thronic kinney disease. Chin Exp Nephrol 2018;22(1):87-98. doi:
60	703	10.100//51015/-01/-1423-2

3 704 55. Majchrzak KM, Pupim LB, Chen K, et al. Physical activity patterns in chronic hemodialysis patients: 4 705 comparison of dialysis and nondialysis days. J Ren Nutr 2005;15(2):217-24. doi: 5 706 10.1053/j.jrn.2004.08.002 6 707 56. Carvalho EV, Reboredo MM, Gomes EP, et al. Physical activity in daily life assessed by an 7 accelerometer in kidney transplant recipients and hemodialysis patients. Transplant Proc 708 8 709 2014;46(6):1713-7. doi: 10.1016/j.transproceed.2014.05.019 9

- 10 710 57. Borg GA. Perceived exertion: a note on "history" and methods. *Med Sci Sports* 1973;5(2):90-3.
- 1171158. Brzycki M. Strength Testing—Predicting a One-Rep Max from Reps-to-Fatigue. Journal of Physical12712Education, Recreation & Dance 1993;64(1):88-90. doi: 10.1080/07303084.1993.10606684
- 713
 713
 714
 714
 715
 715
 715
 716
 718
 719
 719
 710
 710
 711
 711
 712
 713
 713
 714
 714
 715
 715
 715
 715
 716
 717
 718
 719
 719
 710
 710
 710
 711
 711
 712
 712
 713
 713
 714
 715
 715
 715
 715
 715
 715
 715
 715
 715
 715
 715
 715
 715
 715
 715
 715
 715
 715
 715
 715
 715
 715
 715
 715
 715
 715
 715
 715
 715
 715
 715
 715
 715
 715
 715
 715
 715
 715
 715
 715
 715
 715
 715
 715
 715
 715
 715
 715
 715
 715
 715
 715
 715
 715
 715
 715
 715
 715
 715
 715
 715
 715
 715
 715
 715
 715
 715
 715
 715
 715
 715
 715
 715
 715
 715
 715
 715
 715
 715
 715
 715
- 1771660. Hunold P, Vogt FM, Heemann UW, et al. Myocardial mass and volume measurement of18717hypertrophic left ventricles by MRI--study in dialysis patients examined before and after19718dialysis. J Cardiovasc Magn R 2003;5(4):553-61. doi: 10.1081/jcmr-120025230
- 719
 719
 720
 720
 720
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
- 722
 722
 723
 723
 724
 725
 725
 726
 726
 727
 728
 729
 729
 720
 720
 721
 721
 722
 723
 724
 725
 725
 725
 726
 727
 728
 729
 729
 720
 720
 720
 721
 721
 722
 723
 724
 725
 725
 725
 726
 727
 728
 729
 729
 720
 720
 720
 720
 720
 720
 720
 720
 720
 720
 720
 720
 720
 720
 720
 720
 720
 720
 720
 720
 720
 720
 720
 720
 720
 720
 720
 720
 720
 720
 720
 720
 720
 720
 720
 720
 720
 720
 720
 720
 720
 720
 720
 720
 720
 720
 720
 720
 720
 720
 720
 720
 720
 720
 720
 720
 720
 720
 720
 720
 720
 720
 720
 720
 720
 720
 720
 720
 720
 720
 720
 720
 720
 720
 720
 720
- 726 63. Graham-Brown MP, Singh AS, Gulsin GS, et al. Defining myocardial fibrosis in haemodialysis
 727 patients with non-contrast cardiac magnetic resonance. *BMC Cardiovasc Disord* 728 2018;18(1):145. doi: 10.1186/s12872-018-0885-2
- 729
 729
 729
 730
 730
 731
 64. Xue H, Brown LAE, Nielles-Vallespin S, et al. Automatic in-line quantitative myocardial perfusion mapping: Processing algorithm and implementation. *Magn Reson Med* 2020;83(2):712-30. doi: 10.1002/mrm.27954
- 732 65. Gould DW, Watson EL, Wilkinson TJ, et al. Ultrasound assessment of muscle mass in response to
 733 exercise training in chronic kidney disease: a comparison with MRI. *J Cachexia Sarcopenia* 734 *Muscle* 2019;10(4):748-55. doi: 10.1002/jcsm.12429
- 38
 735
 66. ATS/ACCP Statement on Cardiopulmonary Exercise Testing. Am J Resp Crit Care 2003;167(2):211

 39
 736
 77. doi: 10.1164/rccm.167.2.211
- 4073767. Feiring DC, Ellenbecker TS, Derscheid GL. Test-Retest Reliability of the Biodex Isokinetic41738Dynamometer. J Orthop Sport Phys 1990;11(7):298-300. doi: 10.2519/jospt.1990.11.7.298
- 42
 43
 44
 44
 45
 46
 742
 68. Wilkinson TJP, Xenophontos SM, Gould DWP, et al. Test-retest reliability, validation, and "minimal detectable change" scores for frequently reported tests of objective physical function in patients with non-dialysis chronic kidney disease. *Physiother Theory Pract* 2019;35(6):565-76. doi: 10.1080/09593985.2018.1455249
- 47 743 69. Wilkinson TJ, Gabrys I, Lightfoot CJ, et al. A Systematic Review of Handgrip Strength Measurement
 48 744 in Clinical and Epidemiological Studies of Kidney Disease: Toward a Standardized Approach. J
 49 745 Ren Nutr 2021 doi: 10.1053/j.jrn.2021.06.005
- 746
 747
 747
 748
 749
 749
 749
 740
 741
 741
 742
 743
 744
 745
 745
 746
 747
 747
 748
 749
 749
 740
 741
 741
 742
 743
 744
 744
 745
 745
 746
 747
 747
 748
 748
 749
 749
 740
 741
 741
 742
 742
 743
 744
 744
 745
 745
 746
 747
 747
 748
 748
 749
 749
 749
 740
 741
 741
 742
 742
 744
 745
 745
 746
 747
 748
 748
 749
 749
 749
 740
 741
 741
 742
 742
 744
 744
 744
 745
 745
 746
 747
 748
 748
 748
 749
 749
 749
 740
 740
 741
 741
 742
 744
 744
 744
 744
 744
 744
 744
 744
 744
 744
 744
 744
 744
 744
 744
 744
 744
 744
 744
 744
 744
 744
 744
 744
 744
 744
 744
- 71. Hadjiioannou I, Wong K, Lindup H, et al. Test-restest reliability for physical function measures in74871. Hadjiioannou I, Wong K, Lindup H, et al. Test-restest reliability for physical function measures in749patients with chronic kidney disease. J Ren Care 2019 doi: 10.1111/jorc.12310
- 750
 751
 752
 753
 754
 755
 755
 756
 751
 751
 752
 752
 753
 754
 754
 755
 755
 756
 757
 757
 758
 759
 750
 750
 750
 751
 752
 752
 753
 754
 754
 755
 755
 756
 757
 757
 758
 759
 750
 750
 750
 751
 751
 752
 752
 754
 754
 755
 754
 755
 755
 756
 757
 758
 758
 759
 750
 750
 750
 750
 751
 751
 751
 751
 751
 752
 752
 754
 755
 754
 755
 754
 755
 754
 755
 755
 754
 755
 754
 754
 755
 755
 754
 755
 754
 755
 754
 755
 754
 754
 755
 755
 755
 756
 757
 757
 758
 758
 758
 759
 759
 750
 750
 750
 750
 751
 751
 751
 752
 754
 754
 754
 754
 754
 754
 754
 756
 756
 756
 757
- 753 73. Eston RG, Reilly T. Kinanthropometry and exercise physiology laboratory manual: tests,
 754 procedures, and data. 3rd ed. Abingdon: Routledge 2009.
 60

3	755	74. Chertow GM, Lowrie EG, Wilmore DW, et al. Nutritional assessment with bioelectrical impedance
4	756	analysis in maintenance hemodialysis patients. J Am Soc Nephrol 1995;6(1):75-81.
5	757	75. Macdonald JH, Marcora SM, Jibani M, et al. Bioelectrical impedance can be used to predict muscle
6 7	758	mass and hence improve estimation of glomerular filtration rate in non-diabetic patients with
/ 8	759	chronic kidney disease. <i>Nephrol Dial Transpl</i> 2006;21(12):3481-7. doi: 10.1093/ndt/gfl432
9	760	76. Rai R. Ahuja K. Frandsen M. et al. Validation of the IPOS-Renal Symptom Survey in Advanced Kidney
10	761	Disease: A Cross-sectional Study. J Pain Symptom Manage 2018:56(2):281-87. doi:
11	762	10.1016/i ipainsymman 2018 04 006
12	763	77 Ware Ir IF Kosinski M Keller SD A 12-Item Short-Form Health Survey: construction of scales and
13	764	nreliminary tests of reliability and validity. <i>Med Care</i> 1996:220-33
14	765	78 Wang S-Y Zang X-Y Liu I-D et al. Psychometric Properties of the Functional Assessment of Chronic
15	766	Illness Therany-Eatigue (FACIT-Eatigue) in Chinese Patients Receiving Maintenance Dialysis
16	767	Pain Symptom Manage 2015:49(1):135-43 doi: 10.1016/j.jpainsymman.2014.04.011
1/	768	79 Vellen SR Cella DE Webster K et al Measuring fatigue and other anemia-related symptoms with
18 10	760	the Europianal Assessment of Cancer Therapy (EACT) measurement system / Pain Symptoms
20	705	Manage 1997:13(2):62-74. doi: 10.1016/c0885-3924/96)00274-6
20	770	80 Ruysse DL Roynolds CE Monk TH at al. The Dittchurgh Sloop Quality Index: a new instrument for
22	771	buysse DJ, Reynolds CF, Molik TH, et al. The Pittsbulgh Sleep Quality index. a new instrument for
23	//Z	psychiatric practice and research. <i>Psychiatry</i> Res 1989,26(2),195-215. doi: 10.1010/0105-
24	773	1761(89)90047-4 81 Libbard III. Stackard I. Mahanay ED at al. Davalanment of the Datiant Activation Measure (DAM):
25	774	81. Hibbard JH, Stockard J, Manoney ER, et al. Development of the Patient Activation Measure (PAM).
26	775	Conceptualizing and inteasuring Activation in Patients and Consumers. Health Serv Res
27	770	2004;39(4p1):1005-26. doi: 10.1111/j.1475-6773.2004.00269.X
28	777	82. Chew LD, Bradley KA, Boyko EJ. Brief questions to identify patients with inadequate health literacy.
29	778	Fam Mea 2004;36(8):588-94
30 31	//9	83. Cavanaugh KL, Osborn CY, Tentori F, et al. Performance of a brief survey to assess health literacy
32	/80	in patients receiving hemodialysis. <i>Clinical Kidney Journal</i> 2015;8(4):462-8. doi:
33	/81	https://dx.doi.org/10.1093/ckj/stv03/
34	782	84. Dageforde LA, Cavanaugh KL, Moore DE, et al. Validation of the written administration of the short
35	783	literacy survey. J Health Commun 2015;20(7):835-42. doi: 10.1080/10810730.2015.1018572
36	784	85. Bull FC, Maslin TS, Armstrong T. Global physical activity questionnaire (GPAQ): nine country
37	785	reliability and validity study. J Phys Act Health 2009;6(6):790-804. doi: 10.1123/jpah.6.6.790
38	786	86. Hlatky MA, Boineau RE, Higginbotham MB, et al. A brief self-administered questionnaire to
39	787	determine functional capacity (the Duke Activity Status Index). <i>Am J Cardiol</i> 1989;64(10):651-
40 41	788	4. doi: 10.1016/0002-9149(89)90496-7
41	789	87. Dillon CB, Fitzgerald AP, Kearney PM, et al. Number of Days Required to Estimate Habitual Activity
43	790	Using Wrist-Worn GENEActiv Accelerometer: A Cross-Sectional Study. PLOS ONE
44	791	2016;11(5):e0109913. doi: 10.1371/journal.pone.0109913
45	792	88. Moore CG, Carter RE, Nietert PJ, et al. Recommendations for Planning Pilot Studies in Clinical and
46	793	Translational Research. J Clin Transl Sci 2011;4(5):332-37. doi: 10.1111/j.1752-
47	794	8062.2011.00347.x
48	795	89. Sim J, Lewis M. The size of a pilot study for a clinical trial should be calculated in relation to
49	796	considerations of precision and efficiency. J Clin Epidemiol 2012;65(3):301-8. doi:
50	797	10.1016/j.jclinepi.2011.07.011
51	798	90. Gordon EJ, Prohaska T, Siminoff LA, et al. Needed: Tailored exercise regimens for kidney transplant
52	799	recipients. <i>Am J Kidney Dis</i> 2005;45(4):769-74. doi: 10.1053/j.ajkd.2005.01.002
54	800	
55	801	
56		
57		
58		
59		
60		

Inclusion Criteria	Exclusion Criteria
RTRs	
 Prevalent KTR >1 year Male or female, aged >18 years old Willing and able to give informed consent for participation in the study Increased cardiometabolic risk with at least one of: Diabetes mellitus Dyslipidaemia Hypertension Obesity (BMI >30) History of ischaemic heart disease/cerebrovascular disease 	 Inability to give informed consent or with testing and exercise protocol reason Unable to undergo CMR s (incompatible implants, claustro allergy to agents etc.) Female participants who are pr lactating, or planning pregnancy dur course of the study Scheduled elective surgery or procedures requiring general anae during the study Any other significant disease or disord
 Age <18 years No documented history of major cardiorespiratory chronic condition None of the following cardiometabolic risk factors: Diabetes mellitus Dyslipidaemia Hypertension History of ischaemic heart disease/cerebrovascular disease Obesity (BMI>30) 	 Unable to undertake exercise testing physical or psychological barriers Scheduled elective surgery or procedures requiring general anaeduring the study Inability to give informed consent or with testing and exercise protocol reason Any other significant disease or disord
*i.e. significant co-morbidity including unstable hypertension, p unstable angina, active liver disease, uncontrolled diabetes mel which, in the opinion of the patient's own clinician, may either influence the result of the study, or the patient's ability to partici	potentially lethal arrhythmia, myocardial infarction within litus (HbA1c \ge 9%), advanced cerebral or peripheral vascu put the patient at risk because of participation in the stud pate in the study.

2		
3 4	809	Additional file details
5	810	File name: Additional File 1
6 7	811	File format: Additional File 1.pdf
8 9	812	Title of data: Original ECSERT flow diagram (pre-COVID-19)
10	813	Description of data: Flow diagram prior to COVID-19 amendments
11 12	814	
13 14	815	
15	816	
16 17		
18 10		
20		
21 22		
23		
24 25		
26 27		
28		
29 30		
31 32		
33		
34 35		
36 37		
38		
39 40		
41 42		
43		
44 45		
46 47		
48		
49 50		
51 52		
53		
54 55		
56 57		
58		
59 60		

BMJ Open

170x219mm (300 x 300 DPI)

BMJ Open

Standard Protocol Items: Recommendations for Interventional Trials

SPIRIT 2013 Checklist: Recommended items to address in a clinical trial protocol and related documents*

ltem No	Description			
Administrative information				
1	Descriptive title identifying the study design, population, interventions, and, if applicable, trial acronym (Page 1, lines 1-3)			
2a	Trial identifier and registry name. If not yet registered, name of intended registry (Page 2, lines 67)			
2b	All items from the World Health Organization Trial Registration Data Set (Yes, throughout)			
3	Date and version identifier (page 16, line 494)			
4	Sources and types of financial, material, and other support (page 16, line 506 and page 16, lines 511-513)			
5a	Names, affiliations, and roles of protocol contributors (page 1 and 15)			
5b	Name and contact information for the trial sponsor (page 16, line 488)			
5c	Role of study sponsor and funders, if any, in study design; collection, management, analysis, and interpretation of data; writing of the report; and the decision to submit the report for publication, including whether they will have ultimate authority over any of these activities (page 16, 506-509)			
5d	Composition, roles, and responsibilities of the coordinating centre, steering committee, endpoint adjudication committee, data management team, and other individuals or groups overseeing the trial, if applicable (see Item 21a for data monitoring committee) N/A			
6a	Description of research question and justification for undertaking the trial, including summary of relevant studies (published and unpublished) examining benefits and harms for each intervention (Introduction, page 3)			
6b	Explanation for choice of comparators (Introduction, page 3)			
7	Specific objectives or hypotheses (Page 4)			
	Item No forma 1 2a 2b 3 4 5a 5b 5c 5d 5d 6a 6a 7			

pants , 9	interventions, and outcomes Description of study settings (eg, community clinic, academic
9	Description of study settings (eg, community clinic, academic
	hospital) and list of countries where data will be collected. Reference to where list of study sites can be obtained (Page 5, line 141-143)
10	Inclusion and exclusion criteria for participants. If applicable, eligibility criteria for study centres and individuals who will perform the interventions (eg, surgeons, psychotherapists) (Table 1)
11a	Interventions for each group with sufficient detail to allow replication including how and when they will be administered (Page 5 and 6)
11b	Criteria for discontinuing or modifying allocated interventions for a given trial participant (eg, drug dose change in response to harms, participant request, or improving/worsening disease) (Page 6, lines 176-178)
11c	Strategies to improve adherence to intervention protocols, and any procedures for monitoring adherence (eg, drug tablet return, laboratory tests) (Page 10, lines 323-327)
11d	Relevant concomitant care and interventions that are permitted or prohibited during the trial (Page 5, line 164)
12	Primary, secondary, and other outcomes, including the specific measurement variable (eg, systolic blood pressure), analysis metric (eg, change from baseline, final value, time to event), method of aggregation (eg, median, proportion), and time point for each outcome. Explanation of the clinical relevance of chosen efficacy an harm outcomes is strongly recommended (Study timeline, page 7)
13	Time schedule of enrolment, interventions (including any run-ins and washouts), assessments, and visits for participants. A schematic diagram is highly recommended (see Figure) (Figure 1)
14	Estimated number of participants needed to achieve study objective and how it was determined, including clinical and statistical assumptions supporting any sample size calculations (Page 11, line 346-348)
15	Strategies for achieving adequate participant enrolment to reach target sample size (Page 5, 140+)
	 11a 11b 11c 11d 12 13 14 15 ment

Sequence generation	16a	Method of generating the allocation sequence (eg, computer- generated random numbers), and list of any factors for stratification. To reduce predictability of a random sequence, details of any planned restriction (eg, blocking) should be provided in a separate document that is unavailable to those who enrol participants or assign interventions (Page 5, 154-159)
Allocation concealment mechanism	16b	Mechanism of implementing the allocation sequence (eg, central telephone; sequentially numbered, opaque, sealed envelopes), describing any steps to conceal the sequence until interventions are assigned (Page 5, 154-159)
Implementatio n	16c	Who will generate the allocation sequence, who will enrol participants, and who will assign participants to interventions (Page 5, 158)
Blinding (masking)	17a	Who will be blinded after assignment to interventions (eg, trial participants, care providers, outcome assessors, data analysts), and how N/A
	17b	If blinded, circumstances under which unblinding is permissible, and procedure for revealing a participant's allocated intervention during the trial N/A
Methods: Data co	ollectio	on, management, and analysis
Data collection methods	18a	Plans for assessment and collection of outcome, baseline, and other trial data, including any related processes to promote data quality (eg, duplicate measurements, training of assessors) and a description of study instruments (eg, questionnaires, laboratory tests) along with their reliability and validity, if known. Reference to where data collection forms can be found, if not in the protocol (Page 7-11)
	18b	Plans to promote participant retention and complete follow-up, including list of any outcome data to be collected for participants who discontinue or deviate from intervention protocols (Page 11)
Data management	19	Plans for data entry, coding, security, and storage, including any related processes to promote data quality (eg, double data entry; range checks for data values). Reference to where details of data
		management procedures can be found, if not in the protocol (Page 11, lines 349- 354)
Statistical methods	20a	 management procedures can be found, if not in the protocol (Page 11, lines 349-354) Statistical methods for analysing primary and secondary outcomes. Reference to where other details of the statistical analysis plan can be found, if not in the protocol (Page 11 and 12)
Statistical methods	20a 20b	 management procedures can be found, if not in the protocol (Page 11, lines 349-354) Statistical methods for analysing primary and secondary outcomes. Reference to where other details of the statistical analysis plan can be found, if not in the protocol (Page 11 and 12) Methods for any additional analyses (eg, subgroup and adjusted analyses) N/A

	20c	Definition of analysis population relating to protocol non-adherence (eg, as randomised analysis), and any statistical methods to handle missing data (eg, multiple imputation) (Page 12)			
Methods: Monito	ethods: Monitoring				
Data monitoring	21a	Composition of data monitoring committee (DMC) or Data and Safety Monitoring Board (DCMB); summary of its role and reporting structure; statement of whether it is independent from the sponsor and competing interests; and reference to where further details about its charter can be found, if not in the protocol. Alternatively, an explanation of why a DMC is not needed			
		A DSMB is indicated, from a practical perspective in the following circumstances:			
		 If the trial is intended to provide definitive information about effectiveness and/or safety of a medical or bio-behavioral intervention If there are prior data to suggest that the intervention being studied has the potential to induce potentially unacceptable toxicity If the trial is evaluating mortality or another major endpoint, such that inferiority of one treatment arm has safety as well as effectiveness implications 			
		4. If it would ethically be important for the trial to stop early if the primary question addressed has been definitively answered, even if secondary questions or complete safety information were not yet fully addressed			
		The ECSERT study does not meet any of these criteria as a pilot/feasibility study			
	21b	Description of any interim analyses and stopping guidelines, including who will have access to these interim results and make the final decision to terminate the trial N/A			
Harms	22	Plans for collecting, assessing, reporting, and managing solicited and spontaneously reported adverse events and other unintended effects of trial interventions or trial conduct (Page 12, safety reporting)			
Auditing	23	Frequency and procedures for auditing trial conduct, if any, and whether the process will be independent from investigators and the sponsor N/A aside from usual sponsor audits			
Ethics and disse	minati	on			
Research ethics approval	24	Plans for seeking research ethics committee/institutional review board (REC/IRB) approval (Page 16, ethical issues)			
Protocol amendments	25	Plans for communicating important protocol modifications (eg, changes to eligibility criteria, outcomes, analyses) to relevant parties (eg, investigators, REC/IRBs, trial participants, trial registries, journals, regulators) (Page 16, ethical issues)			

Consent or assent	26a	Who will obtain informed consent or assent from potential trial participants or authorised surrogates, and how (see Item 32) (page 5)
	26b	Additional consent provisions for collection and use of participant data and biological specimens in ancillary studies, if applicable (consent form)
Confidentiality	27	How personal information about potential and enrolled participants will be collected, shared, and maintained in order to protect confidentiality before, during, and after the trial (Page 11)
Declaration of interests	28	Financial and other competing interests for principal investigators for the overall trial and each study site (Page 16, line 515)
Access to data	29	Statement of who will have access to the final trial dataset, and disclosure of contractual agreements that limit such access for investigators (Page 17, availability of data)
Ancillary and post-trial care	30	Provisions, if any, for ancillary and post-trial care, and for compensation to those who suffer harm from trial participation N/A
Dissemination policy	31a	Plans for investigators and sponsor to communicate trial results to participants, healthcare professionals, the public, and other relevant groups (eg, via publication, reporting in results databases, or other data sharing arrangements), including any publication restrictions (Page 17, availability of data)
	31b	Authorship eligibility guidelines and any intended use of professional writers (Page 17, availability of data)
	31c	Plans, if any, for granting public access to the full protocol, participant-level dataset, and statistical code (Page 17, availability of data)
Appendices		
Informed consent materials	32	Model consent form and other related documentation given to participants and authorised surrogates Yes
Biological specimens	33	Plans for collection, laboratory evaluation, and storage of biological specimens for genetic or molecular analysis in the current trial and for future use in ancillary studies, if applicable (Page 10)

*It is strongly recommended that this checklist be read in conjunction with the SPIRIT 2013 Explanation & Elaboration for important clarification on the items. Amendments to the protocol should be tracked and dated. The SPIRIT checklist is copyrighted by the SPIRIT Group under the Creative Commons "<u>Attribution-NonCommercial-NoDerivs 3.0 Unported</u>" license.