The Pd-catalysed asymmetric allylic alkylation reactions of

sulfamidate imines

Quoc Hoang Pham, Andrew J. Tague, Christopher Richardson, Christopher J. T. Hyland*, and Stephen G. Pyne*

School of Chemistry and Molecular Bioscience, Molecular Horizons Research Institute, University of Wollongong, Wollongong, New South Wales, 2522, Australia.

Supporting information

1.	General2	
2.	Table of reaction optimisation results ^a	;
3.	Synthesis of allyl carbonates5	,
4.	Preparation of cyclic sulfamidate imines12	
а	. Synthesis of dithianes	
b	. Synthesis of dithiane alcohols15	,
С	. Synthesis of α-hydroxy ketones23	;
С	. Synthesis of cyclic sulfamidate imines	•
5.	Synthesis of chiral ligand41	•
6.	Synthesis of 3- and 5-allyl cyclic sulfamidate imines42	
а	. 5-Allyl cyclic sulfamidate imines43	;
b	. 3-Allyl cyclic sulfamidate imines62	
7.	Post-synthetic modifications67	,
8.	Crystallographic data71	•
9.	References75	;
10.	NMR spectra of novel compounds77	,
11.	HPLC chromatograms	-

1. General

Reagents and solvents were acquired from commercial suppliers and were used either without further purification or purified by standard techniques. Anhydrous solvents were passed through activated alumina for dryness before being stored under N₂ over 4 Å molecular sieves. Anhydrous THF was obtained by distillation from a sodium/benzophenone ketyl still under nitrogen. Air- and moisturesensitive reactions were performed in oven-dried glassware under an inert N₂ atmosphere. For thinlayer chromatography (TLC), silica gel plates were obtained from Merck & Co., visualised under UV light and/or by treatment with either potassium permanganate or cerium molybdate TLC stain solution, followed by heating. Purification was carried out using flash column chromatography (FCC) with silica gel 60 (0.04 - 0.06) mm obtained from Chem-Supply. Solvent used for NMR analysis was deuterated chloroform (CDCl₃) with 0.1% w/v tetramethylsilane (TMS), obtained from Sigma–Aldrich. ¹H, ¹⁹F, and ¹³C NMR spectra were recorded with either a Bruker Avance III 400 spectrometer (400 MHz for ¹H NMR and 100 MHz for ¹³C NMR) or a Bruker Avance Neo 500 spectrometer equipped with a BBO Prodigy N₂ cryoprobe (500 MHz for ¹H NMR, 125 MHz for ¹³C NMR, and 470 MHz for ¹⁹F NMR). Trifluorotoluene was used as an external reference for ¹⁹F NMR analysis and was referenced to 0.00 ppm. Abbreviations used in the descriptions of NMR resonances include: singlet (s), doublet (d), triplet (t), quartet (q), heptet (h), multiplet (m), broad singlet (br s), doublet of doublet (dd), doublet of doublet of doublet (ddd). High-performance liquid chromatography (HPLC) was performed using a Shimadzu Nexera X2 UHPLC equipped with a PDA detector. Optical rotation values were measured using a Jasco P-2000 polarimeter with a 10 cm, 2 mL cell. Melting point analysis was carried out using a Buchi Melting Point M-560 instrument.

2. Table of reaction optimisation results^{*a*}

L4

L5: Ar = Ph **L6**: Ar = *p*-Tol

Fata	Ligand	Solvent	Temperature	Additive	%Yield ^b		
Entry				(equiv.)	3aa	4aa	er
1	PPh₃	MeCN	rt	I	49 ^d	30 ^d	_
2	PCy ₃	MeCN	rt	I	NR		_
3	P(<i>o</i> -tol)₃	MeCN	rt	_	NR		_
4	P(<i>p</i> -tol)₃	MeCN	rt	_	43 ^d	18 ^d	_
5	$P(C_6F_5)_3$	MeCN	rt	I	NR		_
6	$P(p-C_6H_4CI)_3$	MeCN	rt	_	15 ^d	23 ^d	_
7	P(2-furyl)₃	MeCN	rt	I	43 ^d	31 <i>^d</i>	_
8	PPh₃	MeCN	0–5 °C	I	26	20	_
9	PPh₃	MeCN	40 °C	I	49	18	_
10	PPh₃	MeCN	reflux	I	28	4	_
11 ^e	PPh₃	MeCN	rt	I	27	23	_
12 ^{<i>f</i>}	PPh₃	MeCN	rt	I	56	18	_
13	I	MeCN	rt	I	NR		_
14	PPh₃	THF	rt	_	89	_	_
15	PPh₃	THF	rt	LiCl (1.0)	NR		_
16	PPh₃	THF	rt	AgBF ₄ (0.13)	70	_	_
17	PPh₃	THF	rt	Bu ₄ NCl (1.0)	21	20	_
18	PPh₃	CH ₂ Cl ₂	rt	_	70	_	_
19	PPh₃	PhMe	rt	_	trace	trace	_
20	PPh₃	MeOH	rt	_	16	17	_
21	PPh₃	DMF	rt	-	41	22	_
22	PPh₃	DMSO	rt	_	61	12	_
23 ^g	L1	THF	rt	_	90	_	93:7
24	L1	THF	0–5 °C	_	26		93:7
25 ^h	L1	THF	rt	_	84	_	92:8
26 ⁱ	L1	THF	rt	_	83	3	92:8
27 ^f	L1	THF	rt	_	64	7	92:8
28 ^j	L1	THF	rt		86	_	93:7

29	L2	THF	rt	_	NR		_
30	L3	THF	rt	_	NR		_
31	L4	THF	rt	_	73	6	83:17
32	L5	THF	rt	_	97	_	91:9
33	L6	THF	rt	_	67	_	67:33
34	L7	THF	rt	_	NR		_
35	L8	THF	rt	_	61	21	55:45
36 ^k	L1	CH ₂ Cl ₂	rt	_	90	_	91:9
37	L2	CH ₂ Cl ₂	rt	_	17	10	84:16
38	L3	CH ₂ Cl ₂	rt	_	6	9	62:38
39	L4	CH ₂ Cl ₂	rt	_	54	6	85:15
40′	L5	CH ₂ Cl ₂	rt	_	7	_	35:65
41	L1	CH ₂ Cl ₂	0–5 °C	_	77	_	93:7
42	L1	CH ₂ Cl ₂	-20 °C	_	66	_	92:8
43	L1	CH ₂ Cl ₂	0–5 °C	AgBF ₄ (0.13)	45	4	90:10
44	L1	CH_2CI_2	0–5 °C	Bu ₄ NCI (0.12)	78	_	93:7
45	L1	CH ₂ Cl ₂	0–5 °C	_	77	_	93:7
46 ^m	L1	CH ₂ Cl ₂	rt	_	85	_	93:7
47 ^f	L1	CH_2CI_2	rt	_	86	_	91:9
48 ⁱ	L1	CH ₂ Cl ₂	rt	_	78	_	91:9
49 ^j	L1	CH ₂ Cl ₂	rt	_	84	_	92:8
50	L1	MeCN	0–5 °C	_	51	10	89:11
51	L1	DCE	0–5 °C	_	50	6	93:7
52	L1	2-Me-THF	0–5 °C	_	69	0	94:6
53	L1	DME	0–5 °C	_	66	0	92:8
54	L1	2-Me-THF	rt	_	41	0	92:8
55	L1	DME	rt	_	72	0	91:9
56	L1	Dioxane	rt	_	72	0	91:9

^{*α*}Reaction conditions: **1a** (0.2 mmol, 1.0 equiv.), **2a** (0.22 mmol, 1.1 equiv.), $[Pd(\pi-C_3H_5)Cl]_2$ (5 mol%), PR₃ (25 mol%) or L (15 mol%), solvent (0.07 M wrt **1a**), rt, 21 h.

^bYield determined by ¹H NMR integration against an internal standard (1,3,5-trimethoxybenzene, dimethyl sulfone or *trans*stilbene oxide).

^cEnantiomeric ratio determined by chiral HPLC.

^dIsolated yield

^e0.14 M wrt **1a**

^f0.03M wrt **1a**

^gReaction reached completion after 3 h.

 h [Pd(π -C₃H₄Ph)Cp] (10 mol%) used.

 ${}^{\textit{i}}[\text{Pd}(\pi\text{-}C_3\text{H}_5)\text{Cl}]_2$ (2.5 mol%), L (7.5 mol%).

^j**i-1a**(1.0 equiv.) used instead of **1a**.

^kReaction reached completion after 1 h.

^{*i*}Reversed enantioselectivity compared to Entry 32

 $^{m}Pd_{2}dba_{3}\bullet CHCl_{3}$ (5 mol%).

3. Synthesis of allyl carbonates

General procedure A:

To a homogeneous mixture of Boc_2O (1.0 equiv.) and allyl alcohol (1.2–3.5 equiv.) (either neat or in CH_2CI_2) at rt was added DMAP (5 mol%) in one portion. The resulting solution was stirred at rt overnight and monitored by TLC. Upon completion, indicated by TLC, the reaction mixture was concentrated *in vacuo*, followed by purification by FCC.

General procedure B:

To a solution of allyl alcohol (1.0 equiv.) in THF (0.1 M) at 0 °C was added *n*-BuLi (1.1 equiv.) dropwise. The resulting solution was stirred at the same temperature for 15 min, after which a solution of Boc₂O (1.1 equiv.) in THF was added dropwise. The reaction mixture was then stirred at 0 °C and monitored by TLC. Upon completion, the reaction was quenched with water, extracted with Et₂O, and the combined ethereal extracts were washed with water and brine. The organic layer was dried over MgSO₄, filtered, concentrated *in vacuo*, and then purified by FCC.

(E)-tert-Butyl hex-2-en-1-yl carbonate (1a).

1a

The titled compound was prepared following the <u>General procedure B</u> using *trans*-2-hexen-1-ol (1.1 mL, 9.324 mmol), *n*-BuLi (6.8 mL, 1.6 M solution in hexane, 10.880 mmol), and Boc₂O (2.102 g, 9.629 mmol) in THF (50 mL). Purification by FCC (4:96 EtOAc:hexane) yielded **1a** as a colourless oil (1.4758 g, 79%).

R_f = 0.31 (4:96 EtOAc:hexane).

¹**H NMR** (500 MHz, CDCl₃): δ 5.89 – 5.73 (m, 1H), 5.66 – 5.53 (m, 1H), 4.50 (d, *J* = 6.6 Hz, 2H), 2.03 (q, *J* = 7.1 Hz, 2H), 1.49 (d, *J* = 0.7 Hz, 9H), 1.40 (app. h, *J* = 7.4 Hz, 2H), 0.90 (t, *J* = 7.4 Hz, 3H).

¹³**C NMR** (125 MHz, CDCl₃): δ 153.4, 137.0, 123.5, 82.0, 67.8, 34.3, 27.8, 22.0, 13.7.

LRESI-MS (ESI +ve): *m*/*z* 223 [M + Na]⁺ (10%).

The NMR spectroscopic data agreed with those reported.¹

tert-Butyl (2-methylallyl) carbonate (1b).

1b

The titled compound was prepared following the <u>General procedure B</u> using 2-methyl-2-propen-1-ol (0.12 mL, 1.426 mmol), *n*-BuLi (1.0 mL, 1.6 M solution in hexane, 1.600 mmol), and Boc₂O (331.8 mg, 1.520 mmol) in THF (6 mL). Purification by FCC (2:98 EtOAc:hexane) yielded **1b** as a colourless oil (178.2 mg, 73%).

R_f = 0.18 (2:98 EtOAc:hexane).

¹**H NMR** (400 MHz, CDCl₃): δ 5.00 (s, 1H), 4.94 (s, 1H), 4.48 (dt, *J* = 1.4, 0.6 Hz, 2H), 1.83 − 1.71 (m, 3H), 1.49 (s, 9H).

¹³**C NMR** (100 MHz, CDCl₃): δ 153.5, 139.8, 113.1, 82.1, 70.2, 27.8, 19.4.

LRESI-MS (ESI +ve): *m/z* 227 [M + Na + MeOH]⁺ (100%).

The spectroscopic data agreed with those reported.²

tert-Butyl cinnamyl carbonate (1c).

1c

The titled compound was prepared following the <u>General procedure A</u> using cinnamyl alcohol (0.916 g, 6.830 mmol), Boc₂O (1.0946 g, 5.015 mmol), and DMAP (48.1 mg, 0.394 mmol) in CH_2Cl_2 (5 mL). Purification by FCC (1:9 Et₂O:hexane) yielded **1c** as a colourless oil (1.1183 g, 95%).

 $R_{f} = 0.35$ (1:9 Et₂O:hexane).

¹**H NMR** (400 MHz, CDCl₃): δ 7.42 – 7.35 (m, 2H), 7.36 – 7.28 (m, 2H), 7.30 – 7.21 (m, 1H), 6.67 (dt, *J* = 16.0, 1.4 Hz, 1H), 6.29 (dt, *J* = 15.9, 6.5 Hz, 1H), 4.72 (dd, *J* = 6.4, 1.4 Hz, 2H), 1.50 (s, 9H).

¹³C NMR (100MHz, CDCl₃): δ 153.4, 136.2, 134.4, 128.6, 128.1, 126.7, 122.9, 82.2, 67.5, 27.8.

LRESI-MS (ESI +ve): *m/z* 257 [M + Na]⁺ (30%).

The NMR spectroscopic data agreed with those reported.³

tert-Butyl ((2*E*,4*E*)-hexa-2,4-dien-1-yl) carbonate (1d).

The titled compound was prepared following the <u>General procedure B</u> using *trans,trans*-2,4-hexadien-1-ol (0.37 mL, 3.284 mmol), *n*-BuLi (4.0 mL, 1.2 M solution in hexane, 4.720 mmol), and Boc₂O (960.5 mg, 4.401 mmol) in THF (3 mL). Purification by FCC (2.5:97.5 EtOAc:hexane) yielded **1d** as a colourless oil (321.5 mg, 49%).

R_f = 0.18 (2.5:97.5 EtOAc:hexane).

¹**H NMR** (500 MHz, CDCl₃): δ 6.38 – 6.17 (m, 1H), 6.13 – 5.96 (m, 1H), 5.84 – 5.69 (m, 1H), 5.71 – 5.57 (m, 1H), 4.66 – 4.51 (m, 2H), 1.82 – 1.71 (m, 3H), 1.48 (s, 9H).

¹³**C NMR** (125 MHz, CDCl₃): δ 153.4, 135.2, 131.4, 130.4, 123.4, 82.0, 67.4, 27.8, 18.1.

LRESI-MS (ESI +ve): *m*/*z* 253 [M + Na + MeOH]⁺ (30%).

The spectroscopic data agreed with those reported.³

tert-Butyl (3-methylbut-2-en-1-yl) carbonate (1e).

1e

The titled compound was prepared following the <u>General procedure A</u> using prenol (1.0 mL, 9.843 mmol), Boc₂O (614.3 mg, 2.815 mmol), and DMAP (7.6 mg, 0.062 mmol). Purification by FCC (5:95 EtOAc:hexane) yielded **1e** as a colourless oil (351.1 mg, 67%).

R_f = 0.37 (5:95 EtOAc:hexane).

¹**H NMR** (400 MHz, CDCl₃): δ 5.54 – 5.24 (m, 1H), 4.56 (dt, *J* = 7.2, 0.9 Hz, 2H), 1.77 – 1.73 (m, 3H), 1.72 – 1.68 (m, 3H), 1.48 (s, 9H).

¹³C NMR (125 MHz, CDCl₃): δ 153.7, 139.4, 118.4, 81.8, 63.7, 27.8, 25.8, 18.0.

LRESI-MS (ESI +ve): *m*/*z* 209 [M + Na]⁺ (10%).

The spectroscopic data agreed with those reported.⁴

(E)-tert-Butyl (1,3-diphenylallyl) carbonate (1f).

1f

The titled compound was prepared following the <u>General procedure B</u> using racemic *trans*-1,3diphenyl-2-propen-1-ol (376.4 mg, 1.790 mmol), *n*-BuLi (1.6 mL, 1.2 M solution in hexane, 1.888 mmol), and Boc₂O (441.8 mg, 2.024 mmol) in THF (10 mL). Recrystallisation from warm pentane yielded **1f** as a white solid (275.9 mg, 50%).

R_f = 0.28 (4:96 EtOAc:hexane).

¹**H NMR** (500 MHz, CDCl₃): δ 7.48 – 7.19 (m, 10H), 6.74 – 6.60 (m, 1H), 6.37 (dd, *J* = 15.8, 7.0 Hz, 1H), 6.26 – 6.17 (m, 1H), 1.48 (s, 9H).

¹³**C NMR** (100 MHz, CDCl₃): δ 152.8, 139.1, 136.2, 132.6, 128.63, 128.56, 128.2, 128.1, 127.4, 126.9, 126.8, 82.4, 79.2, 27.8.

LRESI-MS (ESI +ve): *m*/*z* 333 [M + Na]⁺ (100%).

The spectroscopic data agreed with those reported.⁵

(E)-tert-Butyl pent-3-en-2-yl carbonate (1g).

The titled compound was prepared following the <u>General procedure B</u> using racemic 3-penten-2-ol (predominantly *trans*, 0.33 mL, 3.230 mmol), *n*-BuLi (3.4 mL, 1.2 M solution in hexane, 4.012 mmol), and Boc₂O (858.7 mg, 3.935 mmol) in THF (3 mL). Purification by FCC (2.5:97.5 EtOAc:hexane) yielded **1g** as a colourless oil (195.5 mg, 32%).

R_f = 0.25 (2.5:97.5 EtOAc:hexane).

¹**H NMR** (400 MHz, CDCl₃): δ 5.75 (dqd, *J* = 15.4, 6.5, 1.0 Hz, 1H), 5.50 (ddq, *J* = 15.3, 7.1, 1.6 Hz, 1H), 5.22 – 4.97 (m, 1H), 1.69 (ddd, *J* = 6.5, 1.7, 0.7 Hz, 3H), 1.48 (s, 9H), 1.33 (d, *J* = 6.5 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃): δ 153.0, 130.6, 128.5, 81.7, 74.3, 27.9, 20.4, 17.7.

LRESI-MS (ESI +ve): m/z 209 [M + Na]⁺ (5%).

The spectroscopic data agreed with those reported.⁶

tert-Butyl cyclohex-2-en-1-yl carbonate (1h).

1h

The titled compound was prepared following the <u>General procedure A</u> using 2-cyclohexen-1-ol (0.22 mL, 2.242 mmol), Boc₂O (413.4 mg, 1.894 mmol), and DMAP (31.9 mg, 0.261 mmol). Purification by FCC (1:3 CH₂Cl₂:hexane) yielded **1h** as a colourless oil (168.6 mg, 45%).

 $R_f = 0.25$ (1:3 CH₂Cl₂:hexane).

¹**H NMR** (500 MHz, CDCl₃): δ 6.00 – 5.91 (m, 1H), 5.81 – 5.73 (m, 1H), 5.12 – 5.03 (m, 1H), 2.13 – 2.02 (m, 1H), 2.03 – 1.92 (m, 1H), 1.94 – 1.83 (m, 1H), 1.86 – 1.71 (m, 2H), 1.69 – 1.56 (m, 1H), 1.49 (s, 9H).

¹³C NMR (100 MHz, CDCl₃): δ 153.3, 132.9, 125.4, 81.8, 70.8, 28.3, 27.9, 24.9, 18.8.

LRESI-MS (ESI +ve): *m/z* 221 [M + Na]⁺ (10%).

The spectroscopic data agreed with those reported.⁷

tert-Butyl hex-1-en-3-yl carbonate (1a').

The titled compound was prepared following the <u>General procedure B</u> using racemic 1-hexen-3-ol (0.36 mL, 2.998 mmol), *n*-BuLi (2.8 mL, 1.2 M solution in hexane, 3.304 mmol), and Boc₂O (723.4 mg, 3.315 mmol) in THF (5 mL). Purification by FCC (4:96 EtOAc:hexane) yielded **1a**' as a colourless oil (491.4 mg, 82%).

R_f = 0.25 (4:96 EtOAc:hexane).

¹**H NMR** (400 MHz, CDCl₃): δ δ 5.87 – 5.73 (m, 1H), 5.34 – 5.15 (m, 2H), 5.12 – 4.95 (m, 1H), 1.77 – 1.63 (m, 1H), 1.63 – 1.53 (m, 1H), 1.48 (s, 9H), 1.44 – 1.30 (m, 2H), 0.93 (app. t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 153.1, 136.5, 116.9, 81.9, 77.9, 36.4, 27.8, 18.4, 13.8.

LRESI-MS (ESI +ve): m/z 223 [M + Na]⁺ (5%).

The spectroscopic data agreed with those reported.⁸

(Z)-tert-Butyl hex-2-en-1-yl carbonate (1a").

1a″

The titled compound was prepared following the <u>General procedure B</u> using *cis*-2-hexen-1-ol (0.35 mL, 2.960 mmol), *n*-BuLi (2.8 mL, 1.2 M solution in hexane, 3.304 mmol), and Boc₂O (795.4 mg, 3.644 mmol) in THF (5 mL). Purification by FCC (4:96 EtOAc:hexane) yielded **1a**^{\prime} as a colourless oil (445.7 mg, 75%).

R_f = 0.24 (4:96 EtOAc:hexanes).

IR (neat): 859, 1089, 1158, 1251, 1273, 1368, 1738, 2874, 2933, 2963 cm⁻¹.

¹**H NMR** (500 MHz, CDCl₃): δ δ 5.69 – 5.61 (m, 1H), 5.61 – 5.52 (m, 1H), 4.65 – 4.60 (m, 2H), 2.16 – 2.02 (m, 2H), 1.49 (s, 9H), 1.40 (app. h, *J* = 7.4 Hz, 2H), 0.91 (t, *J* = 7.4 Hz, 3H).

¹³**C NMR** (125 MHz, CDCl₃): δ 153.7, 135.5, 123.4, 82.3, 63.0, 29.7, 28.0, 22.7, 13.9.

HRESI-MS (ESI +ve): Found 201.1489, calc for C₁₁H₂₁O₃ 201.1491 [M + H]⁺.

(E)-Hex-2-en-1-yl isobutyl carbonate (i-1a).

Procedure:

To a mixture of 2-hexenyl-1-ol (220.7 mg, 2.20 mmol), Et₃N (326.7 mg, 3.23 mmol), and DMAP (28.0 mg, 0.23 mmol) in CH₂Cl₂ (10 mL) at 0 °C was added isobutyl chloroformate (326.4 mg, 2.39 mmol) dropwise. The resulting solution was allowed to warm to rt with stirring and monitored by TLC. Upon completion, the reaction mixture was diluted with CH₂Cl₂ (10 mL) and 1M HCl (20 mL) was added. The mixture was extracted with CH₂Cl₂ (3 x 10 mL), the organic extracts were combined, dried over MgSO₄, filtered and concentrate *in vacuo*. Purification by flash column chromatography (3:1 hexane:CH₂Cl₂) furnished the desired product *i*-1a as a colourless oil (434.0 mg, 98%).

 $R_f = 0.26$ (3:1 hexane:CH₂Cl₂).

IR (neat): 791, 922, 940, 966, 1180, 1240, 1304, 1384, 1401, 1465, 1743, 2933, 2960 cm⁻¹.

¹**H NMR** (500 MHz, CDCl₃): δ 5.81 (dtt, J = 14.8, 6.7, 1.2 Hz, 1H), 5.60 (dtt, J = 15.4, 6.6, 1.5 Hz, 1H), 4.57 (dd, J = 6.6, 1.0 Hz, 2H), 3.92 (d, J = 6.7 Hz, 2H), 2.09 – 1.98 (m, 2H), 2.02 – 1.91 (m, 1H), 1.41 (app. h, J = 7.4 Hz, 2H), 0.95 (dd, J = 6.7, 2.1 Hz, 6H), 0.90 (t, J = 7.4 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃): δ 155.3, 137.3, 123.4, 74.0, 68.6, 34.3, 27.8, 22.0, 18.9, 13.64.

HRESI-MS (ESI +ve): Found 223.1301, calc for C₁₁H₂₀O₃Na 223.1310 [M + Na]⁺.

4. Preparation of cyclic sulfamidate imines

(Note: Various attempts to prepare the imines bearing an electron enriched aryl substituent at C5 (R^1 = Ph, R^2 = 4-methoxyphenyl, 2-thienyl, and 2-furyl) were unsuccessful. However, some of the precursors prepared were novel compounds, and hence their experimental data are reported for future reference)

a. Synthesis of dithianes

General procedure C:9

To a stirred solution of aryl aldehyde (1.0 equiv.) and 1,3-propanedithiol (1.1 equiv.) in CHCl₃ (0.2 M) at rt was added I₂ (10 mol%) in one portion. The resulting solution was stirred at rt and monitored by TLC. Upon completion, the reaction was quenched with 0.1 M Na₂S₂O₃ (0.5 equiv.), extracted with CHCl₃, then the combined organic extracts were washed with 3 M NaOH (6 equiv.) and brine. The organic layer was dried over MgSO₄, filtered, concentrated *in vacuo*, and then purified by FCC.

2-Phenyl-1,3-dithiane (S1a).

The titled compound was prepared following the <u>General procedure C</u> using benzaldehyde (5.1 mL, 50.17 mmol), 1,3-propanedithiol (5.5 mL, 54.78 mmol), and I_2 (1.290 g, 5.08 mmol) in CHCl₃ (100 mL). The white solid residue obtained (9.313 g, 95%) after aqueous work-up was sufficiently pure to be used in the subsequent step without further purification.

R_f = 0.30 (1:9 EtOAc:hexane).

¹**H NMR** (500 MHz, CDCl₃): δ 7.51 – 7.43 (m, 2H), 7.39 – 7.27 (m, 3H), 5.17 (s, 1H), 3.15 – 3.00 (m, 2H), 2.92 (dddd, *J* = 13.7, 4.4, 3.0, 1.0 Hz, 2H), 2.26 – 2.13 (m, 1H), 2.06 – 1.86 (m, 1H).

¹³C NMR (125 MHz, CDCl₃): δ 139.3, 129.0, 128.7, 128.0, 51.7, 32.3, 25.3.

LRESI-MS (ESI +ve): *m*/*z* 197 [M + H]⁺ (30%).

The spectroscopic data agreed with those reported.¹⁰

2-(4-Methoxyphenyl)-1,3-dithiane (S1b).

S1b

The titled compound was prepared following the <u>General procedure C</u> using *p*-anisaldehyde (0.61 mL, 5.014 mmol), 1,3-propanedithiol (0.55 mL, 5.478 mmol), and I_2 (160.6 mg, 0.633 mmol) in CHCl₃ (20 mL). Purification by FCC (1:9 EtOAc:hexane) furnished **S1b** as a white solid (1.032 g, 91%).

R_f = 0.27 (1:9: EtOAc:hexane).

¹**H NMR** (500 MHz, CDCl₃): δ 7.49 – 7.33 (m, 2H), 6.95 – 6.80 (m, 2H), 5.13 (s, 1H), 3.79 (s, 3H), 3.15 – 2.99 (m, 2H), 2.89 (ddd, *J* = 14.4, 4.4, 3.0 Hz, 2H), 2.21 – 2.09 (m, 1H), 2.03 – 1.82 (m, 1H).

¹³**C NMR** (125 MHz, CDCl₃): δ 159.8, 131.5, 129.1, 114.3, 55.5, 50.9, 32.4, 25.3.

LRESI-MS (ESI +ve): *m/z* 227 [M + H]⁺ (10%).

The spectroscopic data agreed with those reported.¹⁰

2-(4-Fluorophenyl)-1,3-dithiane (S1c).

S1c

The titled compound was prepared following the <u>General procedure C</u> using 4-fluorobenzaldehyde (626.4 mg, 5.047 mmol), 1,3-propanedithiol (0.55 mL, 5.478 mmol), and I_2 (184.0 mg, 0.725 mmol) in CHCl₃ (40 mL). Purification by FCC (1:4 EtOAc:hexane) furnished **S1c** as a white solid (301.6 mg, 28%).

R_f = 0.45 (1:4 EtOAc:hexane).

¹**H NMR** (500 MHz, CDCl₃) δ 7.55 − 7.37 (m, 2H), 7.11 − 6.96 (m, 2H), 5.14 (s, 1H), 3.15 − 2.98 (m, 2H), 2.91 (dddd, *J* = 13.5, 4.4, 3.0, 1.2 Hz, 2H), 2.27 − 2.10 (m, 1H), 2.01 − 1.85 (m, 1H).

¹³**C NMR** (125 MHz, CDCl₃): δ 162.7 (d, *J* = 247.5 Hz), 135.2 (d, *J* = 3.2 Hz), 129.7 (d, *J* = 8.3 Hz), 115.9 (d, *J* = 21.6 Hz), 50.7, 32.3, 25.2.

LRESI-MS (ESI +ve): *m/z* 215 [M + H]⁺ (100%).

The spectroscopic data agreed with those reported.¹¹

2-(1,3-Dithian-2-yl)furan (S1d).

The titled compound was prepared following the <u>General procedure C</u> using furfural (0.41 mL, 4.950 mmol), 1,3-propanedithiol (0.55 mL, 5.478 mmol), and I_2 (125.2 mg, 0.493 mmol) in CHCl₃ (20 mL). Purification by FCC (1:4 EtOAc:hexane) furnished **S1d** as a brown oil (1.032 g, 91%).

R_f = 0.47 (1:4 EtOAc:hexane).

¹**H NMR** (500 MHz, CDCl₃): δ 7.38 (dd, *J* = 1.9, 0.9 Hz, 1H), 6.40 (dt, *J* = 3.3, 0.9 Hz, 1H), 6.35 (dd, *J* = 3.3, 1.9 Hz, 1H), 5.22 (s, 1H), 3.00 – 2.94 (m, 4H), 2.22 – 2.08 (m, 1H), 2.07 – 1.92 (m, 1H).

¹³C NMR (125 MHz, CDCl₃): δ 152.0, 142.5, 110.8, 108.1, 42.3, 30.5, 25.5.

LRESI-MS (ESI +ve): *m/z* 227 [M + H]⁺ (20%).

The spectroscopic data agreed with those reported.¹¹

2-(2-Thienyl)-1,3-dithiane (S1e).

S1e

The titled compound was prepared following the <u>General procedure C</u> using 2thiophenecarboxaldehyde (0.47 mL, 5.029 mmol), 1,3-propanedithiol (0.57 mL, 5.674 mmol), and I_2 (159.0 mg, 0.627 mmol) in CHCl₃ (25 mL). The yellow solid residue obtained (1.168 g, ~quant.) was sufficiently pure to be used in the following step without further purifications.

R_f = 0.40 (1:9 EtOAc:hexane).

¹**H NMR** (500 MHz, CDCl₃): δ 7.27 (dd, *J* = 5.1, 1.2 Hz, 1H), 7.17 (dt, *J* = 3.6, 1.2 Hz, 1H), 6.96 (dd, *J* = 5.1, 3.6 Hz, 1H), 5.41 (d, *J* = 0.8 Hz, 1H), 3.06 – 2.89 (m, 4H), 2.22 – 2.10 (m, 1H), 2.06 – 1.84 (m, 1H).

¹³C NMR (125 MHz, CDCl₃): δ 142.4, 126.8, 126.2, 125.7, 44.6, 31.0, 25.0.

LRESI-MS (ESI +ve): *m/z* 203 [M + H]⁺ (40%).

The spectroscopic data agreed with those reported.¹⁰

b. Synthesis of dithiane alcohols

General procedure D:12

To a stirred solution of 2-substituted-1,3-dithiane (1.0 equiv.) in THF (0.2 M) at 0 °C was added *n*-BuLi (1.1 equiv.) dropwise. The resulting solution was stirred at 0 °C for 30 min, after which aryl aldehyde (1.1 equiv.) was added dropwise. The reaction mixture was then stirred 0 °C and monitored by TLC. Upon completion, the reaction was quenched with saturated NH₄Cl solution, extracted with CH₂Cl₂,

then the combined organic extracts were washed with water and brine. The organic layer was dried over MgSO₄, filtered, concentrated *in vacuo*, and then purified by FCC.

(2-Phenyl-1,3-dithian-2-yl)(o-tolyl)methanol (S2a).

S2a

The titled compound was prepared following the <u>General procedure D</u> using dithiane **S1a** (801.5 mg, 4.082 mmol), *n*-BuLi (3.8 mL, 1.2 M solution in hexane, 4.560 mmol), and *o*-tolualdehyde (0.52 mL, 4.497 mmol) in THF (20 mL). Purification by FCC (1:9 EtOAc:hexane) furnished **S2a** as a sticky colourless oil (1.222 g, 94%).

R_f = 0.22 (1:9 EtOAc:hex).

IR (neat): 646, 688, 724, 757, 881, 975, 1035, 1205, 1448, 1677, 2870, 2927, 2954, 3338 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ 7.83 – 7.67 (m, 2H), 7.33 – 7.04 (m, 6H), 7.03 – 6.88 (m, 1H), 5.23 (d, *J* = 3.8 Hz, 1H), 2.87 (d, *J* = 3.8 Hz, 1H), 2.83 – 2.62 (m, 3H), 2.54 (ddd, *J* = 14.4, 10.7, 4.5 Hz, 1H), 1.97 – 1.85 (m, 2H), 1.83 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃): δ 137.4, 137.1, 135.9, 131.1, 129.7, 128.5, 128.2, 128.0, 127.5, 124.9, 76.6, 67.8, 27.5, 26.8, 24.8, 19.5.

HRESI-MS (ESI +ve): Found 339.0836, calc for C₁₈H₂₀OS₂Na 339.0853 [M + Na]⁺.

(2-Phenyl-1,3-dithian-2-yl)(p-tolyl)methanol (S2b).

S2b

The titled compound was prepared following the <u>General procedure D</u> using dithiane **S1a** (655.9 mg, 3.341 mmol), *n*-BuLi (3.2 mL, 1.2 M solution in hexane, 3.840 mmol), and *p*-tolualdehyde (0.46 mL,

3.901 mmol) in THF (20 mL). Purification by FCC (1:9 EtOAc:hexane) furnished **S2b** as a sticky colourless oil (1.034 g, 98%).

R_f = 0.17 (1:9 EtOAc:hexane).

IR (neat): 583, 700, 721, 812, 876, 972, 1052, 1238, 1441, 2859, 2929, 2953, 3435 cm⁻¹.

¹**H NMR** (500 MHz, CDCl₃): δ 7.80 – 7.65 (m, 2H), 7.39 – 7.17 (m, 3H), 7.01 – 6.90 (m, 2H), 6.81 – 6.70 (m, 2H), 4.97 (d, *J* = 3.5 Hz, 1H), 2.83 (d, *J* = 3.8 Hz, 1H), 2.78 – 2.58 (m, 4H), 2.28 (s, 3H), 1.97 – 1.87 (m, 2H).

¹³**C NMR** (125 MHz, CDCl₃): δ 137.8, 137.4, 134.2, 130.6, 129.1, 128.1, 128.0, 127.7, 127.5, 125.8, 80.9, 66.4, 27.2, 27.0, 24.8, 21.1.

HRESI-MS (ESI +ve): Found 339.0861, calc for C₁₈H₂₀OS₂Na 339.0853 [M + Na]⁺.

(4-Methoxyphenyl)(2-phenyl-1,3-dithian-2-yl)methanol (S2c).

S2c

The titled compound was prepared following the <u>General procedure D</u> using dithiane **S1a** (621.2 mg, 3.164 mmol), *n*-BuLi (3.0 mL, 1.2 M solution in hexane, 3.600 mmol), and *p*-anisaldehyde (0.42 mL, 3.452 mmol) in THF (20 mL). Purification by FCC (1:9 EtOAc:hexane) furnished **S2c** as a sticky colourless oil (519.7 mg, 49%).

R_f = 0.09 (1:9 EtOAc:hexane).

IR (neat): 700, 806, 972, 1032, 1171, 1247, 1442, 1510, 1599, 2859, 2931, 2956, 3405 cm⁻¹.

¹**H NMR** (500 MHz, CDCl₃): δ 7.78 – 7.59 (m, 2H), 7.42 – 7.09 (m, 3H), 6.85 – 6.72 (m, 2H), 6.71 – 6.54 (m, 2H), 4.94 (d, *J* = 3.6 Hz, 1H), 3.73 (s, 3H), 2.92 (d, *J* = 3.6 Hz, 1H), 2.80 – 2.51 (m, 4H), 1.99 – 1.81 (m, 2H).

¹³C NMR (125 MHz, CDCl₃): δ 159.5, 137.6, 130.7, 129.6, 129.4, 128.2, 127.6, 112.5, 80.8, 66.7, 55.2, 27.4, 27.1, 24.9.

HRESI-MS (ESI +ve): Found 355.0791, calc for C₁₈H₂₀O₂S₂Na 355.0802 [M + Na]⁺.

Furan-2-yl(2-phenyl-1,3-dithian-2-yl)methanol (S2d).

S2d

The titled compound was prepared following the <u>General procedure D</u> using dithiane **S1a** (828.3 mg, 4.219 mmol), *n*-BuLi (3.0 mL, 1.6 M solution in hexane, 4.800 mmol), and furfural (0.38 mL, 4.497 mmol) in THF (20 mL). Purification by FCC (1:9 EtOAc:hexane) furnished **S2d** as a sticky orange oil (925.4 mg, 75%).

R_f = 0.11 (1:9 EtOAc:hexane).

IR (neat): 699, 731, 811, 1009, 1053, 1147, 1265, 1442, 2906, 2954, 3440 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ 7.84 – 7.73 (m, 2H), 7.40 – 7.23 (m, 3H), 7.23 (dd, *J* = 1.8, 0.8 Hz, 1H), 6.25 (dd, *J* = 3.3, 1.8 Hz, 1H), 6.05 (dt, *J* = 3.3, 0.8 Hz, 1H), 5.03 (d, *J* = 6.4 Hz, 1H), 2.85 – 2.54 (m, 5H), 2.01 – 1.82 (m, 2H).

¹³C NMR (125 MHz, CDCl₃): δ 151.0, 142.0, 137.9, 130.3, 128.5, 127.9, 110.3, 109.4, 75.7, 65.5, 27.5, 27.4, 24.9.

HRESI-MS (ESI +ve): Found 315.0497, calc for C₁₅H₁₆O₂S₂Na 315.0489 [M + Na]⁺.

(2-Methyl-1,3-dithian-2-yl)(phenyl)methanol (S2e).

S2e

The titled compound was prepared following the <u>General procedure D</u> using 2-methyl-1,3-dithiane (0.54 mL, 4.509 mmol), *n*-BuLi (3.2 mL, 1.6 M solution in hexane, 5.120 mmol), and benzaldehyde (0.51 mL, 5.017 mmol) in THF (20 mL). Purification by FCC (1:9 EtOAc:hexane) furnished **S2e** as a sticky light yellow oil (953.5 mg, 88%).

 $\mathbf{R}_{f} = 0.15(1:9 \text{ EtOAc:hexane}).$

IR (neat): 464, 596, 703, 756, 1023, 1189, 1266, 1325, 1389, 1451, 1490, 2895, 2930, 3452 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃): δ 7.58 – 7.41 (m, 2H), 7.40 – 7.30 (m, 3H), 5.20 – 5.01 (m, 1H), 3.29 – 3.15 (m, 2H), 3.09 (ddd, *J* = 14.4, 11.8, 2.8 Hz, 1H), 2.82 – 2.60 (m, 2H), 2.17 (dtt, *J* = 16.0, 5.3, 2.8 Hz, 1H), 1.92 (dtt, *J* = 13.8, 11.6, 3.3 Hz, 1H), 1.31 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 137.5, 128.5, 128.0, 127.3, 73.8, 54.0, 26.7, 26.0, 24.3, 22.4.

LRESI-MS (ESI +ve): *m/z* 263 [M + Na]⁺ (60%).

The NMR spectroscopic data agreed with those reported.¹³

2-Phenyl-1,3-dithian-2-yl)(2-thienyl)methanol S2).

S2f

The titled compound was prepared following the <u>General procedure D</u> using dithiane **S1a** (900.4 mg, 4.586 mmol), *n*-BuLi (3.2 mL, 1.6 M solution in hexane, 5.120 mmol), and 2-thiophenecarboxaldehyde (0.51 mL, 5.010 mmol) in THF (20 mL). Purification by FCC (1:9 EtOAc:hexane) furnished **S2f** as a sticky colourless oil (1.047 g, 72%).

R_f = 0.15 (1:9 EtOAc:hexane).

IR (neat): 435, 586, 700, 760, 1038, 1136, 1217, 1264, 1339, 1373, 1440, 1492, 2915, 3473 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃): δ 7.84 – 7.75 (m, 2H), 7.37 – 7.27 (m, 3H), 7.17 (dd, *J* = 5.1, 1.2 Hz, 1H), 6.82 (dd, *J* = 5.1, 3.6 Hz, 1H), 6.54 (ddd, *J* = 3.6, 1.2, 0.7 Hz, 1H), 5.35 – 5.15 (m, 1H), 3.08 (d, *J* = 3.8 Hz, 1H), 2.85 – 2.62 (m, 4H), 2.04 – 1.87 (m, 2H).

¹³C NMR (125 MHz, CDCl₃): δ 140.8, 138.0, 130.5, 128.5, 128.0, 126.8, 125.9, 125.6, 78.0, 66.3, 27.6, 27.4, 24.9.

HRESI-MS (ESI +ve): Found 331.0259, calc for C₁₅H₁₆OS₃Na 331.0261 [M + Na]⁺.

(2-Chlorophenyl)(2-phenyl-1,3-dithian-2-yl)methanol (S2g).

S2g

The titled compound was prepared following the <u>General procedure D</u> using dithiane **S1a** (926.0 mg, 4.717 mmol), *n*-BuLi (4.4 mL, 1.2 M solution in hexane, 5.280 mmol), and 2-chlorobenzaldehyde (0.60 mL, 5.327 mmol) in THF (20 mL). Purification by FCC (1:9 EtOAc:hexane) furnished **S2g** as a sticky colourless oil (1.076 g, 68%).

R_f = 0.18 (1:9 EtOAc:hexane).

¹**H NMR** (400 MHz, CDCl₃): δ 7.81 – 7.63 (m, 2H), 7.34 – 7.23 (m, 3H), 7.21 – 7.08 (m, 4H), 5.56 (d, *J* = 3.6 Hz, 1H), 2.99 (d, *J* = 3.6 Hz, 1H), 2.82 – 2.68 (m, 3H), 2.59 (ddd, *J* = 14.3, 10.9, 3.5 Hz, 1H), 2.03 – 1.82 (m, 2H).

¹³**C NMR** (100 MHz, CDCl₃): δ 137.1, 135.4, 134.5, 130.7, 130.5, 129.2, 128.8, 128.2, 127.7, 125.7, 75.9, 66.9, 27.6, 26.9, 24.7.

LRESI-MS (ESI +ve): *m*/*z* 339 [M + Na]⁺ (30%).

The NMR spectroscopic data agreed with those reported.¹⁴

(4-Fluorophenyl)(2-phenyl-1,3-dithian-2-yl)methanol (S2h).

S2h

The titled compound was prepared following the <u>General procedure D</u> using dithiane **S1a** (734.0 mg, 3.739 mmol), *n*-BuLi (3.6 mL, 1.2 M solution in hexane, 4.320 mmol), and 4-fluorobenzaldehyde (0.44 mL, 4.102 mmol) in THF (20 mL). Purification by FCC (1:9 EtOAc:hexane) furnished **S2h** as a sticky colourless oil (979.5 mg, 82%).

R_f = 0.16 (1:9 EtOAc:hexane).

¹**H NMR** (400 MHz, CDCl₃): δ 7.80 – 7.52 (m, 2H), 7.42 – 7.27 (m, 3H), 6.94 – 6.68 (m, 4H), 4.97 (d, *J* = 3.4 Hz, 1H), 3.01 (d, *J* = 3.4 Hz, 1H), 2.88 – 2.50 (m, 4H), 2.06 – 1.82 (m, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 162.6 (d, *J* = 246.8 Hz), 137.3, 132.9 (d, *J* = 2.7 Hz), 130.4, 129.8 (d, *J* = 8.2 Hz), 128.3, 127.7, 113.9 (d, *J* = 21.4 Hz), 80.4, 66.5, 27.3, 26.9, 24.7.

LRESI-MS (ESI +ve): *m/z* 343 [M + Na]⁺ (70%).

The NMR spectroscopic data agreed with those reported.¹⁵

(2-(4-Methoxyphenyl)-1,3-dithian-2-yl)(phenyl)methanol (S2i).

S2i

The titled compound was prepared following the <u>General procedure D</u> using dithiane **S1b** (645.0 mg, 2.851 mmol), *n*-BuLi (2.6 mL, 1.2 M solution in hexane, 3.120 mmol), and benzaldehyde (0.32 mL, 3.148 mmol) in THF (20 mL). Purification by FCC (1:4 EtOAc:hexane) furnished **S2i** as a sticky colourless oil (822.8 mg, 87%).

R_f = 0.25 (1:4 EtOAc:hexane).

IR (neat): 558, 610, 700, 756, 1033, 1163, 1248, 1503, 1602, 2901, 3398 cm⁻¹.

¹**H NMR** (500 MHz, CDCl₃): δ 7.69 – 7.52 (m, 2H), 7.24 – 7.18 (m, 1H), 7.14 (t, *J* = 7.6 Hz, 2H), 6.89 (dd, *J* = 7.6, 1.6 Hz, 2H), 6.86 – 6.72 (m, 2H), 4.97 (d, *J* = 3.8 Hz, 1H), 3.83 (s, 3H), 2.91 (d, *J* = 3.8 Hz, 1H), 2.81 – 2.58 (m, 4H), 2.01 – 1.85 (m, 2H).

¹³C NMR (125 MHz, CDCl₃): δ 159.1, 137.6, 132.1, 129.3, 128.5, 128.3, 127.2, 113.6, 81.3, 66.3, 55.5, 27.4, 27.2, 25.1.

HRESI-MS (ESI +ve): Found 355.0796, calc for $C_{18}H_{20}O_2S_2Na$ 355.0802 [M + Na]⁺.

(2-(4-Fluorophenyl)-1,3-dithian-2-yl)(phenyl)methanol (S2j).

S2j

The titled compound was prepared following the <u>General procedure D</u> using dithiane **S1c** (1.161 g, 5.416 mmol), *n*-BuLi (5.0 mL, 1.2 M solution in hexane, 6.000 mmol), and benzaldehyde (0.62 mL,

6.100 mmol) in THF (20 mL). Purification by FCC (1:9 EtOAc:hexane) furnished **S2j** as a sticky colourless oil (925.4 mg, 75%).

R_f = 0.18 (1:9 EtOAc:hexane).

IR (neat): 543, 611, 661, 700, 758, 837, 1041, 1158, 1221, 1498, 1594, 2904, 3423 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃): δ 7.79 – 7.49 (m, 2H), 7.25 – 7.18 (m, 1H), 7.18 – 7.10 (m, 2H), 7.02 – 6.91 (m, 2H), 6.91 – 6.80 (m, 2H), 4.99 (d, *J* = 3.2 Hz, 1H), 2.90 (d, *J* = 3.5 Hz, 1H), 2.84 – 2.37 (m, 4H), 2.06 – 1.75 (m, 2H).

¹³**C NMR** (125 MHz, CDCl₃): δ 162.2 (d, *J* = 247.8 Hz), 137.1, 133.1 (d, *J* = 3.0 Hz), 132.6 (d, *J* = 8.2 Hz), 128.2, 128.2, 127.1, 114.82 (d, *J* = 21.3 Hz), 81.0, 65.7, 27.2, 26.9, 24.7.

¹⁹**F NMR** (470 MHz, CDCl₃): δ –52.55 (s).

HRESI-MS (ESI +ve): Found 343.0598, calc for C₁₇H₁₇OS₂FNa 343.0603 [M + Na]⁺.

(2-(Furan-2-yl)-1,3-dithian-2-yl)(phenyl)methanol (S2k).

S2k

The titled compound was prepared following the <u>General procedure D</u> using dithiane **S1d** (763.2 mg, 4.097 mmol), *n*-BuLi (2.8 mL, 1.6 M solution in hexane, 4.480 mmol), and benzaldehyde (0.50 mL, 4.919 mmol) in THF (20 mL) at -78 °C. Purification by FCC (1:9 EtOAc:hexane) furnished **S2k** as a sticky dark orange oil (491.6 mg, 41%).

R_f = 0.09 (1:9 EtOAc:hexane).

IR (neat): 595, 700, 740, 1008, 1048, 1150, 1198, 1241, 1277, 1396, 1448, 1493, 2905, 3496 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃): δ 7.45 (dd, *J* = 1.8, 0.9 Hz, 1H), 7.32 – 7.13 (m, 3H), 7.00 (dt, *J* = 6.6, 1.7 Hz, 2H), 6.39 (dd, *J* = 3.3, 1.4 Hz, 2H), 5.07 (d, *J* = 4.2 Hz, 1H), 3.01 (d, *J* = 4.2 Hz, 1H), 2.88 – 2.67 (m, 4H), 2.06 – 1.82 (m, 2H).

¹³**C NMR** (100 MHz, CDCl₃): δ 151.3, 142.9, 137.5, 128.4, 127.5, 127.4, 113.2, 110.9, 80.0, 60.0, 27.6, 27.2, 24.8.

HRESI-MS (ESI +ve): Found 315.0494, calc for C₁₅H₁₆O₂S₂Na 315.0489 [M + Na]⁺.

Phenyl(2-(2-thienyl)-1,3-dithian-2-yl)methanol (S2l).

S2I

The titled compound was prepared following the <u>General procedure D</u> using dithiane **S1e** (1.168 g, 5.771 mmol), *n*-BuLi (4.0 mL, 1.6 M solution in hexane, 6.400 mmol), and benzaldehyde (0.65 mL, 6.395 mmol) in THF (20 mL) at -78 °C. Purification by FCC (1:9 EtOAc:hexane) furnished **S2I** as a sticky orange oil (1.437 g, 81%).

R_f = 0.12 (1:9 EtOAc:hexane).

IR (neat): 607, 699, 1046, 1196, 1227, 1277, 1386, 1449, 1491, 2900, 3495 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃): δ 7.31 (dd, *J* = 4.8, 1.7 Hz, 1H), 7.30 − 7.15 (m, 3H), 7.05 − 6.97 (m, 2H), 6.98 − 6.90 (m, 2H), 5.00 (d, *J* = 3.2 Hz, 1H), 3.04 − 2.69 (m, 5H), 2.11 − 1.82 (m, 2H).

¹³**C NMR** (100 MHz, CDCl₃): δ 145.3, 137.2, 130.1, 128.3, 128.0, 127.6, 127.2, 127.1, 81.7, 62.3, 27.7, 27.4, 24.7.

HRESI-MS (ESI +ve): Found 331.0264, calc for C₁₅H₁₆OS₃Na 331.0261 [M + Na]⁺.

c. Synthesis of α -hydroxy ketones

General procedure E:14

To a stirred solution of dithiane alcohol (1.0 equiv.) in MeCN/H₂O (4:1, 0.05 M) at rt was added AgNO₃ (2.5 equiv.), followed by *N*-chlorosuccinimide NCS (2.0 equiv.). The resulting solution was stirred at rt and monitored by TLC. Upon completion, the reaction was quenched with saturated aq. $Na_2S_2O_3$, extracted with EtOAc, and the combined organic extracts were then washed with water and brine. The organic layer was dried over MgSO₄, filtered, concentrated *in vacuo*, and then purified by FCC.

2-Hydroxy-1-phenyl-2-(o-tolyl)ethan-1-one (S3a).

S3a

The titled compound was prepared following the <u>General procedure E</u> using dithiane alcohol **S2a** (690.0 mg, 2.180 mmol), AgNO₃ (764.3 mg, 4.499 mmol), and NCS (329.2 mg, 2.465 mmol) in MeCN/H₂O (4:1, 40 mL). Purification by FCC (1:9 EtOAc:hexane) furnished **S3a** as a white solid (201.2 mg, 42%).

R_f = 0.15 (1:9 EtOAc:hexane).

IR (neat): 647, 699, 717, 1047, 1204, 1273, 1382, 1450, 1491, 1599, 1678, 2928, 3426 cm⁻¹.

¹**H NMR** (500 MHz, CDCl₃): δ 7.86 – 7.78 (m, 2H), 7.60 – 7.46 (m, 1H), 7.46 – 7.34 (m, 2H), 7.25 – 7.15 (m, 2H), 7.13 – 7.08 (m, 1H), 7.05 – 6.98 (m, 1H), 6.05 (d, *J* = 5.3 Hz, 1H), 4.39 (d, *J* = 5.3 Hz, 1H), 2.54 (s, 3H).

¹³**C NMR** (125 MHz, CDCl₃): δ 200.4, 137.9, 137.0, 134.3, 134.1, 131.9, 129.4, 129.22, 129.16, 128.8, 127.2, 74.8, 19.8.

HRESI-MS (ESI +ve): Found 249.0884, calc for C₁₅H₁₄O₂Na 249.0891 [M + Na]⁺.

2-Hydroxy-1-phenyl-2-(p-tolyl)ethan-1-one (S3b).

S3b

The titled compound was prepared following the <u>General procedure E</u> using dithiane alcohol **S2b** (604.0 mg, 1.906 mmol), AgNO₃ (659.7 mg, 3.884 mmol), and NCS (279.9 mg, 2.096 mmol) in MeCN/H₂O (4:1, 40 mL). Purification by FCC (1.5:8.5 EtOAc:hexane) furnished **S3b** as a white solid (187.0 mg, 43%).

R_f = 0.24 (1.5:8.5 EtOAc:hexane).

¹**H NMR** (500 MHz, CDCl₃): δ 7.99 – 7.84 (m, 2H), 7.52 (ddt, *J* = 7.8, 7.0, 1.3 Hz, 1H), 7.48 – 7.36 (m, 2H), 7.22 (d, *J* = 8.1 Hz, 2H), 7.13 (d, J = 7.8 Hz, 2H), 5.92 (s, 1H), 4.49 (s, 1H), 2.29 (s, 3H).

¹³C NMR (125 MHz, CDCl₃): δ 199.3, 138.7, 136.3, 134.1, 133.8, 130.1, 129.4, 128.9, 127.9, 76.2, 21.4.
LRESI-MS (ESI +ve): m/z 249 [M + Na]⁺ (20%), m/z 281 [M + Na + MeOH]⁺ (100%).

The NMR spectroscopic data agreed with those reported.¹⁶

2-Hydroxy-2-(4-methoxyphenyl)-1-phenylethan-1-one (S2c).

S3c

The titled compound was prepared following the <u>General procedure E</u> using dithiane alcohol **S2c** (519.7 mg, 1.563 mmol), AgNO₃ (669.8 mg, 3.943 mmol), and NCS (419.6 mg, 3.142 mmol) in MeCN/H₂O (4:1, 30 mL). Purification by FCC (1:4 EtOAc:hexane) furnished **S3c** as a white solid (214.2 mg, 57%).

R_f = 0.21 (1:4 EtOAc:hexane).

¹**H NMR** (500 MHz, CDCl₃): δ 8.01 – 7.81 (m, 2H), 7.58 – 7.48 (m, 1H), 7.49 – 7.32 (m, 2H), 7.35 – 7.19 (m, 3H), 6.84 (d, J = 8.7 Hz, 1H), 5.91 (d, J = 6.0 Hz, 1H), 4.48 (d, J = 6.1 Hz, 1H), 3.76 (s, 3H).

¹³C NMR (125 MHz, CDCl₃): δ 199.0, 159.7, 133.8, 133.6, 131.2, 129.14, 129.09, 128.7, 114.6, 75.7, 55.2.

LRESI-MS (ESI +ve): *m/z* 265 [M + Na]⁺ (20%), *m/z* 297 [M + Na + MeOH]⁺ (100%).

The NMR spectroscopic data agreed with those reported.¹⁷

2-(Furan-2-yl)-2-hydroxy-1-phenylethan-1-one (S3d).

S3d

The titled compound was prepared following the <u>General procedure E</u> using dithiane alcohol **S2d** (76.4 mg, 0.261 mmol), AgNO₃ (147.9 mg, 0.8707 mmol), and NCS (85.0 mg, 0.637 mmol) in MeCN/H₂O (4:1, 5 mL). Purification by FCC (1:9 EtOAc:hexane) furnished **S3d** as a white solid (25.5 mg, 48%).

R_f = 0.11 (1:9 EtOAc:hexane).

¹**H NMR** (500 MHz, CDCl₃ δ 7.97 – 7.92 (m, 2H), 7.60 – 7.56 (m, 1H), 7.47 – 7.42 (m, 2H), 7.34 (dd, *J* = 1.9, 0.8 Hz, 1H), 6.36 – 6.29 (m, 2H), 6.02 (d, *J* = 6.4 Hz, 1H), 4.40 (d, *J* = 6.4 Hz, 1H).

¹³**C NMR** (125 MHz, CDCl₃): δ 195.9, 151.6, 143.1, 134.2, 133.2, 129.0, 128.8, 110.9, 109.2, 69.3.

LRESI-MS (ESI +ve): *m/z* 225 [M + Na]⁺ (20%), *m/z* 257 [M + Na + MeOH]⁺ (100%).

The NMR spectroscopic data agreed with those reported.¹⁸

1-Hydroxy-1-phenylpropan-2-one (S3e).

S3e

The titled compound was prepared following the <u>General procedure E</u> using dithiane alcohol **S3e** (747.0 mg, 3.108 mmol), AgNO₃ (1.358 g, 7.993 mmol), and NCS (872.9 mg, 6.537 mmol) in MeCN/H₂O (4:1, 40 mL). Purification by FCC (1:4 EtOAc:hexane) furnished **E79e** as a yellow oil (158.1 mg, 34%).

R_f = 0.24 (1:4 EtOAc:hexane).

¹**H NMR** (500 MHz, CDCl₃ δ 7.43 – 7.29 (m, 5H), 5.10 (d, *J* = 4.2 Hz, 1H), 4.29 (d, *J* = 4.2 Hz, 1H), 2.09 (s, 3H).

¹³C NMR (125 MHz, CDCl₃): δ 207.0, 137.9, 129.0, 128.7, 127.3, 80.1, 25.2.

LRESI-MS (ESI -ve): *m*/*z* 149 [M – H]⁻.

The NMR spectroscopic data agreed with those reported.¹⁹

2-Hydroxy-1-phenyl-2-(2-thienyl)ethan-1-one (S3f).

S3f

The titled compound was prepared following the <u>General procedure E</u> using dithiane alcohol **S2f** (390.1 mg, 1.265 mmol), AgNO₃ (553.1 mg, 3.256 mmol), and NCS (342.9 mg, 2.568 mmol) in MeCN/H₂O (4:1, 25 mL). Purification by FCC (1:9 EtOAc:hexane) furnished **S3f** as an orange oil (151.4 mg, 65%).

R_f = 0.09 (1:9 EtOAc:hexane).

IR (neat): 644, 694, 719, 1055, 1222, 1263, 1383, 1449, 1490, 1595, 1679, 2922, 3404 cm⁻¹.

¹**H NMR** (500 MHz, CDCl₃): δ 8.03 – 7.92 (m, 2H), 7.56 (ddt, *J* = 7.8, 7.0, 1.3 Hz, 1H), 7.49 – 7.40 (m, 2H), 7.25 (dd, *J* = 5.1, 1.2 Hz, 1H), 6.99 – 6.94 (m, 1H), 6.91 (dd, *J* = 5.1, 3.6 Hz, 1H), 6.23 (d, *J* = 6.6 Hz, 1H), 4.50 (d, *J* = 6.6 Hz, 1H).

¹³C NMR (125 MHz, CDCl₃ δ 197.5, 142.1, 134.4, 133.5, 129.4, 129.0, 127.4, 126.8, 126.7, 70.9.
 HRESI-MS (ESI +ve): Found 219.0477, calc for C₁₂H₁₁O₂S 219.0480 [M + H]⁺.

2-(2-Chlorophenyl)-2-hydroxy-1-phenylethan-1-one (S3g).

S3g

The titled compound was prepared following the <u>General procedure E</u> using dithiane alcohol **S2g** (742.6 mg, 2.204 mmol), AgNO₃ (952.0 mg, 5.604 mmol), and NCS (585.7 mg, 4.386 mmol) in MeCN/H₂O (4:1, 45 mL). Purification by FCC (1:9 EtOAc:hexane) furnished **S3g** as a white solid (351.0 mg, 65%).

R_f = 0.21 (1:9 EtOAc:hexane).

¹**H NMR** (500 MHz, CDCl₃): δ 8.06 – 7.85 (m, 2H), 7.53 (ddt, *J* = 8.7, 7.0, 1.3 Hz, 1H), 7.47 – 7.37 (m, 3H), 7.26 – 7.19 (m, 1H), 7.18 (td, *J* = 7.5, 1.4 Hz, 1H), 7.11 (dd, *J* = 7.7, 1.8 Hz, 1H), 6.38 (d, *J* = 5.6 Hz, 1H), 4.56 (d, *J* = 5.6 Hz, 1H).

¹³C NMR (125 MHz, CDCl₃): δ 198.7, 136.7, 134.1, 133.6, 133.1, 130.3, 130.0, 129.2, 128.9, 128.8, 127.7, 72.8.

LRESI-MS (ESI +ve): *m/z* 269 [M + Na]⁺ (40%), *m/z* 301 [M + Na + MeOH]⁺ (100%).

The NMR spectroscopic data agreed with those reported.²⁰

2-(4-Fluorophenyl)-2-hydroxy-1-phenylethan-1-one (S3h).

S3h

The titled compound was prepared following the <u>General procedure E</u> using dithiane alcohol **S2h** (601.6 mg, 1.877 mmol), AgNO₃ (802.8 mg, 4.726 mmol), and NCS (519.2 mg, 3.888 mmol) in MeCN/H₂O (4:1, 40 mL). Purification by FCC (1:9 EtOAc:hexane) furnished an inseparable mixture of **S3h** and **S3j** (6.7:1) as a white solid (253.2 mg, 59% combined yield).

R_f = 0.06 (1:9 EtOAc:hexane).

¹**H NMR** (500 MHz, CDCl₃): δ 7.92 – 7.85 (m, 2H), 7.58 – 7.48 (m, 1H), 7.45 – 7.38 (m, 2H), 7.36 – 7.28 (m, 2H), 7.05 – 6.97 (m, 2H), 5.94 (d, J = 6.0 Hz, 1H), 4.53 (d, J = 6.0 Hz, 1H).

¹³C NMR (125 MHz, CDCl₃): δ 199.0, δ 162.9 (d, *J* = 247.8 Hz), 161.9, 135.2 (d, *J* = 3.2 Hz), 134.3, 133.5, 129.8 (d, *J* = 8.4 Hz), 129.3, 129.0, 116.4 (d, *J* = 21.7 Hz), 75.6.

LRESI-MS (ESI +ve): *m/z* 253 [M + Na]⁺ (20%), *m/z* 285 [M + Na + MeOH]⁺ (100%).

The NMR spectroscopic data agreed with those reported.²¹

2-Hydroxy-1-(4-methoxyphenyl)-2-phenylethan-1-one (S3i).

S3i

The titled compound was prepared following the <u>General procedure E</u> using dithiane alcohol **S2i** (592.4 mg, 1.782 mmol), AgNO₃ (832.2 mg, 4.899 mmol), and NCS (477.9 mg, 3.579 mmol) in MeCN/H₂O (4:1, 35 mL). Purification by FCC (1:4 EtOAc:hexane) furnished **S3i** as a white solid (297.8 mg, 69%).

R_f = 0.17 (1:4 EtOAc:hexane).

¹**H NMR** (500 MHz, CDCl₃): δ 8.08 – 7.84 (m, 2H), 7.37 – 7.23 (m, 5H), 6.94 – 6.80 (m, 2H), 5.89 (d, *J* = 6.1 Hz, 1H), 4.63 (d, *J* = 6.1 Hz, 1H), 3.82 (s, 3H).

¹³**C NMR** (125 MHz, CDCl₃): δ 197.6, 164.6, 140.1, 132.1, 129.6, 128.9, 128.2, 126.7, 114.4, 76.3, 56.0.

LRESI-MS (ESI +ve): *m*/*z* 265 [M + Na]⁺ (20%), *m*/*z* 297 [M + Na + MeOH]⁺ (100%).

The NMR spectroscopic data agreed with those reported.¹⁷

1-(4-Fluorophenyl)-2-hydroxy-2-phenylethan-1-one (S3j).

S3j

The titled compound was prepared following the <u>General procedure E</u> using dithiane alcohol **S2j** (561.8 mg, 1.753 mmol), AgNO₃ (807.4 mg, 4.753 mmol), and NCS (481.5 mg, 3.606 mmol) in MeCN/H₂O (4:1, 35 mL). Purification by FCC (1:4 EtOAc:hexane) furnished **S3j** as a white solid (241.7 mg, 60%).

R_f = 0.20 (1:4 EtOAc:hexane).

¹H NMR (500 MHz, CDCl₃): δ 8.10 – 7.87 (m, 2H), 7.38 – 7.23 (m, 5H), 7.18 – 7.03 (m, 2H), 5.90 (d, *J* = 6.1 Hz, 1H), 4.50 (d, *J* = 6.1 Hz, 1H).

¹³C NMR (125 MHz, CDCl₃): δ 197.3, 166.0 (d, *J* = 257.0 Hz), 138.8, 131.9 (d, *J* = 9.5 Hz), 129.8 (d, *J* = 3.1 Hz), 129.2, 128.7, 127.7, 116.0 (d, *J* = 22.1 Hz), 76.2.

LRESI-MS (ESI +ve): *m/z* 253 [M + Na]⁺ (20%), *m/z* 285 [M + Na + MeOH]⁺ (100%).

The NMR spectroscopic data agreed with those reported.²²

1-(Furan-2-yl)-2-hydroxy-2-phenylethan-1-one (S3k).

S3k

The titled compound was prepared following the <u>General procedure E</u> using dithiane alcohol **S2k** (387.0 mg, 1.324 mmol), AgNO₃ (576.8 mg, 3.396 mmol), and NCS (387.9 mg, 2.905 mmol) in MeCN/H₂O (4:1, 25 mL). Purification by FCC (1:4 EtOAc:hexane) furnished **S3k** as a dark orange solid (78.3 mg, 29%).

R_f = 0.14 (1:4 EtOAc:hexane).

¹H NMR (500 MHz, CDCl₃): δ 7.57 (dd, J = 1.7, 0.8 Hz, 1H), 7.48 – 7.38 (m, 2H), 7.38 – 7.32 (m, 2H), 7.32 – 7.27 (m, 1H), 7.20 (dd, J = 3.7, 0.8 Hz, 1H), 6.48 (dd, J = 3.7, 1.7 Hz, 1H), 5.75 (d, J = 5.9 Hz, 1H), 4.37 (d, J = 5.9 Hz, 1H).

 $^{13}\textbf{C}$ NMR (125 MHz, CDCl_3): δ 187.3, 149.9, 147.3, 138.6, 128.8, 128.6, 127.6, 119.9, 112.5, 76.0.

LRESI-MS (ESI +ve): *m/z* 225 [M + Na]⁺ (20%), *m/z* 257 [M + Na + MeOH]⁺ (100%).

The NMR spectroscopic data agreed with those reported.²²

2-Hydroxy-2-phenyl-1-(2-thienyl)ethan-1-one (S3I).

S3I

The titled compound was prepared following the <u>General procedure E</u> using dithiane alcohol **S2I** (201.6 mg, 0.654 mmol), AgNO₃ (288.8 mg, 1.700 mmol), and NCS (193.0 mg, 1.445 mmol) in MeCN/H₂O (4:1, 10 mL). Purification by FCC (1:4 EtOAc:hexane) furnished **S3I** as an orange solid (88.5 mg, 62%).

R_f = 0.21 (1:4 EtOAc:hexane).

¹**H NMR (**500 MHz, CDCl₃): δ 7.70 – 7.56 (m, 2H), 7.44 – 7.30 (m, 5H), 7.05 (dd, *J* = 4.8, 4.0 Hz, 1H), 5.74 (d, *J* = 5.8 Hz, 1H), 4.42 (d, *J* = 5.8 Hz, 1H).

¹³**C NMR** (125 MHz, CDCl₃): δ 191.7, 139.8, 139.5, 135.2, 134.4, 129.4, 129.1, 128.5, 128.1. (¹³C resonance corresponding to <u>C</u>HOH was not observed).

LRESI-MS (ESI +ve): *m/z* 241 [M + Na]⁺ (30%), *m/z* 273 [M + Na + MeOH]⁺ (100%).

The NMR spectroscopic data agreed with those reported.²³

2-Hydroxy-1-phenylpropan-1-one (S3m).

Procedure:24

To a stirring solution of propiophenone (1 mL, 7.520 mmol) in DMSO (5 mL) at rt under air was added I_2 (427.2 mg, 1.683 mmol) in one portion. The resulting solution was stirred at 60 °C, monitored by TLC. Upon completion, the reaction mixture was allowed to cool to rt, diluted with EtOAc, washed with 0.1 M Na₂S₂O₃, and extracted with EtOAc. The combined organic layers were dried over MgSO₄, filtered, concentrated *in vacuo*, and then purified by FCC. Purification by FCC (1:9 EtOAc:hexane) yielded **S3m** as a light orange oil (278.3 mg, 25%).

R_f = 0.09 (1:9 EtOAc:hexane).

¹**H NMR** (500 MHz, CDCl₃): δ 8.00 – 7.89 (m, 2H), 7.70 – 7.58 (m, 1H), 7.58 – 7.47 (m, 2H), 5.31 – 5.04 (m, 1H), 3.78 (d, *J* = 6.2 Hz, 1H), 1.46 (d, *J* = 7.0 Hz, 3H).

The NMR spectroscopic data agreed with those reported.¹⁶

d. Synthesis of cyclic sulfamidate imines

General procedure F:

To a stirring solution of *t*-BuOH (1.5 equiv.) in THF at -10 °C was added chlorosulfonyl isocyanate (CSI) (1.2 equiv.) dropwise, followed by rapid stirring at the same temperature for 30 min. A solution of α -hydroxy ketone (1.0 equiv.) in THF was then added to the CSI/*t*-BuOH mixture, followed by the dropwise addition of Et₃N (1.2 equiv.). The resulting solution was then stirred at -10 °C and monitored by TLC. Upon completion, the reaction was quenched with water, extracted with EtOAc, then the combined organic extracts were washed with water and brine. The combined layer was dried over MgSO₄, filtered, and then concentrated *in vacuo*.

The residue was then dissolved in THF (0.1 M), followed by addition of *p*TSA (10 mol%). The reaction mixture was then heated at reflux overnight. Upon completion, as indicated by TLC, the reaction mixture was cooled down to rt then quenched with saturated NaHCO₃ solution, extracted with EtOAc, then the combined organic layers were washed with water and brine. The organic layer was dried over MgSO₄, filtered, concentrated *in vacuo*, and then purified by FCC.

General procedure G:25

Anhydrous formic acid (1.2 equiv.) was added dropwise to neat CSI (1.2 equiv.) at 0 °C with rapid stirring. Rapid gas evolution was observed, followed by solidification of the reaction mixture. The solid material was dissolved with MeCN (1.0 M) and the solution was stirred at rt until gas evolution ceased, then the solution was cooled to 0 °C. A solution of the α -hydroxyketone (1.0 equiv.) and pyridine (1.1 equiv.) in MeCN, was then added dropwise to the cooled (0 °C) CSI/HCOOH mixture with rapid stirring. The reaction mixture was stirred and allowed to warm to rt overnight. Upon completion, as indicated by TLC, the reaction mixture was filtered through a short pad of silica, and the filter cake was washed with EtOAc. The filtrate was then concentrated *in vacuo*, followed by purification by either FCC or recrystallisation.

4,5-Diphenyl-5H-1,2,3-oxathiazole 2,2-dioxide (2a).

2a

The titled compound was prepared following the <u>General procedure F</u> using benzoin (569.6 mg, 2.684 mmol), CSI (0.28 mL, 3.191 mmol), *t*-BuOH (0.39 mL, 4.066 mmol), and Et₃N (0.44 mL, 3.189 mmol) in THF (25 mL), then *p*TSA•H₂O (116.1 mg, 0.611 mmol) in THF (50 mL). Recrystallisation of the crude reasidue from CH₂Cl₂/Et₂O furnished the desired product **2a** as a white solid (781.5 mg, 80%).

R_f = 0.13 (1:4 EtOAc:hexane).

¹H NMR (500 MHz, CDCl₃): δ 7.96 – 7.75 (m, 2H), 7.68 – 7.54 (m, 1H), 7.53 – 7.32 (m, 7H), 6.65 (s, 1H).
 ¹³C NMR (125 MHz, CDCl₃): δ 176.3, 135.1, 132.6, 130.8, 130.2, 129.7, 129.2, 128.5, 127.0, 89.7.

LRESI-MS (ESI -ve): *m/z* 272 [M – H]⁻ (100%).

The NMR spectroscopic data agreed with those reported.²⁶

4-(4-Methoxyphenyl)-5-phenyl-5*H*-1,2,3-oxathiazole 2,2-dioxide (2b).

The titled compound was prepared following the <u>General procedure F</u> using α -hydroxyketone **S3i** (297.8 mg, 1.229 mmol), CSI (0.13 mL, 1.494 mmol), *t*-BuOH (0.18 mL, 1.882 mmol), and Et₃N (0.21 mL, 1.507 mmol) in THF (12 mL), then *p*TSA•H₂O (22.7 mg, 0.119 mmol) in THF (15 mL). Purification by FCC (1:3 EtOAc:hexane) yielded **2b** as a white solid (244.3 mg, 66%).

Mp: 133–135 °C

R_f = 0.15 (1:3 EtOAc:hexane).

IR (neat): 488, 495, 615, 685, 753, 780, 806, 901, 951, 1018, 1038, 1190, 1261, 1363, 1457, 1514, 1556, 1590 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃): δ 7.86 − 7.77 (m, 2H), 7.53 − 7.32 (m, 5H), 6.91 − 6.82 (m, 2H), 6.60 (s, 1H), 3.84 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃): δ 175.1, 165.2, 133.2, 132.8, 130.8, 129.8, 128.6, 119.4, 114.8, 89.5, 55.7.

HRESI-MS (ESI -ve): Found 302.0498, calc for C₁₅H12NO₄S 302.0487 [M − H]⁻.

4-(4-Fluorophenyl)-5-phenyl-5*H*-1,2,3-oxathiazole 2,2-dioxide (2c).

2c

The titled compound was prepared following the <u>General procedure F</u> using α -hydroxyketone **S3j** (241.7 mg, 1.050 mmol), CSI (0.11 mL, 1.264 mmol), *t*-BuOH (0.15 mL, 1.568 mmol), and Et₃N (0.18 mL, 1.291 mmol) in THF (11 mL), then *p*TSA•H₂O (17.4 mg, 0.091 mmol) in THF (10 mL). Purification by FCC (1:4 EtOAc:hexane) yielded **2c** as a semi solid (114.1 mg, 37%).

R_f = 0.16 (1:4 EtOAc:hexane).

IR (neat): 494, 597, 654, 684, 748, 781, 893, 954, 1033, 1191, 1242, 1367, 1458, 1512, 1571, 1601 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃): δ 7.93 – 7.84 (m, 2H), 7.54 – 7.34 (m, 5H), 7.11 (dd, *J* = 8.9, 8.1 Hz, 2H), 6.61 (s, 1H).

¹³C NMR (125 MHz, CDCl₃): δ 174.8, 166.7 (d, *J* = 260.5 Hz), 133.1 (d, *J* = 9.8 Hz), 132.5, 131.1, 129.9, 128.6, 123.48 (d, *J* = 3.2 Hz), 116.9 (d, *J* = 22.3 Hz), 89.6.

¹⁹**F NMR** (470 MHz, CDCl₃) δ –37.01 (tt, J = 8.0, 5.1 Hz).

HRESI-MS (ESI –ve): Found 290.0277, calc for C₁₄H₉NO₃SF 290.0287 [M − H]⁻.

4-(Furan-2-yl)-5-phenyl-5H-1,2,3-oxathiazole 2,2-dioxide (2d).

2d

The titled compound was prepared following the <u>General procedure F</u> using α -hydroxyketone **S3k** (93.1 mg, 0.460 mmol), CSI (0.05 mL, 0.574 mmol), *t*-BuOH (0.07 mL, 0.732 mmol), and Et₃N (0.10 mL, 0.717 mmol) in THF (5 mL), then *p*TSA•H₂O (7.2 mg, 0.038 mmol) in THF (5 mL). Purification by FCC (1:3 EtOAc:hexane) yielded **2d** as a dark orange semi solid (53.0 mg, 44%).

R_f = 0.13 (1:3 EtOAc:hexane).

IR (neat): 508, 596, 662, 685, 750, 913, 981, 1035, 1195, 1230, 1376, 1459, 1540, 1598 cm⁻¹.

¹**H NMR** (500 MHz, CDCl₃): δ 7.68 (dd, *J* = 1.7, 0.7 Hz, 1H), 7.52 – 7.41 (m, 5H), 7.27 (m, 1H), 6.60 (dd, *J* = 3.8, 1.7 Hz, 1H), 6.50 (s, 1H).

¹³**C NMR** (125 MHz, CDCl₃): δ 165.4, 150.1, 144.1, 132.6, 131.0, 129.7, 128.5, 123.7, 114.1, 88.8.

HRESI-MS (ESI –ve): Found 262.0169, calc for C₁₂H₈NO₄S 262.0174 [M − H]⁻.

5-Phenyl-4-(2-thienyl)-5H-1,2,3-oxathiazole 2,2-dioxide (2e).

2e

The titled compound was prepared following the <u>General procedure F</u> using α -hydroxyketone **S3I** (517.0 mg, 2.369 mmol), CSI (0.25 mL, 2.872 mmol), *t*-BuOH (0.35 mL, 3.660 mmol), and Et₃N (0.40 mL, 2.870 mmol) in THF (23 mL), then *p*TSA•H₂O (46.3 mg, 0.243 mmol) in THF (25 mL). Purification by FCC (3:7 EtOAc:hexane) yielded **2e** as a white solid (196.4 mg, 30%).

Mp: 162–165 °C

R_f = 0.28 (3:7 EtOAc:hexane).

IR (neat): 497, 585, 659, 690, 729, 848, 888, 949, 986, 1067, 1183, 1359, 1415, 1574 cm⁻¹.

¹**H NMR** (500 MHz, CDCl₃): δ 7.77 (dd, *J* = 5.0, 1.1 Hz, 1H), 7.59 – 7.38 (m, 6H), 7.08 (dd, *J* = 5.0, 3.9 Hz, 1H), 6.49 (s, 1H).

¹³C NMR (125 MHz, CDCl₃): δ 170.2, 137.5, 137.0, 133.0, 131.4, 131.2, 130.0, 129.4, 129.0, 89.5.

HRESI-MS (ESI -ve): Found 277.9942, calc for C₁₂H₈NO₃S₂ 277.9946 [M – H]⁻.

4-Methyl-5-phenyl-5H-1,2,3-oxathiazole 2,2-dioxide (2f).

2f

The titled compound was prepared following the <u>General procedure F</u> using α -hydroxyketone **S3e** (303.8 mg, 2.023 mmol), CSI (0.21 mL, 2.413 mmol), *t*-BuOH (0.30 mL, 1.643 mmol), and Et₃N (0.35 mL, 2.511 mmol) in THF (10 mL), then *p*TSA•H₂O (39.1 mg, 0.206 mmol) in THF (20 mL). Purification by FCC (1:4 EtOAc:hexane) yielded **2f** as a yellow oil (246.5 mg, 54%).

R_f = 0.09 (1:4 EtOAc:hexane).

¹H NMR (500 MHz, CDCl₃ δ 7.52 – 7.45 (m, 3H), 7.38 – 7.32 (m, 2H), 6.00 (s, 1H), 2.19 (s, 3H).

¹³**C NMR** (125 MHz, CDCl₃): δ 182.4, 131.5, 131.3, 130.2, 127.8, 91.9, 17.9.

LRESI-MS (ESI –ve): *m/z* 210 [M – H][–] (80%).

The NMR spectroscopic data agreed with those reported.²⁷

4-Phenyl-5-(p-tolyl)-5H-1,2,3-oxathiazole 2,2-dioxide (2g).

2g

The titled compound was prepared following the <u>General procedure F</u> using α -hydroxyketone **S3b** (187.0 mg, 0.826 mmol), CSI (0.14 mL, 1.608 mmol), *t*-BuOH (0.15 mL, 1.568 mmol), and Et₃N (0.15 mL, 1.076 mmol) in THF (4 mL), then *p*TSA•H₂O (12.1 mg, 0.064 mmol) in THF (8 mL). Purification by FCC (1:3 EtOAc:hexane) yielded **2g** as a white solid (51.8 mg, 22%).

Mp: 144–147 °C

R_f = 0.28 (1:3 EtOAc:hexane).

IR (neat): 468, 497, 565, 675, 769, 812, 899, 953, 1183, 1360, 1450, 1495, 1567, 1595 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃): δ 7.92 – 7.78 (m, 2H), 7.63 – 7.52 (m, 1H), 7.49 – 7.33 (m, 2H), 7.32 – 7.24 (m, 2H), 7.21 (d, *J* = 7.9 Hz, 2H), 6.64 (s, 1H), 2.34 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 176.4, 141.3, 135.1, 130.5, 130.3, 129.7, 129.2, 128.5, 127.3, 89.8, 21.3.
 HRESI-MS (ESI –ve): Found 286.0536, calc for C₁₅H₁₂NO₃S 286.0538 [M – H]⁻.

4-Phenyl-5-(o-tolyl)-5H-1,2,3-oxathiazole 2,2-dioxide (2h).

2h

The titled compound was prepared following the <u>General procedure F</u> using α -hydroxyketone **S3a** (350.0 mg, 1.5468 mmol), CSI (0.19 mL, 2.183 mmol), *t*-BuOH (0.25 mL, 2.614 mmol), and Et₃N (0.26
mL, 1.865 mmol) in THF (5 mL), then pTSA•H₂O (27.5 mg, 0.145 mmol) in THF (16 mL). Purification by FCC (1:4 EtOAc:hexane) yielded **2h** as a white solid (244.1 mg, 48%).

Mp: 135–138 °C

R_f = 0.20 (1:4 EtOAc:hexane).

IR (neat): 449, 470, 502, 598, 675, 769, 810, 906, 937, 949, 1182, 1364, 1450, 1493, 1568, 1595 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃): δ 7.80 − 7.74 (m, 2H), 7.60 (ddt, *J* = 8.3, 7.3, 1.5 Hz, 1H), 7.46 − 7.39 (m, 2H), 7.37 − 7.28 (m, 2H), 7.18 (td, *J* = 7.4, 1.8 Hz, 1H), 7.09 − 7.03 (m, 1H), 6.87 (s, 1H), 2.57 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃): δ 177.0, 137.2, 135.2, 131.7, 131.04, 131.01, 130.1, 129.4, 129.1, 127.5, 127.4, 87.0, 19.2.

HRESI-MS (ESI -ve): Found 286.0549, calc for C₁₅H₁₂NO₃S 286.0538 [M - H]⁻.

5-(4-Fluorophenyl)-4-phenyl-5H-1,2,3-oxathiazole 2,2-dioxide (2i).

2i

The titled compound was prepared following the <u>General procedure F</u> using α -hydroxyketone **S3h** (410.7 mg, 1.784 mmol), CSI (0.19 mL, 2.183 mmol), *t*-BuOH (0.26 mL, 2.719 mmol), and Et₃N (0.40 mL, 2.870 mmol) in THF (18 mL), then *p*TSA•H₂O (18.4 mg, 0.097 mmol) in THF (20 mL). Purification by FCC (1:4 EtOAc:hexane) yielded **2i** as a white solid (304.2 mg, 59%).

Mp: 175–177 °C

R_f = 0.19 (1:4 EtOAc:hexane).

IR (neat): 473, 507, 615, 677, 773, 811, 900, 964, 1190, 1362, 1450, 1510, 1567, 1594 cm⁻¹.

¹**H NMR** (500 MHz, CDCl₃): δ 7.87 – 7.81 (m, 2H), 7.65 – 7.58 (m, 1H), 7.50 – 7.37 (m, 5H), 7.17 – 7.09 (m, 2H), 6.67 (s, 1H).

¹³C NMR (125 MHz, CDCl₃): δ 175.9, 163.9 (d, *J* = 252.0 Hz), 135.4, 130.7 (d, *J* = 9.0 Hz), 130.2, 129.4, 128.6 (d, *J* = 3.5 Hz), 126.9, 117.1 (d, *J* = 22.3 Hz), 88.8.

¹⁹**F NMR** (470 MHz, CDCl₃) δ –45.70 (tt, *J* = 8.3, 5.0 Hz).

HRESI-MS (ESI –ve): Found 290.0297, calc for $C_{14}H_9NO_3SF$ 290.0287 [M – H]⁻.

5-(2-Chlorophenyl)-4-phenyl-5*H*-1,2,3-oxathiazole 2,2-dioxide (2j).

The titled compound was prepared following the <u>General procedure F</u> using α -hydroxyketone **S3g** (597.7 mg, 2.423 mmol), CSI (0.26 mL, 2.987 mmol), *t*-BuOH (0.35 mL, 3.660 mmol), and Et₃N (0.40 mL, 2.870 mmol) in THF (23 mL), then *p*TSA•H₂O (54.2 mg, 0.285 mmol) in THF (25 mL). Purification by FCC (1:4 EtOAc:hexane) yielded **2j** as an off-white solid (464.7 mg, 62%).

Mp: 139–140 °C

R_f = 0.22 (1:4 EtOAc:hexane).

IR (neat): 472, 515, 591, 671, 770, 810, 910, 959, 1184, 1370, 1445, 1477, 1568, 1595 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃): δ 7.88 – 7.80 (m, 2H), 7.61 (ddt, *J* = 8.7, 7.1, 1.2 Hz, 1H), 7.52 (dd, *J* = 8.1, 1.3 Hz, 1H), 7.50 – 7.41 (m, 2H), 7.38 (ddd, *J* = 8.1, 7.2, 1.8 Hz, 1H), 7.31 – 7.18 (m, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 176.5, 135.5, 134.1, 132.3, 130.6, 130.0, 129.9, 129.5, 128.5, 126.9, 85.6. HRESI-MS (ESI –ve): Found 305.9994, calc for C₁₄H₉NO₃S³⁵Cl 305.9992 [M – H]⁻.

5-Methyl-4-phenyl-5H-1,2,3-oxathiazole 2,2-dioxide (2k).

2k

The titled compound was prepared following the <u>General procedure G</u> using α -hydroxyketone **S3m** (500.0 mg, 3.329 mmol), CSI (0.6 mL, 6.885 mmol), HCOOH (0.25 mL, 6.612 mmol), and pyridine (0.55

mL, 6.827 mmol) in MeCN (13mL). Purification by FCC (1:6 EtOAc:hexane) yielded **2k** as an orange solid (266.0 mg, 38%).

R_f = 0.03 (1:6 EtOAc:hexane).

¹**H NMR** (500 MHz, CDCl₃ δ 8.02 – 7.85 (m, 2H), 7.80 – 7.65 (m, 1H), 7.66 – 7.53 (m, 2H), 5.95 (q, *J* = 7.0 Hz, 1H), 1.77 (d, *J* = 7.0 Hz, 3H).

¹³**C NMR** (125 MHz, CDCl₃): δ 179.4, 135.5, 129.7, 129.6, 126.9, 83.9, 20.1.

LRESI-MS (ESI +ve): m/z 234 [M + Na]⁺ (10%).

The NMR spectroscopic data agreed with those reported.²⁸

4-Methyl-5*H*-1,2,3-oxathiazole 2,2-dioxide (2I).

21

The titled compound was prepared following the <u>General procedure G</u> using 2-hydroxyacetone (0.5 mL, 7.303 mmol), CSI (2.0 mL, 22.978 mmol), HCOOH (0.85 mL, 22.480 mmol), and pyridine (0.85 mL, 10.5514 mmol) in MeCN (15 mL). Recrystallisation from CH_2Cl_2 /hexane furnished the desired product **2I** as an off-white solid (405.0 mg, 41%).

R_f = 0.11 (1:1 EtOAc:hexane).

¹H NMR (400 MHz, CDCl₃): 5.06 (s, 2H), 2.42 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 180.9, 76.9, 17.9.

LRESI-MS (ESI –ve): *m/z* 134 [M – H]⁻ (70%).

The NMR spectroscopic data agreed with those reported.²⁹

4,5-Dimethyl-5H-1,2,3-oxathiazole 2,2-dioxide (2m).

The titled compound was prepared following the <u>General procedure F</u> using acetoin (0.5 mL, 5.749 mmol), CSI (0.60 mL, 6.893 mmol), *t*-BuOH (0.83 mL, 8.679 mmol), and Et₃N (0.96 mL, 6.888 mmol) in THF (30 mL), then *p*TSA•H₂O (92.7 mg, 0.487 mmol) in THF (60 mL). Purification by FCC (2:3 EtOAc:hexane) yielded **2m** as a yellow oil (286.2 mg, 33%).

R_f = 0.19 (2:3 EtOAc:hexane).

IR (neat): 511, 572, 659, 744, 803, 822, 899, 986, 1056, 1083, 1191, 1228, 1357, 1427, 1626 cm⁻¹.

¹**H NMR** (500 MHz, CDCl₃): δ 5.26 (q, *J* = 7.1 Hz, 1H), 2.37 (s, 3H), 1.66 (d, *J* = 7.1 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃): δ 184.3, 86.2, 17.8, 17.2.

HRESI-MS (ESI +ve): Found 150.0227, calc for C₄H₈NO₃S 150.0225 [M + H]⁺.

4-Phenyl-5*H*-1,2,3-oxathiazole 2,2-dioxide (2n).

2n

The titled compound was prepared following the <u>General procedure F</u> using 2-hydoxyacetophenone (2.1620 g, 15.880 mmol), CSI (1.5 mL, 17.233 mmol), *t*-BuOH (2.2 mL, 23.003 mmol), and Et₃N (3.2 mL, 22.959 mmol) in THF (70 mL), then *p*TSA•H₂O (308.5 mg, 1.622 mmol) in THF (50 mL). Recrystallisation from CH₂Cl₂/hexane furnished the desired product **2n** as an off-white solid (2.1451 g, 68%).

R_f = 0.15 (1:4 EtOAc:hexane).

¹**H NMR** (400 MHz, CDCl₃): δ 7.97 − 7.89 (m, 2H), 7.74 (ddt, *J* = 7.9, 7.1, 1.3 Hz, 1H), 7.66 − 7.54 (m, 2H), 5.59 (s, 2H).

¹³**C NMR** (100 MHz, CDCl₃): δ 175.3, 135.9, 129.7, 128.9, 127.2, 74.3.

LRESI-MS (ESI –ve): *m/z* 196 [M – H]⁻ (100%).

The NMR spectroscopic data agreed with those reported.²⁶

5. Synthesis of chiral ligand

Procedure:³⁰

To a stirring solution of (1R,2R)-(+)-1,2-diphenylethylenediamine (51.1 mg, 0.241 mmol),), 2-(diphenylphosphino)benzoic acid (159.5 mg, 0.521 mmol), and DMAP (7.1 mg, 0.058 mmol) in anhydrous CH₂Cl₂ (5 mL) at rt was added DCC (150.1 mg, 0.727 mmol). The mixture was then stirred at rt for 3.5 h at rt, and the reaction was monitored by TLC. Upon completion, the reaction mixture was filtered through a thin pad of Celite, and the filter cake was washed with CH₂Cl₂. The filtrate was concentrated *in vacuo*, followed by purification by FCC (1:2 EtOAc:hexane) to give L4 as a white solid (144.8 mg, 76%).

R_f = 0.53 (1:2 EtOAc:hexane)

¹**H NMR** (400 MHz, CDCl₃): δ 7.62 (ddd, *J* = 5.9, 3.9, 1.8 Hz, 2H), 7.40 − 7.29 (m, 2H), 7.29 − 7.00 (m, 28H), 7.00 − 6.92 (m, 4H), 6.89 (ddd, *J* = 7.1, 3.9, 1.7 Hz, 2H), 5.42 (dd, *J* = 5.5, 2.6 Hz, 2H).

¹³**C NMR** (100 MHz, CDCl₃): δ δ 169.3, 140.4 (d, *J* = 24.3 Hz), 138.4, 137.7 (d, *J* = 12.1 Hz), 137.3 (d, *J* = 11.7 Hz), 136.9 (d, *J* = 22.5 Hz), 134.3, 133.9 (d, *J* = 20.2 Hz), 133.6 (d, *J* = 20.2 Hz), 130.3, 128.6, 128.5, 128.4, 128.4, 128.3, 127.91, 127.86, 127.7, 127.4, 59.5.

LRESI-MS (ESI +ve): *m*/*z* 789 [M + H]⁺ (100%).

The NMR spectroscopic data agreed with those reported.³⁰

6. Synthesis of 3- and 5-allyl cyclic sulfamidate imines

General procedure H:

To a reaction vial charged with $[Pd(\pi-C_3H_5)Cl]_2$ (5 mol%) and (*R*,*R*)-DACH-Phenyl Trost ligand (15 mol%) was added anhydrous CH₂Cl₂ (0.01 M wrt the Pd(II) dimer), and the resulting solution was stirred for 30 min at rt. In a separate reaction vial, a solution of allyl *tert*-butyl carbonate (1.0 equiv.) and cyclic sulfamidate imine (1.1 equiv.) was prepared in anhydrous CH₂Cl₂ (0.2 M wrt the allyl carbonate). The solution of allyl carbonate and imine was then transferred to the catalyst solution via a cannula, rinsing with anhydrous CH₂Cl₂ (0.2 M wrt the allyl carbonate). The resulting reaction mixture was stirred at rt and monitored by TLC. Upon completion, the reaction was quenched with water, extracted with CH₂Cl₂, and the combined extracts were then washed with water and brine. The organic layer was dried over MgSO₄, filtered, concentrated *in vacuo*, and then purified by FCC.

(Note: Most racemate samples were prepared following this procedure using 25 mol% PPh₃ in place of the Trost ligand. The only exception to this was (rac)-**6ca**, which was prepared using a 50:50 mixture of (R,R)- and (S,S)-DACH Phenyl Trost ligand).

General procedure I:

To a reaction vial charged with $Pd_2dba_3 \circ CHCl_3$ (5 mol%) and (*R*,*R*)-DACH-Phenyl Trost ligand (15 mol%) was added anhydrous CH_2Cl_2 (0.01 M wrt $Pd_2dba_3 \circ CHCl_3$), and the resulting solution was stirred for 30 min at rt. In a separate reaction vial, a solution of allyl *tert*-butyl carbonate (1.1 equiv.) and cyclic sulfamidate imine (1.0 equiv.) was prepared in anhydrous CH_2Cl_2 (0.2 M wrt the imine). The solution of allyl carbonate and imine was then transferred to the catalyst solution via a cannula, rinsing with anhydrous CH_2Cl_2 (0.2 M wrt the imine). The resulting reaction mixture was stirred at rt and monitored by TLC. Upon completion, the reaction was quenched with water, extracted with CH_2Cl_2 , and the combined organic extracts were then washed with water and brine. The organic layer was dried over MgSO₄, filtered, concentrated *in vacuo*, and then purified by FCC.

General procedure J:

To a reaction vial charged with $[Pd(\pi-C_3H_5)Cl]_2$ (5 mol%) and (S)-BINAP ligand (15 mol%) was added anhydrous THF (0.01 M wrt the Pd(II) dimer), and the resulting solution was stirred for 30 min at rt. In a separate reaction vial, a solution of allyl *tert*-butyl carbonate (1.0 equiv.) and cyclic sulfamidate imine (1.1 equiv.) was prepared in anhydrous THF (0.2 M wrt the allyl carbonate). The solution of allyl carbonate and imine was then transferred to the catalyst solution via a cannula, rinsing with anhydrous THF (0.2 M wrt the allyl carbonate). The resulting reaction mixture was stirred at rt and monitored by TLC. Upon completion, the reaction was quenched with water, extracted with EtOAc, and the combined extracts were then washed with water and brine. The organic layer was dried over MgSO₄, filtered, concentrated *in vacuo*, and then purified by FCC.

a. 5-Allyl cyclic sulfamidate imines

(S,E)-5-(Hex-2-en-1-yl)-4,5-diphenyl-5H-1,2,3-oxathiazole 2,2-dioxide (3aa).

3aa

The titled compound was prepared following the <u>General procedure H</u> using allyl carbonate **1a** (43.5 mg, 0.217 mmol), imine **2a** (65.9 mg, 0.241 mmol), $[Pd(\pi-C_3H_5)Cl]_2$ (4.1 mg, 0.011 mmol), and (*R*,*R*)-DACH-Phenyl Trost ligand (17.8 mg, 0.026 mmol). Purification by FCC (1:9 EtOAc:hexane) yielded **3aa** as a low-melting point white solid (55.7 mg, 72%).

Mp: 75–78 °C

 $[\alpha]_{D}^{25}$ +51.9 (*c* 0.10, CHCl₃)

Chiral HPLC: Chiralpak[®] IB-3, 10% isopropanol/hexanes, 1.0 mL/min, 254 nm, t_r (minor) = 6.3 min, t_r (major) = 6.7 min.

R_f = 0.15 (1:9 EtOAc:hexane).

IR (neat): 534, 600, 654, 755, 813, 853, 957, 975, 1041, 1195, 1364, 1449, 1565, 1593, 2871, 2927, 2959 cm⁻¹.

¹**H NMR** (500 MHz, CDCl₃): δ 7.72 – 7.63 (m, 2H), 7.61 – 7.51 (m, 3H), 7.51 – 7.43 (m, 3H), 7.42 – 7.32 (m, 2H), 5.42 (dddt, *J* = 15.4, 8.4, 5.5, 1.5 Hz, 1H), 5.35 – 5.20 (m, 1H), 3.44 (ddq, *J* = 14.7, 5.6, 1.3 Hz, 1H), 3.15 (ddd, *J* = 14.7, 8.5, 0.8 Hz, 1H), 1.98 – 1.81 (m, 2H), 1.23 (h, *J* = 7.4 Hz, 2H), 0.78 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃): 179.1, 138.5, 135.7, 134.5, 130.6, 130.5, 129.6, 129.6, 129.0, 127.6, 126.9, 119.7, 100.2, 39.0, 34.5, 22.1, 13.6.

HRESI-MS (ESI -ve): Found 354.1181, calc for C₂₀H₂₀NO₃S 354.1164 [M – H]⁻.

(S,E)-5-(Hex-2-en-1-yl)-4-(4-methoxyphenyl)-5-phenyl-5H-1,2,3-oxathiazole 2,2-dioxide (3ab).

3ab

The titled compound was prepared following the <u>General procedure H</u> using allyl carbonate **1a** (41.5 mg, 0.207 mmol), imine **2b** (74.2 mg, 0.245 mmol), $[Pd(\pi-C_3H_5)Cl]_2$ (3.7 mg, 0.010 mmol), and (*R*,*R*)-DACH-Phenyl Trost ligand (24.3 mg, 0.035 mmol). Purification by FCC (1.5:8.5 EtOAc:hexane) yielded **3ab** as a colourless oil (51.4 mg, 64%).

 $[\alpha]_{D}^{25}$ +37.7 (*c* 0.50, CHCl₃)

Chiral HPLC: Chiralpak[®] IB-3, 2% isopropanol/hexanes, 1.0 mL/min, 254 nm, t_r (minor) = 15.2 min, t_r (major) = 18.5 min.

R_f = 0.16 (1.5:8.5 EtOAc:hexane).

IR (neat): 558, 694, 756, 817, 842, 930, 972, 1032, 1169, 1195, 1265, 1360, 1451, 1512, 1549, 1581, 2871, 2928, 2958 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃): δ 7.75 – 7.64 (m, 2H), 7.58 – 7.50 (m, 2H), 7.50 – 7.42 (m, 3H), 6.92 – 6.74 (m, 2H), 5.43 (dddt, *J* = 15.2, 8.2, 5.4, 1.3 Hz, 1H), 5.30 (dt, *J* = 15.2, 6.7 Hz, 1H), 3.83 (s, 3H), 3.45 (ddq, *J* = 14.5, 5.6, 1.2 Hz, 1H), 3.14 (dd, *J* = 14.5, 8.2 Hz, 1H), 1.95 – 1.82 (m, 2H), 1.33 – 1.15 (m, 2H), 0.79 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 177.9, 164.6, 138.2, 136.2, 133.1, 130.3, 129.5, 126.9, 120.0, 119.7, 114.5, 99.7, 55.6, 39.4, 34.5, 22.1, 13.6.

HRESI-MS (ESI +ve): Found 408.1238, calc for C₂₁H₂₃NO₄SNa 408.1245 [M + Na]⁺.

(S,E)-4-(4-Fluorophenyl)-5-(hex-2-en-1-yl)-5-phenyl-5H-1,2,3-oxathiazole 2,2-dioxide (3ac).

The titled compound was prepared following the <u>General procedure H</u> using allyl carbonate **1a** (37.8 mg, 0.189 mmol), imine **2c** (61.9 mg, 0.213 mmol), $[Pd(\pi-C_3H_5)Cl]_2$ (3.7 mg, 0.010 mmol), and (*R*,*R*)-DACH-Phenyl Trost ligand (20.6 mg, 0.030 mmol). Purification by FCC (1:9 EtOAc:hexane) yielded **3ac** as a colourless oil (44.3 mg, 60%).

 $[\alpha]_{D}^{25}$ +47.5 (*c* 0.39, CHCl₃)

Chiral HPLC: Chiralpak[®] IB-3, 2% isopropanol/hexanes, 1.0 mL/min, 254 nm, t_r (minor) = 9.2 min, t_r (major) = 10.3 min.

R_f = 0.18 (1:9 EtOAc:hexane).

IR (neat): 556, 648, 694, 756, 819, 847, 930, 975, 1038, 1159, 1194, 1243, 1283, 1367, 1451, 1508, 1570, 1600, 2872, 2928, 2959 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃): δ 7.77 – 7.65 (m, 2H), 7.58 – 7.42 (m, 5H), 7.10 – 7.00 (m, 2H), 5.42 (dddt, *J* = 15.2, 8.2, 5.4, 1.3 Hz, 1H), 5.34 – 5.21 (m, 1H), 3.46 (ddq, J = 14.6, 5.4, 1.2 Hz, 1H), 3.19 – 3.05 (m, 1H), 1.95 – 1.84 (m, 2H), 1.28 – 1.17 (m, 2H), 0.79 (t, J = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 177.7, 166.3 (d, J = 259.3 Hz), 138.5, 135.6, 133.4, 133.3 (d, J = 9.5 Hz), 130.7, 129.8, 129.7, 126.8, 123.89 (d, J = 3.3 Hz), 119.6, 116.5 (d, J = 22.2 Hz), 99.9, 39.1, 34.5, 22.1, 13.5.

¹⁹**F NMR** (470 MHz, CDCl₃) δ –46.60 (tt, *J* = 8.1, 4.9 Hz).

HRESI-MS (ESI +ve): Found 374.1225, calc for C₂₀H₂₁NO₃SF 374.1226 [M + H]⁺.

(*S*,*E*)-4-(Furan-2-yl)-5-(hex-2-en-1-yl)-5-phenyl-5*H*-1,2,3-oxathiazole 2,2-dioxide (3ad).

3ad

The titled compound was prepared following the <u>General procedure H</u> using allyl carbonate **1a** (33.0 mg, 0.165 mmol), imine **2d** (51.8 mg, 0.197 mmol), $[Pd(\pi-C_3H_5)Cl]_2$ (3.2 mg, 0.009 mmol), and (*R*,*R*)-DACH-Phenyl Trost ligand (17.1 mg, 0.025 mmol). Purification by FCC (1:4 EtOAc:hexane) yielded **3ad** as light yellow solid (38.1 mg, 67%).

Mp: 87–90 °C

 $[\alpha]_{D}^{25}$ +100.3 (*c* 0.11, CHCl₃)

Chiral HPLC: Chiralpak[®] IB-3, 2% isopropanol/hexanes, 1.0 mL/min, 190 nm, t_r (minor) = 12.8 min, t_r (major) = 13.9 min.

R_f = 0.17 (1:4 EtOAc:hexane).

IR (neat): 559, 651, 694, 756, 779, 822, 856, 933, 970, 1049, 1161, 1192, 1356, 1466, 1540, 1583, 1597, 2870, 2927, 2957 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃): δ 7.67 (dd, J = 1.7, 0.7 Hz, 1H), 7.61 – 7.51 (m, 2H), 7.46 – 7.32 (m, 4H), 6.60 (dd, *J* = 3.7, 1.7 Hz, 1H), 5.61 – 5.34 (m, 2H), 3.48 – 3.21 (m, 2H), 1.92 (tdd, *J* = 7.0, 4.5, 1.7 Hz, 2H), 1.36 – 1.14 (m, 2H), 0.79 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 168.2, 149.3, 144.2, 138.1, 135.5, 129.9, 129.1, 126.8, 123.1, 120.4, 113.7, 99.2, 39.3, 34.5, 22.1, 13.5.

HRESI-MS (ESI +ve): Found 346.1128, calc for C₁₈H₂₀NO₄S 346.1113 [M + H]⁺.

(S,E)-5-(Hex-2-en-1-yl)-5-phenyl-4-(2-thienyl)-5H-1,2,3-oxathiazole 2,2-dioxide (3ae).

3ae

The titled compound was prepared following the <u>General procedure H</u> using allyl carbonate **1** (32.9 mg, 0.164 mmol), imine **2e** (51.5 mg, 0.184 mmol), $[Pd(\pi-C_3H_5)Cl]_2$ (3.4 mg, 0.009 mmol), and (*R*,*R*)-DACH-Phenyl Trost ligand (18.6 mg, 0.027 mmol). Purification by FCC (1:4 EtOAc:hexane) yielded **3ae** as a white solid (32.8 mg, 55%).

Mp: 91–93 °C

 $[\alpha]_{D}^{25}$ +63.6 (*c* 0.10, CHCl₃)

Chiral HPLC: Chiralpak[®] IB-3, 2% isopropanol/hexanes, 1.0 mL/min, 254 nm, t_r (minor) = 13.5 min, t_r (major) = 16.1 min.

R_f = 0.20 (1:4 EtOAc:hexane).

IR (neat): 559, 651, 694, 756, 779, 822, 856, 933, 970, 1049, 1161, 1192, 1356, 1466, 1540, 1583, 1597, 2870, 2927, 2957 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃): δ 7.72 (dd, *J* = 5.0, 1.1 Hz, 1H), 7.63 – 7.51 (m, 2H), 7.51 – 7.37 (m, 4H), 7.06 (dd, *J* = 5.0, 4.0 Hz, 1H), 5.55 – 5.34 (m, 2H), 3.51 – 3.37 (m, 1H), 3.24 (dd, *J* = 14.4, 7.8 Hz, 1H), 2.01 – 1.86 (m, 2H), 1.35 – 1.16 (m, 2H), 0.81 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 173.1, 138.4, 136.6, 136.4, 135.7, 130.8, 130.5, 129.5, 129.0, 127.1, 119.9, 99.3, 39.7, 34.5, 22.1, 13.6.

HRESI-MS (ESI +ve): Found 384.0717, calc for C₁₈H₁₉NO₃S₂Na 384.0704 [M + Na]⁺.

(*S*,*E*)-5-(Hex-2-en-1-yl)-4-methyl-5-phenyl-5*H*-1,2,3-oxathiazole 2,2-dioxide (3af).

3af

The titled compound was prepared following the <u>General procedure H</u> using allyl carbonate **1a** (32.6 mg, 0.163 mmol), imine **2f** (39.2 mg, 0.186 mmol), $[Pd(\pi-C_3H_5)Cl]_2$ (3.0 mg, 0.008 mmol), and (*R*,*R*)-DACH-Phenyl Trost ligand (19.3 mg, 0.028 mmol). Purification by FCC (1:9 EtOAc:hexane) yielded **3af** as a light yellow oil (27.0 mg, 57%).

 $[\alpha]_{D}^{25}$ +174.6 (*c* 0.19, CHCl₃)

Chiral HPLC: Chiralpak[®] IB-3, 2% isopropanol/hexanes, 1.0 mL/min, 190 nm, t_r (minor) = 10.7 min, t_r (major) = 12.1 min.

R_f = 0.09 (1:9 EtOAc:hexane).

IR (neat): 543, 696, 754, 791, 823, 851, 920, 977, 1042, 1198, 1368, 1450, 1626, 1651, 2872, 2928, 2959 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃): δ 7.53 – 7.37 (m, 5H), 5.72 (dtt, *J* = 15.1, 6.7, 1.2 Hz, 1H), 5.43 (dddt, *J* = 15.1, 8.4, 5.6, 1.5 Hz, 1H), 3.14 (ddq, *J* = 14.8, 5.6, 1.3 Hz, 1H), 3.02 (ddd, *J* = 14.9, 8.3, 0.9 Hz, 1H), 2.15 (s, 3H), 2.06 – 1.96 (m, 2H), 1.44 – 1.32 (m, 2H), 0.86 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 184.2, 138.2, 134.4, 129.9, 129.4, 126.0, 120.1, 100.5, 38.5, 34.5, 22.1, 16.3, 13.5.

HRESI-MS (ESI +ve): Found 316.0995, calc for C₁₅H₁₉NO₃SNa 316.0983 [M + Na]⁺.

(S,E)-5-(Hex-2-en-1-yl)-4-phenyl-5-(p-tolyl)-5H-1,2,3-oxathiazole 2,2-dioxide (3ag).

The titled compound was prepared following the <u>General procedure H</u> using allyl carbonate **1a** (42.8 mg, 0.214 mmol), imine **2h** (60.0 mg, 0.209 mmol), $[Pd(\pi-C_3H_5)Cl]_2$ (3.6 mg, 0.010 mmol), and (*R*,*R*)-DACH-Phenyl Trost ligand (23.4 mg, 0.039 mmol). Purification by FCC (1:9 EtOAc:hexane) yielded **3ag** as an beige solid (52.0 mg, 66%).

Mp: 109–111 °C

 $[\alpha]_{D}^{25}$ +30.0 (*c* 0.10, CHCl₃)

Chiral HPLC: Chiralpak[®] IB-3, 2% isopropanol/hexanes, 1.0 mL/min, 254 nm, t_r (minor) = 8.0 min, t_r (major) = 8.4 min.

R_f = 0.20 (1:9 EtOAc:hexane).

IR (neat): 535, 671, 771, 805, 854, 924, 960, 1043, 1194, 1283, 1361, 1448, 1565, 1595, 2872, 2924, 2956 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃): δ 7.76 – 7.59 (m, 2H), 7.62 – 7.50 (m, 1H), 7.51 – 7.32 (m, 4H), 7.32 – 7.20 (m, 2H), 5.41 (dddt, *J* = 15.4, 8.3, 5.4, 1.4 Hz, 1H), 5.23 (dt, *J* = 15.4, 6.7 Hz, 1H), 3.42 (ddq, *J* = 14.6, 5.6, 1.3 Hz, 1H), 3.11 (dd, *J* = 14.6, 8.5 Hz, 1H), 2.38 (s, 3H), 1.95 – 1.80 (m, 2H), 1.22 (h, *J* = 7.4 Hz, 2H), 0.78 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 179.2, 140.8, 138.3, 134.4, 132.8, 130.6, 130.3, 129.0, 127.7, 126.9, 126.8, 119.8, 100.3, 39.1, 34.5, 22.1, 21.3, 13.6.

HRESI-MS (ESI +ve): Found 392.1299, calc for C₂₁H₂₃NO₃SNa 392.1296 [M + Na]⁺.

(S,E)-5-(Hex-2-en-1-yl)-4-phenyl-5-(o-tolyl)-5H-1,2,3-oxathiazole 2,2-dioxide (3ah).

3ah

The titled compound was prepared following the <u>General procedure H</u> using allyl carbonate **1a** (42.2 mg, 0.211 mmol), imine **2h** (70.6 mg, 0.246 mmol), $[Pd(\pi-C_3H_5)Cl]_2$ (4.0 mg, 0.011 mmol), and (*R*,*R*)-DACH-Phenyl Trost ligand (24.2 mg, 0.035 mmol). Purification by FCC (1:9 EtOAc:hexane) yielded **3ah** as a colourless oil (48.1 mg, 62%).

Chiral HPLC: Chiralpak[®] IB-3, 2% isopropanol/hexanes, 1.0 mL/min, 254 nm, t_r (minor) = 7.3 min, t_r (major) = 7.7 min.

R_f = 0.20 (1:9 EtOAc:hexane).

IR (neat): 536, 598, 654, 755, 808, 854, 928, 961, 1195, 1281, 1365, 1448, 1562, 1592, 2871, 2927, 2958 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃): δ 7.74 (dt, *J* = 7.7, 1.3 Hz, 2H), 7.58 (ddt, *J* = 8.7, 7.2, 1.2 Hz, 1H), 7.41 – 7.24 (m, 5H), 7.21 (ddd, *J* = 6.8, 1.9, 1.0 Hz, 1H), 5.54 (dddt, *J* = 15.0, 7.5, 6.1, 1.4 Hz, 1H), 5.37 (dtt, *J* = 15.0, 6.8, 1.2 Hz, 1H), 3.61 – 3.45 (m, 1H), 3.08 (ddt, *J* = 15.1, 7.6, 1.0 Hz, 1H), 2.32 (s, 3H), 2.02 – 1.86 (m, 2H), 1.34 – 1.17 (m, 2H), 0.80 (t, *J* = 7.4 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃): δ 180.8, 139.0, 137.9, 134.8, 133.6, 133.2, 130.6, 130.5, 129.1, 128.1, 127.9, 126.5, 120.9, 99.2, 41.5, 34.6, 22.1, 20.8, 13.6.

HRESI-MS (ESI +ve): Found 392.1289, calc for C₂₁H₂₃NO₃SNa 392.1296 [M + Na]⁺.

(S,E)-5-(4-Fluorophenyl)-5-(hex-2-en-1-yl)-4-phenyl-5H-1,2,3-oxathiazole 2,2-dioxide (3ai).

The titled compound was prepare following the <u>General procedure H</u> using allyl carbonate **1a** (42.7 mg, 0.213 mmol), imine **2i** (68.6 mg, 0.236 mmol), $[Pd(\pi-C_3H_5)Cl]_2$ (4.1 mg, 0.011 mmol), and (*R*,*R*)-DACH-Phenyl Trost ligand (24.0 mg, 0.035 mmol). Purification by FCC (1:9 EtOAc:hexane) yielded an inseparable mixture of **3ai** and **3ac** (7.1:1 molar ratio) as a colourless oil (56.2 mg, 71%).

Mp: 82–86 °C

Chiral HPLC: Chiralpak[®] IG-3, 1.5% isopropanol/hexanes, 0.75 mL/min, 206 nm, t_r (major) = 38.5 min, t_r (minor) = 43.2 min.

R_f = 0.23 (1.5:8.5 EtOAc:hexane).

IR (neat): 553, 687, 759, 816, 857, 922, 972, 1038, 1180, 1284, 1356, 1452, 1513, 1562, 1593, 2871, 2924, 2958 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃): δ 7.71 – 7.63 (m, 2H), 7.63 – 7.49 (m, 3H), 7.45 – 7.35 (m, 2H), 7.21 – 7.11 (m, 2H), 5.40 (dddt, J = 15.2, 8.1, 5.4, 1.3 Hz, 1H), 5.26 (dt, J = 15.2, 6.5 Hz, 1H), 3.49 – 3.37 (m, 1H), 3.13 (dd, J = 14.5, 8.3 Hz, 1H), 1.97 – 1.81 (m, 2H), 1.23 (app. h, J = 7.3 Hz, 2H), 0.78 (t, J = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 178.8, 163.6 (d, J = 252.0 Hz), 138.7, 138.5, 134.6, 133.4, 131.8 (d, J = 3.6 Hz), 130.7, 130.6, 130.5, 129.7, 129.2, 129.1, 129.0, 127.4, 126.8, 119.5, 116.8 (d, J = 21.9 Hz), 99.4, 39.3, 34.5, 22.0, 13.5.

¹⁹**F NMR** (470 MHz, CDCl₃) δ –38.42 (tt, *J* = 8.1, 5.2 Hz).

HRESI-MS (ESI +ve): Found 396.1053, calc for C₂₀H₂₀NO₃SFNa 396.1046 [M + Na]⁺.

(S,E)-5-(2-Chlorophenyl)-5-(hex-2-en-1-yl)-4-phenyl-5H-1,2,3-oxathiazole 2,2-dioxide (3aj).

3aj

The titled compound was prepared following the <u>General procedure I</u> using allyl carbonate **1a** (43.2 mg, 0.217 mmol), imine **2j** (59.6 mg, 0.194 mmol), $Pd_2dba_3 \bullet CHCl_3$ (9.5 mg, 0.009 mmol), and (*R*,*R*)-DACH-Phenyl Trost ligand (21.4 mg, 0.030 mmol). Purification by FCC (1:4 EtOAc:hexane) yielded **3aj** as a light yellow oil (48.5 mg, 64%).

Chiral HPLC: Chiralpak[®] IB-3, 2% isopropanol/hexanes, 1.0 mL/min, 254 nm, t_r (minor) = 14.6 min, t_r (major) = 12.7 min.

R_f = 0.19 (1:4 EtOAc:hexane).

IR (neat): 554, 685, 753, 808, 856, 933, 975, 1033, 1195, 1279, 1366, 1448, 1563, 1593, 2871, 2928, 2958 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ 7.92 – 7.80 (m, 1H), 7.78 – 7.70 (m, 2H), 7.59 (ddt, *J* = 8.7, 7.2, 1.2 Hz, 1H), 7.46 – 7.32 (m, 5H), 5.53 (dddt, *J* = 15.1, 7.5, 6.1, 1.3 Hz, 1H), 5.38 (dtt, *J* = 14.9, 6.8, 1.2 Hz, 1H), 3.66 – 3.42 (m, 1H), 3.09 (ddq, *J* = 14.9, 7.5, 0.9 Hz, 1H), 1.95 – 1.83 (m, 2H), 1.40 – 1.15 (m, 2H), 0.79 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 179.8, 138.2, 135.0, 134.8, 132.8, 132.5, 131.8, 130.2, 129.6, 129.6, 129.1, 127.9, 127.4, 120.5, 97.1, 41.4, 34.6, 22.0, 13.6

HRESI-MS (ESI +ve): Found 412.0752, calc for C₂₀H₂₀NO₃S³⁵ClNa 412.0750 [M + Na]⁺.

(R,E)-5-(Hex-2-en-1-yl)-5-methyl-4-phenyl-5H-1,2,3-oxathiazole 2,2-dioxide (3ak).

3ak

The titled compound was prepared following the <u>General procedure H</u> using allyl carbonate **1a** (33.0 mg, 0.165 mmol), imine **2k** (41.3 mg, 0.196 mmol), $[Pd(\pi-C_3H_5)Cl]_2$ (3.3 mg, 0.009 mmol), and (*R*,*R*)-DACH-Phenyl Trost ligand (18.2 mg, 0.026 mmol). Purification by FCC (1.5:8.5 EtOAc:hexane) yielded **3ak** as a light yellow oil (27.0 mg, 56%).

Chiral HPLC: Chiralpak[®] IB-3, 2% isopropanol/hexanes, 1.0 mL/min, 254 nm, t_r (minor) = 11.0 min, t_r (major) = 11.6 min.

R_f = 0.13 (1.5:8.5 EtOAc:hexane).

IR (neat): 654, 695, 778, 820, 861, 920, 974, 991, 1173, 1200, 1363, 1450, 1562, 1593, 2872, 2929, 2959 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ 8.07 – 7.96 (m, 2H), 7.75 – 7.63 (m, 1H), 7.63 – 7.50 (m, 2H), 5.51 – 5.38 (m, 1H), 5.33 (dddt, *J* = 15.3, 7.9, 6.7, 1.2 Hz, 1H), 2.93 – 2.79 (m, 2H), 1.96 – 1.83 (m, 5H), 1.31 – 1.18 (m, 2H), 0.77 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃): δ 181.0, 138.3, 134.9, 130.4, 129.5, 127.5, 120.4, 98.5, 42.7, 34.6, 25.4, 22.3, 13.7.

HRESI-MS (ESI +ve): Found 316.0992, calc for C₁₅H₁₉NO₃SNa 319.0983 [M + Na]⁺.

(E)-5-(Hex-2-en-1-yl)-4-phenyl-5H-1,2,3-oxathiazole 2,2-dioxide (3an).

3an

The titled compound was prepared following the <u>General procedure H</u> using allyl carbonate **1a** (46.5 mg, 0.232 mmol), imine **2l** (51.1 mg, 0.259 mmol), $[Pd(\pi-C_3H_5)Cl]_2$ (4.3 mg, 0.012 mmol), and (*R*,*R*)-DACH-Phenyl Trost ligand (26.6 mg, 0.039 mmol). Purification by FCC (1:5 EtOAc:hexane) yielded **3an** as an orange solid (38.4 mg, 59%).

Mp: 65–68 °C

Chiral HPLC: Chiralpak[®] IB-3, 2% isopropanol/hexanes, 1.0 mL/min, 254 nm, t_r (minor) = 21.6 min, t_r (major) = 19.0 min.

R_f = 0.14 (1:5 EtOAc:hexane).

IR (neat): 459, 529, 641, 654, 686, 773, 804, 883, 945, 974, 1193, 1359, 1449, 1571, 1601, 2873, 2926, 2961 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ 7.98 – 7.83 (m, 2H), 7.78 – 7.67 (m, 1H), 7.63 – 7.53 (m, 2H), 5.91 (dd, *J* = 6.8, 3.5 Hz, 1H), 5.50 – 5.30 (m, 2H), 2.90 – 2.75 (m, 1H), 2.70 – 2.57 (m, 1H), 2.00 – 1.88 (m, 2H), 1.31 (h, *J* = 7.4 Hz, 2H), 0.84 (t, *J* = 7.4 Hz, 3H).

¹³**C NMR** (125 MHz, CDCl₃): δ 178.5, 137.3, 135.2, 129.5, 129.5, 127.5, 120.6, 87.8, 36.8, 34.5, 22.1, 13.6.

HRESI-MS (ESI +ve): Found 302.0827, calc for C₁₄H₁₇NO₃SNa 302.0821 [M + Na]⁺.

5,5-Di((*E*)-hex-2-en-1-yl)-4-phenyl-5*H*-1,2,3-oxathiazole 2,2-dioxide (3aan).

3aan

The titled compound was prepared following the <u>General procedure H</u> using allyl carbonate **1a** (46.5 mg, 0.232 mmol), imine **2l** (51.1 mg, 0.259 mmol), $[Pd(\pi-C_3H_5)Cl]_2$ (4.3 mg, 0.012 mmol), and (*R*,*R*)-DACH-Phenyl Trost ligand (26.6 mg, 0.039 mmol). Purification by FCC (1:5 EtOAc:hexane) **3aan** as a colourless oil (7.0 mg, 8%).

R_f = 0.35 (1:5 EtOAc:hexane).

IR (neat): 447, 534, 624, 655, 694, 775, 820, 862, 949, 973, 1196, 1365, 1448, 1563, 1593, 2872, 2928, 2958 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ 8.06 – 7.97 (m, 2H), 7.71 – 7.65 (m, 1H), 7.60 – 7.49 (m, 2H), 5.48 – 5.31 (m, 4H), 2.96 – 2.88 (m, 2H), 2.85 – 2.77 (m, 2H), 1.96 – 1.83 (m, 4H), 1.29 – 1.19 (m, 4H), 0.76 (t, *J* = 7.3 Hz, 6H).

¹³C NMR (125 MHz, CDCl₃): δ 180.0, 137.9, 134.6, 130.2, 130.1, 129.3, 129.2, 127.8, 120.2, 101.8, 41.5, 34.4, 22.1, 13.5.

HRESI-MS (ESI +ve): Found 384.1611, calc for C₂₀H₂₇NO₃SNa 384.1609 [M + Na]⁺.

(R,E)-5-(Hex-2-en-1-yl)-5-(2-methylallyl)-4-phenyl-5H-1,2,3-oxathiazole 2,2-dioxide (3abn).

3abn

The titled compound was prepared following the <u>General procedure I</u> using allyl carbonate **1b** (33.2 mg, 0.193 mmol), imine **3al** (59.8 mg, 0.214 mmol), $Pd_2dba_3 \cdot CHCl_3$ (11.1 mg, 0.010 mmol), and (*R*,*R*)-DACH-Phenyl Trost ligand (20.7 mg, 0.030 mmol). Purification by FCC (1:9 EtOAc:hexane) **3abn** as a colourless oil (44.6 mg, 61%).

Chiral HPLC: Chiralpak[®] IG-3, 7.5% isopropanol/hexanes, 1.0 mL/min, 254 nm, t_r (minor) = 9.7 min, t_r (major) = 10.4 min.

R_f = 0.15 (1:4 EtOAc:hexane).

IR (neat): 688, 775, 818, 864, 951, 1180, 1196, 1364, 1448, 1562, 1593, 2927, 2958 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 8.14 – 7.96 (m, 2H), 7.75 – 7.62 (m, 1H), 7.64 – 7.45 (m, 2H), 5.43 (dt, *J* = 15.4, 6.6 Hz, 1H), 5.37 – 5.26 (m, 1H), 4.96 (app. t, *J* = 1.5 Hz, 1H), 4.70 (app. s, 1H), 3.00 – 2.79 (m, 4H), 1.95 – 1.73 (m, 5H), 1.32 – 1.14 (m, 2H), 0.74 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 180.1, 138.2, 138.1, 134.7, 130.4, 129.3, 127.8, 120.1, 117.9, 101.1, 45.6,
41.3, 34.4, 24.1, 22.1, 13.4.

HRESI-MS (ESI +ve): Found 334.1477, calc for $C_{18}H_{24}NO_{3}S$ 334.1483 [M + H]⁺.

(S)-5-(2-Methylallyl)-4,5-diphenyl-5H-1,2,3-oxathiazole 2,2-dioxide (3ba).

3ba

The titled compound was prepared following the <u>General procedure H</u> using allyl carbonate **1b** (43.6 mg, 0.253 mmol), imine **2a** (79.4 mg, 0.291 mmol), $[Pd(\pi-C_3H_5)Cl]_2$ (5.2 mg, 0.014 mmol), and (*R*,*R*)-

DACH-Phenyl Trost ligand (29.1 mg, 0.042 mmol). Purification by FCC (1:9 EtOAc:hexane) yielded **3ba** as a beige solid (48.2 mg, 58%).

Mp: 106–108 °C

 $[\alpha]_{D}^{25}$ +62.5 (*c* 0.12, CHCl₃)

Chiral HPLC: Chiralpak[®] IB-3, 2% isopropanol/hexanes, 1.0 mL/min, 254 nm, t_r (minor) = 10.1 min, t_r (major) = 11.4 min.

R_f = 0.12 (1:9 EtOAc:hexane).

IR (neat): 653, 690, 771, 808, 861, 930, 956, 1186, 1198, 1369, 1448, 1563, 1591 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃): δ 7.77 – 7.66 (m, 2H), 7.61 – 7.54 (m, 3H), 7.51 – 7.44 (m, 3H), 7.42 – 7.35 (m, 2H), 4.93 (app. t, J = 1.5 Hz, 1H), 4.44 (app. s, 1H), 3.44 (d, J = 14.5 Hz, 1H), 3.29 (dd, J = 14.4, 1.0 Hz, 1H), 1.80 (dd, J = 1.5, 0.9 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 179.1, 137.5, 136.0, 134.4, 130.7, 130.5, 129.6, 129.2, 127.9, 126.9, 118.3, 99.9, 42.9, 24.4.

HRESI-MS (ESI +ve): Found 350.0833, calc for C₁₈H₁₇NO₃SNa 350.0827 [M + Na]⁺.

(S)- 5-Cinnamyl-4,5-diphenyl-5H-1,2,3-oxathiazole 2,2-dioxide (3ca).

3ca

The titled compound was prepared following the <u>General procedure H</u> using allyl carbonate **1c** (49.4 mg, 0.211 mmol), imine **2a** (67.1 mg, 0.246 mmol), $[Pd(\pi-C_3H_5)Cl]_2$ (4.1 mg, 0.011 mmol), and (*R*,*R*)-DACH-Phenyl Trost ligand (23.0 mg, 0.033 mmol). Purification by FCC (1:1:8 EtOAc:acetone:hexane) yielded **3ca** as a white solid (44.4 mg, 54%).

Mp: 155–160 °C

 $[\alpha]_{D}^{25}$ +153.3 (*c* 0.09, CHCl₃)

Chiral HPLC: Chiralpak[®] IB-3, 10% isopropanol/hexanes, 0.5 mL/min, 254 nm, t_r (minor) = 22.0 min, t_r (major) = 24.2 min.

R_f = 0.09 (1:1:8 EtOAc:acetone:hexane).

IR (neat): 652, 688, 769, 818, 865, 922, 966, 984, 1181, 1194, 1366, 1448, 1565, 1595 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃): δ 7.66 – 7.61 (m, 2H), 7.61 – 7.53 (m, 3H), 7.52 – 7.45 (m, 3H), 7.40 – 7.32 (m, 2H), 7.29 – 7.18 (m, 5H), 6.20 (ddd, *J* = 15.8, 8.7, 5.2 Hz, 1H), 6.15 – 6.05 (m, 1H), 3.66 (ddd, *J* = 14.7, 5.3, 1.5 Hz, 1H), 3.32 (dd, *J* = 14.5, 8.7 Hz, 1H).

¹³**C NMR** (100 MHz, CDCl₃): δ 179.1, 136.4, 136.3, 135.5, 134.5, 130.6, 130.5, 129.7, 129.1, 128.5, 127.9, 127.5, 126.9, 126.5, 119.7, 99.9, 39.3.

HRESI-MS (ESI -ve): Found 388.1003, calc for C₂₃H₁₈NO₃S 388.1007 [M - H]⁻.

(S)-5-((2E,4E)-Hexa-2,4-dien-1-yl)-4,5-diphenyl-5H-1,2,3-oxathiazole 2,2-dioxide (3da).

3da

The titled compound was prepared following the <u>General procedure H</u> using allyl carbonate **1d** (49.0 mg, 0.247 mmol), imine **2a** (76.2 mg, 0.279 mmol), $[Pd(\pi-C_3H_5)Cl]_2$ (4.6 mg, 0.013 mmol), and (*R*,*R*)-DACH-Phenyl Trost ligand (26.0 mg, 0.038 mmol). Purification by FCC (1:4 Et₂O:hexane) yielded **3da** as a beige solid (26.0 mg, 30%).

Mp: 118–122 °C

 $[\alpha]_{D}^{25}$ +101.1 (*c* 0.21, CHCl₃)

Chiral HPLC: Chiralpak[®] IB-3, 2% isopropanol/hexanes, 1.0 mL/min, 206 nm, t_r (minor) = 11.8 min, t_r (major) = 13.2 min.

 $R_{f} = 0.18$ (1:4 Et₂O:hexane).

IR (neat): 654, 692, 772, 810, 853, 937, 963, 1182, 1196, 1361, 1448, 1564, 1595 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃): δ 7.67 – 7.61 (m, 2H), 7.59 – 7.51 (m, 3H), 7.51 – 7.44 (m, 3H), 7.41 – 7.31 (m, 2H), 6.11 – 5.91 (m, 1H), 5.87 – 5.67 (m, 1H), 5.65 – 5.37 (m, 2H), 3.50 (ddd, *J* = 15.2, 5.9, 1.3 Hz, 1H), 3.32 – 3.06 (m, 1H), 1.76 – 1.62 (m, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 179.1, 137.0, 135.6, 134.4, 130.6, 130.5, 130.4, 129.7, 129.0, 127.6, 126.9, 119.7, 99.9, 39.0, 18.0.

HRESI-MS (ESI +ve): Found 376.0998, calc for C₂₀H₁₉NO₃SNa 376.0983 [M + Na]⁺.

5-(3-Methylbut-2-en-1-yl)-4,5-diphenyl-5*H*-1,2,3-oxathiazole 2,2-dioxide (3ea).

3ea

The titled compound was prepared following the <u>General procedure H</u> using allyl carbonate **1e** (44.3 mg, 0.238 mmol), imine **2a** (72.1 mg, 0.264 mmol), $[Pd(\pi-C_3H_5)Cl]_2$ (4.5 mg, 0.012 mmol), and Ph₃P ligand (18.8 mg, 0.072 mmol). Purification by FCC (1:5 EtOAc:hexane) yielded **3ea** as a white solid (12.9 mg, 16%).

Mp: 126–128 °C

R_f = 0.17 (1:5 EtOAc:hexane).

IR (neat): 654, 693, 772, 806, 862, 930, 965, 1177, 1197, 1362, 1448, 1564, 1594 cm⁻¹.

¹**H NMR** (500 MHz, CDCl₃): δ 7.72 – 7.64 (m, 2H), 7.61 – 7.52 (m, 3H), 7.53 – 7.44 (m, 3H), 7.42 – 7.33 (m, 2H), 5.10 (ddp, *J* = 7.7, 6.1, 1.4 Hz, 1H), 3.50 – 3.31 (m, 1H), 3.20 (dd, *J* = 14.9, 8.4 Hz, 1H), 1.65 (s, 3H), 1.26 (d, *J* = 1.5 Hz, 3H).

¹³**C NMR** (125 MHz, CDCl₃): δ 179.4, 139.6, 136.1, 134.6, 130.72, 130.70, 129.8, 129.2, 127.8, 127.1, 114.0, 100.7, 34.6, 26.1, 18.0.

HRESI-MS (ESI -ve): Found 340.1016, calc for C₁₉H₁₈NO₃S 340.1007 [M − H]⁻.

(S)-5-((S,E)-1,3-diphenylallyl)-4,5-diphenyl-5H-1,2,3-oxathiazole 2,2-dioxide (3fa).

3fa

The titled compound was prepared following the <u>General procedure J</u> using allyl carbonate **1f** (61.2 mg, 0.197 mmol), imine **2a** (71.6 mg, 0.262 mmol), $[Pd(\pi-C_3H_5)Cl]_2$ (3.9 mg, 0.011 mmol), and (*S*)-BINAP ligand (21.4 mg, 0.034 mmol). Purification by FCC (1:6 EtOAc:hexane) followed by recrystallisation from THF/*n*-hexane (1:2) yielded the major diastereoisomer of **3fa** as a white solid (49.6 mg, 42%).

Mp: 176–178 °C

 $[\alpha]_{D}^{25}$ +278.1 (*c* 0.13, CHCl₃)

 $R_{f} = 0.15$ (1:6 EtOAc:hexane).

IR (neat): 662, 689, 764, 816, 933, 970, 1195, 1366, 1448, 1564, 1593 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 7.64 – 7.52 (m, 5H), 7.52 – 7.44 (m, 2H), 7.44 – 7.32 (m, 5H), 7.32 – 7.15 (m, 8H), 6.45 (dd, J = 15.7, 9.7 Hz, 1H), 5.92 (d, J = 15.7 Hz, 1H), 4.62 (d, J = 9.7 Hz, 1H).

¹³**C NMR** (100 MHz, CDCl₃): δ 180.1, 137.7, 136.0, 134.1, 134.0, 133.7, 130.4, 129.9, 129.5, 129.1, 129.0, 128.9, 128.6, 128.6, 128.3, 128.1, 127.4, 126.7, 125.7, 102.5, 54.2.

HRESI-MS (ESI +ve): Found 488.1300, calc for C₂₉H₂₃NO₃SNa 488.1296 [M + Na]⁺.

(E)-5-(Pent-3-en-2-yl)-4,5-diphenyl-5H-1,2,3-oxathiazole 2,2-dioxide (3ga).

3ga

The titled compound was prepared following the <u>General procedure J</u> using allyl carbonate **1g** (47.1 mg, 0.253 mmol), imine **2a** (79.2 mg, 0.290 mmol), $[Pd(\pi-C_3H_5)Cl]_2$ (4.8 mg, 0.013 mmol), and (*S*)-

BINAP ligand (37.1 mg, 0.060 mmol). Purification by FCC (1:4 EtOAc:hexane) yielded a mixture of two diastereoisomers of **3ga** (dr = 1.4:1) as a colourless oil (30.9 mg, 36%).

R_f = 0.34 (1:4 EtOAc:hexane).

IR (neat): 655, 694, 773, 822, 937, 974, 1196, 1360, 1448, 1560, 1589 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) (1.4:1 mixture of two diastereoisomers, minor isomer labelled with an asterisk): δ 7.83 – 7.28 (m, 20H), 5.77 – 5.64* (m, 1H), 5.59* (ddq, *J* = 15.5, 7.7, 1.5 Hz, 1H), 5.49 (ddq, *J* = 15.3, 9.1, 1.6 Hz, 1H), 5.10 (dq, *J* = 15.3, 6.5 Hz, 1H), 3.60* (app. p, J = 7.0 Hz, 1H), 3.49 (dq, *J* = 9.1, 6.7 Hz, 1H), 1.67* (dd, *J* = 6.3, 1.5 Hz, 3H), 1.51 (dd, *J* = 6.5, 1.7 Hz, 3H), 1.32 (d, *J* = 6.6 Hz, 3H), 1.14* (d, *J* = 6.8 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) (1.4:1 mixture of two diastereoisomers, distinguishable resonances of the minor isomer are labelled with an asterisk): δ 180.1, 179.7, 135.1, 134.4, 134.3, 133.9, 130.5, 130.3, 130.2, 130.2*, 129.9*, 129.9, 129.7, 129.6, 129.4, 129.3, 129.1, 129.0, 128.7, 128.6, 128.0, 128.0, 127.8, 127.8, 126.9, 103.6, 103.2, 42.0, 41.5*, 18.2*, 17.8, 16.7, 16.6*.

HRESI-MS (ESI +ve): Found 364.0995, calc for C₁₉H₁₉NO₃SNa 364.0983 [M + Na]⁺.

5-(Cyclohex-2-en-1-yl)-4,5-diphenyl-5H-1,2,3-oxathiazole 2,2-dioxide (3ha).

3ha

The titled compound was prepared following the <u>General procedure H</u> using allyl carbonate **1h** (44.0 mg, 0.222 mmol), imine **2a** (68.5 mg, 0.251 mmol), $[Pd(\pi-C_3H_5)Cl]_2$ (4. 6 mg, 0.013 mmol), and Ph₃P ligand (17.7 mg, 0.067 mmol). Purification by FCC (1:5 EtOAc:hexane) yielded a mixture of two diastereoisomers of **3ha** (*dr* = 1.7:1) as a colourless oil (47.1 mg, 60%).

R_f = 0.31 (1:5 EtOAc:hexane).

IR (neat): 669, 691, 756, 817, 941, 968, 1194, 1360, 1448, 1558, 1590, 2938 cm⁻¹.

¹**H NMR** (500 MHz, CDCl₃) (1.7:1 mixture of two diastereoisomers, minor isomer labelled with an asterisk): δ 7.89 – 7.33 (m, 15H), 6.01–5.97* (app. m, J = 10.2, 3.9, 2.8 Hz, 0.6 H), 5.92–5.87 (app. m,

1H), 5.74 (dp, *J* = 10.3, 1.9 Hz, 1H), 5.37* (app. d, *J*=10.3 Hz, 0.6H), 3.68 (dtt, *J* = 10.8, 4.2, 2.2 Hz, 1H), 3.62* (ddp, *J* = 8.3, 5.6, 2.7 Hz, 0.6 H), 2.20 – 1.41 (m, 6.6 H).

¹³C NMR (125 MHz, CDCl₃, 1.7:1 mixture of two diastereoisomers, distinguishable resonances of the minor isomer are labelled with an asterisk): δ 180.3*, 179.1, 134.4, 134.3, 134.2, 134.1, 133.9*, 131.5, 130.1, 130.0, 129.9, 129.7, 129.5*, 129.2, 129.1, 129.0, 128.3, 127.9, 127.7, 127.3, 123.8, 122.4*, 103.7, 102.9, 40.3, 40.1*, 24.7*, 24.6, 24.3*, 23.2, 21.7, 21.1*.

HRESI-MS (ESI -ve): Found 352.1021, calc for C₂₀H₁₈NO₃S 352.1007 [M − H]⁻.

(S,E)-5-(4-Hydroxybut-2-en-1-yl)-4,5-diphenyl-5H-1,2,3-oxathiazole 2,2-dioxide (6aa).

6aa

The titled compound was prepared following the <u>General procedure I</u> using 2-vinyloxirane (20 μ L, 0.248 mmol), imine **2a** (61.6 mg, 0.225 mmol), Pd₂dba₃•CHCl₃ (11.2 mg, 0.011 mmol), and (*R*,*R*)-DACH-Phenyl Trost ligand (27.1 mg, 0.039 mmol). Purification by FCC (1:2 EtOAc:hexane) yielded **6aa** as a colourless oil (42.6 mg, 49%).

Chiral HPLC: Chiralpak[®] IG-3, 20% isopropanol/hexanes, 0.5 mL/min, 254 nm, t_r (minor) = 50.4 min, t_r (major) = 55.5 min.

R_f = 0.09 (1:2 EtOAc:hexane).

IR (neat): 692, 756, 812, 937, 964, 1193, 1361, 1448, 1563, 1593, 2926, 3359 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 7.79 – 7.33 (m, 10 H), 5.77 – 5.46 (m, 2H), 4.09 – 3.92 (m, 2H), 3.60 – 3.36 (m, 1H), 3.24 (dd, *J* = 14.3, 6.7 Hz, 1H), 1.97 (br s, 1H).

¹³**C NMR** (100 MHz, CDCl₃): δ 178.8, 137.5, 135.4, 134.8, 130.7, 130.6, 129.7, 129.2, 127.2, 126.8, 121.4, 99.9, 62.8, 38.3.

HRESI-MS (ESI +ve): Found 366.0769, calc for C₁₈H₁₇NO₄SNa 366.0776 [M + Na]⁺.

(*S,E*)-*N*-(4-(2,2-Dioxido-4,5-diphenyl-5*H*-1,2,3-oxathiazol-5-yl)but-2-en-1-yl)-4methylbenzenesulfonamide (6ba).

The titled compound was prepared following the <u>General procedure H</u> using 1-tosyl-2-vinylaziridine (44.7 mg, 0.200 mmol), imine **2a** (63.0 mg, 0.231 mmol), $[Pd(\pi-C_3H_5)Cl]_2$ (3.5 mg, 0.010 mmol), and (*R*,*R*)-DACH-Phenyl Trost ligand (29.2 mg, 0.031 mmol). Purification by FCC (1:2 EtOAc:hexane) yielded **6ba** as a colourless oil (51.6 mg, 52%).

Chiral HPLC: Chiralpak[®] IB-3, 15% isopropanol/hexanes, 1.0 mL/min, 206 nm, t_r (minor) = 25.8 min, t_r (major) = 29.2 min.

R_f = 0.14 (1:2 EtOAc:hexane).

IR (neat): 692, 756, 810, 927, 961, 1155, 1195, 1364, 1448, 1563, 1593, 3294 cm⁻¹.

¹**H NMR** (500 MHz, CDCl₃) δ 7.77 – 7.68 (m, 2H), 7.70 – 7.62 (m, 2H), 7.57 (td, *J* = 7.4, 1.3 Hz, 1H), 7.54 – 7.43 (m, 5H), 7.41 – 7.32 (m, 2H), 7.28 (d, *J* = 8.0 Hz, 2H), 5.45 – 5.33 (m, 2H), 4.83 (dd, *J* = 6.9, 5.3 Hz, 1H), 3.48 (ddd, *J* = 13.6, 6.9, 4.0 Hz, 1H), 3.44 – 3.32 (m, 2H), 3.25 – 3.08 (m, 1H), 2.41 (s, 3H).

¹³C NMR (125 MHz, CDCl₃): δ 179.1, 143.8, 137.2, 135.6, 135.4, 133.5, 131.1, 131.0, 130.13, 130.11, 129.7, 127.5, 127.2, 127.1, 124.2, 100.1, 45.2, 38.5, 21.9.

HRESI-MS (ESI –ve): Found 495.1053, calc for $C_{25}H_{23}N_2O_5S_2$ 495.1048 [M – H]⁻.

Bis(2,2,2-trifluoroethyl) (*S,E*)-2-(4-(2,2-dioxido-4,5-diphenyl-5*H*-1,2,3-oxathiazol-5-yl)but-2-en-1-yl)malonate (6ca).

6ca

The titled compound was prepared following the <u>General procedure H</u> using bis(2,2,2-trifluoroethyl) 2-vinylcyclopropane-1,1-dicarboxylate (70.3 mg, 0.220 mmol), imine **2a** (69.6 mg, 0.255 mmol), [Pd(π -C₃H₅)Cl]₂ (3.9 mg, 0.011 mmol), and (*R*,*R*)-DACH-Phenyl Trost ligand (24.8 mg, 0.036 mmol). Purification by FCC (1:4 EtOAc:hexane) yielded **6ca** as a colourless oil (57.0 mg, 44%).

 $[\alpha]_{D}^{25}$ +41.4 (*c* 0.21, CHCl₃)

Chiral HPLC: Chiralpak[®] IB-3, 10% isopropanol/hexanes, 1.0 mL/min, 206 nm, t_r (minor) = 10.7 min, t_r (major) = 12.3 min.

R_f = 0.15 (1:4 EtOAc:hexane).

IR (neat): 693, 757, 811, 962, 1159, 1198, 1369, 1449, 1566, 1595, 1755 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 7.75 – 7.64 (m, 2H), 7.58 (ddt, *J* = 8.7, 7.2, 1.2 Hz, 1H), 7.55 – 7.46 (m, 5H), 7.46 – 7.32 (m, 2H), 5.51 (dddt, *J* = 15.2, 7.5, 6.1, 1.2 Hz, 1H), 5.45 – 5.17 (m, 1H), 4.62 – 4.37 (m, 4H), 3.56 (t, *J* = 7.3 Hz, 1H), 3.43 (ddd, *J* = 14.7, 6.3, 1.2 Hz, 1H), 3.23 – 3.10 (m, 1H), 2.72 – 2.53 (m, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 178.6, 166.3 (d, J = 11.4 Hz), 135.4, 134.7, 132.5, 130.7, 130.6, 129.7, 129.2, 127.3, 126.8, 124.0, 122.6 (q, J = 277.3 Hz), 99.4, 61.1 (two overlapping quartets, J = 37.4 Hz), 50.4, 38.7, 31.2.

HRESI-MS (ESI +ve): Found 616.0841, calc for C₂₅H₂₁NO₇SF₆Na 616.0861 [M + Na]⁺.

b. 3-Allyl cyclic sulfamidate imines

Only a few *N*-allylated products were isolated in any significant amount, and their experimental data are listed below.

(E)-3-(Hex-2-en-1-yl)-4,5-diphenyl-3H-1,2,3-oxathiazole 2,2-dioxide (4aa).

4aa

The titled compound was prepared following the <u>General procedure H</u> using allyl carbonate **1a*** (46.8 mg, 0.234 mmol), imine **2a** (79.3 mg, 0.290 mmol), $[Pd(\pi-C_3H_5)Cl]_2$ (4.3 mg, 0.012 mmol), and Ph₃P (13.8 mg, 0.053 mmol). Purification by FCC (1:2 EtOAc:hexane) yielded **4aa** as a beige solid (25.8 mg, 31%).

Mp: 69–71 °C

R_f = 0.37 (1:2 EtOAc:hexane).

IR (neat): 693, 786, 976, 1007, 1127, 1196, 1375, 1448, 2926, 2955 cm⁻¹.

¹**H NMR** (500 MHz, CDCl₃): δ 7.50 – 7.36 (m, 5H), 7.25 – 7.17 (m, 5H), 5.59 – 5.34 (m, 2H), 3.85 (dd, *J* = 6.2, 1.0 Hz, 2H), 1.94 (tdd, *J* = 7.6, 6.3, 1.1 Hz, 2H), 1.39 – 1.26 (m, 2H), 0.85 (t, *J* = 7.4 Hz, 3H).

¹³**C NMR** (125 MHz, CDCl₃): δ 137.6, 135.3, 130.1, 129.9, 129.2, 128.5, 128.4, 127.7, 127.5, 125.6, 122.6, 48.4, 34.2, 22.0, 13.6.

HRESI-MS (ESI +ve): Found 378.1133, calc for C₂₀H₂₁NO₃SNa 378.1140 [M + Na]⁺.

(E)-3-(Hex-2-en-1-yl)-4-phenyl-5-(o-tolyl)-3H-1,2,3-oxathiazole 2,2-dioxide (4ah).

The titled compound was prepared following the <u>General procedure H</u> using allyl carbonate **1a** (19.8 mg, 0.099 mmol), imine **2h** (29.7 mg, 0.103 mmol), $[Pd(\pi-C_3H_5)Cl]_2$ (3.3 mg, 0.009 mmol), and Ph₃P (16.3 mg, 0.062 mmol). Purification by FCC (1:9 EtOAc:hexane) yielded **4ah** as a colourless oil (19.0 mg, 52%).

R_f = 0.19 (1:9 EtOAc:hexane).

IR (neat): 696, 768, 970, 1010, 1126, 1194, 1381, 1447, 2928, 2958 cm⁻¹.

¹**H NMR** (500 MHz, CDCl₃): δ 7.28 (dtt, *J* = 7.7, 3.8, 2.2 Hz, 4H), 7.23 – 7.15 (m, 4H), 7.11 (td, *J* = 7.5, 1.3 Hz, 1H), 5.58 (dtt, *J* = 14.6, 6.6, 1.4 Hz, 1H), 5.51 – 5.41 (m, 1H), 3.95 (dd, *J* = 6.6, 1.0 Hz, 2H), 2.24 (s, 4H), 2.01 – 1.92 (m, 2H), 1.40 – 1.28 (m, 2H), 0.86 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃): δ 138.5, 138.3, 130.8, 130.4, 129.4, 129.0, 128.6, 126.2, 122.5, 50.4, 34.5, 22.2, 19.9, 13.8.

HRESI-MS (ESI +ve): Found 392.1286, calc for C₂₁H₂₃NO₃SNa 392.1296 [M + Na]⁺.

(E)-5-(2-Chlorophenyl)-3-(hex-2-en-1-yl)-4-phenyl-3H-1,2,3-oxathiazole 2,2-dioxide (4aj).

4aj

The titled compound was prepared following the <u>General procedure H</u> using allyl carbonate **1a** (21.5 mg, 0.107 mmol), imine **2j** (37.0 mg, 0.127 mmol), $[Pd(\pi-C_3H_5)CI]_2$ (1.9 mg, 0.005 mmol), and Ph₃P (9.2 mg, 0.035 mmol). Purification by FCC (1:9 EtOAc:hexane) yielded **4aj** as a colourless solid (19.2 mg, 55%).

Mp: 57–59 °C

R_f = 0.16 (1:9 EtOAc:hexane).

IR (neat): 698, 752, 971, 1012, 1074, 1195, 1370, 1434, 2930, 2955 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃): δ 7.43 (dd, J = 8.1, 1.2 Hz, 1H), 7.37 – 7.25 (m, 4H), 7.27 – 7.14 (m, 4H), 5.57 (dtt, J = 15.4, 6.3, 1.2 Hz, 1H), 5.45 (dtt, J = 15.4, 6.7, 1.0 Hz, 1H), 3.96 (app. d, J = 6.4 Hz, 2H), 2.06 – 1.87 (m, 2H), 1.34 (app. h, J = 7.4 Hz, 2H), 0.86 (t, J = 7.4 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃): δ 138.0, 135.0, 134.3, 132.3, 131.4, 130.2, 129.5, 128.8, 128.7, 128.5, 127.6, 126.9, 122.3, 50.0, 34.3, 22.0, 13.6.

HRESI-MS (ESI +ve): Found 390.0941, calc for C₂₀H₂₁NO₃SCI 390.0931 [M + H]⁺.

(E)-3-(Hex-2-en-1-yl)-5-methyl-4-phenyl-3H-1,2,3-oxathiazole 2,2-dioxide (4ak).

4ak

The titled compound was prepared following the <u>General procedure H</u> using allyl carbonate **1a** (44.0 mg, 0.220 mmol), imine **2k** (52.7 mg, 0.249 mmol), $[Pd(\pi-C_3H_5)Cl]_2$ (4.7 mg, 0.013 mmol), and Ph₃P (18.7 mg, 0.071 mmol). Purification by FCC (1:6 EtOAc:hexane) yielded **4ak** as a pale yellow oil (11.8 mg, 18%).

R_f = 0.35 (1:6 EtOAc:hexane).

IR (neat): 615, 699, 754, 904, 970, 1185, 1370, 1447, 2872, 2928, 2957 cm⁻¹.

¹**H NMR** (500 MHz, CDCl₃): δ 7.52 – 7.27 (m, 5H), 5.55 – 5.32 (m, 2H), 3.79 (app. d, *J* = 6.5 Hz, 2H), 2.13 (s, 3H), 1.93 (tdd, *J* = 7.5, 6.3, 1.0 Hz, 2H), 1.35–1.28 (m, 2H), 0.85 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃): δ 137.7, 136.1, 129.1, 128.9, 128.5, 128.1, 125.5, 122.5, 50.1, 34.2, 22.0, 13.5, 12.2.

HRESI-MS (ESI +ve): Found 316.0976, calc for C₁₅H₁₉NO₃SNa 316.0983 [M + Na]⁺.

3-(3-Methylbut-2-en-1-yl)-4,5-diphenyl-3*H*-1,2,3-oxathiazole 2,2-dioxide (4ea).

4ea

The titled compound was prepared following the <u>General procedure H</u> using allyl carbonate **1e** (44.3 mg, 0.238 mmol), imine **2a** (72.1 mg, 0.264 mmol), $[Pd(\pi-C_3H_5)Cl]_2$ (4.5 mg, 0.012 mmol), and Ph₃P (18.8 mg, 0.072 mmol). Purification by FCC (1:5 EtOAc:hexane) yielded **4ea** as a white solid (12.8 mg, 16%).

Mp: 104–106 °C

R_f = 0.32 (1:5 EtOAc:hexane).

IR (neat): 612, 691, 766, 911, 964, 1188, 1354, 1445, 1657, 2935 cm⁻¹.

¹**H NMR** (500 MHz, CDCl₃): δ 7.49 – 7.37 (m, 5H), 7.25 – 7.15 (m, 5H), 5.30–5.23 (m, 1H), 3.93 – 3.87 (m, 2H), 1.65 (d, *J* = 1.2 Hz, 3H), 1.27 (d, *J* = 1.4 Hz, 3H).

¹³**C NMR** (125 MHz, CDCl₃): δ 138.7, 135.1, 130.0, 129.9, 129.2, 128.4, 128.3, 127.7, 127.5, 125.7, 125.5, 117.4, 44.4, 25.7, 17.3.

HRESI-MS (ESI +ve): Found 364.0986, calc for C₁₉H₁₉NO₃SNa 364.0983 [M + Na]⁺.

3-(Cyclohex-2-en-1-yl)-4,5-diphenyl-3H-1,2,3-oxathiazole 2,2-dioxide (4ha).

4ha

The titled compound was prepared following the <u>General procedure H</u> using allyl carbonate **1h** (44.0 mg, 0.222 mmol), imine **2a** (68.5 mg, 0.251 mmol), $[Pd(\pi-C_3H_5)Cl]_2$ (4.6 mg, 0.013 mmol), and Ph₃P (17.7 mg, 0.067 mmol). Purification by FCC (1:5 EtOAc:hexane) yielded **4ha** as a white solid (7.7 mg, 10%).

Mp: 149–152 °C

R_f = 0.33 (1:5 EtOAc:hexane).

IR (neat): 503, 613, 690, 764, 912, 978, 1192, 1352, 1445, 1662, 2941 cm⁻¹.

¹**H NMR** (500 MHz, CDCl₃): δ 7.53 – 7.41 (m, 5H), 7.22 – 7.10 (m, 5H), 5.88 – 5.79 (m, 1H), 5.75 (app. d, *J* = 10.1 Hz, 1H), 4.18–4.11 (m, 1H), 2.07 – 1.84 (m, 3H), 1.79 (dtt, *J* = 13.3, 5.4, 3.4 Hz, 1H), 1.49 – 1.36 (m, 1H), 1.33 – 1.22 (m, 1H).

¹³**C NMR** (125 MHz, CDCl₃): δ 135.3, 132.4, 130.6, 130.4, 129.5, 128.6, 128.5, 128.2, 127.8, 125.5, 125.3, 125.3, 55.7, 27.6, 24.5, 21.7.

HRESI-MS (ESI +ve): Found 376.0989, calc for C₂₀H₁₉NO₃SNa 376.0983 [M + Na]⁺.

7. Post-synthetic modifications

(4R,5S)-5-((E)-Hex-2-en-1-yl)-4,5-diphenyl-1,2,3-oxathiazolidine 2,2-dioxide (7aa-

majordiastereoisomer) and (4*S*,5*S*)-5-((*E*)-hex-2-en-1-yl)-4,5-diphenyl-1,2,3-oxathiazolidine 2,2dioxide (7aa-minor diastereoisomer).

7aa

Procedure—NaBH₄ reduction:

To a stirring solution of imine **3aa** (70.1 mg, 0.193 mmol) in MeOH (8 mL) at 0 °C was added solid NaBH₄ (11.2 mg, 0.870 mmol) in one portion, and the resulting solution was then stirred at 0 °C for 1 h. By this time, TLC analysis suggested the complete consumption of the imine starting material. The reaction was then concentrated *in vacuo*, dissolved in EtOAc, and washed with water. The organic layer was dried over MgSO₄, filtered, concentrated *in vacuo*, then used directly in the subsequent step without further purification due to the instability of the product on silica column (71:29 *dr*). Only a small amount of the major diastereoisomer was isolated by FCC for characterisation.

Procedure—K-selectride reduction:

To a stirring solution of imine **3aa** (48.5 mg, 0.152 mmol) in THF (1.5 mL) at -10 °C was added a solution of K-selectride (1.0 M in THF, 0.3 mL, 0.300 mmol) dropwise, and the resulting solution was then stirred at -10 °C for 1 h. By this time, TLC analysis suggested the complete consumption of the imine starting material. The reaction mixture was quenched with saturated NH₄Cl, extracted with EtOAc, and the combined organic layers were then washed with H₂O and brine. The organic layer was dried over MgSO₄, filtered, concentrated *in vacuo*, then used directly in the subsequent step without further purification due to the instability of the product on silica column (91:9 *dr*).

R_f = 0.09 (1:9 EtOAc:hexane).

IR (neat): (major diastereoisomer): 505, 696, 758, 878, 970, 1029, 1179, 1335, 1448, 2871, 2928, 2957, 3255 cm⁻¹.

¹**H NMR** (500 MHz, CDCl₃) (major diastereoisomer): δ 7.31 – 7.09 (m, 6H), 6.95 – 6.86 (m, 2H), 6.83 – 6.73 (m, 2H), 5.66 (dtt, *J* = 15.2, 6.7, 1.3 Hz, 1H), 5.44 (dddt, *J* = 15.2, 7.5, 6.0, 1.4 Hz, 1H), 5.23 (d, *J* = 8.2 Hz, 1H), 4.80 (d, *J* = 8.2 Hz, 1H), 3.10 – 2.88 (m, 2H), 2.09 – 1.90 (m, 2H), 1.40 – 1.27 (m, 2H), 0.81 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃): (major diastereoisomer): δ 137.0, 135.8, 132.0, 129.2, 128.5, 128.1, 127.8, 127.5, 126.7, 122.2, 99.3, 67.2, 41.5, 34.6, 22.3, 13.5.

HRESI-MS (ESI -ve): Found 356.1337, calc for C₂₀H₂₂NO₃S 356.1320 [M - H]⁻.

tert-Butyl (4*R*,5*S*)-5-((*E*)-hex-2-en-1-yl)-4,5-diphenyl-1,2,3-oxathiazolidine-3-carboxylate 2,2dioxide (8aa-major diastereoisomer) and *tert*-butyl (4*S*,5*S*)-5-((*E*)-hex-2-en-1-yl)-4,5-diphenyl-1,2,3-oxathiazolidine-3-carboxylate 2,2-dioxide (8aa-minordiastereoisomer).

8aa

Procedure:31

To a stirring solution of sulfamidate **7aa** (crude reaction isolate from the NaBH₄ reduction step, approx. 0.193 mmol OR crude reaction isolate from the K-selectride reduction step, approx. 0.136 mmol) in CH_2Cl_2 (1 mL) at rt was added a solution of Boc_2O (52.2 mg, 0.239 mmol OR 77.1 mg, 0.353 mmol) in CH_2Cl_2 (1 mL) via a cannula, rinsing with CH_2Cl_2 (1 mL), followed by DMAP (8.3 mg, 0.068 mmol OR 5.5 mg, 0.045 mmol). The resulting mixture was then stirred at rt overnight. Upon completion, as indicated by TLC analysis, the reaction mixture was concentrated *in vacuo*, and the residue was then purified by FCC (1:9 EtOAc:hex) to furnish an inseparable mixture of both diastereoisomers of *N*-Boc sulfamate **8aa** as a colourless oil (65.4 mg, 74% after two steps, 74:26 *dr* OR 33.1 mg, 53% over two steps, 94:6 *dr*).

R_f = 0.07 (1:9 EtOAc:hexane).

IR (neat): 528, 567, 697, 760, 970, 1188, 1318, 1367, 1450, 1723, 2872, 2929, 2960 cm⁻¹.

¹**H** NMR (500 MHz, CDCl₃) (2.9:1 mixture of two diastereoisomers, minor isomer labelled with an asterisk): δ 7.56 – 7.32* (m, 9H), 7.29 – 7.26* (m, 1H), 7.20 – 7.13 (m, 2H), 7.13 – 6.94 (m, 8H), 5.70 – 5.47 (m, 1H), 5.34 (s, 1H), 5.18 (dtt, *J* = 15.5, 6.9, 1.4 Hz, 1H), 5.14 – 5.06* (m, 1H), 4.83* (dtt, *J* = 15.4, 6.9, 1.5 Hz, 1H), 3.71 – 3.47 (m, 1H), 3.01 (ddd, *J* = 14.7, 6.7, 1.2 Hz, 1H), 2.45* (ddd, *J* = 14.7, 6.7, 1.3 Hz, 1H), 2.11* (ddd, *J* = 14.6, 7.3, 1.1 Hz, 1H), 1.93–1.82 (m, 2H), 1.80 – 1.67* (m, 2H), 1.44 (s, 9H), 1.34* (s, 9H), 1.31 – 1.19 (m, 2H), 1.18 – 1.05* (m, 2H), 0.75 (t, *J* = 7.4 Hz, 3H), 0.68* (t, *J* = 7.4 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) (2.9:1 mixture of two diastereoisomers, distinguishable minor isomer resonances labelled with an asterisk): δ 148.4, 148.2*, 138.7*, 137.4, 136.7*, 135.6, 135.5, 134.9*, 129.1*, 128.9*, 128.7*, 128.5*, 128.2, 128.1, 128.0, 127.8, 127.7, 125.6*, 125.5, 121.1, 120.9*, 94.3, 93.5*, 85.5, 85.4*, 71.2*, 70.8, 43.1, 42.2*, 34.5, 34.4*, 27.8, 27.7*, 22.2, 22.1*, 13.4 (overlapping resonances).

HRESI-MS (ESI +ve): Found 480.1830, calc for C₂₅H₃₁NO₅SNa 480.1821 [M + Na]⁺.

(1*R*,2*S*,*E*)-1-Amino-1,2-diphenyloct-4-en-2-ol (9aa-major diastereoisomer) and (1*S*,2*S*,*E*)-1-amino-1,2-diphenyloct-4-en-2-ol (9aa-minor diastereoisomer).

9aa

Procedure:32

To a stirring solution of LiAlH₄ (1.0 M in THF, 0.9 mL, 0.900 mmol) at 0 °C was added dropwise a solution of imine **3aa** (104.2 mg, 0.293 mmol) in THF (3.5 mL) via a cannula, which was rinsed with THF (3.5 mL). The reaction mixture was then heated to reflux and stirred at reflux for 1 h. The reaction mixture was then cooled down to rt, then HCl 1 M (1 mL) was added, and the mixture was again heated to reflux for 1 h. After having cooled to rt, the reaction mixture was then washed with CH_2Cl_2 . The aqueous layer was separated, basified with aq. NaOH soltution, and then extracted with CH_2Cl_2 . The combined organic extracts were dried over MgSO₄, filtered, concentrated *in vacuo*, and then purified by FCC (1:2 EtOAc:hex) to furnish the major diastereoisomer **9aa** as a colourless oil (53.6 mg, 62%) and the minor diastereoisomer **9aa** as a colourless oil (16.5 mg, 19%) **R**_f (major diastereoisomer) = 0.06 (1:2 EtOAc:hexane).

IR (neat): (major diastereoisomer) 698, 755, 968, 1179, 1379, 1447, 2870, 2927, 2956, 3322 cm⁻¹.

¹**H NMR** (500 MHz, CDCl₃) (major diastereoisomer): δ 7.24 – 7.04 (m, 8H), 7.00 – 6.87 (m, 2H), 5.60 – 5.44 (m, 1H), 5.35 – 5.12 (m, 1H), 4.12 (s, 1H), 2.78 (app. dd, *J* = 14.1, 5.7 Hz, 1H), 2.63 (app. dd, *J* = 14.2, 8.4 Hz, 1H), 1.98 – 1.82 (m, 2H), 1.38 – 1.20 (m, 3H), 0.79 (t, J = 7.4 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃): (major diastereoisomer): δ 142.5, 141.7, 135.6, 128.4, 127.7, 127.5, 127.3, 127.1, 126.7, 125.2, 77.9, 64.4, 42.3, 34.9, 22.8, 13.7.

 \mathbf{R}_{f} (minor diastereoisomer) = 0.09 (1:2 EtOAc:hexane).

¹**H NMR** (500 MHz, CDCl₃) (minor diastereoisomer): δ 7.53 – 7.16 (m, 10H), 5.30 – 5.18 (m, 1H), 5.04 – 4.93 (m, 1H), 4.23 (br s, 1H), 2.56 – 2.41 (m, 1H), 2.08 – 1.98 (m, 1H), 1.84–1.70 (m, 2H), 1.25 – 1.10 (m, 2H), 0.70 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃): (minor diastereoisomer): δ 145.2, 141.2, 134.7, 128.8, 128.3, 128.2, 127.8, 126.8, 126.4, 124.8, 78.0, 64.4, 42.4, 34.8, 22.6, 13.6.

HRESI-MS (ESI +ve): Found 296.2019, calc for C₂₀H₂₆NO 296.2014 [M + H]⁺.

8. Crystallographic data

X-ray crystallography was analysed on a XtaLAB Mini II diffractometer. Using Olex2, the structure was solved with the ShelXT structure solution program using Intrinsic Phasing and refined with the ShelXL refinement package using CGLS minimisation.

Figure S1. Crystal structure of (rac)-3aa

Figure S2. Crystal structure of 4aa

Figure S3. Crystal structure of (S)-3aa

Figure S4. Crystal structure of (S)-3ca

Figure S5. Crystal structure of (S,S)-3fa

Crystal data and structure refinement.					
Identification code	(<i>rac</i>)-3aa	4aa	(<i>S</i>)-3aa	(<i>S</i>)-3ca	(<i>S,S</i>)-3fa
Empirical formula	$C_{20}H_{21}NO_3S$	$C_{20}H_{21}NO_{3}S$	C ₂₀ H ₂₁ NO ₃ S	$C_{23}H_{19}NO_3S$	$C_{33}H_{31}NO_4S$
Formula weight	355.44	355.44	355.44	389.45	537.65
Temperature/K	150.00(10)	149.99(10)	293.0(10)	150.00(10)	149.99(10)
Crystal system	triclinic	orthorhombic	orthorhombic	monoclinic	monoclinic
Space group	P-1	P212121	P212121	P21	P21
a/Å	8.9169(3)	8.4602(2)	10.0914(4)	9.2466(2)	9.0008(2)
b/Å	10.0932(3)	10.8079(3)	10.2497(4)	10.2138(3)	15.0151(3)
c/Å	10.9734(4)	19.9865(5)	18.7657(7)	10.4986(3)	10.6877(2)
α/°	82.217(3)	90	90	90	90
β/°	83.123(3)	90	90	94.584(2)	107.229(2)
γ/°	67.004(3)	90	90	90	90
Volume/Å ³	898.33(5)	1827.51(8)	1941.01(13)	988.34(5)	1379.60(5)
Z	2	4	4	2	2
$\rho_{calc}g/cm^3$	1.314	1.292	1.216	1.309	1.294
µ/mm ⁻¹	0.199	0.195	0.184	0.187	0.157
F(000)	376.0	752.0	752.0	408.0	568.0
Crystal size/mm ³	0.56 × 0.5 × 0.35	0.39 × 0.2 × 0.18	0.61 × 0.21 × 0.11	0.35 × 0.31 × 0.15	0.44 × 0.38 × 0.31
Radiation	ΜοΚα (λ = 0.71073)	Μο Κα (λ = 0.71073)	Μο Κα (λ = 0.71073)	Μο Κα (λ = 0.71073)	Μο Κα (λ = 0.71073)
20 range for data collection/°	4.404 to 61.006	4.284 to 59.148	4.342 to 59.138	3.892 to 56.564	3.99 to 58.25
Index ranges	-12 ≤ h ≤ 12, - 14 ≤ k ≤ 14, -15 ≤ l ≤ 15	-10 ≤ h ≤ 11, - 14 ≤ k ≤ 15, -27 ≤ l ≤ 27	-14 ≤ h ≤ 14, - 14 ≤ k ≤ 14, -26 ≤ l ≤ 25	-12 ≤ h ≤ 12, - 13 ≤ k ≤ 13, -13 ≤ l ≤ 13	$-12 \le h \le 12, -20 \le k \le 20, -14 \le l \le 14$
Reflections collected	23029	25213	32513	17523	44315
Independent reflections	5236 [R _{int} = 0.0230, R _{sigma} = 0.0156]	5129 [R _{int} = 0.0295, R _{sigma} = 0.0310]	5428 [R _{int} = 0.0369, R _{sigma} = 0.0371]	4872 [R _{int} = 0.0246, R _{sigma} = 0.0247]	7355 [R _{int} = 0.0284, R _{sigma} = 0.0241]
Data/restraints/parameters	5236/0/227	5129/16/248	5428/4/226	4872/1/253	7355/1/352
Goodness-of-fit on F ²	1.048	1.062	1.004	1.036	1.059
Final R indexes [I>=2σ (I)]	$R_1 = 0.0342,$ $wR_2 = 0.0958$	$R_1 = 0.0365,$ $wR_2 = 0.0856$	$R_1 = 0.0514,$ $wR_2 = 0.1270$	$R_1 = 0.0380,$ $wR_2 = 0.0971$	$R_1 = 0.0389,$ $wR_2 = 0.0943$
Final R indexes [all data]	$R_1 = 0.0385,$ $wR_2 = 0.0984$	$R_1 = 0.0481,$ $wR_2 = 0.0906$	$R_1 = 0.1076,$ $wR_2 = 0.1524$	$R_1 = 0.0443,$ $wR_2 = 0.1009$	$R_1 = 0.0470,$ $wR_2 = 0.0989$
Largest diff. peak/hole / e Å ⁻³	0.43/-0.42	0.19/-0.28	0.19/-0.19	0.48/-0.23	0.23/-0.28
Flack parameter		0.20(8)	-0.02(3)	0.032(19)	0.007(18)
CCDC	2087721	2087722	2087723	2087724	2087725

9. References

- Jiang, Y. J.; Zhang, G. P.; Huang, J. Q.; Chen, D.; Ding, C. H.; Hou, X. L. Org. Lett. 2017, 19, 5932– 5935.
- (2) Trost, B. M.; Luan, X. J. Am. Chem. Soc. **2011**, 133, 1706–1709.
- (3) Yuan, Q.; Yao, K.; Liu, D.; Zhang, W. Chem. Commun. 2015, 51, 11834–11836.
- (4) Ruchti, J.; Carreira, E. M. J. Am. Chem. Soc. 2014, 136, 16756–16759.
- Hayashi, T.; Yamamoto, A.; Ito, Y.; Nishioka, E.; Miura, H.; Yanagi, K. J. Am. Chem. Soc. 1989, 111, 6301–6311.
- (6) Haight, A. R.; Stoner, E. J.; Peterson, M. J.; Grover, V. K. J. Org. Chem. 2003, 68, 8092–8096.
- (7) Tay, D. W.; Tsoi, I. T.; Er, J. C.; Leung, G. Y. C.; Yeung, Y. Y. Org. Lett. **2013**, *15*, 1310–1313.
- (8) Keaveney, S. T.; Haines, R. S.; Harper, J. B. *Chempluschem* **2017**, *82*, 449–457.
- (9) Yu, C. J.; Li, R.; Gu, P. *Tetrahedron Lett.* **2016**, *57*, 3568–3570.
- (10) Liu, L.; Wang, G.; Jiao, J.; Li, P. Org. Lett. **2017**, *19*, 6132–6135.
- (11) Hu, P. F.; Dong, B.; Zhou, Z. P.; Chen, W. D.; Zeng, B. B. ChemistrySelect 2019, 4, 10798–10804.
- (12) Englert, C.; Nischang, I.; Bader, C.; Borchers, P.; Alex, J.; Pröhl, M.; Hentschel, M.; Hartlieb, M.;
 Traeger, A.; Pohnert, G.; et al. *Angew. Chemie. Int. Ed.* **2018**, *57*, 2479–2482.
- (13) Michida, M.; Mukaiyama, T. *Chem. Asian J.* **2008**, *3*, 1592–1600.
- (14) Kothapalli, R. B.; Niddana, R.; Balamurugan, R. Org. Lett. 2014, 16, 1278–1281.
- (15) Hoyos, P.; Pace, V.; Sinisterra, J. V.; Alcántara, A. R. *Tetrahedron*. **2011**, *67*, 7321–7329.
- (16) Yang, J.; Xie, D.; Zhou, H.; Chen, S.; Huo, C.; Li, Z. Org. Chem. Front. **2018**, *5*, 1325–1329.
- (17) Linghu, X.; Potnick, J. R.; Johnson, J. S. J. Am. Chem. Soc. 2004, 126, 3070–3071.
- (18) Agrawal, S.; Martínez-Castro, E.; Marcos, R.; Martín-Matute, B. Org. Lett. 2014, 16, 2256–2259.
- (19) Horn, A.; Kazmaier, U. European J. Org. Chem. 2018, 2018, 2531–2536.
- (20) Piel, I.; Pawelczyk, M. D.; Hirano, K.; Fröhlich, R.; Glorius, F. *European J. Org. Chem.* 2011, No. 28, 5475–5484.

- (21) Alcaide, B.; Almendros, P.; Fernández, I.; Herrera, F.; Luna, A. Chem. Eur. J. 2017, 23, 17227– 17230.
- (22) Delany, E. G.; Connon, S. J. Org. Biomol. Chem. 2018, 16, 780–786.
- (23) Chen, C. T.; Kao, J. Q.; Salunke, S. B.; Lin, Y. H. Org. Lett. 2011, 13, 26–29.
- (24) Liang, Y. F.; Wu, K.; Song, S.; Li, X.; Huang, X.; Jiao, N. Org. Lett. **2015**, *17*, 876–879.
- (25) Wang, Y. Q.; Yu, C. Bin; Wang, D. W.; Wang, X. B.; Zhou, Y. G. Org. Lett. 2008, 10, 2071–2074.
- (26) Lee, S. A.; Kwak, S. H.; Lee, K. I. Chem. Commun. 2011, 47, 2372–2374.
- (27) Lee, H.-K.; Soyeong, K.; Choi, E. B. J. Org. Chem. 2012, 77, 5454–5460.
- (28) Kim, H. R.; Achary, R.; Lee, H. K. J. Org. Chem. 2018, 83, 11987–11999.
- (29) Chen, Y. J.; Chen, Y. H.; Feng, C. G.; Lin, G. Q. Org. Lett. **2014**, *16*, 3400–3403.
- (30) Trost, B. M.; Van Vranken, D. L.; Bingel, C. J. Am. Chem. Soc. 1992, 114, 9327–9343.
- (31) Liu, Y.; Yi, Z.; Tan, X.; Dong, X. Q.; Zhang, X. *iScience* **2019**, *19*, 63–73.
- (32) Riaño, I.; Uria, U.; Carrillo, L.; Reyes, E.; Vicario, J. L. Org. Chem. Front. 2015, 2, 206–210.

10. NMR spectra of novel compounds

Figure S6. ¹H NMR spectrum (CDCl₃, 500 MHz) of 1a"

Figure S7. ¹³C NMR spectrum (CDCl₃, 125 MHz) of 1a"

Figure S8. ¹H NMR spectrum (CDCl₃, 500 MHz) of *i*-1a

Figure S9. ¹³C NMR spectrum (CDCl₃, 125 MHz) of *i*-1a

Figure S10. ¹H NMR spectrum (CDCl₃, 400 MHz) of S2a

Figure S11. ¹³C NMR spectrum (CDCl₃, 100 MHz) of S2a

Figure S12. ¹H NMR spectrum (CDCl₃, 500 MHz) of S2b

Figure S13. ¹³C NMR spectrum (CDCl₃, 125 MHz) of S2b

Figure S14. ¹H NMR spectrum (CDCl₃, 500 MHz) of S2c

Figure S15. ¹³C NMR spectrum (CDCl₃, 125 MHz) of S2c

Figure S16. ¹H NMR spectrum (CDCl₃, 500 MHz) of S2d

Figure S17. ¹³C NMR spectrum (CDCl₃, 125 MHz) of S2d

Figure S18. ¹H NMR spectrum (CDCl₃, 500 MHz) of S2f

Figure S19. ¹³C NMR spectrum (CDCl₃, 125 MHz) of S2f

Figure S20. ¹H NMR spectrum (CDCl₃, 500 MHz) of S2i

Figure S21. ¹³C NMR spectrum (CDCl₃, 125 MHz) of S2i

Figure S22. ¹H NMR spectrum (CDCl₃, 400 MHz) of S2j

Figure S23. ¹³C NMR spectrum (CDCl₃, 125 MHz) of S2j

Figure S24. ¹⁹F NMR spectrum (CDCl₃, 470 MHz) of S2j

Figure S25. ¹H NMR spectrum (CDCl₃, 400 MHz) of S2k

Figure S26. ¹³C NMR spectrum (CDCl₃, 100 MHz) of S2k

Figure S27. ¹H NMR spectrum (CDCl₃, 400 MHz) of S2I

Figure S28. ¹³C NMR spectrum (CDCl₃, 100 MHz) of S2I

Figure S29. ¹H NMR spectrum (CDCl₃, 500 MHz) of S3a

Figure S30. ¹³C NMR spectrum (CDCl₃, 125 MHz) of S3a

Figure S31. ¹H NMR spectrum (CDCl₃, 500 MHz) of S3f

Figure S32. ¹³C NMR spectrum (CDCl₃, 125 MHz) of S3f

Figure S33. ¹H NMR spectrum (CDCl₃, 400 MHz) of 2b

Figure S34. ¹³C NMR spectrum (CDCl₃, 100 MHz) of 2b

Figure S35. ¹H NMR spectrum (CDCl₃, 400 MHz) of 2c

Figure S36. ¹³C NMR spectrum (CDCl₃, 125 MHz) of 2c

Figure S37. ¹⁹F NMR spectrum (CDCl₃, 470 MHz) of 2c

Figure S38. ¹H NMR spectrum (CDCl₃, 500 MHz) of 2d

Figure S39. ¹³C NMR spectrum (CDCl₃, 125 MHz) of 2d

Figure S40. ¹H NMR spectrum (CDCl₃, 500 MHz) of 2e

Figure S41. ¹³C NMR spectrum (CDCl₃, 125 MHz) of 2e

Figure S42. ¹H NMR spectrum (CDCl₃, 400 MHz) of 2g

Figure S43. ¹³C NMR spectrum (CDCl₃, 100 MHz) of 2g

Figure S44. ¹H NMR spectrum (CDCl₃, 400 MHz) of 2h

Figure S45. ¹³C NMR spectrum (CDCl₃, 100 MHz) of 2h

Figure S46. ¹H NMR spectrum (CDCl₃, 400 MHz) of 2i

Figure S47. ¹³C NMR spectrum (CDCl₃, 100 MHz) of 2i

Figure S48. $^{\rm 19}{\rm F}$ NMR spectrum (CDCl₃, 470 MHz) of 2i

Figure S49. ¹H NMR spectrum (CDCl₃, 400 MHz) of 2j

Figure S50. ¹³C NMR spectrum (CDCl₃, 100 MHz) of 2j

Figure S51. ¹H NMR spectrum (CDCl₃, 500 MHz) of 2n

Figure S52. ¹³C NMR spectrum (CDCl₃, 125 MHz) of 2n

Figure S53. ¹H NMR spectrum (CDCl₃, 500 MHz) of 3aa

Figure S54. ¹³C NMR spectrum (CDCl₃, 125 MHz) of 3aa

Figure S55. ¹H NMR spectrum (CDCl₃, 400 MHz) of 3ab

Figure S56. ¹³C NMR spectrum (CDCl₃, 100 MHz) of **3ab**

Figure S57. ¹H NMR spectrum (CDCl₃, 400 MHz) of 3ac

Figure S58. ¹³C NMR spectrum (CDCl₃, 100 MHz) of 3ac

Figure S59. ¹⁹C NMR spectrum (CDCl₃, 470 MHz) of 3ac

Figure S60. ¹H NMR spectrum (CDCl₃, 400 MHz) of 3ad

Figure S61. ¹³C NMR spectrum (CDCl₃, 100 MHz) of 3ad

Figure S62. ¹H NMR spectrum (CDCl₃, 400 MHz) of 3ae

Figure S63. ¹³C NMR spectrum (CDCl₃, 100 MHz) of 3ae

Figure S64. ¹H NMR spectrum (CDCl₃, 400 MHz) of 3af

Figure S65. ¹³C NMR spectrum (CDCl₃, 100 MHz) of 3af

Figure S66. ¹H NMR spectrum (CDCl₃, 400 MHz) of 3ag

Figure S67. ¹³C NMR spectrum (CDCl₃, 100 MHz) of 3ag

Figure S68. ¹H NMR spectrum (CDCl₃, 400 MHz) of 3ah

Figure S69. ¹³C NMR spectrum (CDCl₃, 100 MHz) of 3ah

Figure S70. ¹H NMR spectrum (CDCl₃, 400 MHz) of 3ai

Figure S71. ¹³C NMR spectrum (CDCl₃, 100 MHz) of 3ai

Figure S72. ^{19}F NMR spectrum (CDCl_3, 470 MHz) of 3ai

Figure S73. ¹H NMR spectrum (CDCl₃, 400 MHz) of 3aj

Figure S74. ¹³C NMR spectrum (CDCl₃, 100 MHz) of 3aj

Figure S75. ¹H NMR spectrum (CDCl₃, 500 MHz) of 3ak

Figure S76. ¹³C NMR spectrum (CDCl₃, 125 MHz) of 3ak

Figure S77. ¹H NMR spectrum (CDCl₃, 500 MHz) of 3an

Figure S78. ¹³C NMR spectrum (CDCl₃, 125 MHz) of 3an

Figure S79. ¹H NMR spectrum (CDCl₃, 500 MHz) of 3aan

Figure S80. ¹³C NMR spectrum (CDCl₃, 125 MHz) of 3aan

Figure S81. ¹H NMR spectrum (CDCl₃, 400 MHz) of **3abn**

Figure S82. ¹³C NMR spectrum (CDCl₃, 100 MHz) of **3abn**

Figure S83. ¹H NMR spectrum (CDCl₃, 400 MHz) of 3ba

Figure S84. ¹³C NMR spectrum (CDCl₃, 100 MHz) of 3ba

Figure S85. ¹H NMR spectrum (CDCl₃, 400 MHz) of 3ca

Figure S86. ¹³C NMR spectrum (CDCl₃, 100 MHz) of 3ca

Figure S87. ¹H NMR spectrum (CDCl₃, 400 MHz) of 3da

Figure S88. ¹³C NMR spectrum (CDCl₃, 100 MHz) of 3da

Figure S89. ¹H NMR spectrum (CDCl₃, 500 MHz) of 3ea

Figure S90. ¹³C NMR spectrum (CDCl₃, 125 MHz) of 3ea

Figure S91. ¹H NMR spectrum (CDCl₃, 400 MHz) of 3fa

Figure S92. ¹³C NMR spectrum (CDCl₃, 100 MHz) of 3fa

Figure S93. ¹H NMR spectrum (CDCl₃, 400 MHz) of 3ga

Figure S94. ¹³C NMR spectrum (CDCl₃, 100 MHz) of 3ga

Figure S95. ¹H NMR spectrum (CDCl₃, 500 MHz) of **3ha**

Figure S96. ¹³C NMR spectrum (CDCl₃, 125 MHz) of 3ha

Figure S97. ¹H NMR spectrum (CDCl₃, 400 MHz) of 6aa

Figure S98. ¹³C NMR spectrum (CDCl₃, 100 MHz) of 6aa

Figure S99. ¹H NMR spectrum (CDCl₃, 500 MHz) of 6ba

Figure S100. ¹³C NMR spectrum (CDCl₃, 125 MHz) of 6ba

Figure S101. 1 H NMR spectrum (CDCl₃, 400 MHz) of 6ca

Figure S102. ¹³C NMR spectrum (CDCl₃, 100 MHz) of 6ca

Figure S103. DEPTQ NMR spectrum (CDCl₃, 100 MHz) of 6ca

Figure S104. ¹⁹F NMR spectrum (CDCl₃, 470 MHz) of 6ca

Figure S105. ¹H NMR spectrum (CDCl₃, 500 MHz) of 4aa

Figure S106. ¹³C NMR spectrum (CDCl₃, 125 MHz) of 4aa

Figure S107. ¹H NMR spectrum (CDCl₃, 500 MHz) of 4ah

Figure S108. ¹³C NMR spectrum (CDCl₃, 125 MHz) of 4ah

Figure S109. ¹H NMR spectrum (CDCl₃, 400 MHz) of 4aj

Figure S110. ¹³C NMR spectrum (CDCl₃, 100 MHz) of 4aj

Figure S111. ¹H NMR spectrum (CDCl₃, 500 MHz) of 4ak

Figure S112. ¹³C NMR spectrum (CDCl₃, 125 MHz) of 4ak

Figure S113. ¹H NMR spectrum (CDCl₃, 500 MHz) of 4ea

Figure S114. ¹³C NMR spectrum (CDCl₃, 125 MHz) of 4ea

Figure S115. ¹H NMR spectrum (CDCl₃, 500 MHz) of 4ha

Figure S116. ¹³C NMR spectrum (CDCl₃, 125 MHz) of 4ha

Figure S117. ¹H NMR spectrum (CDCl₃, 500 MHz) of 7aa-major diastereoisomer

Figure S118. ¹³C NMR spectrum (CDCl₃, 125 MHz) of 7aa-major diastereoisomer

Figure S119. ¹H NMR spectrum (CDCl₃, 500 MHz) of 8aa-mixture of two diastereoisomers

Figure S120. ¹³C NMR spectrum (CDCl₃, 125 MHz) of 8aa-mixture of two diastereoisomers

Figure S121. ¹H NMR spectrum (CDCl₃, 400 MHz) of 8aa-major diastereoisomer

Figure S122. ¹³C NMR spectrum (CDCl₃, 100 MHz) of 8aa-major diastereoisomer

Figure S123. ¹H NMR and 1D NOE spectra (CDCl₃, 500 MHz) of 8aa-major diastereoisomer

Figure S124. ¹H NMR spectrum (CDCl₃, 500 MHz) of 9aa-major diastereoisomer

Figure S125. ¹³C NMR spectrum (CDCl₃, 125 MHz) of 9aa-major diastereoisomer

Figure S126. ¹H NMR spectrum (CDCl₃, 500 MHz) of 9aa-minor diastereoisomer

Figure S127. ¹³C NMR spectrum (CDCl₃, 125 MHz) of 9aa-minor diastereoisomer

11. HPLC chromatograms

Peak#	Ret. Time	Area%	Name
1	6.624	50.799	
2	7.128	49.201	
Total		100.000	

(*S*)-3aa

Peak#	Ret. Time	Area%	Name
1	6.492	8.732	
2	6.899	91.268	
Total		100.000	

141

Peak#	Ret. Time	Area%	Name
1	15.421	49.454	
2	18.865	50.546	
Total		100.000	

(*S*)-3ab

Реак#	Ret. Time	Area%	Name
1	15.374	12.036	
2	18.656	87.964	
Total		100.000	

Реак#	Ret. Time	Area%	Name
1	9.023	50.406	
2	10.097	49.594	
Total		100.000	

(S)-3ac

Peak#	Ret. Time	Area%	Name
1	9.396	6.045	
2	10.508	93.955	
Total		100.000	

Peak#	Ret. Time	Area%	Name
1	12.986	50.678	
2	14.255	49.322	
Total		100.000	

(*S*)-3ad

Peak#	Ret. Time	Area%	Name
1	12.754	6.887	
2	13.945	93.113	
Total		100.000	

Реак#	Ret. Lime	Area%	Name
1	13.595	49.271	
2	16.306	50.729	
Total		100.000	

(S)-3ae

Реак#	Ret. Lime	Area%	Name
1	13.597	9.173	
2	16.154	90.827	
Total		100.000	
			•

FEak#	Ret. Hille	Alea /0	Naille
1	10.823	48.713	
2	12.362	51.287	
Total		100.000	

Peak#	Ret. Time	Area%	Name
1	10.711	3.888	
2	12.061	96.112	
Total		100.000	

Peak#	Ret. fime	Area‰	Name
1	8.063	50.943	
2	8.521	49.057	
Total		100.000	

(S)-3ag

Peak#	Ret. Time	Area%	Name
1	8.010	11.185	
2	8.437	88.815	
Total		100.000	

Peak#	Ret. Time	Area%	Name
1	7.422	50.339	
2	7.829	49.661	
Total		100.000	

(*S*)-3ah

Peak#	Ret. Time	Area%	Name
1	7.353	52.341	
2	7.748	47.659	
Total		100.000	

Реак#	Ret. Time	Area%	Name
1	38.387	44.141	
2	42.826	55.859	
Total		100.000	

(*S*)-3ai

Peak#	Ret. Time	Area%	Name
1	36.922	73.448	
2	40.288	11.540	
3	41.461	15.012	
Total		100.000	

Peak#	Ret. Time	Area%	Name
1	35.377	47.988	
2	41.420	52.012	
Total		100.000	

(S)-3aj

Peak#	Ret. Lime	Area%	Name
1	8.507	74.661	
2	8.996	25.339	
Total		100.000	

(S)-3ak

100.000

Total

Реак#	Ret. Lime	Area%	Name
1	10.965	21.695	
2	11.574	78.305	
Total		100.000	

Peak#	Ret. Lime	Area%	Name
1	18.675	49.942	
2	21.251	50.058	
Total		100.000	

(*rac*)-3an

Peak#	Ret. Time	Area%	Name
1	18.958	49.572	
2	21.595	50.428	
Total		100.000	

Реак#	Ret. fime	Area‰	Name
1	9.888	52.066	
2	10.638	47.934	
Total		100.000	

(*S*)-3abn

Peak#	Ret. Time	Area%	Name
1	9.734	36.651	
2	10.398	63.349	
Total		100.000	

(S)-3ba

100.000

Total

155

(S)-3ca

2

Total

24.758

91.187	
100.000	

(*S*)-3da

100.000

Total

(*S,S*)-3fa

Peak#	Ret. Time	Area%	Name
1	23.659	24.071	
2	26.187	26.352	
3	27.762	26.083	
4	29.669	23.493	
Total		100.000	

"enantioenriched" 3ga

Peak#	Ret. Time	Area%	Name
1	24.012	18.086	
2	26.570	23.051	
3	28.214	21.527	
4	29.294	37.336	
Total		100.000	

Peak#	Ret. Time	Area%	Name
1	50.288	49.956	
2	55.737	50.044	
Total		100.000	

(*S*)-6aa

Peak#	Ret. Time	Area%	Name
1	50.368	38.914	
2	55.500	61.086	
Total		100.000	

Peak#	Ret. Time	Area%	Name
1	25.919	49.318	
2	29.237	50.682	
Total		100.000	

Peak#	Ret. Time	Area%	Name
1	25.788	66.904	
2	29.426	33.096	
Total		100.000	

Peak#	Ret. Lime	Area%	Name
1	10.716	53.781	
2	12.304	46.219	
Total		100.000	

(*S*)-6ca

Peak#	Ret. Time	Area%	Name
1	10.741	6.932	
2	12.331	93.068	
Total		100.000	