Appendix: Asymptotic Distribution Theory and Additional Simulation
Results

We now provide some detail on the asymptotic distributional results listed in §5, from
which those in §3 follow as a special case.

As in §5 assume that the processes {(Nj;,Y;i),7 = 1,...,4;Z(S,-..,S4)} are iid.
for i =1,...,n. Also suppose that the modeled regression variables in (16) and (17) have
bounded total variation, so that

Tk

|| X (0)]] +/ || Xyi(dt)|| for each k=1,..., K andi=1,...,n,
0

and

Tk Tg
||ngi(0,0)|]+/ / || Xkgi(dty, dts)|] foreach 1 <k <g< K andi=1,...,n,
o Jo

are bounded by a constant almost surely, where ||-|| denotes vector length. Here the regions
of integration, [0, 7] and [0, 7] x [0, 7], are such that P{S;; > 7; Z(0,...,S5;;,0,...,0)} >
0 for some j such that M(j) = k for each k = 1,..., K, and P{S;; > 7, Sn > 7
Z(0,...,8,...,Shi,...,0)} > 0 for some (j, h) such that M(j) = k and M(h) = g for
each 1 < k < g < K, for any ¢ = 1,...,n. Finally, to ensure that there is definitive
information for estimating 8 in (16) and v in (17) we require the positive semidefinite off-
diagonal blocks in the negative partial derivative matrix A in §5 to have positive definite
almost sure limits, so that

Al(ﬂ) =E

SN M) = k) / P LX) — @t )Y (0T (de) exp{xku)ﬁ}] ,

=1 k=1

and

o) = E{ZZZ >~ HMG) = I () = o)

/ / {Xig(t1,t2) — Tug(tr, t2;7) }22Y;(t1) Vi (t2) Dig (diy, di) eXP{ng(tl,b)V}}
0 0

are required to be positive definite at 5y and 7, the ‘true’ values of 5 and v respectively.
These condition naturally extend those of Spiekerman and Lin (1998). We also, temporarily,
require 71, ..., T, to be absolutely continuous.
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Under these conditions, the arguments of Lin et al. (2000) adapt to yield the asymptotic
results listed in §5. In particular, their Lemma 1 generalizes directly to include both
univariate functions defined on [0, 7] and bivariate functions defined on [0, 7] % [0, 72]. For
the latter we have
Lemma 1(b). Let f, and g, be two sequences of bounded bivariate real functions such
that for some 11 and T

(i) sup |fu(t1,t2) — f(t1,t2)] = 0, where f is continuous on [0, 7] x [0, T2].
0<t1<m
0<ta<m2

(i1) {gn} are monotone on [0,71] x [0, 7] and

(i) sup |gn(t1,t2) — g(t1,t2)] — 0, for some bounded function g.
0<t1<my
0<ta<m2

Then sup |f0 fo fn 81782)9n(d51,d52 fo 81,52 d517d52)|_>0

0<t1<n;
0<ta<72

and  sup ’fo fo Gn(51,82) fn(dsy, dss) fo fo g(s1, 82) f(dsy,dss)| — 0,
0<i<ns
as n — oo.
The proof of the first assertion follows exactly as in Lin et al. (2000) for the univariate
case (denoted here as Lemma 1(a)) and the second assertion follows from the first by
integration by parts. )

Now consider the consistency of (3,%) solving (18) and (19) as estimator of (5y, o).
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Tk Tg
/ / Xigi(t1, £2)(7 — 30) Nya(dtr) Nua(dt)
0 0

t17t277) =
/ / {ng t1,t2,70)}ZNji(dtl)Nhi(dt?)]'

=1

Under the conditions listed above, the strong law of large numbers, the bounded varia-

tion of Q" (t; 8), Q](C(;)(tl,tg;’)/), n S U NGi(ds) and nT SR [ [ Nji(disy) Na(dso)
for all (k, g, 7, h) implies that (D1(8)’, Da(y)")’ converges almost surely to (D1(B), Da(v)"
where

g K Th Tk 0) /.
D/(§) = ( > M) = £) [ [ o - it - [ rog {M} N;-(dt)])

dy (t; Bo)

P = E( L L Y M) = kH{M(h) = g}
[/OTk /OTQ Xig(t1,t2) (v — 70) N, (dt1) Ny (dt2)
/ / { ng (t1,t2;7) }Nj(dt1)]\7h(dt2)])
qu (t1,t2;%)

for all (8,7). In these expressions N; denotes the counting process corresponding to a
random observation on the jth failure time 73, q,(f)( B) = E{Q(e)( B)}, and qu (tl, to;7y) =

E{Q\)(t1,t2;7)} for £ =0,1,2, and all k = 1,..., K and all (, g) such that 1 < k < g < K.



Straightforward calculations give

R _I;k;lw ‘“Z/ {Xialt) — Xt )}V (1) exp(Xia(0) }Dk <tj,i6(>;lt)

and

aD __n_lz Z Z Z I{M(j) = k}YI{M(h) = g}

J=1 h=j+1 k=1 g=k+1

Z /O /O (X (1, t2) — Kig (b1, £237) Y22V (b)) Vi (dts) exp{ X (b1, t2)7)

=1 Nje(dt) Npe(dts)
Qg;) (t1,ta;)

which are each negative semidefinite. Hence D;(f) and Dy(7y) are concave, so that con-
vergence of Di(f) to Di(f) and of Ds(y) to Dy(7) is uniform on a compact set, such as
16 — Bol| < ryand ||y — o] < g, for r1 > 0, and ro > 0 and

sup [|D1(8) = Du(B)[| and sup  [[Da(y) = D2(7)]

l1B—Boll<r1 lv=0ll<r2

converge to zero almost surely. Also D; () is concave with Dy (y)/08s = 0 and 9*D;(By) /932 =
—A1(By) under (16), and Dy(7y) is concave with dD(70)/0y = 0 and 9*Dy(70)/0yE =
—As(y0) under (17), so that (D1(8),D2(y)) is uniquely maximized at (5p,70). One can
now argue as in Lin et al. (2000, Appendix A.1) to show that B converges to [y almost
surely under (16), and 4 converges almost surely to 7o under (17).

Now consider the asymptotic distribution of the left sides of (18) and (19) at (5o, 7o)



One can define a composite ‘process’

[{El('; Bo), Hl('S [61) ) S {Zq('; 5o), Hq('; Bo)}s {Z12('§ S ”Yo)_; H12('7 E ’Yo)}?_-- <
{LQ—LQ(" ';70)7Hq—1ﬂ('7';'70>}]7
where, continuing the notation of §5,

L;(t: ) —n‘WZLﬂ t:5),

1,(6:5) = MZ / ZI{M@ — }Y;:(5) X () exp{ X () B} T (ds)

fory=1,...,q, and

Lin(ty, ta;y) = nfl/ZZLym t1,t2;7), and

(s, 12:7) _nwz / / S HIG) = KM = g}

k=1 g=k+1
Yii(51)Yhi(s2) Xkgi(51, S2) exp{Xkgi(s1, 52) 7} kg(ds1, ds2)

for1 <j<h<q.

This composite process derives from sums of zero mean processes under (16) and (17)
to which the functional central limit theorem (e.g. Pollard, 1990, p. 53) applies over the
integration regions defined above. Arguing as in Lin et al. (2000, Appendix A.2), and
using the total variation boundedness of the modeled covariates in (16) and (17), which
allows one to restrict attention to modeled covariates that are non-negative, one has that
this composite process derives from processes that converge weakly and jointly to zero
mean Gaussian processes uniformly in their time arguments, over the designated follow-
up periods. Moreover sample paths for the limiting Gaussian process are continuous for
absolutely continuous 71, ..., Tj,.

The strong embedding theorem (Shorack and Wellner, 1986, pp.47-48) allows this weak
convergence to be replaced by almost sure convergence in a new probability space. The
monotonicity of Q,io) (t; Bo) and of each component of Q,(Cl)(t; Bo) foreach k =1,..., K, and
the monotonicity of Q,Ef;)(tl,tg;yo) and of each component of Q,(gz) (t1,t2;7) for 1 < k <
g < K using the total variation boundedness conditions on the modeled covariates, then
allows Lemma 1(a) and 1(b) to be applied to functions that pertain to the left sides of (18)
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and (19). Specifically, Lemma 1 and the almost sure convergence of the above composite
process in the new probability space implies that the processes given by

> ) Bt /13- HM) = k)L s )

M) (4. 5,
and Z/ (ds; Bo) L 1I{M(j) = k}ggo)iszgo;]

converge umformly in ¢ almost surely to their Gaussian limits. These limits involve re-
placement of Q by q,(f) for k=1,..., K and ¢/ = 0, 1. Similarly the processes

Z Z / / Ljn(ds1,dsa;v0)/ [Z > K{M(j) = k}H{M(h ) = g}Ql. (81782,70)]

j=1 h=j+1 k=1 g=k+1
and

Ql(gl)(ShSQ;'yO)
Zz//wmmMZZW—ww>}5 ]
j=1 h=j+1 k=1 g=k+1 Qpy (51,52 1 70)

converge uniformly in (1, t2) to their Gaussian limits that involve replacement of Qgg) by

qli? for 1 <k <g< K and ¢ = 0,1. In conjunction with the almost sure convergence of
H;(t;80),7 = 1,...,K and of Hy(t1,t2;7),1 < j < h < K in the new probability space
one then has that the left sides of (18) and (19), denoted by (U;(8)’, Us(y)')" are such that

n=2 U(f)
n~ 12 Us(v)
converges almost surely to a mean zero Gaussian variate with covariance matrix

9 K
S S THMG) =k} [ Xule) = n(t P} s )
Y g j=1 k=1

¢ ¢ K K
Z Z Z Z j) = k}{M(h) —9}/ / {Xng(t1,t2) — Trg(t1, ta;v0) } Ljx(dt1, dt2; v0)
—1 h=j+1k=1g=k+

The almost sure convergence in the new probability space implies weak convergence in
the original probability space.
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A Taylor expansion gives

. - ~1
(n1/2 (ﬁ_ﬁ@) _ (Al(/B*) R 0) ) (nl/Q Ul(ﬁg))
n'2 (5 =) 0 Ax(v) n 2 Us(y))”
where the elements of 3, are each on the corresponding line segment between B and [y,
and the elements of 7, are each on the corresponding line segment between 4 and 7. The

consistency of 3 and A; (Bo) for By and Ay () respectively, and consistency of 4 and AQ(’}/())
for vy and Ay(7p) respectively, along with the weak convergence of

)

(e 25

converges weakly to a zero mean normal variate with covariance matrix A='X A~ Distri-
bution theory for the baseline hazard rates in (16) and (17) is required to show that the
covariance matrix is consistently estimated by A'$ A, with A and ¥ as specified in §5.

implies that

One can write
B) = Yo HMG) = 1} [ N (a5)/ () (s:5):
and
I‘kg ti,ta;y Z Z I{M(j) =k} {M(h —g}/ / N; Ny ( dSl,dsg)/{ang (s1,52;7)},

j=1 h=j+1

where N ( ) Zl 1 (dt) and NjNh(dtl, dtz) = Z?:l Nﬂ(dtl)Nhl(dtQ)

The unlform law of large numbers (Pollard, 1990, p. 41) implies that n=' 379 I{M(j) =
k}N;(t) converges to its expectation uniformly in (¢, 8) for 8 in a nelghborhood of Bo, that
nt Y S M (G) = k}{M(h) = g}N;Nj,(t1,t9) converges to its expectation uni-

formly in (t1,tq,7y) for v in a neighborhood of 7y, giving the uniform convergence of fk(t; B)

to (0)
" g (s; Bo) ,
/o () )



under (16) for £ =1,..., K, and the uniform convergence of f‘kg(tl, ta;7y) to

to
q 81, S2; ’Yo)
/ / kg — Ty, (ds1, ds2;70)

ng S1,82; 7

under (17) for 1 < k < g < K. The derivatives of ['y(t; 8) and T',(t;~) with respect to 8
and 7 respectively are uniformly bounded for n sufficiently large, for (B 7v) in a bounded
region. Hence the strong consistency of (8,4 for (8, 44)’ implies that Ty(t; 3) converges
almost surely to Fk( Bo) uniformly for any k£ = 1,... K, and that f‘kg(tl, to;4) converges
almost surely to Fkg(tl, to;Yo) uniformly in (t1,t,) for any 1 < k < g < K. This along with
the almost sure convergence of X (¢; By) to Tx(t; Bo) for k= 1,..., K, and Xy,(t1,t2;70) to
Trg(t1,t2;70) for 1 < k < g < K, implies the convergence of n~! times the square of the
norm of

ZZZI{MU) =k} {/oTk{in(tj) — Xi(tj; B)} Lwi(dt;; B)
_ /0 U UX0(y) — Zalty; o)} Ll %)]
S S ) = ) =g | [ [ a0~ Ky, ) gty i)

i=1 j=1 h=j+1

—/ / A Xgi (5, t) — Tag (5t 70) } Ligi (dt, di; 70)}
o Jo
to zero almost surely. Now, applying the strong law of large numbers to

q ®2

K
_1ZZZI{M = k}/ {Xwi(ty) — 2k (t; Bo) } Lii(dt 5 Bo)

z 1 j=1k=1
n q q K
YN Y Z I{M(j) = k}I{M(h) = g} / / {Xug(tj, tn) — B(t5, thi Vo) ougi(dty, dtn; vo)
i=1 j=1 h=75+4+1 k=1 g=k+1

shows that 3 is consistent for X. Furthermore the almost sure convergence of 3 and A(Sp)
to By and A;(f) respectively, and of 4 and Az (y) to 7o and Ax(7o) respectively, implies
the almost sure convergence of A to

<A1§)60) A2?70))



and implies the consistency of A1S A as estimator of the covariance matrix of

{n2(8 = Bo)',n!* (% — 70))Y-
The collection of processes Vk(-;b’o) = nl/z{f‘k(~;3) — k(5 P0)}, for k =1,..., K and

Vig(5570) = n/2{Tkg(-,4) — Trg(-,570)} for 1 < k < g < K also converges to a zero
mean zero Gaussian ‘process’ under the conditions listed above. Briefly, one can write

%@ﬁwzﬂﬁ{EZHMU%ﬂ&zJWM@HM%Wa%H}

+WZMW—HUN%MQ B - [ Nt/ @]

The difference between the first term in this expression and

1/2221{1\4 _k}/ jilds: o) /a” (1 Bo)

=1 j5=1

converges in probability to zero as n — oo, almost surely uniformly over ¢t € [0, 7. Also,
following Taylor expansion about [y, the difference between the second term and

—Z[{M —k}/xk - Bo)Tk(ds; Bo) Ay (Bo) ™ ZZI{M

/O {Xki(s) = Zi(s; o) } Lyji(ds; Bo)

can be seen to converge in probability to zero, almost surely uniformly over ¢ € [0, 7%]. Tt
follows that the difference between Vi (t; ) and n=1/2 3" | Wy (t; By), where

Wit Z I{M(j) {/Ot[/jz‘(ds; 50)/%9(& Bo) — hu(t; o) A1 (o)~

/Ofk{Xm(S; Bo) — Zi(s; Bo) } Lyji(ds; Bo)

with hy(t; 5o) = VIH{M () =k} fo T (s; Bo)Tk(ds; Bo), converges in probability to zero,
almost surely umformly over t € [0,74], for each k = 1,..., K. Similarly the difference
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between f/kg(tl, to;y) and n=V2S"" Wy (¢, a3 0), where

Wgi(t1,t2370) Z Z I{M(j) = k}I{M(h) = k}[/ / Ljni d81,d82770)/qu (81, 52;7)

Jj=1 h=j+1

- hkg(t17t2,70)142(70 / / {Xk:gz 81, 32) - xkg(Sh 82,70)}Lkgz(d81, d82770)

with iyt t70) = 3 37 TOMG) = KH{M(R) = g) [ [ st ssmluis. dssi),

j=1 h=j+1

converges in probability to zero as n — oo, uniformly almost surely over (¢,t5) € [0, 7x] X
0,7,] foreach 1 <k < g < K.

Application of the functional central limit theorem then shows the collection of processes
Vk(-;ﬂo),kz =1,...,K and ng(-, ), 1 <k < g < K to converge jointly to a zero mean
Gaussian field. The covariance function between Vi(-, By) and V,(-, 3,) can be consistently
estimated at follow-up times (¢, s) by the empirical covariance

nt Z\ijki@;B)\i]m(s;B)?
=1

almost surely uniformly in ¢ and s where, for example, ‘111CZ equals W,.; with fy replaced by

3, [k (-, Bo) replaced by Fk( ,6’) ;i(+; Bo) replaced LJZ( ,B) ( Bo) replaced by Qk (-,B),
and Z.(-; By) replaced by X, (- ,B).

Similarly, the covariance function between ng(-, s70) and \ng(-, “;7) can be consis-
tently estimate at follow-up times (¢, s1) and (2, $2) by the empirical covariance estimator

n! Z \i/kgi(th 513 ﬁ)‘i’fmz‘@% $2;9)
i=1

almost surely uniformly in ¢1, s1,t2 and sy where, for example, \ifkgi(tl, $1;70) is obtained
by everywhere inserting sample estimates in Wy, (t1, s1;70).

Finally the covariance function between Vi(-, B) and Vi (-,-,70) can be consistently
estimated at follow-up times ¢; and (5, s2) by the empirical covariance estimator

nil Z \Ijkz tl, \ilémz(t% $2; 7)

10



almost surely uniformly in t;, ¢, and ss.

These developments allow pointwise confidence intervals to be estimated for marginal
single and double baseline hazard functions. For general covariate history Z, one can re-
center covariate values so that modeled covariate values corresponding to Z, are identically
zero. The baseline hazard function estimators as described above then estimate marginal
single and double failure hazard rates at covariate history Zj.

These estimators can be used to induce asymptotic Gaussian distributions for estimators
of parameters that arise through compact differentiable transformations of these hazard
rates, with corresponding ‘delta function’ formula giving consistent variance estimators. For
example, with fixed or external covariates the joint survivor function estimators F(, )
discussed in §3 have the necessary differentiability properties, but with rather complex
derivative function connecting F' to corresponding single and double hazard rate functions
via (11).

For parameters having the requisite differentiability properties, but for which the deriva-
tive function is too complex to be useful, or for parameters that arise from transformations
on parameters in (16) and (17) that are not compact differentiable, such as the supremum
statistics of §3.3, a bootstrap resampling procedure can be used to estimate distributional
characteristics.

Finally, straightforward generalization of the asymptotic theory sketched above allows
the failure time variates T1,...,T; to be discrete with a finite number of mass points in
the integration region defining the parameter estimates, or to include both continuous and
discrete components. For estimators of 5 and I'y,k = 1,..., K one can apply the above
arguments without change at all continuity points for each of the failure time variates, in
conjunction with almost sure convergence of hazard rates to their expectation under (16)
at mass points for each of the failure time variates, leading to weak Gaussian convergence
for corresponding parameter estimates. Similarly, for estimators of v and I'y,, one can
divide the sample space for (T}, T,) into its four components comprised of the set of (¢, ;)
continuity points, continuity point for 7 and mass point for 7T,, continuity point for T,
and mass point for T}, and mass points (t,%,), for 1 <k < g < K. The above arguments
apply directly to the set of continuity points for both variates, and with minor variations to
each of the other three sample space components as well. The estimators of covariances, or
covariance processes, given above are applicable with continuous, discrete or mixed failure
time variates. Of course, some care may be needed in specifying regression variates in (16)
and (17) if failure times include discrete components, owing to the restriction that discrete
hazard rates necessarily take values in [0, 1].

This Appendix ends with tables showing additional simulation results that were called

11



out in the manuscript narrative:
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