
 1

Supplemental Material

A joint deep learning model enables simultaneous batch effect correction, denoising and
clustering in single-cell transcriptomics

Justin Lakkis*, David Wang, Yuanchao Zhang, Gang Hu, Kui Wang, Huize Pan, Lyle Ungar,

Muredach P. Reilly, Xiangjie Li*, Mingyao Li*

*Correspondence:

Justin Lakkis (jlakkis@pennmedicine.upenn.edu)

Xiangjie Li (xiangjie631@outlook.com)

Mingyao Li, Ph.D. (mingyao@pennmedicine.upenn.edu)

 2

Supplemental Table 1: CarDEC hyperparameters.

Hyperparameter Default Brief Description
n_high_var 2000 The number of genes to be

retained as HVGs. The
n_high_var genes with the
highest variance as retained as
HVGs, while all other genes are
marked as LVGs.

n_clusters No default The number of cell type clusters
specified by the user.

dims [128, 32] List of layer sizes for the HVG
encoder, excluding the input
layer which is inferred from the
data. Decoder layers inferred
automatically such that the
decoder is symmetric to the
encoder.

LVG_dims [128, 32]

List of layer sizes for the LVG
encoder, excluding the input
layer which is inferred from the
data. Decoder layers inferred
automatically such that the
decoder is symmetric to the
encoder.

Clustering Weight 1

step 3

The weight 𝛼 for balancing
clustering loss with
reconstruction loss for step 3 of
CarDEC.

tol 0.005

step 3

Helps to monitor convergence
of CarDEC. See online methods
or iteration_patience_ES
parameter for more details.

maxiter 1000

step 3

The maximum number of
iterations for training the main
CarDEC model, described in
step 3 of the CarDEC workflow.

epochs 2000

step 2, 4

The maximum number of
minibatch gradient descent
epochs for training the neural
networks for steps 2, 4.

patience_LR 3

step 2, 3, 4

If validation reconstruction loss
does not improve after this
many epochs/iterations, then
decay the learning rate.

decay_factor 1/3

If validation reconstruction loss
does not improve after

 3

step 2, 3, 4 patience_LR epochs or
iterations, then decay the
learning rate by this factor.

patience_ES 9

step 2, 4

If validation reconstruction loss
does not improve after this
many epochs when training a
neural network from step 2 or
4, stop training.

iteration_patience_ES 6

step 3

If validation reconstruction loss
does not decrease after this
many iterations, and if the
proportion of cells whose
cluster assignment changed on
the most recent iteration was
less than tol, than stop training.

batch_size 64

step 2, 3, 4

Batch size for minibatch
gradient descent

learning rate 0.0001

step 2, 3, 4

Learning rate for minibatch
gradient descent

 4

Supplemental Table 2. Datasets analyzed in this paper.

Species Tissue Data Source Batches Cell Types
(number of Cells)*

Dataset
Dimensions*

Protocol

Macaque Retina

(Bipolar cells)

Peng et al.
(2019)(Peng
et al. 2019)

(GSE11848)

2 regions;

4 animals;

30 samples

BB/GB* (1814)
DB1 (995)
DB2 (2243)
DB3a (623)
DB3b (2640)
DB4 (2985)
DB5* (3467)
DB6 (658)
FMB (4500)
IMB (6150)
OFFx (147)
RB (4076)

30298 cells

18083 genes

Drop-seq

Mouse Cortex Ding et al.
(2020)(Ding
et al. 2020)

(SCP425)

4 batches (4
scRNA-seq
protocols)

Astrocyte (1384)
Endothelial (399)
Excitatory neuron
(7776)
Inhibitory neuron
(2471)
Microglia (311)
OPC (276)
Oligodendrocyte
(777)
Pericyte (29)

13423 cells

20095 genes

10x Chromium

DroNc-seq

Smart-seq2

sci-RNA-seq

Human PBMC Ding et al.
(2020)(Ding
et al. 2020)

(SCP424)

8 batches (5
scRNA-seq
protocols)

B cell (4773)
CD14+ monocyte
(4896)
CD16+ monocyte
(777)
CD4+ T cell (7188)
Cytotoxic T cell
(8504)
Dendritic cell (411)
Megakaryocyte
(202)
Natural killer cell
(1515)
Plasmacytoid
dendritic cell (160)

28426 cells

17295 genes

10x Chromium
v2 (three
replicates)

10x
Chromimum v3

CEL-Seq2

Drop-seq

Seq-Well

inDrops

Human Pancreas Grün D et al.
(2016)(Grun
et al. 2016)

(GSE81076)

4 batches (4
scRNA-seq
protocols)

acinar (711)
activated_stellate
(180)
alpha (2281)
beta (1172)
delta (405)

6321 cells

21215 genes

CEL-Seq

CEL-Seq2

Fluidigm C1

 5

Muraro et al.
(2016)(Murar
o et al. 2016)

(GSE85241)

Lawlor et al.
(2017)(Lawlo
r et al. 2017)

(GSE86469)

Segerstolpe
et al.
(2015)(Seger
stolpe et al.
2016)

(E-MTAB-
5061)

ductal (1065)
endothelial (61)
epsilon (14)
gamma (359)
macrophage (24)
mast (17)
quiescent_stellate
(20)
schwann (12)

SMART-Seq2

Human Liver Popescu et
al.
(2019)(Popes
cu et al.
2019)

(E-MTAB-
7407)

13 batches B cell (920)
DC precursor (293)
DC1 (328)
DC2 (3661)
Early Erythroid
(10652)
Early lymphoid_T
lymphocyte (714)
Endothelial cell
(2985)
Fibroblast (1640)
HSC_MPP (2996)
Hepatocyte (2150)
ILC precursor (1659)
Kupffer Cell (23866)
Late Erythroid
(2821)
MEMP (1219)
Mast cell (952)
Megakaryocyte
(3621)
Mid Erythroid
(25706)
Mono-Mac (6312)
Monocyte (2389)
Monocyte precursor
(277)
NK (6431)

104694 cells

21521 genes

10x Chromium

 6

Neutrophil-myeloid
progenitor (542)
Pre pro B cell (176)
VCAM1+ EI
macrophage (93)
pDC precursor (236)
pre-B cell (995)
pro-B cell (1060)

Human Monocytes Li et al.
(2020)(Li et
al. 2020)

(GSE146974)

1 subject; 3
batches

- 10878 cells

11160 genes

10x Chromium

 *These numbers are reported after quality control filtering of the datasets

 7

Supplemental Table 3. Software compared with CarDEC.

Method Version URL Reference
DCA 0.2.3 https://pypi.org/project/DCA/0.2.3 Eraslan et

al. (2019)
Combat 1.5.1 https://pypi.org/project/scanpy/1.5.1/ Johnson et

al. (2007)
Scanorama 1.7 https://pypi.org/project/scanorama/1.7/ Hie et al.

(2019)(Hie
et al. 2019)

scvi-tools 0.7.0b0 https://pypi.org/project/scvi-tools/0.7.0b0/ Lopez et al.
(2018)

MNN 1.2.4 https://bioconductor.org/packages/release/bioc/html/ba
tchelor.html

Haghverdi
et al. (2018)

scDeepCluster Github commit:
4186eaf85aec3a04522eff

04149223e7bcba90d3

https://github.com/ttgump/scDeepCluster/tree/4186eaf
85aec3a04522eff04149223e7bcba90d3

Tian et al.
(2019)

Comments: We did not install a dedicated package for Combat. Rather, we used an implementation in Scanpy: see
documentation https://scanpy.readthedocs.io/en/stable/api/scanpy.pp.combat.html.

All packages can be installed into an Anaconda environment easily using this environment yml file (excluding R MNN
package that must be handled separately),
https://github.com/jlakkis/CarDEC_Codes/blob/main/cardec_alternatives.yml.

 8

Supplemental Fig. S1. Raw counts analysis on the human pancreas data. We analyze the raw HVG and LVG counts for
the pancreas data using Scanpy’s Louvain workflow to provide a baseline for our analyses. The UMAPs obtained by
analyzing the raw counts with the Scanpy Louvain workflow are provided here, along with their ARIs. (a) Here, we visualize
the UMAP embeddings computed from the raw counts of HVGs. (b) Here, we visualize the UMAP embeddings computed
from the raw counts of LVGs.

 9

Supplemental Fig. S2. Methods comparison for batch correcting HVGs only on the pancreas data. Here, we fit batch
correction methods on the HVGs only of the pancreas data, rather than using HVGs and LVGs together. We used the batch
corrected HVGs as input for UMAP projection, and colored UMAPs both by cell type (top row) and batch annotation
(bottom row).

 10

Supplemental Fig. S3. Raw counts analysis on the macaque retina data. We analyzed the raw HVG and LVG counts for
the Macaque Retina dataset generated by Peng et al. (Peng et al. 2019) using Scanpy’s Louvain workflow to provide a
baseline for our analyses. The UMAPs obtained by analyzing the raw counts with the Scanpy Louvain workflow are
provided here, along with their ARIs. (a) UMAP embeddings computed from the raw counts of HVGs (left) and LVGs (right)
where the cells were colored by cell type. (b) UMAP embeddings computed from the raw counts of HVGs (left) and LVGs
(right) where the cells were colored by macaque ID.

 11

Supplemental Fig. S4. Methods comparison on the macaque retina data using denoised/batch corrected counts with
region annotation. We analyzed the Macaque Retina dataset. Here, we present essentially the same UMAPs as those
shown in Figure 4 from the main paper, but now the batch annotation used to color the UMAPs is “Region” rather than
Macaque ID. (a) UMAP embedding computed from the denoised HVG counts for each method. Top row colored by cell
type; bottom colored by batch. Cells are also clustered with Louvain’s algorithm, and resultant ARI is provided. (b) UMAP
embedding computed from the denoised LVG counts for each method. Figure legends are the same as those in (a).

 12

Supplemental Fig. S5. Methods comparison on the macaque retina data using denoised/batch corrected counts with
sample annotation. Here, we present essentially the same UMAPs as those shown in Figure 4 from the main paper, but
now the batch annotation used to color the UMAPs is “Sample” rather than Macaque ID. (a) UMAP embedding computed
from the denoised HVG counts for each method. Top row colored by cell type; bottom colored by batch. Cells are also
clustered with Louvain’s algorithm, and resultant ARI is provided. (b) UMAP embedding computed from the denoised LVG
counts for each method. Figure legends are the same as those in (a).

 13

Supplemental Fig. S6. CV plots for all three macaque retina data batch annotations. Here, we show all three possible CV
plots (computed using all genes) for the Macaque Retina dataset, one for each batch annotation definition. Recall that for
a CV plot, we plot the density plot of genewise coefficient of variation (CV) among batch centroids for each method. The
set of batch centroids is defined differently for each batch definition, so we show the CV Plots for all batch definitions
here. (a) CV plot using Region as the definition for batch. (b) CV Plot using Macaque as the definition for batch. (c) CV plot
using Sample as the definition for batch.

 14

Supplemental Fig. S7. Methods comparison for clustering in the embedding space on the macaque retina data. Here,
we used embedding space driven methods to cluster the Macaque Retina data, rather than using a full gene-space
representation. We used the embedding as input for UMAP projection, and colored UMAPs both by cell type (top row),
region batch annotation (second row), macaque batch annotation (third row), and sample batch annotation (last row).

 15

Supplemental Fig. S8. Methods comparison for batch correcting HVGs only on the macaque retina data. Here, we fit
batch correction methods on the HVGs only of the Macaque Retina data, rather than using HVGs and LVGs together. We
used the batch corrected HVGs as input for UMAP projection, and colored UMAPs both by cell type (top row) and macaque
batch annotation (bottom row).

 16

Supplemental Fig. S9. Raw counts analysis on the mouse cortex data. We analyzed the raw HVG and LVG counts for the
Mouse Cortex dataset generated by Ding et al. (Ding et al. 2020) using Scanpy’s Louvain workflow to provide a baseline
for our analyses. The UMAPs obtained by analyzing the raw counts with the Scanpy Louvain workflow are provided here,
along with their ARIs. (a) UMAP embeddings computed from the raw counts of HVGs. (b) UMAP embeddings computed
from the raw counts of LVGs.

 17

Supplemental Fig. S10. Methods comparison for clustering in the embedding space on the mouse cortex data. Here, we
used embedding space driven methods to cluster the Mouse Cortex dataset, rather than using a full gene-space
representation. We used the embedding as input for UMAP projection, and colored UMAPs both by cell type (top row)
and batch annotation (bottom row).

 18

Supplemental Fig. S11. Methods comparison for batch correcting HVGs only on the mouse cortex data. Here, we fit
batch correction methods on the HVGs only of the mouse cortex data, rather than using HVGs and LVGs together. We
used the batch corrected HVGs as input for UMAP projection, and colored UMAPs both by cell type (top row) and batch
annotation (bottom row).

 19

Supplemental Fig. S12. Raw counts analysis on the human PBMC data. We analyzed the raw HVG and LVG counts for the
PBMC dataset generated by Ding et al. (Ding et al. 2020) using Scanpy’s Louvain workflow to provide a baseline for our
analyses. The UMAPs obtained by analyzing the raw counts with the Scanpy Louvain workflow are provided here, along
with their ARIs. (a) UMAP embeddings computed from the raw counts of HVGs. (b) UMAP embeddings computed from
the raw counts of LVGs.

 20

Supplemental Fig. S13. Methods comparison on the human PBMC data using denoised and batch corrected counts. We
benchmarked the performance of CarDEC and several competing methods on the human PBMC dataset. (a) UMAP
embedding computed from the denoised HVG counts for each method. Top row was colored by cell type; bottom was
colored by batch. Cells were clustered with Louvain’s algorithm. (b) UMAP embedding computed from the denoised LVG
counts for each method. Figure legends are the same as those in (a). (c) Density plot of genewise coefficient of variation
(CV) among batch centroids. Density plots are provided for HVGs and LVGs separately. (d) Clustering accuracy metrics
obtained using the embedding based methods to cluster the data, rather than running Louvain on the full gene expression
space. Results for “Raw” were run using Louvain’s algorithm on the original HVG counts, to provide a baseline with which
to compare embedding based clustering results to.

 21

Supplemental Fig. S14. Methods comparison for clustering in the embedding space on the human PBMC data. Here, we
used embedding space driven methods to cluster the data, rather than using a full gene-space representation. We used
the embedding as input for UMAP projection, and colored UMAPs both by cell type (top row) and batch annotation
(bottom row).

 22

Supplemental Fig. S15. Methods comparison for batch correcting HVGs only on the PBMC data. Here, we fit batch
correction methods on the HVGs only of the PBMC data, rather than using HVGs and LVGs together. We used the batch
corrected HVGs as input for UMAP projection, and colored UMAPs both by cell type (top row) and batch annotation
(bottom row).

 23

Supplemental Fig. S16. Baseline performance for pseudotime analysis on the human monocyte data. Here, we
demonstrate the performance of Monocle 3 for pseudotime reconstruction with no denoising/batch correction method
applied as a preprocessing step, to provide a baseline for improving pseudotime results. We fed in the matrix of raw counts
for all genes as input to Monocle 3. (a) Monocle 3 UMAP embedding colored by batch (left), pseudotime (middle), and the
kernel density distribution of pseudotime by batch (right). (b) Monocle 3 UMAP embedding colored by FCGR3A marker
gene expression (left) and S100A8 marker gene expression (right). (c) The distributions of marker genes FCGR3A (left) and
S100A8 (right) against pseudotime.

 24

Supplemental Fig. S17. Marker gene expression colored UMAPs using denoised all genes as input to Monocle 3 on the
human monocyte data. Monocle 3 UMAP embeddings colored by expression of marker genes FCGR3A (column 1) and
S100A8 (column 2). Note that in this case for each method, we ran the denoising/batch correction method and then
passed the full denoised/batch corrected matrix as input to Monocle 3 as described in Figure 6. Marker gene expression
colored UMAP embeddings using CarDEC denoised and batch corrected matrix (a), Scanorama batch corrected gene
expression matrix (b), DCA denoised matrix with Combat post-hoc batch effect correction (c), scVI denoised and batch
corrected matrix (d), and MNN batch corrected matrix (e), as input to Monocle 3.

 25

Supplemental Fig. S18. Marker gene expression colored UMAPs using denoised HVGs as input to Monocle 3 on the
human monocyte data. Monocle 3 UMAP embeddings colored by expression of marker genes FCGR3A (column 1) and
S100A8 (column 2). Note that in this case for each method, we ran the denoising/batch correction method, subsetted the
resulting denoised/corrected matrix to include only HVGs, and then passed the HVG only denoised/batch corrected matrix
as input to Monocle 3 as described in Supplemental Fig. S17. Marker gene expression colored UMAP embeddings using
CarDEC denoised and batch corrected HVGs (a), Scanorama batch corrected gene expression matrix (b), DCA denoised
matrix with Combat post-hoc batch effect correction (c), scVI denoised and batch corrected matrix (d), and MNN batch
corrected matrix (e), as input to Monocle 3.

 26

Supplemental Fig. S19. Marker gene expression colored UMAPs using HVG learned embeddings from each method as
input to Monocle 3 on the human monocyte data. Monocle 3 UMAP embeddings colored by expression of marker genes
FCGR3A (column 1) and S100A8 (column 2). Note that in this case for each method, instead of using Monocle 3’s PCA
based approach for dimension reduction, we use the learned embedding from each method as the dimension reduced
space for pseudotime graph construction as described in Supplemental Fig. S18. Marker gene expression colored UMAP
embeddings using CarDEC denoised and batch corrected HVGs (a), Scanorama batch corrected gene expression matrix (b),
DCA denoised matrix with Combat post-hoc batch effect correction (c), scVI denoised and batch corrected matrix (d), and
MNN batch corrected matrix (e), as input to Monocle 3.

 27

Supplemental Fig. S20. Methods comparison for pseudotime analysis on the human monocyte data using denoised and
batch corrected HVGs only. We benchmarked the performance of CarDEC for improving pseudotime analysis using
Monocle 3 on the Monocyte data generated by Li et al. (Li et al. 2020). For each method, the full dataset was denoised
and batch corrected. Then we subsetted this dataset to include only HVGs, fed this to Monocle 3 for pseudotime analysis.
This figure shows UMAP embedding colored by batch (column 1), pseudotime (column 2), the kernel density distribution
of psuedotime by batch (column 3), and the distributions of marker genes FCGR3A (non-classifical monocytes) and S100A8
(classical monocytes) against pseudotime (columns 4 and 5, respectively). (a) Pseudotime analysis when using
denoised/corrected HVG gene matrix from CarDEC as input. (b) Pseudotime analysis when using batch corrected HVG
gene matrix from Scanorama as input. (c) Pseudotime analysis when using denoised HVG gene matrix from DCA and batch
corrected by Combat as input. (d) Pseudotime analysis when using denoised and batch corrected HVG gene matrix from
scVI as input. (e) Pseudotime analysis when using batch corrected HVG gene matrix from MNN as input.

 28

Supplemental Fig. S21. Methods comparison for pseudotime analysis on the human monocyte data using embedding.
We benchmarked the performance of CarDEC for improving pseudotime analysis using Monocle 3. For each method, the
full dataset was denoised/batch corrected. Then instead of using Monocle 3’s PCA based approach for dimension
reduction, we used the learned embedding from the corresponding method as the dimension reduced space for
pseudotime graph construction. Since MNN had no embedding, it was omitted from this analysis. This figure shows UMAP
embedding colored by batch (column 1), pseudotime (column 2), the kernel density distribution of psuedotime by batch
(column 3), and the distributions of marker genes FCGR3A (non-classifical monocytes) and S100A8 (classical monocytes)
against pseudotime (columns 4 and 5, respectively). (a) Pseudotime analysis when using denoised/corrected HVG gene
matrix from CarDEC as input. (b) Pseudotime analysis when using batch corrected HVG gene matrix from Scanorama as
input. (c) Pseudotime analysis when using denoised HVG gene matrix from DCA and batch corrected by Combat as input.
(d) Pseudotime analysis when using denoised and batch corrected HVG gene matrix from scVI as input. (e) Pseudotime
analysis when using batch corrected HVG gene matrix from MNN as input.

 29

Supplemental Fig. S22. Scalability analysis. We recorded the runtimes of the denoising methods on the liver dataset of
over 100,000 cells. For each method we recorded the runtime needed to process 10%, 20%, 40%, 60%, 80%, and 100% of
the data. We included two variations of CarDEC: CarDEC Z-score, which only provides denoised expression in the Z-score
space, and CarDEC Count, which provides denoised expression in the count space.

 30

Supplemental Fig. S23. Clustering weight robustness analysis. In this supplementary figure, we explore the robustness of
CarDEC to the choice of parameter 𝛼 that governs the balancing of the reconstruction and clustering loss (see methods).
We rerun CarDEC for various choices of 𝛼 and measure the ARI of CarDEC’s batch corrected counts on HVGs and LVGs at
each value of 𝛼.

 31

Supplemental Fig. S24. Number of clusters analysis. In this supplementary figure, we explore the robustness of CarDEC
to the choice number of clusters. Since we cannot use ARI to score clustering accuracy effectively when the number of
clusters differs from the gold standard labels, we use other approaches to evaluate CarDEC’s robustness to choice of
cluster number. We use the pancreas dataset for this analysis. (a) Here, we plot UMAP embeddings computed from CarDEC
corrected counts obtained for various cluster number hyperparameter specifications. In the left column, we color the plot
by cell type, and in the right column we color the plot by CarDEC cluster ID. (b) Here, we plot the CV score distribution for
each run of CarDEC (with different cluster number specification). (c) In this plot, we use a Sankey plot to show how each
cell is recategorized into a new cluster after CarDEC is rerun with more clusters. The thickness of a curve connecting one
cluster to the next demonstrates how many cells in the first cluster were recategorized into the second cluster after
CarDEC was rerun with a higher number of clusters specified. This third plot shows that when CarDEC is rerun with more
clusters, existing clusters are usually just split into two (or three), with cells from different batches generally not mixing.

 32

Supplemental Fig. S25. Number of HVGs robustness analysis. In this supplementary figure, we explore the robustness of
CarDEC to the choice number of HVGs. We rerun CarDEC on the pancreas dataset multiple times, with differing numbers
of HVGs for each run. At each run, we measure ARI on the bottom 16215 LVGs (which remains the same across all runs).

 33

Supplemental Note 1: Details of the CarDEC algorithm

The full workflow of CarDEC is shown in Fig. 1. Below we describe each step in CarDEC in detail.

Step 1: preprocessing

There are four important tasks to be completed in preprocessing: cell normalization, log normalization, identify highly
variable genes (HVGs), and Z-score normalization.

Let 𝐗 be an 𝑛 × 𝑝 matrix of raw scRNA-seq data, with 𝑛 cells and 𝑝 genes. Also, let 𝑥!" be the expression value of gene 𝑗
in cell 𝑖. In cell normalization, we compute a size factor for each cell as follows. Let	𝑠! be the size factor for cell 𝑖. For each
cell, compute the sum of read counts in that cell over all genes, and let 𝑡! denote the sum of read counts for cell 𝑖. Let 𝑚
be the median of 𝑡! for 𝑖 ∈ {1,2, … , 𝑛}. Then for cell 𝑖, 𝑠! = 𝑡!/𝑚. To perform cell normalization and get the cell normalized
count 𝑦!" we divide the expression of each gene in each cell by the cell’s size factor as follows,

𝑦!" ← 𝑥!"/𝑠! .

To update the normalized counts 𝑦!", so that they are log-normalized, we simply add a pseudocount and then take the
natural logarithm elementwise as follows,

𝑦!" ← log	(𝑦!" + 1).

At this point, we can use the log-normalized counts to determine which genes are highly variable and which are not. To
do so, we use the approach for selecting HVGs introduced by the Seurat 3.0 paper(Stuart et al. 2019) and implemented in
the Scanpy package(Wolf et al. 2018). Specifically, we call the Scanpy function “pp.highly_variable_genes” with
“batch_key” parameter identifying the user-supplied vector of cellwise batch annotations, to select HVGs using within
batch variance.

Lastly, we Z-score standardize the 𝑦!". However, we do not do a simple Z-score standardization that spans all cells. Rather,
we Z-score standardize within each batch. More precisely, suppose we have batches 𝑏# for 𝑚 = 1, 2,… ,𝑀. Let 𝐵# be the
set of cell indices associated with cells sequenced in batch 𝑏#. That is, 𝑖 ∈ 𝐵# if and only if cell 𝑖 is from batch 𝑏#. Then
for each gene 𝑗, we compute batch specific mean 𝜇#" and variance 𝜎#"$ for each batch 𝑚 as follows,

𝜇#" =
∑ 𝑦!"!∈&!
∑ 1!∈&!

,

𝜎#"$ =
∑ E𝑦!" − 𝜇#"G

$
!∈&!

E∑ 1!∈&! G − 1
.

Then, we Z-score standardize each 𝑦!" using the mean and variance of the batch corresponding to cell 𝑖. More precisely,
let 𝑚! be defined such that 𝑖 ∈ 𝐵#". Then our batch-specific Z-score normalization is performed as follows:

 34

𝑦!" ←
𝑦!" − 𝜇#""

H𝜎#""
$

.

Step 2: pretraining

The pretraining step is a straightforward implementation of an autoencoder. First, let 𝐘'() be the 𝑛 × 𝑝'() matrix of
normalized expression from Step 1, subsetted to include only the 𝑝'() HVGs. Let 𝒚!,'() be the vector of HVGs in cell 𝑖,
that is, the 𝑖+,	row of 𝒀'() .

Define a standard autoencoder with encoder and decoder’s functionally represented by 𝑓-,'()E	∙	; 	𝑊-,'()G and
𝑓.,'()E	∙	; 	𝑊.,'()G . Both the encoder and decoder are flexibly user-definable compositions of network layers. The
weights 	𝑊-,'() and 	𝑊.,'() are randomly initialized using the glorot uniform approach, and will be tuned during
pretraining. The encoder maps to a low-dimensional embedding 𝒛!,'() as follows, where 𝒛!,'() has dimension 𝑑 ≪ 𝑝'() ,

𝒛!,'() =	𝑓-,'()E𝒚!,'(); 	𝑊-,'()G.

Then, 𝑓.,'()E	∙	; 	𝑊.,'()G maps the low-dimensional embedding to a reconstruction 𝒚S!,'() in the original 𝑝'()
dimension space. That is,

𝒚S!,'() =	𝑓.,'()E𝒛!,'(); 	𝑊.,'()G.

For activation functions, we use the tanh activation for the output of the encoder, and the linear activation function for
the output of the decoder. For all intermediate hidden layers in the encoder and decoder, we use the ReLu activation
function.

We use the mean square error objective function to pretrain our autoencoder. Specifically, the loss for cell 𝑖 is

𝑙! =
1

𝑝'()
U𝒚S!,'() − 𝒚!,'()U

$.

The autoencoder is then pretrained end-to-end using minibatch gradient descent, with the Adam optimizer(Kingma and
Ba 2015) used to make gradient descent updated to the weights 𝑊-,'() and 𝑊.,'() . The model is trained until the early
stopping criterion is satisfied. Specifically, if the validation loss does not decrease for hyperparameter patience_ES epochs,
then training is halted. We also decay the learning rate by a factor of hyperparameter decay_factor if validation loss does
not decrease for hyperparameter patience_LR epochs. TensorFlow is used as the framework of choice for defining the
network and performing reverse mode automatic differentiation for this step and all subsequent steps in CarDEC.

Step 3: denoising Z-scores

 35

In this phase, we use an expanded, branching architecture to accommodate those genes that are not detected as HVGs,
which we call as lowly variable genes (LVGs). Specifically, we introduce a clustering loss that regularizes the embedding
and improve batch mixing and denoising especially in the gene space.

First, let 𝐘'() be the 𝑛 × 𝑝'() matrix of normalized expression from Step 1, subsetted to include only the 𝑝'() HVGs.
Let 𝒚!,'() be the vector of HVGs in cell 𝑖 , that is, the 𝑖+,	row of 𝒀'() . Likewise, let 𝐘/() be the 𝑛 × 𝑝/() matrix of
normalized expression from Step 1, subsetted to include only the 𝑝/() LVGs. Let 𝒚!,/() be the vector of LVGs in cell 𝑖, that
is, the 𝑖+,	row of 𝐘/() .

We retain the encoder and decoder mappings for HVGs, 𝑓-,'()E	∙	; 	𝑊-,'()G and 𝑓.,'()E	∙	; 	𝑊.,'()G from Step 2,
including the learnt weights 	𝑊-,'() and 𝑊.,'() . We introduce a clustering layer which takes the HVG embedding 𝒛!,'()
as input and returns for each cell a vector of cluster membership probabilities for ℎ clusters, where ℎ is a user specified
number. For this clustering layer, we introduce an ℎ × 𝑑 matrix of trainable weights 𝚳. The 𝑗+, row of 𝚳 is a cluster
centroid 𝝁".

To initialize 𝚳, we run Louvain’s algorithm on the embeddings 𝒛!,'() for 𝑖 = 1, 2, … , 𝑛 learned from the pretrained
autoencoder, and we find the cluster centroid for each of the ℎ clusters. Note that Louvain’s algorithm takes a “resolution”
parameter rather than the number of clusters directly, so we use a bisection algorithm to find a resolution that gives ℎ
clusters. This approach is described later in this section.

The clustering layer computes a vector of cluster membership probabilities for cell 𝑖, denoted by 𝒒! . Let 𝑞!" , the 𝑗+,
element of 𝒒!, denote the probability that cell 𝑖 belongs to cluster 𝑗. Then the membership probabilities are computed
using a t-distribution kernel as follows,

𝑞!" =
[1 + U𝒛!,'() − 𝜇"U

$
\
01

∑ [1 + U𝒛!,'() − 𝜇"#U
$
\
01

"#

.

Since we do not have a vector of cell type labels in a practical unsupervised analysis, we need “pseudo-labels” that can be
used in place of real labels for optimizing clustering weights. These pseudo-labels are computed from the membership
probabilities 𝑞!" as follows,

𝑝!" =
𝑞!"$ /∑ 𝑞!"!

∑ 𝑞!"#
$ /∑ 𝑞!"#!

2
"

.

Let 𝒑! be an ℎ dimensional vector whose 𝑗+, element is 𝑝!". Then the clustering loss for cell 𝑖 is defined as the following
Kullback–Leibler divergence (KLD),

𝑙!,3 = 𝐾𝐿𝐷(𝒑!||𝒒!) =b𝑝!" 	 log c
𝑝!"
𝑞!"
d

"

.

 36

This loss is a component of the total loss. Since it takes the embedding vectors as input 𝒛!,'() , minimizing this objective
function has the effect of refining the embedding, helping to remove batch effects from denoised counts computed using
this embedding as input.

We also introduce encoder and decoder mappings 𝑓-,/()E	∙	; 	𝑊-,/()G and 𝑓.,/()E	∙	; 	𝑊.,/()G to address the problem of
denoising and batch correcting the LVGs. Since these mappings were not included in the pretrain step, their weights
	𝑊-,/() and 𝑊.,/() are randomly initialized using glorot uniform. This encoder and corresponding decoder are also
flexible compositions of network layers, which the user can define independently of the HVG encoder and decoder. The
encoder maps to a low-dimensional embedding 𝒛!,/() as follows, where 𝒛!,/() has dimension 𝑑$ ≪ 𝑝/() ,

𝒛!,/() =	𝑓-,/()E𝒚!,/(); 	𝑊-,/()G.

Unlike the HVG decoder 𝑓.,'() , the LVG decoder 𝑓.,/()E	∙	; 	𝑊.,'()G does not map the low-dimensional embedding
𝒛!,/() alone to a reconstruction 𝒚S!,/() in the original 𝑝/() dimension space. Rather, we concatenate the HVG and LVG
embeddings together, and feed the combined vector [𝒛!,'() 		𝒛!,/()] of length 𝑑 + 𝑑$ into the decoder to denoise and
batch correct LVG expression in the original 𝑝/() dimension space. That is,

𝒚S!,/() =	𝑓.,'()E[𝒛!,'() 		𝒛!,/()]; 	𝑊.,/()G.

This formulation allows CarDEC to only allow high signal HVGs to drive the clustering loss, while still using the rich, batch
corrected embedding that was refined using this clustering loss to denoise and batch correct LVGs.

For activation functions, we again use the tanh activation for the outputs of the encoders, and the linear activation
function for the outputs of the decoders. For all intermediate hidden layers in the encoders and decoders, we use the
ReLu activation function. The clustering layer we introduced doesn’t have any standard activation function that is typically
used in deep learning models, although the t-distribution kernel can be thought of as an activation for this layer.

To train this branching model, we use a multi-component loss function. We already presented the cluster loss 𝑙!,3, the KL
divergence between 𝒑! and 𝒒!. In addition, we also include two reconstruction losses, one for HVGs and one for LVGs
computed as follows for cell 𝑖,

𝑙!,'() =
1

𝑝'()
U𝒚S!,'() − 𝒚!,'()U

$,

𝑙!,/() =
1

𝑝/()
U𝒚S!,/() − 𝒚!,/()U

$.

Let 𝛼 be a hyperparameter ranging from 0 to 2, which balances reconstruction loss with clustering loss. Then the total loss
is computed as follows:

𝑙! = 𝛼𝑙!,3 + (2 − 𝛼)
𝑙!,'() + 𝑙!,/()

2
.

 37

This loss is minimized in an iterative fashion. After initializing the cluster centroids using Louvain’s algorithm, we compute
cluster assignment vectors 𝒒! and pseudo-labels 𝒑!. Then we iterate back and forth between updating the weights and
updating the target distribution. This iteration is necessary because we need pseudo-labels 𝒑! to compute the loss so that
the network weights can be optimized to minimize it, but the pseudo-labels themselves are a function of the network
weights.

When updating the weights, we use TensorFlow to perform automatic differentiation on the loss function for minibatch
gradient descent and update all weights with the Adam optimizer. When computing the loss for differentiation, we use
the most up to date pseudolabels 𝒑!, which are treated as fixed during this step. The set of weights updated include HVG
mapping weights 𝑊-,'() and 𝑊.,'() , LVG mapping weights 𝑊-,/() and 𝑊.,/() , and the cluster centroids 𝚳. We loop
through the entire dataset, updating these weights once for each minibatch until we have completed a single epoch of
minibatch updates.

Once we complete an epoch of minibatch of gradient descent updates, we then switch to updating the target distribution
𝒑!. Now, we fix the weights. We compute the cluster assignment probabilities 𝒒! and then compute 𝒑! from 𝒒!. We fix
this updated distribution 𝒑! and switch back to updating the weights. We iterate back and forth until certain convergence
criteria are satisfied.

To monitor convergence, we implement learning rate decay and early stopping. Let an iteration be defined by a single pair
of target distribution update and minibatch gradient descent epoch steps. For learning rate decay, we monitor the

reconstruction loss 4",%&'54",(&'
$

. If the validation reconstruction loss fails to decrease after hyperparameter

iteration_patience_LR iterations, then the learning rate is decayed by a factor of hyperparameter iteration_decay_factor.
For early stopping we require two conditions to halt training. First, we require that the validation reconstruction loss not
have decreased in hyperparameter iteration_patience_ES iterations. Secondly, we require that the proportion of cells
whose most likely cluster assignment changed be less than hyperparameter tol on the most recent iteration. If both of
these criteria are satisfied at the conclusion of an iteration, then training is halted.

Step 4: denoising counts

In Step 3, the reconstruction loss is the mean squared error between the reconstructed outputs of the decoder and the Z-
score normalized input to the model. So naturally, the denoised expression values obtained from the model are on a Z-
score scale and are not comparable to raw counts. To remedy this, we offer an optional downstream modeling step that
will provide denoised expression values on the count scale. This strategy involves finding mean and dispersion parameters
that maximize a negative binomial likelihood.

After the training in step 3, we have fine-tuned HVG and LVG encoders that can produce information rich, batch corrected
low-dimension embeddings for each cell. For each cell 𝑖, we obtain low-dimension embeddings 𝒛!,'() and 𝒛!,/() from the
fine-tuned HVG and LVG encoders. We will then use two separate neural networks to maximize negative binomial losses:
one for HVGs and one for LVGs. These models are completely separate from one another but are trained almost identically
with only minor differences.

 38

First, we introduce two separate mappings 𝑓6,'()E	∙	; 	𝑊6,'()G and 𝑓6,/()E	∙	; 	𝑊6,/()G that are similar to decoders
introduced in previous steps, but exclude the final output layer, which must be treated more carefully since we want two
sets of parameters for each feature outputted.

𝑓6,'()E	∙	; 	𝑊6,'()G maps 𝑑 −dimensional 𝒛!,'() to a 𝑑2 > 𝑑 dimension vector 𝒛h!,'() . Similarly, 𝑓6,/()E	∙	; 	𝑊6,/()G maps
the concatenated (𝑑 + 𝑑$) − dimensional embedding [𝒛!,'() 	𝒛!,/()] to a 𝑑22 > (𝑑 + 𝑑$)	 dimension vector 𝒛h!,/() . All
activations for both of these mappings are ReLu. We require these count models to have the same hidden layer dimensions
as the main CarDEC model’s HVG and LVG decoders, respectively.

For both the HVGs and the LVGs, we then need to map these higher-dimensional embeddings into the full gene space to
obtain mean and dispersion parameters for each gene. The exact same operation is done for both the HVGs and the LVGs,
so without loss of generality we show the equations only for the HVGs. The vector of genewise means 𝝁!,'() and vector
genewise dispersions 𝜽!,'() are given below,

𝝁!,'() = 𝑠! × 𝑒𝑥 𝑝E𝐖7,'() × 𝒛h!,'()G,
𝜽!,'() = 𝑠𝑜𝑓𝑡𝑝𝑙𝑢 𝑠E𝐖8,'() × 𝒛h!,'()G.

Here, 𝑠! is the size factor for cell 𝑖 computed in Step 1, 𝐖7,'() and 𝐖8,'() are trainable weight matrices each of
dimension 𝑝'() 	× 𝑑2, and 𝑒𝑥𝑝 and 𝑠𝑜𝑓𝑡𝑝𝑙𝑢𝑠 are activation functions that are applied elementwise. The equations to
obtain negative binomial parameters 𝝁!,/() and 𝜽!,/() for the LVGs are nearly identical and can be obtained by replacing
all instances of “HVG” with “LVG” in the above equations. 𝐖7,/() and 𝐖8,/() will have dimensions 𝑝/() 	× 𝑑22.

For each gene 𝑗 in cell 𝑖, we can compute the negative log likelihood of the negative binomial distribution as

𝑙!" = −log n
ΓE𝑥!" 	+ 	𝜃!"G

ΓE𝜃!"G
c

𝜃!"
𝜃!" + 𝜇!"

d
8")
c

𝜇!"
𝜃!" + 𝑥!"

d
9")
q ,

where Γ is the gamma function, 𝑥!" is the original count in HVG gene 𝑗 for cell 𝑖, 𝜇!" and 𝜃!" are the 𝑗+, elements of 𝝁!,'()
and 𝜽!,'() , respectively.

For the HVG count model, the full loss for cell 𝑖 is then 𝑙! =
1

:%&'
	∑ 𝑙!"

:%&'
";1 . The loss function for LVGs is almost identical,

but when defining 𝑙!," for LVGs, let 𝜇!" and 𝜃!" instead be the jth elements 𝝁!,/() and 𝜽!,/() respectively, and let 𝑥!" be

the original count in LVG gene 𝑗. Then the loss for the LVG count model is 𝑙! =
1

:(&'
	∑ 𝑙!"

:(&'
";1 .

Both the HVG and LVG count models are trained using their own early stopping and learning rate decay convergence
monitoring. These early stopping and learning rate decay monitoring strategies are exactly the same as the ones used for
pretraining the autoencoder as defined in Step 2, with their own independently settable patience and decay factor
hyperparameters.

 39

Prespecifying the number of clusters for Louvain’s algorithm

CarDEC uses Louvain’s algorithm to initialize cluster centroids. As previously stated, Louvain’s algorithm does not directly
accept a number of clusters as an argument, but rather a resolution hyperparameter which correlates with the number
clusters identified. To allow CarDEC users to prespecify the number of clusters they desire, we need an approach that
automatically finds the resolution that corresponds to the number of clusters desired. We describe a bisection-based
approach to accomplish this here.

Let 𝑚2 be the desired number of clusters. After building the nearest neighbor graph, we initialize two numbers: 𝑅/ = 0
and 𝑅< = 1000. Then set 𝛿 = 𝑇𝑟𝑢𝑒, 𝑖𝑡𝑒𝑟 = 0, and 𝑚𝑎𝑥𝑖𝑡𝑒𝑟 = 50 and proceed as follows,

1. Compute 𝑅 = =(5=*
$

.

2. Run Louvain’s algorithm with a resolution of 𝑅. Denote the number of obtained clusters by 𝑚.
3. If 𝑚 = 𝑚2, then set	𝛿 ← 𝐹𝑎𝑙𝑠𝑒.
4. If 𝑚 > 𝑚2, then 𝑅< ← 𝑅.
5. Else if 𝑚 < 𝑚2, then 𝑅/ ← 𝑅.
6. 𝑖𝑡𝑒𝑟 ← 𝑖𝑡𝑒𝑟 + 1.
7. If 𝑖𝑡𝑒𝑟 = 𝑚𝑎𝑥𝑖𝑡𝑒𝑟, then 𝛿 ← 𝐹𝑎𝑙𝑠𝑒.
8. If 𝛿 = 𝐹𝑎𝑙𝑠𝑒, stop the algorithm and return 𝑅 as the Louvain resolution of choice. Else return to step 1 and

repeat the above steps.

 40

Supplemental Note 2: Hyperparameters used in different methods

For CarDEC, we used the default hyperparameters described in Supplemental Table 1 for all datasets except for the
Monocyte dataset, where we used a batch size of 256.

For Scanorama, all hyperparameters were set to the default values from the method’s package, except for the dimred
parameter. The dimred parameter, which represents the dimension of the integrated embedding, was set to 50 for all
evaluations.

For DCA, we used the negative binomial conditional dispersion model. All hyperparameters were set to the defaults from
the Scanpy implementation of DCA, including the hidden layer widths of 64, 32, 64.

For scVI, we set n_layers = 2 when specifying the deep learning architecture. We trained the model for 200 epochs. To get
normalized gene expression, we follow the scVI tutorial,
https://docs.scvi-
tools.org/en/stable/api/reference/scvi.model.SCVI.get_normalized_expression.html#scvi.model.SCVI.get_normalized_e
xpression, and we set the library size to 104 and the number of posterior samples (denoted by n_samples) to 10. All other
parameters were left at their default values.

For MNN, we used all default hyperparameters.

For all methods we used the same set of 2,000 HVGs selected using Scanpy. We also usually used the same number of
clusters for each method, except in the case when this resulted in a large subpopulation of cells being split in half or two
large subpopulations being merged together, significantly reducing ARI for a method. For example, in the mouse cortex
dataset, setting the number of clusters to 6 for scVI resulted in low ARI because there are two big subpopulations of
neurons that are combined. In cases like this, we modify the number of clusters slightly, specifically we either increase the
number of clusters by 1 to avoid merging two big subpopulations, or we decrease the number of clusters by 1 to avoid
splitting a big subpopulation in half. In the example of scVI on mouse cortex data, we increased the number of clusters to
7 where necessary in order to avoid merging the neuron subclusters, which results in improved ARIs for scVI and a more
fair comparison with that method. The number of clusters are 12 (mouse retina), 11 (macaque retina), 8 (pancreas), 6
(mouse cortex), 6 (PBMC), and 4 (Monocytes when running CarDEC).

 41

References

Ding J, Adiconis X, Simmons SK, Kowalczyk MS, Hession CC, Marjanovic ND, Hughes TK, Wadsworth MH, Burks T, Nguyen

LT et al. 2020. Systematic comparison of single-cell and single-nucleus RNA-sequencing methods. Nat Biotechnol
38: 737-746.

Grun D, Muraro MJ, Boisset JC, Wiebrands K, Lyubimova A, Dharmadhikari G, van den Born M, van Es J, Jansen E, Clevers
H et al. 2016. De Novo Prediction of Stem Cell Identity using Single-Cell Transcriptome Data. Cell Stem Cell 19:
266-277.

Hie B, Bryson B, Berger B. 2019. Efficient integration of heterogeneous single-cell transcriptomes using Scanorama.
Nature biotechnology 37: 685-691.

Kingma DP, Ba JL. 2015. ADAM: a method for stochastic optimization. International Conference on Learning
Representation.

Lawlor N, George J, Bolisetty M, Kursawe R, Sun L, Sivakamasundari V, Kycia I, Robson P, Stitzel ML. 2017. Single-cell
transcriptomes identify human islet cell signatures and reveal cell-type-specific expression changes in type 2
diabetes. Genome Res 27: 208-222.

Li X, Wang K, Lyu Y, Pan H, Zhang J, Stambolian D, Susztak K, Reilly MP, Hu G, Li M. 2020. Deep learning enables accurate
clustering with batch effect removal in single-cell RNA-seq analysis. Nat Commun 11: 2338.

Muraro MJ, Dharmadhikari G, Grun D, Groen N, Dielen T, Jansen E, van Gurp L, Engelse MA, Carlotti F, de Koning EJ et al.
2016. A Single-Cell Transcriptome Atlas of the Human Pancreas. Cell Syst 3: 385-394 e383.

Peng YR, Shekhar K, Yan W, Herrmann D, Sappington A, Bryman GS, van Zyl T, Do MTH, Regev A, Sanes JR. 2019.
Molecular Classification and Comparative Taxonomics of Foveal and Peripheral Cells in Primate Retina. Cell 176:
1222-1237 e1222.

Popescu DM, Botting RA, Stephenson E, Green K, Webb S, Jardine L, Calderbank EF, Polanski K, Goh I, Efremova M et al.
2019. Decoding human fetal liver haematopoiesis. Nature 574: 365-371.

Segerstolpe A, Palasantza A, Eliasson P, Andersson EM, Andreasson AC, Sun X, Picelli S, Sabirsh A, Clausen M, Bjursell MK
et al. 2016. Single-Cell Transcriptome Profiling of Human Pancreatic Islets in Health and Type 2 Diabetes. Cell
Metab 24: 593-607.

Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, 3rd, Hao Y, Stoeckius M, Smibert P, Satija R. 2019.
Comprehensive Integration of Single-Cell Data. Cell 177: 1888-1902 e1821.

Wolf FA, Angerer P, Theis FJ. 2018. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol 19: 15.

