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Supplemental Table 1: CarDEC hyperparameters. 
 

Hyperparameter Default Brief Description 
n_high_var 2000 The number of genes to be 

retained as HVGs. The 
n_high_var genes with the 
highest variance as retained as 
HVGs, while all other genes are 
marked as LVGs. 

n_clusters No default The number of cell type clusters 
specified by the user. 

dims [128, 32] List of layer sizes for the HVG 
encoder, excluding the input 
layer which is inferred from the 
data. Decoder layers inferred 
automatically such that the 
decoder is symmetric to the 
encoder. 

LVG_dims [128, 32] 
 

List of layer sizes for the LVG 
encoder, excluding the input 
layer which is inferred from the 
data. Decoder layers inferred 
automatically such that the 
decoder is symmetric to the 
encoder. 

Clustering Weight 1 
 
step 3 

The weight 𝛼 for balancing 
clustering loss with 
reconstruction loss for step 3 of 
CarDEC. 

tol 0.005 
 
step 3 

Helps to monitor convergence 
of CarDEC. See online methods 
or iteration_patience_ES 
parameter for more details. 

maxiter 1000 
 
step 3 

The maximum number of 
iterations for training the main 
CarDEC model, described in 
step 3 of the CarDEC workflow. 

epochs 2000 
 
step 2, 4 

The maximum number of 
minibatch gradient descent 
epochs for training the neural 
networks for steps 2, 4. 

patience_LR 3 
 
step 2, 3, 4 

If validation reconstruction loss 
does not improve after this 
many epochs/iterations, then 
decay the learning rate. 

decay_factor 1/3 
 

If validation reconstruction loss 
does not improve after 
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step 2, 3, 4 patience_LR epochs or 
iterations, then decay the 
learning rate by this factor. 

patience_ES 9 
 
step 2, 4 

If validation reconstruction loss 
does not improve after this 
many epochs when training a 
neural network from step 2 or 
4, stop training. 

iteration_patience_ES 6 
 
step 3 

If validation reconstruction loss 
does not decrease after this 
many iterations, and if the 
proportion of cells whose 
cluster assignment changed on 
the most recent iteration was 
less than tol, than stop training. 

batch_size 64 
 
step 2, 3, 4 

Batch size for minibatch 
gradient descent 

learning rate 0.0001 
 
step 2, 3, 4 

Learning rate for minibatch 
gradient descent 

 
  



 4 

Supplemental Table 2. Datasets analyzed in this paper. 
 

Species Tissue Data Source Batches Cell Types 
(number of Cells)* 

Dataset 
Dimensions* 

Protocol 

Macaque Retina 
 
(Bipolar cells) 

Peng et al. 
(2019)(Peng 
et al. 2019) 
 
(GSE11848) 

2 regions; 
 
4 animals; 
 
30 samples 

BB/GB* (1814) 
DB1 (995) 
DB2 (2243) 
DB3a (623) 
DB3b (2640) 
DB4 (2985) 
DB5* (3467) 
DB6 (658) 
FMB (4500) 
IMB (6150) 
OFFx (147) 
RB (4076) 

30298 cells 
 
18083 genes 

Drop-seq 

Mouse Cortex Ding et al. 
(2020)(Ding 
et al. 2020) 
 
(SCP425) 

4 batches (4 
scRNA-seq 
protocols) 

Astrocyte (1384) 
Endothelial (399) 
Excitatory neuron 
(7776) 
Inhibitory neuron 
(2471) 
Microglia (311) 
OPC (276) 
Oligodendrocyte 
(777) 
Pericyte (29) 

13423 cells 
 
20095 genes 

10x Chromium 
 
DroNc-seq 
 
Smart-seq2 
 
sci-RNA-seq 
 

Human PBMC Ding et al. 
(2020)(Ding 
et al. 2020) 
 
(SCP424) 

8 batches (5 
scRNA-seq 
protocols)  

B cell (4773) 
CD14+ monocyte 
(4896) 
CD16+ monocyte 
(777) 
CD4+ T cell (7188) 
Cytotoxic T cell 
(8504) 
Dendritic cell (411) 
Megakaryocyte 
(202) 
Natural killer cell 
(1515) 
Plasmacytoid 
dendritic cell (160) 

28426 cells 
 
17295 genes 

10x Chromium 
v2 (three 
replicates) 
 
10x 
Chromimum v3 
 
CEL-Seq2 
 
Drop-seq 
 
Seq-Well 
 
inDrops 

Human Pancreas Grün D et al. 
(2016)(Grun 
et al. 2016) 
 
(GSE81076) 
 

4 batches (4 
scRNA-seq 
protocols) 

acinar (711) 
activated_stellate 
(180) 
alpha (2281) 
beta (1172) 
delta (405) 

6321 cells 
 
21215 genes 

CEL-Seq 
 
CEL-Seq2 
 
Fluidigm C1 
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Muraro et al. 
(2016)(Murar
o et al. 2016) 
 
(GSE85241) 
 
Lawlor et al. 
(2017)(Lawlo
r et al. 2017) 
 
(GSE86469) 
 
Segerstolpe 
et al. 
(2015)(Seger
stolpe et al. 
2016) 
 
(E-MTAB-
5061) 

ductal (1065) 
endothelial (61) 
epsilon (14) 
gamma (359) 
macrophage (24) 
mast (17) 
quiescent_stellate 
(20) 
schwann (12) 

SMART-Seq2 
 

Human Liver Popescu et 
al. 
(2019)(Popes
cu et al. 
2019) 
 
(E-MTAB-
7407) 

13 batches B cell (920) 
DC precursor (293) 
DC1 (328) 
DC2 (3661) 
Early Erythroid 
(10652) 
Early lymphoid_T 
lymphocyte (714) 
Endothelial cell 
(2985) 
Fibroblast (1640) 
HSC_MPP (2996) 
Hepatocyte (2150) 
ILC precursor (1659) 
Kupffer Cell (23866) 
Late Erythroid 
(2821) 
MEMP (1219) 
Mast cell (952) 
Megakaryocyte 
(3621) 
Mid Erythroid 
(25706) 
Mono-Mac (6312) 
Monocyte (2389) 
Monocyte precursor 
(277) 
NK (6431) 

104694 cells 
 
21521 genes 

10x Chromium 
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Neutrophil-myeloid 
progenitor (542) 
Pre pro B cell (176) 
VCAM1+ EI 
macrophage (93) 
pDC precursor (236) 
pre-B cell (995) 
pro-B cell (1060) 

Human Monocytes Li et al. 
(2020)(Li et 
al. 2020) 
 
(GSE146974) 

1 subject; 3 
batches 

- 10878 cells 
 
11160 genes 

10x Chromium 

 
           *These numbers are reported after quality control filtering of the datasets 
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Supplemental Table 3. Software compared with CarDEC. 
 

Method Version URL Reference 
DCA 0.2.3 https://pypi.org/project/DCA/0.2.3 Eraslan et 

al. (2019)  
Combat 1.5.1 https://pypi.org/project/scanpy/1.5.1/ Johnson et 

al. (2007)  
Scanorama 1.7 https://pypi.org/project/scanorama/1.7/ Hie et al. 

(2019)(Hie 
et al. 2019)  

scvi-tools 0.7.0b0 https://pypi.org/project/scvi-tools/0.7.0b0/ Lopez et al. 
(2018)  

MNN 1.2.4 https://bioconductor.org/packages/release/bioc/html/ba
tchelor.html 

Haghverdi 
et al. (2018)  

scDeepCluster Github commit: 
4186eaf85aec3a04522eff

04149223e7bcba90d3 

https://github.com/ttgump/scDeepCluster/tree/4186eaf
85aec3a04522eff04149223e7bcba90d3 

Tian et al. 
(2019)  

 
Comments: We did not install a dedicated package for Combat. Rather, we used an implementation in Scanpy: see 
documentation https://scanpy.readthedocs.io/en/stable/api/scanpy.pp.combat.html.  
 
All packages can be installed into an Anaconda environment easily using this environment yml file (excluding R MNN 
package that must be handled separately), 
https://github.com/jlakkis/CarDEC_Codes/blob/main/cardec_alternatives.yml.  
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Supplemental Fig. S1. Raw counts analysis on the human pancreas data. We analyze the raw HVG and LVG counts for 
the pancreas data using Scanpy’s Louvain workflow to provide a baseline for our analyses. The UMAPs obtained by 
analyzing the raw counts with the Scanpy Louvain workflow are provided here, along with their ARIs. (a) Here, we visualize 
the UMAP embeddings computed from the raw counts of HVGs. (b) Here, we visualize the UMAP embeddings computed 
from the raw counts of LVGs. 
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Supplemental Fig. S2. Methods comparison for batch correcting HVGs only on the pancreas data. Here, we fit batch 
correction methods on the HVGs only of the pancreas data, rather than using HVGs and LVGs together. We used the batch 
corrected HVGs as input for UMAP projection, and colored UMAPs both by cell type (top row) and batch annotation 
(bottom row). 
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Supplemental Fig. S3. Raw counts analysis on the macaque retina data. We analyzed the raw HVG and LVG counts for 
the Macaque Retina dataset generated by Peng et al. (Peng et al. 2019) using Scanpy’s Louvain workflow to provide a 
baseline for our analyses. The UMAPs obtained by analyzing the raw counts with the Scanpy Louvain workflow are 
provided here, along with their ARIs. (a) UMAP embeddings computed from the raw counts of HVGs (left) and LVGs (right) 
where the cells were colored by cell type. (b) UMAP embeddings computed from the raw counts of HVGs (left) and LVGs 
(right) where the cells were colored by macaque ID. 
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Supplemental Fig. S4. Methods comparison on the macaque retina data using denoised/batch corrected counts with 
region annotation. We analyzed the Macaque Retina dataset. Here, we present essentially the same UMAPs as those 
shown in Figure 4 from the main paper, but now the batch annotation used to color the UMAPs is “Region” rather than 
Macaque ID.  (a) UMAP embedding computed from the denoised HVG counts for each method. Top row colored by cell 
type; bottom colored by batch. Cells are also clustered with Louvain’s algorithm, and resultant ARI is provided. (b) UMAP 
embedding computed from the denoised LVG counts for each method. Figure legends are the same as those in (a). 
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Supplemental Fig. S5. Methods comparison on the macaque retina data using denoised/batch corrected counts with 
sample annotation. Here, we present essentially the same UMAPs as those shown in Figure 4 from the main paper, but 
now the batch annotation used to color the UMAPs is “Sample” rather than Macaque ID.  (a) UMAP embedding computed 
from the denoised HVG counts for each method. Top row colored by cell type; bottom colored by batch. Cells are also 
clustered with Louvain’s algorithm, and resultant ARI is provided. (b) UMAP embedding computed from the denoised LVG 
counts for each method. Figure legends are the same as those in (a). 
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Supplemental Fig. S6. CV plots for all three macaque retina data batch annotations. Here, we show all three possible CV 
plots (computed using all genes) for the Macaque Retina dataset, one for each batch annotation definition. Recall that for 
a CV plot, we plot the density plot of genewise coefficient of variation (CV) among batch centroids for each method. The 
set of batch centroids is defined differently for each batch definition, so we show the CV Plots for all batch definitions 
here. (a) CV plot using Region as the definition for batch.  (b) CV Plot using Macaque as the definition for batch. (c) CV plot 
using Sample as the definition for batch.  
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Supplemental Fig. S7. Methods comparison for clustering in the embedding space on the macaque retina data. Here, 
we used embedding space driven methods to cluster the Macaque Retina data, rather than using a full gene-space 
representation. We used the embedding as input for UMAP projection, and colored UMAPs both by cell type (top row), 
region batch annotation (second row), macaque batch annotation (third row), and sample batch annotation (last row). 
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Supplemental Fig. S8. Methods comparison for batch correcting HVGs only on the macaque retina data. Here, we fit 
batch correction methods on the HVGs only of the Macaque Retina data, rather than using HVGs and LVGs together. We 
used the batch corrected HVGs as input for UMAP projection, and colored UMAPs both by cell type (top row) and macaque 
batch annotation (bottom row). 
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Supplemental Fig. S9. Raw counts analysis on the mouse cortex data. We analyzed the raw HVG and LVG counts for the 
Mouse Cortex dataset generated by Ding et al. (Ding et al. 2020) using Scanpy’s Louvain workflow to provide a baseline 
for our analyses. The UMAPs obtained by analyzing the raw counts with the Scanpy Louvain workflow are provided here, 
along with their ARIs. (a) UMAP embeddings computed from the raw counts of HVGs. (b) UMAP embeddings computed 
from the raw counts of LVGs. 
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Supplemental Fig. S10. Methods comparison for clustering in the embedding space on the mouse cortex data. Here, we 
used embedding space driven methods to cluster the Mouse Cortex dataset, rather than using a full gene-space 
representation. We used the embedding as input for UMAP projection, and colored UMAPs both by cell type (top row) 
and batch annotation (bottom row). 
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Supplemental Fig. S11. Methods comparison for batch correcting HVGs only on the mouse cortex data. Here, we fit 
batch correction methods on the HVGs only of the mouse cortex data, rather than using HVGs and LVGs together. We 
used the batch corrected HVGs as input for UMAP projection, and colored UMAPs both by cell type (top row) and batch 
annotation (bottom row). 
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Supplemental Fig. S12. Raw counts analysis on the human PBMC data. We analyzed the raw HVG and LVG counts for the 
PBMC dataset generated by Ding et al. (Ding et al. 2020) using Scanpy’s Louvain workflow to provide a baseline for our 
analyses. The UMAPs obtained by analyzing the raw counts with the Scanpy Louvain workflow are provided here, along 
with their ARIs. (a) UMAP embeddings computed from the raw counts of HVGs. (b) UMAP embeddings computed from 
the raw counts of LVGs.  
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Supplemental Fig. S13. Methods comparison on the human PBMC data using denoised and batch corrected counts. We 
benchmarked the performance of CarDEC and several competing methods on the human PBMC dataset.  (a) UMAP 
embedding computed from the denoised HVG counts for each method. Top row was colored by cell type; bottom was 
colored by batch. Cells were clustered with Louvain’s algorithm. (b) UMAP embedding computed from the denoised LVG 
counts for each method. Figure legends are the same as those in (a). (c) Density plot of genewise coefficient of variation 
(CV) among batch centroids. Density plots are provided for HVGs and LVGs separately. (d) Clustering accuracy metrics 
obtained using the embedding based methods to cluster the data, rather than running Louvain on the full gene expression 
space. Results for “Raw” were run using Louvain’s algorithm on the original HVG counts, to provide a baseline with which 
to compare embedding based clustering results to. 
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Supplemental Fig. S14. Methods comparison for clustering in the embedding space on the human PBMC data. Here, we 
used embedding space driven methods to cluster the data, rather than using a full gene-space representation. We used 
the embedding as input for UMAP projection, and colored UMAPs both by cell type (top row) and batch annotation 
(bottom row). 
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Supplemental Fig. S15. Methods comparison for batch correcting HVGs only on the PBMC data. Here, we fit batch 
correction methods on the HVGs only of the PBMC data, rather than using HVGs and LVGs together. We used the batch 
corrected HVGs as input for UMAP projection, and colored UMAPs both by cell type (top row) and batch annotation 
(bottom row). 
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Supplemental Fig. S16. Baseline performance for pseudotime analysis on the human monocyte data. Here, we 
demonstrate the performance of Monocle 3 for pseudotime reconstruction with no denoising/batch correction method 
applied as a preprocessing step, to provide a baseline for improving pseudotime results. We fed in the matrix of raw counts 
for all genes as input to Monocle 3. (a) Monocle 3 UMAP embedding colored by batch (left), pseudotime (middle), and the 
kernel density distribution of pseudotime by batch (right). (b) Monocle 3 UMAP embedding colored by FCGR3A marker 
gene expression (left) and S100A8 marker gene expression (right). (c) The distributions of marker genes FCGR3A (left) and 
S100A8 (right) against pseudotime. 
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Supplemental Fig. S17. Marker gene expression colored UMAPs using denoised all genes as input to Monocle 3 on the 
human monocyte data. Monocle 3 UMAP embeddings colored by expression of marker genes FCGR3A (column 1) and 
S100A8 (column 2). Note that in this case for each method, we ran the denoising/batch correction method and then 
passed the full denoised/batch corrected matrix as input to Monocle 3 as described in Figure 6. Marker gene expression 
colored UMAP embeddings using CarDEC denoised and batch corrected matrix (a), Scanorama batch corrected gene 
expression matrix (b), DCA denoised matrix with Combat post-hoc batch effect correction (c), scVI denoised and batch 
corrected matrix (d), and MNN batch corrected matrix (e), as input to Monocle 3.  
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Supplemental Fig. S18. Marker gene expression colored UMAPs using denoised HVGs as input to Monocle 3 on the 
human monocyte data. Monocle 3 UMAP embeddings colored by expression of marker genes FCGR3A (column 1) and 
S100A8 (column 2). Note that in this case for each method, we ran the denoising/batch correction method, subsetted the 
resulting denoised/corrected matrix to include only HVGs, and then passed the HVG only denoised/batch corrected matrix 
as input to Monocle 3 as described in Supplemental Fig. S17. Marker gene expression colored UMAP embeddings using 
CarDEC denoised and batch corrected HVGs (a), Scanorama batch corrected gene expression matrix (b), DCA denoised 
matrix with Combat post-hoc batch effect correction (c), scVI denoised and batch corrected matrix (d), and MNN batch 
corrected matrix (e), as input to Monocle 3.  
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Supplemental Fig. S19. Marker gene expression colored UMAPs using HVG learned embeddings from each method as 
input to Monocle 3 on the human monocyte data. Monocle 3 UMAP embeddings colored by expression of marker genes 
FCGR3A (column 1) and S100A8 (column 2). Note that in this case for each method, instead of using Monocle 3’s PCA 
based approach for dimension reduction, we use the learned embedding from each method as the dimension reduced 
space for pseudotime graph construction as described in Supplemental Fig. S18. Marker gene expression colored UMAP 
embeddings using CarDEC denoised and batch corrected HVGs (a), Scanorama batch corrected gene expression matrix (b), 
DCA denoised matrix with Combat post-hoc batch effect correction (c), scVI denoised and batch corrected matrix (d), and 
MNN batch corrected matrix (e), as input to Monocle 3.  
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Supplemental Fig. S20. Methods comparison for pseudotime analysis on the human monocyte data using denoised and 
batch corrected HVGs only. We benchmarked the performance of CarDEC for improving pseudotime analysis using 
Monocle 3 on the Monocyte data generated by Li et al. (Li et al. 2020).  For each method, the full dataset was denoised 
and batch corrected. Then we subsetted this dataset to include only HVGs, fed this to Monocle 3 for pseudotime analysis. 
This figure shows UMAP embedding colored by batch (column 1), pseudotime (column 2), the kernel density distribution 
of psuedotime by batch (column 3), and the distributions of marker genes FCGR3A (non-classifical monocytes) and S100A8 
(classical monocytes) against pseudotime (columns 4 and 5, respectively). (a) Pseudotime analysis when using 
denoised/corrected HVG gene matrix from CarDEC as input. (b) Pseudotime analysis when using batch corrected HVG 
gene matrix from Scanorama as input. (c) Pseudotime analysis when using denoised HVG gene matrix from DCA and batch 
corrected by Combat as input. (d) Pseudotime analysis when using denoised and batch corrected HVG gene matrix from 
scVI as input. (e) Pseudotime analysis when using batch corrected HVG gene matrix from MNN as input. 
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Supplemental Fig. S21. Methods comparison for pseudotime analysis on the human monocyte data using embedding. 
We benchmarked the performance of CarDEC for improving pseudotime analysis using Monocle 3. For each method, the 
full dataset was denoised/batch corrected. Then instead of using Monocle 3’s PCA based approach for dimension 
reduction, we used the learned embedding from the corresponding method as the dimension reduced space for 
pseudotime graph construction. Since MNN had no embedding, it was omitted from this analysis. This figure shows UMAP 
embedding colored by batch (column 1), pseudotime (column 2), the kernel density distribution of psuedotime by batch 
(column 3), and the distributions of marker genes FCGR3A (non-classifical monocytes) and S100A8 (classical monocytes) 
against pseudotime (columns 4 and 5, respectively). (a) Pseudotime analysis when using denoised/corrected HVG gene 
matrix from CarDEC as input. (b) Pseudotime analysis when using batch corrected HVG gene matrix from Scanorama as 
input. (c) Pseudotime analysis when using denoised HVG gene matrix from DCA and batch corrected by Combat as input. 
(d) Pseudotime analysis when using denoised and batch corrected HVG gene matrix from scVI as input. (e) Pseudotime 
analysis when using batch corrected HVG gene matrix from MNN as input. 
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Supplemental Fig. S22. Scalability analysis. We recorded the runtimes of the denoising methods on the liver dataset of 
over 100,000 cells. For each method we recorded the runtime needed to process 10%, 20%, 40%, 60%, 80%, and 100% of 
the data. We included two variations of CarDEC: CarDEC Z-score, which only provides denoised expression in the Z-score 
space, and CarDEC Count, which provides denoised expression in the count space. 
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Supplemental Fig. S23. Clustering weight robustness analysis. In this supplementary figure, we explore the robustness of 
CarDEC to the choice of parameter 𝛼 that governs the balancing of the reconstruction and clustering loss (see methods). 
We rerun CarDEC for various choices of 𝛼 and measure the ARI of CarDEC’s batch corrected counts on HVGs and LVGs at 
each value of 𝛼. 
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Supplemental Fig. S24. Number of clusters analysis. In this supplementary figure, we explore the robustness of CarDEC 
to the choice number of clusters. Since we cannot use ARI to score clustering accuracy effectively when the number of 
clusters differs from the gold standard labels, we use other approaches to evaluate CarDEC’s robustness to choice of 
cluster number. We use the pancreas dataset for this analysis. (a) Here, we plot UMAP embeddings computed from CarDEC 
corrected counts obtained for various cluster number hyperparameter specifications. In the left column, we color the plot 
by cell type, and in the right column we color the plot by CarDEC cluster ID. (b) Here, we plot the CV score distribution for 
each run of CarDEC (with different cluster number specification). (c) In this plot, we use a Sankey plot to show how each 
cell is recategorized into a new cluster after CarDEC is rerun with more clusters. The thickness of a curve connecting one 
cluster to the next demonstrates how many cells in the first cluster were recategorized into the second cluster after 
CarDEC was rerun with a higher number of clusters specified. This third plot shows that when CarDEC is rerun with more 
clusters, existing clusters are usually just split into two (or three), with cells from different batches generally not mixing. 
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Supplemental Fig. S25. Number of HVGs robustness analysis. In this supplementary figure, we explore the robustness of 
CarDEC to the choice number of HVGs. We rerun CarDEC on the pancreas dataset multiple times, with differing numbers 
of HVGs for each run. At each run, we measure ARI on the bottom 16215 LVGs (which remains the same across all runs). 
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Supplemental Note 1: Details of the CarDEC algorithm 
 
The full workflow of CarDEC is shown in Fig. 1. Below we describe each step in CarDEC in detail. 
 
Step 1: preprocessing 
 
There are four important tasks to be completed in preprocessing: cell normalization, log normalization, identify highly 
variable genes (HVGs), and Z-score normalization. 
 
Let 𝐗 be an 𝑛 × 𝑝 matrix of raw scRNA-seq data, with 𝑛 cells and 𝑝 genes. Also, let 𝑥!"  be the expression value of gene 𝑗 
in cell 𝑖. In cell normalization, we compute a size factor for each cell as follows. Let	𝑠!   be the size factor for cell 𝑖. For each 
cell, compute the sum of read counts in that cell over all genes, and let 𝑡!  denote the sum of read counts for cell 𝑖. Let 𝑚 
be the median of 𝑡!  for 𝑖 ∈ {1,2, … , 𝑛}. Then for cell 𝑖, 𝑠! = 𝑡!/𝑚. To perform cell normalization and get the cell normalized 
count 𝑦!"  we divide the expression of each gene in each cell by the cell’s size factor as follows, 
 

𝑦!" ← 𝑥!"/𝑠! . 
 
To update the normalized counts 𝑦!", so that they are log-normalized, we simply add a pseudocount and then take the 
natural logarithm elementwise as follows, 

 
𝑦!" ← log	(𝑦!" + 1). 

 
At this point, we can use the log-normalized counts to determine which genes are highly variable and which are not. To 
do so, we use the approach for selecting HVGs introduced by the Seurat 3.0 paper(Stuart et al. 2019) and implemented in 
the Scanpy package(Wolf et al. 2018). Specifically, we call the Scanpy function “pp.highly_variable_genes” with 
“batch_key” parameter identifying the user-supplied vector of cellwise batch annotations, to select HVGs using within 
batch variance. 
 
Lastly, we Z-score standardize the 𝑦!". However, we do not do a simple Z-score standardization that spans all cells. Rather, 
we Z-score standardize within each batch. More precisely, suppose we have batches 𝑏# for 𝑚 = 1, 2,… ,𝑀. Let 𝐵# be the 
set of cell indices associated with cells sequenced in batch 𝑏#. That is, 𝑖 ∈ 𝐵# if and only if cell 𝑖 is from batch 𝑏#. Then 
for each gene 𝑗, we compute batch specific mean 𝜇#"  and variance 𝜎#"$  for each batch 𝑚 as follows, 
 

𝜇#" =
∑ 𝑦!"!∈&!
∑ 1!∈&!

, 

𝜎#"$ =
∑ E𝑦!" − 𝜇#"G

$
!∈&!

E∑ 1!∈&! G − 1
. 

 
Then, we Z-score standardize each 𝑦!"  using the mean and variance of the batch corresponding to cell 𝑖. More precisely, 
let 𝑚!  be defined such that 𝑖 ∈ 𝐵#". Then our batch-specific Z-score normalization is performed as follows: 
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𝑦!" ←
𝑦!" − 𝜇#""

H𝜎#""
$

. 

 
Step 2: pretraining 
 
The pretraining step is a straightforward implementation of an autoencoder. First, let 𝐘'()  be the 𝑛 × 𝑝'()  matrix of 
normalized expression from Step 1, subsetted to include only the 𝑝'()  HVGs. Let 𝒚!,'()  be the vector of HVGs in cell 𝑖, 
that is, the 𝑖+,	row of 𝒀'() . 
 
Define a standard autoencoder with encoder and decoder’s functionally represented by 𝑓-,'()E	∙	; 	𝑊-,'()G  and 
𝑓.,'()E	∙	; 	𝑊.,'()G . Both the encoder and decoder are flexibly user-definable compositions of network layers. The 
weights 	𝑊-,'()  and 	𝑊.,'()  are randomly initialized using the glorot uniform approach, and will be tuned during 
pretraining. The encoder maps to a low-dimensional embedding 𝒛!,'()  as follows, where 𝒛!,'()  has dimension 𝑑 ≪ 𝑝'() , 
 

𝒛!,'() =	𝑓-,'()E𝒚!,'(); 	𝑊-,'()G. 
 
Then, 𝑓.,'()E	∙	; 	𝑊.,'()G  maps the low-dimensional embedding to a reconstruction 𝒚S!,'()  in the original 𝑝'()  
dimension space. That is, 
 

𝒚S!,'() =	𝑓.,'()E𝒛!,'(); 	𝑊.,'()G. 
 
For activation functions, we use the tanh activation for the output of the encoder, and the linear activation function for 
the output of the decoder. For all intermediate hidden layers in the encoder and decoder, we use the ReLu activation 
function.  
 
We use the mean square error objective function to pretrain our autoencoder. Specifically, the loss for cell 𝑖 is 
 

𝑙! =
1

𝑝'()
U𝒚S!,'() − 𝒚!,'()U

$. 

 
The autoencoder is then pretrained end-to-end using minibatch gradient descent, with the Adam optimizer(Kingma and 
Ba 2015) used to make gradient descent updated to the weights 𝑊-,'()  and 𝑊.,'() . The model is trained until the early 
stopping criterion is satisfied. Specifically, if the validation loss does not decrease for hyperparameter patience_ES epochs, 
then training is halted. We also decay the learning rate by a factor of hyperparameter decay_factor if validation loss does 
not decrease for hyperparameter patience_LR epochs. TensorFlow is used as the framework of choice for defining the 
network and performing reverse mode automatic differentiation for this step and all subsequent steps in CarDEC. 
 
Step 3: denoising Z-scores 
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In this phase, we use an expanded, branching architecture to accommodate those genes that are not detected as HVGs, 
which we call as lowly variable genes (LVGs). Specifically, we introduce a clustering loss that regularizes the embedding 
and improve batch mixing and denoising especially in the gene space.  
 
First, let 𝐘'()  be the 𝑛 × 𝑝'()  matrix of normalized expression from Step 1, subsetted to include only the 𝑝'()  HVGs. 
Let 𝒚!,'()  be the vector of HVGs in cell 𝑖 , that is, the 𝑖+,	row of 𝒀'() . Likewise, let 𝐘/()  be the 𝑛 × 𝑝/()  matrix of 
normalized expression from Step 1, subsetted to include only the 𝑝/()  LVGs. Let 𝒚!,/()  be the vector of LVGs in cell 𝑖, that 
is, the 𝑖+,	row of 𝐘/() . 
 
We retain the encoder and decoder mappings for HVGs, 𝑓-,'()E	∙	; 	𝑊-,'()G  and 𝑓.,'()E	∙	; 	𝑊.,'()G  from Step 2, 
including the learnt weights 	𝑊-,'()  and 𝑊.,'() . We introduce a clustering layer which takes the HVG embedding 𝒛!,'()  
as input and returns for each cell a vector of cluster membership probabilities for ℎ clusters, where ℎ is a user specified 
number. For this clustering layer, we introduce an ℎ × 𝑑 matrix of trainable weights 𝚳. The 𝑗+,  row of 𝚳 is a cluster 
centroid 𝝁".  
 
To initialize 𝚳, we run Louvain’s algorithm on the embeddings 𝒛!,'()  for 𝑖 = 1, 2, … , 𝑛  learned from the pretrained 
autoencoder, and we find the cluster centroid for each of the ℎ clusters. Note that Louvain’s algorithm takes a “resolution” 
parameter rather than the number of clusters directly, so we use a bisection algorithm to find a resolution that gives ℎ 
clusters. This approach is described later in this section.  
 
The clustering layer computes a vector of cluster membership probabilities for cell 𝑖, denoted by 𝒒! . Let 𝑞!" , the 𝑗+, 
element of 𝒒!, denote the probability that cell 𝑖 belongs to cluster 𝑗. Then the membership probabilities are computed 
using a t-distribution kernel as follows, 
 

𝑞!" =
[1 + U𝒛!,'() − 𝜇"U

$
\
01

∑ [1 + U𝒛!,'() − 𝜇"#U
$
\
01

"#

. 

 
Since we do not have a vector of cell type labels in a practical unsupervised analysis, we need “pseudo-labels” that can be 
used in place of real labels for optimizing clustering weights. These pseudo-labels are computed from the membership 
probabilities 𝑞!"  as follows, 
 

𝑝!" =
𝑞!"$ /∑ 𝑞!"!

∑ 𝑞!"#
$ /∑ 𝑞!"#!

2
"

. 

 
Let 𝒑!  be an ℎ dimensional vector whose 𝑗+, element is 𝑝!". Then the clustering loss for cell 𝑖 is defined as the following 
Kullback–Leibler divergence (KLD), 
 

𝑙!,3 = 𝐾𝐿𝐷(𝒑!||𝒒!) =b𝑝!" 	 log c
𝑝!"
𝑞!"
d

"

. 
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This loss is a component of the total loss. Since it takes the embedding vectors as input 𝒛!,'() , minimizing this objective 
function has the effect of refining the embedding, helping to remove batch effects from denoised counts computed using 
this embedding as input. 
 
We also introduce encoder and decoder mappings 𝑓-,/()E	∙	; 	𝑊-,/()G and 𝑓.,/()E	∙	; 	𝑊.,/()G to address the problem of 
denoising and batch correcting the LVGs. Since these mappings were not included in the pretrain step, their weights 
	𝑊-,/()  and 𝑊.,/()  are randomly initialized using glorot uniform. This encoder and corresponding decoder are also 
flexible compositions of network layers, which the user can define independently of the HVG encoder and decoder. The 
encoder maps to a low-dimensional embedding 𝒛!,/()  as follows, where 𝒛!,/()  has dimension 𝑑$ ≪ 𝑝/() , 
 

𝒛!,/() =	𝑓-,/()E𝒚!,/(); 	𝑊-,/()G. 
 
Unlike the HVG decoder 𝑓.,'() , the LVG decoder 𝑓.,/()E	∙	; 	𝑊.,'()G does not map the low-dimensional embedding 
𝒛!,/()  alone to a reconstruction 𝒚S!,/()  in the original 𝑝/()  dimension space. Rather, we concatenate the HVG and LVG 
embeddings together, and feed the combined vector [𝒛!,'() 		𝒛!,/()] of length 𝑑 + 𝑑$ into the decoder to denoise and 
batch correct LVG expression in the original 𝑝/()  dimension space. That is, 
 

𝒚S!,/() =	𝑓.,'()E[𝒛!,'() 		𝒛!,/()]; 	𝑊.,/()G. 
 
This formulation allows CarDEC to only allow high signal HVGs to drive the clustering loss, while still using the rich, batch 
corrected embedding that was refined using this clustering loss to denoise and batch correct LVGs. 
  
For activation functions, we again use the tanh activation for the outputs of the encoders, and the linear activation 
function for the outputs of the decoders. For all intermediate hidden layers in the encoders and decoders, we use the 
ReLu activation function. The clustering layer we introduced doesn’t have any standard activation function that is typically 
used in deep learning models, although the t-distribution kernel can be thought of as an activation for this layer. 
  
To train this branching model, we use a multi-component loss function. We already presented the cluster loss 𝑙!,3, the KL 
divergence between 𝒑!  and 𝒒!. In addition, we also include two reconstruction losses, one for HVGs and one for LVGs 
computed as follows for cell 𝑖, 
 

𝑙!,'() =
1

𝑝'()
U𝒚S!,'() − 𝒚!,'()U

$, 

𝑙!,/() =
1

𝑝/()
U𝒚S!,/() − 𝒚!,/()U

$. 

 
Let 𝛼 be a hyperparameter ranging from 0 to 2, which balances reconstruction loss with clustering loss. Then the total loss 
is computed as follows: 
 

𝑙! = 𝛼𝑙!,3 + (2 − 𝛼)
𝑙!,'() + 𝑙!,/()

2
. 
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This loss is minimized in an iterative fashion. After initializing the cluster centroids using Louvain’s algorithm, we compute 
cluster assignment vectors 𝒒!  and pseudo-labels 𝒑!. Then we iterate back and forth between updating the weights and 
updating the target distribution. This iteration is necessary because we need pseudo-labels 𝒑!  to compute the loss so that 
the network weights can be optimized to minimize it, but the pseudo-labels themselves are a function of the network 
weights. 
 
When updating the weights, we use TensorFlow to perform automatic differentiation on the loss function for minibatch 
gradient descent and update all weights with the Adam optimizer. When computing the loss for differentiation, we use 
the most up to date pseudolabels 𝒑!, which are treated as fixed during this step. The set of weights updated include HVG 
mapping weights 𝑊-,'()  and 𝑊.,'() , LVG mapping weights 𝑊-,/()  and 𝑊.,/() , and the cluster centroids 𝚳. We loop 
through the entire dataset, updating these weights once for each minibatch until we have completed a single epoch of 
minibatch updates. 
 
Once we complete an epoch of minibatch of gradient descent updates, we then switch to updating the target distribution 
𝒑!. Now, we fix the weights. We compute the cluster assignment probabilities 𝒒!  and then compute 𝒑!  from 𝒒!. We fix 
this updated distribution 𝒑!  and switch back to updating the weights. We iterate back and forth until certain convergence 
criteria are satisfied. 
 
To monitor convergence, we implement learning rate decay and early stopping. Let an iteration be defined by a single pair 
of target distribution update and minibatch gradient descent epoch steps. For learning rate decay, we monitor the 

reconstruction loss 4",%&'54",(&'
$

. If the validation reconstruction loss fails to decrease after hyperparameter 

iteration_patience_LR iterations, then the learning rate is decayed by a factor of hyperparameter iteration_decay_factor. 
For early stopping we require two conditions to halt training. First, we require that the validation reconstruction loss not 
have decreased in hyperparameter iteration_patience_ES iterations. Secondly, we require that the proportion of cells 
whose most likely cluster assignment changed be less than hyperparameter tol on the most recent iteration. If both of 
these criteria are satisfied at the conclusion of an iteration, then training is halted. 
 
Step 4: denoising counts 
 
In Step 3, the reconstruction loss is the mean squared error between the reconstructed outputs of the decoder and the Z-
score normalized input to the model. So naturally, the denoised expression values obtained from the model are on a Z-
score scale and are not comparable to raw counts. To remedy this, we offer an optional downstream modeling step that 
will provide denoised expression values on the count scale. This strategy involves finding mean and dispersion parameters 
that maximize a negative binomial likelihood. 
 
After the training in step 3, we have fine-tuned HVG and LVG encoders that can produce information rich, batch corrected 
low-dimension embeddings for each cell. For each cell 𝑖, we obtain low-dimension embeddings 𝒛!,'()  and 𝒛!,/()  from the 
fine-tuned HVG and LVG encoders. We will then use two separate neural networks to maximize negative binomial losses: 
one for HVGs and one for LVGs. These models are completely separate from one another but are trained almost identically 
with only minor differences.  
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First, we introduce two separate mappings 𝑓6,'()E	∙	; 	𝑊6,'()G  and 𝑓6,/()E	∙	; 	𝑊6,/()G  that are similar to decoders 
introduced in previous steps, but exclude the final output layer, which must be treated more carefully since we want two 
sets of parameters for each feature outputted. 
 
𝑓6,'()E	∙	; 	𝑊6,'()G maps 𝑑 −dimensional 𝒛!,'()  to a 𝑑2 > 𝑑 dimension vector 𝒛h!,'() . Similarly, 𝑓6,/()E	∙	; 	𝑊6,/()G maps 
the concatenated (𝑑 + 𝑑$) − dimensional embedding [𝒛!,'() 	𝒛!,/()] to a 𝑑22 > (𝑑 + 𝑑$)	 dimension vector 𝒛h!,/()  . All 
activations for both of these mappings are ReLu. We require these count models to have the same hidden layer dimensions 
as the main CarDEC model’s HVG and LVG decoders, respectively. 
 
For both the HVGs and the LVGs, we then need to map these higher-dimensional embeddings into the full gene space to 
obtain mean and dispersion parameters for each gene. The exact same operation is done for both the HVGs and the LVGs, 
so without loss of generality we show the equations only for the HVGs. The vector of genewise means 𝝁!,'()  and vector 
genewise dispersions 𝜽!,'()  are given below, 
 

𝝁!,'() = 𝑠! × 𝑒𝑥 𝑝E𝐖7,'() × 𝒛h!,'()G, 
𝜽!,'() = 𝑠𝑜𝑓𝑡𝑝𝑙𝑢 𝑠E𝐖8,'() × 𝒛h!,'()G. 

 
Here, 𝑠!  is the size factor for cell 𝑖  computed in Step 1, 𝐖7,'()  and 𝐖8,'()  are trainable weight matrices each of 
dimension 𝑝'() 	× 𝑑2, and 𝑒𝑥𝑝 and 𝑠𝑜𝑓𝑡𝑝𝑙𝑢𝑠 are activation functions that are applied elementwise. The equations to 
obtain negative binomial parameters 𝝁!,/()  and 𝜽!,/()  for the LVGs are nearly identical and can be obtained by replacing 
all instances of “HVG” with “LVG” in the above equations. 𝐖7,/()  and 𝐖8,/()  will have dimensions 𝑝/() 	× 𝑑22. 
 
For each gene 𝑗 in cell 𝑖, we can compute the negative log likelihood of the negative binomial distribution as  
 

𝑙!" = −log n
ΓE𝑥!" 	+ 	𝜃!"G

ΓE𝜃!"G
c

𝜃!"
𝜃!" + 𝜇!"

d
8")
c

𝜇!"
𝜃!" + 𝑥!"

d
9")
q , 

 
where Γ is the gamma function, 𝑥!"  is the original count in HVG gene 𝑗 for cell 𝑖, 𝜇!"  and 𝜃!"  are the 𝑗+, elements of 𝝁!,'()  
and 𝜽!,'() , respectively.  
 

For the HVG count model, the full loss for cell 𝑖 is then 𝑙! =
1

:%&'
	∑ 𝑙!"

:%&'
";1 . The loss function for LVGs is almost identical, 

but when defining 𝑙!,"  for LVGs, let 𝜇!"  and 𝜃!"  instead be the jth elements 𝝁!,/()  and 𝜽!,/()  respectively, and let 𝑥!"  be 

the original count in LVG gene 𝑗. Then the loss for the LVG count model is 𝑙! =
1

:(&'
	∑ 𝑙!"

:(&'
";1 . 

 
Both the HVG and LVG count models are trained using their own early stopping and learning rate decay convergence 
monitoring. These early stopping and learning rate decay monitoring strategies are exactly the same as the ones used for 
pretraining the autoencoder as defined in Step 2, with their own independently settable patience and decay factor 
hyperparameters. 
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Prespecifying the number of clusters for Louvain’s algorithm 
 
CarDEC uses Louvain’s algorithm to initialize cluster centroids. As previously stated, Louvain’s algorithm does not directly 
accept a number of clusters as an argument, but rather a resolution hyperparameter which correlates with the number 
clusters identified. To allow CarDEC users to prespecify the number of clusters they desire, we need an approach that 
automatically finds the resolution that corresponds to the number of clusters desired. We describe a bisection-based 
approach to accomplish this here. 
 
Let 𝑚2 be the desired number of clusters. After building the nearest neighbor graph, we initialize two numbers: 𝑅/ = 0 
and 𝑅< = 1000. Then set 𝛿 = 𝑇𝑟𝑢𝑒, 𝑖𝑡𝑒𝑟 = 0, and 𝑚𝑎𝑥𝑖𝑡𝑒𝑟 = 50 and proceed as follows, 

1. Compute 𝑅 = =(5=*
$

. 

2. Run Louvain’s algorithm with a resolution of 𝑅. Denote the number of obtained clusters by 𝑚. 
3. If 𝑚 = 𝑚2, then set	𝛿 ← 𝐹𝑎𝑙𝑠𝑒. 
4. If 𝑚 > 𝑚2, then 𝑅< ← 𝑅.  
5. Else if 𝑚 < 𝑚2, then 𝑅/ ← 𝑅. 
6. 𝑖𝑡𝑒𝑟 ← 𝑖𝑡𝑒𝑟 + 1. 
7. If 𝑖𝑡𝑒𝑟 = 𝑚𝑎𝑥𝑖𝑡𝑒𝑟, then 𝛿 ← 𝐹𝑎𝑙𝑠𝑒. 
8. If 𝛿 = 𝐹𝑎𝑙𝑠𝑒, stop the algorithm and return 𝑅 as the Louvain resolution of choice. Else return to step 1 and 

repeat the above steps. 
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Supplemental Note 2: Hyperparameters used in different methods 
 
For CarDEC, we used the default hyperparameters described in Supplemental Table 1 for all datasets except for the 
Monocyte dataset, where we used a batch size of 256.  
 
For Scanorama, all hyperparameters were set to the default values from the method’s package, except for the dimred 
parameter. The dimred parameter, which represents the dimension of the integrated embedding, was set to 50 for all 
evaluations. 
 
For DCA, we used the negative binomial conditional dispersion model. All hyperparameters were set to the defaults from 
the Scanpy implementation of DCA, including the hidden layer widths of 64, 32, 64. 
 
For scVI, we set n_layers = 2 when specifying the deep learning architecture. We trained the model for 200 epochs. To get 
normalized gene expression, we follow the scVI tutorial,  
https://docs.scvi-
tools.org/en/stable/api/reference/scvi.model.SCVI.get_normalized_expression.html#scvi.model.SCVI.get_normalized_e
xpression, and we set the library size to 104 and the number of posterior samples (denoted by n_samples) to 10. All other 
parameters were left at their default values. 
 
For MNN, we used all default hyperparameters. 
 
For all methods we used the same set of 2,000 HVGs selected using Scanpy. We also usually used the same number of 
clusters for each method, except in the case when this resulted in a large subpopulation of cells being split in half or two 
large subpopulations being merged together, significantly reducing ARI for a method. For example, in the mouse cortex 
dataset, setting the number of clusters to 6 for scVI resulted in low ARI because there are two big subpopulations of 
neurons that are combined. In cases like this, we modify the number of clusters slightly, specifically we either increase the 
number of clusters by 1 to avoid merging two big subpopulations, or we decrease the number of clusters by 1 to avoid 
splitting a big subpopulation in half. In the example of scVI on mouse cortex data, we increased the number of clusters to 
7 where necessary in order to avoid merging the neuron subclusters, which results in improved ARIs for scVI and a more 
fair comparison with that method. The number of clusters are 12 (mouse retina), 11 (macaque retina), 8 (pancreas), 6 
(mouse cortex), 6 (PBMC), and 4 (Monocytes when running CarDEC). 
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