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S1 Supplementary Text

S1.1 Robustness against cell type misspecification

In practice, complications to the generic deconvolution problem may arise. For example, the scRNA-
seq reference data may lack one or more cell types found in the bulk sample, or may even contain
extra ones. Such problems are more likely to occur when performing cross-experimental or cross-
subject deconvolutions, as we typically must. It is thus important to examine how algorithms
perform in these situations. We further recognize the necessity to demonstrate robustness to mis-
specification for a model-based approach like RNA-Sieve. To do so, we selected the kidney, limb
muscle, liver, and marrow due to their representative ranges of cell type number and dissimilarities,
and considered all possible configurations containing one extra or missing cell type in the single-cell
references. When the reference contains too many cell types, deconvolution schemes should infer
proportions near zero for these extra cell types. We found that to be the case with RNA-Sieve
(Figures S4 and S5) as long as the extra reference cell type is sufficiently distinct from the other
cell types present in the reference. When cell types are highly similar, inferred proportions may
be shared among them and might not change substantially upon removal of one of these cell types
from the bulk. Meanwhile, when a cell type present in the bulk is absent from the reference, the
more likely of these two scenarios, the deconvolution problem becomes overdetermined. Ideally,
deconvolution algorithms would move the weight of the removed cell type to those most similar
to it. Our empirical results (Figures S6 and S7) indicate that RNA-Sieve tends to do precisely
this. In some cases, this means mass transfer to one single cell type, while in others the weight is
shared among multiple. This result suggests that in the case of misspecification, RNA-Sieve will
still achieve sensible solutions as long as sufficiently representative cell types are captured in the
reference set. We note that given the generative nature of our model, a hypothesis test to detect
missing cell types is, as opposed to existing methods, within the capabilities of our framework (see
Discussion in main manuscript).

S1.2 Further validation

We analyzed samples from the pancreatic islets region of the human pancreas where ground-truth
proportions were not available. This region has previously been used for validation in the absence of
ground-truth proportions because of prior knowledge of the general ranges of constituent cell types.
Moreover, the well-known negative relationship between beta cell proportions and hemoglobin A1c
(Hb1Ac) levels allows us to test whether different deconvolution approaches can recapitulate this
relationship. As shown in Figure S8, RNA-Sieve is among the methods which successfully identify
the expected negative correlation. As ground-truth values were not available for these data, it is
impossible to ascertain precisely how methods performed, though it appears each method’s average
inferred beta cell proportions are below the expected ∼ 50%. Nevertheless, successful recovery
of the expected association between beta cell proportions and Hb1Ac levels serves as a useful
benchmark. Given the necessity to demonstrate robust performance across a range of tissues and
cell type groups, we feel this result provides important support to RNA-Sieve’s strong performance
in the cell line and PBMC deconvolution tasks analyzed in the main text.

S1.3 Comparison of runtimes

We found that all considered deconvolution algorithms could be successfully run in no more than
a few hours on a laptop computer for the data sets we considered. RNA-Sieve runtimes ranged
from 15-40 minutes, as did those of Scaden. Because of the straightforward manner in which we
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construct the signature and variance matrices for cell types, RNA-Sieve’s runtime is not sensitive
to the size of the scRNA-seq reference. This is not the case for DWLS, whose runtime we found
grew quickly with the size of the data set due to the model fitting involved in its signature gene
inference procedure. For most cases, DWLS runtimes were also in the 15-40 minute range, but for
some of the larger single-cell reference panels with many cell types, the runtime could extend to a
few hours. CIBERSORTx typically ran in 5-15 minutes. The remaining methods (SCDC, MuSiC,
Bisque, and NNLS) were quite fast, with runtimes of no more than a couple of minutes, though
SCDC and MuSiC may take a few extra minutes if their tree-based deconvolution modes are used.

S1.4 A Note on n

One of the parameters inferred by our model is n, the number of cells in the bulk sample. This pa-
rameter is accurate and physically meaningful in within-protocol deconvolutions, or cross-protocol
experiments where relative amplification factors are explicitly known. However, it loses inter-
pretability when the relative scales across protocols are unclear, and so we sought to verify that
both our inferred proportions and computed confidence intervals are robust even in such situations.
Numerical experiments in which we re-scaled the bulk samples to artificially manipulate the infer-
ence of n showed no degradation in performance over a wide range of values, providing additional
support beyond the observed high-quality results in both in silico and real bulk cross-protocol de-
convolutions (Figure S12). Moreover, theoretical computations suggest a fairly weak dependence of
confidence intervals on n, which are instead driven primarily by the total number of genes available
for deconvolution.

S1.5 Cell filtering and normalization

Due to the well-known influence of technical variability in scRNA-seq data, we suggest that users
of RNA-Sieve perform their own quality control filtering of cells and genes prior to running our
software in addition to their preferred normalization. Given the potential complexity of these
patterns in general, we feel that manual cleaning is more reliable than automated procedures.
Nonetheless, we implement a simple, largely optional, cell filtering and normalization scheme to
ensure the accuracy of results when the user has chosen not to perform their own quality control.
Our procedure attempts to do the following:

1. Remove low-quality cells with anomalously low or high library sizes (≥ 3 median absolute
deviations away from the median value of total number of reads per cell in each cell type)

2. Normalize read counts in cells (re-scale reads so that all cells have the median number of
reads from across all cells);

3. Identify and remove cells which may be mislabeled or are simply extremely different from
other cells with the same cell type label (≥ 3 median absolute deviations away from the
median value of inter-cellular pairwise distances in each cell type)

4. Identify and retain genes which are expressed sufficiently often (≥ 20% non-zero measurements
in at least one cell type).

We note that the first three steps are optional whereas step 4 is necessary to remove lowly expressed
genes, whose presence may result in poor optimization outcomes due to creating biologically im-
plausible expressions (a non-zero bulk expression can never be realized as a convex combination of
zero or almost zero, low variance, single cell expressions).
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S1.6 Algorithmic design choices

While the Python and Mathematica implementations differ slightly, they both agree on the following
fundamental design choices:

1. Instead of maximizing Pα,n,cM,S , we minimize − logPα,n,cM,S , rendering lines 5 and 6 of Algorithm 1
as quadratic programs which can be solved efficiently.

2. Lines 7 and 13 of Algorithm 1 can be solved explicitly by differentiating equation (10) and
finding the zeros of the resulting algebraic fractions in n. Thus, these steps do not require
any explicit optimization scheme.

3. The optimizations in lines 11 through 13 proceed via gradient descent (or a variation thereof),
and so could possibly require long runtimes. However, the coarser maximization (minimiza-
tion, cf. item 1) in lines 5–7 typically improves the objective function to such an extent
that only two or three more iterations are required. Moreover, both sets of optimizations are
amenable to parallelization.

4. Algorithm 1 straightforwardly generalizes to the setting of jointly inferring mixture propor-
tions in an arbitrary number N of bulk samples (cf. the remarks around equation (11)). Both
of our implementations support this generalized deconvolution.

Lastly, we note that although the alternating optimization in lines 5–7 is not guaranteed to converge,
the second round of maximization in lines 11–13 is a proper coordinate descent and is therefore
guaranteed to reach a local minimum.
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S2 Supplementary Tables

(A) Smart-seq2 reference and 10x Chromium pseudobulk

RNA-Sieve Bisque CIBERSORTx DWLS MuSiC NNLS Scaden SCDC

Bladder 0.081 0.047 0.082 0.072 0.106 0.378 0.099 0.113
Kidney 0.095 0.109 0.028 0.055 0.110 0.249 0.062 0.083
Large intestine 0.076 0.082 0.300 0.123 0.108 0.226 0.042 0.136
Limb muscle 0.199 0.108 0.037 0.039 0.199 0.310 0.030 0.144
Liver 0.137 0.129 0.030 0.054 0.139 0.340 0.076 0.027
Lung 0.056 0.078 0.071 0.064 0.056 0.149 0.057 0.029
Mammary gland 0.020 0.258 0.072 0.029 0.047 0.371 0.083 0.058
Marrow 0.061 0.101 0.071 0.073 0.070 0.166 0.072 0.049
Pancreas 0.011 0.029 0.050 0.030 0.067 0.130 0.059 0.067
Skin 0.019 0.270 0.048 0.123 0.098 0.462 0.182 0.128
Thymus 0.017 0.050 0.098 0.331 0.127 0.482 0.030 0.120
Tongue 0.016 0.289 0.068 0.293 0.047 0.448 0.217 0.017
Trachea 0.108 0.097 0.166 0.165 0.142 0.252 0.110 0.154

(B) 10x Chromium reference and Smart-seq2 pseudobulk

RNA-Sieve Bisque CIBERSORTx DWLS MuSiC NNLS Scaden SCDC

Bladder 0.002 0.066 0.059 0.085 0.156 0.044 0.167 0.261
Kidney 0.082 0.045 0.036 0.028 0.113 0.173 0.044 0.046
Large intestine 0.117 0.158 0.089 0.152 0.186 0.448 0.066 0.007
Limb muscle 0.137 0.132 0.037 0.013 0.122 0.142 0.102 0.177
Liver 0.107 0.056 0.032 0.050 0.126 0.164 0.052 0.070
Lung 0.092 0.069 0.029 0.021 0.130 0.153 0.074 0.045
Mammary gland 0.009 0.244 0.062 0.013 0.160 0.228 0.196 0.157
Marrow 0.070 0.110 0.124 0.097 0.113 0.147 0.111 0.121
Pancreas 0.121 0.085 0.137 0.054 0.023 0.117 0.111 0.173
Skin 0.037 0.191 0.162 0.050 0.168 0.676 0.109 0.192
Thymus 0.002 0.110 0.114 0.208 0.298 0.317 0.036 0.275
Tongue 0.006 0.254 0.022 0.143 0.672 0.672 0.191 0.672
Trachea 0.092 0.098 0.067 0.080 0.166 0.151 0.105 0.153

Table S1: Deconvolution errors for different algorithms in pseudobulk experiments.
Deconvolutions were performed using the specified methods in thirteen organs using both Smart-
seq2 and 10x Chromium data from the Tabula Muris Senis experiment. Presented errors show the
L1 distance between the ground truth and inferred values divided by the number of present cell
types. These values correspond to Table 1 and Figure 2 of the main text.
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Organs # cell types Cell types

Bladder 2 bladder cell, bladder urothelial cell

Kidney 7 B cell, epithelial cell of proximal tubule, fenestrated cell,
kidney collecting duct principal cell, kidney loop of Henle
ascending limb epithelial cell, macrophage, T cell

Large intestine 3 enterocyte of epithelium of large intestine, epithelial cell of
large intestine, intestinal crypt stem cell

Limb muscle 6 B cell, endothelial cell, macrophage, mesenchymal stem cell,
skeletal muscle satellite cell, T cell

Liver 5 B cell, endothelial cell of hepatic sinusoid, hepatocyte, Kupf-
fer cell, myeloid leukocyte

Lung 12 adventitial cell, B cell, bronchial smooth muscle cell, CD4+
αβ T cell, CD8+ αβ T cell, classical monocyte, fibroblast of
lung, myeloid dendritic cell, neutrophil, natural killer cell,
non-classical monocyte, vein endothelial cell

Mammary gland 3 basal cell, luminal epithelial cell of mammary gland, stromal
cell

Marrow 9 granulocyte, granulocytopoietic cell, immature B cell, late
pro-B cell, macrophage, megakaryocyte-erythroid progeni-
tor cell, naive B cell, precursor B cell, promonocyte

Pancreas 3 pancreatic A cell, pancreatic B cell, pancreatic D cell

Skin 2 basal cell of epidermis, epidermal cell

Thymus 2 DN4 thymocyte, thymocyte

Tongue 2 basal cell of epidermis, keratinocyte

Trachea 5 basal epithelial cell of tracheobronchial tree, chondrocyte,
endothelial cell, fibroblast, macrophage

Table S2: Cell types for each organ in pseudobulk experiments. These were the cell types
used in pseudobulk experiments with the Tabula Muris Senis data. The order in which they are
listed here matches their order in any figures based off of these experiments.
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Data attribute RNA-Sieve requirements

Cell counts The asymptotic analysis of RNA-Sieve relies primarily on the Central
Limit Theorem, and so any cell counts that allow its application are suf-
ficient. Because most gene expression counts reasonably follow Poisson
or negative binomial distributions, having at least 30 cells is typically
sufficient for accurate approximations. Unusually skewed distributions
may necessitate ∼100-400 cells.

Number of reference
individuals

RNA-Sieve does not rely on the presence of multiple individuals in the
reference and performs inference reliably with any number of individ-
uals. If multiple reference individuals are available, RNA-Sieve simply
operates on the pooled mean and variance matrices. We currently do
not recommend mixing data from different experimental protocols in the
reference.

Reference and bulk
protocols

In the case of differences in the data due to protocol mismatch in the
scRNA-seq reference and bulk samples, potential nonlinear distribu-
tional shifts may need to be accounted for (linear differences are ab-
sorbed into the inference of n, see the A note on n section in the
main manuscript). Empirically, we found such the largest driver of such
nonlinear shifts to be differences in the rates of null inflation. In some
cases, this is compensated for by increased sequencing depth. Thus,
deeply sequenced libraries can be analyzed without further correction,
while sparser data sets may benefit substantially from the filtering steps
detailed in the Data Preprocessing Procedure section of the main
manuscript.

Jointly deconvolving
multiple bulks

If each cell type is expressed similarly across bulk samples (i.e., cells are
not differentially expressed in different bulk samples), joint deconvolu-
tion is recommended as it increases statistical power regardless of any
heterogeneity in mixture proportions. If cell types display differential ex-
pression (due to biological or technical reasons), model misspecification
becomes a concern and inference results may depend on the nature of
the misspecification. In such cases, it is advisable to deconvolve different
bulk samples separately.

Table S3: Guidance on RNA-Sieve usage across diverse data sets. RNA-Sieve’s accuracy is
based on a generative model operating in an asymptotic regime. The mild criteria outlined above
guarantee that the data to be deconvolved behaves in accordance with this asymptotic generative
model.
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Source Description sc/bulk RNA-seq Multi-subject # bulks Known truth Location
Tabula Muris Senis Many mouse organs Both Yes ∼40/organ No GSE13204
Dong et al. (2020) Human fibroblasts, cell lines Both No 1 Yes GSE136148
Newman et al. (2019) Human PBMCs scRNA-seq No – – GSE127471
Newman et al. (2019) Human PBMCs bulk RNA-seq Yes 12 Yes GSE127813
10x Genomics data sets Human PBMCs scRNA-seq Yes – – See link below
Monaco et al. (2019) Human PBMCs bulk RNA-seq Yes 12 Yes GSE107011
Xie et al. (2020) Human neutrophils scRNA-seq Yes – – GSE137540
Xin et al. (2016) Human pancreatic islets scRNA-seq Yes – – GSE81608
Fadista et al. (2014) Human pancreatic islets bulk RNA-seq Yes 77 No GSE50244

Table S4: Descriptions of data sets used. Source–original publisher of data; description–species and organs/tissues assayed; sc/bulk
RNA-seq–which protocol(s) were used to assay expression; Muti-subject–whether more than one individual was sampled in the data set;
#bulks–the number of bulk samples, if applicable; Known truth–whether the true cell type proportions were known or experimentally
estimated for bulk samples; Location–accession number where data sets can be found. For the PBMC data from 10x Genomics, we
used “3k PBMCs from a healthy donor” and “4k PBMCs from a healthy donor” accessed at https://support.10xgenomics.com/

single-cell-gene-expression/datasets.
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S3 Supplementary Figures
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Figure S1: Comparison of other methods to RNA-Sieve across 13 murine organs. Pseu-
dobulk experiments were performed in 13 different organs using data from the Tabula Muris Senis
experiment. Errors were computed as the average L1 error across cell types in each organ. For each
organ, the difference in errors was computed between other methods and RNA-Sieve. A: Smart-
seq2 reference, 10x Chromium pseudobulk; B: 10x Chromium pseudobulk, Smart-seq2 pseudobulk.
Horizontal black bars correspond to the mean difference in error, and positive values indicate better
comparative performance for RNA-Sieve.
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Figure S2: Direct comparison of other methods to RNA-Sieve Pseudobulk experiments
were performed in 13 different organs using data from the Tabula Muris Senis experiment. Errors
were computed as the average L1 error across cell types in each organ. For each method, the
difference in errors was computed between it and RNA-Sieve across each of the 13 organs. A: Smart-
seq2 reference, 10x Chromium pseudobulk; B: 10x Chromium pseudobulk, Smart-seq2 pseudobulk.
Horizontal black bars correspond to the mean difference in error, and positive values indicate better
comparative performance for RNA-Sieve.
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Figure S3: Minor per-cell-type differences may result in major individual-cell-type de-
viations. The average improvement of RNA-Sieve artificially appears minor because of our chosen
error metric (average deviation from the true values) and averaging across cell types. This can be
seen in the above (real) example of deconvolving a 10x mammmary gland bulk from a Smart-seq2
reference in which RNA-Sieve (0.02), Scaden (0.08), and CIBERSORTx (0.07) may appear to per-
form similarly when only the raw error values are compared. However, closer inspection reveals
that Scaden and CIBERSORTx exhibit large errors for some cell types whereas RNA-Sieve does
not.
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Figure S4: Deconvolution with extra cell types in the reference matrix. Deconvolution
was performed in pseudobulk experiments in four different organs (A – Kidney; B – Marrow; C –
Limb muscle; D – Liver) from the Tabula Muris Senis. For each organ, we followed a leave-one-out
procedure in which one cell type is removed from the pseudobulk at a time. Deconvolution was then
performed with this extra cell type in the reference in order to examine RNA-Sieve’s specificity. The
top row shows the inferred proportions with no extra reference cell types. Darker colors indicate
a higher estimated proportion value. Here we used Smart-seq2 data for the references and 10x
Chromium for the pseudobulks.
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Figure S5: Deconvolution with extra cell types in the reference matrix. Deconvolution was
performed in pseudobulk experiments in four different organs (A – Kidney; B – Marrow; C – Limb
muscle; D – Liver). For each organ, we followed a leave-one-out procedure in which one cell type
is removed from the pseudobulk at a time. Deconvolution was then performed with this extra cell
type in the reference in order to examine RNA-Sieve’s specificity. The top row shows the inferred
proportions with no extra reference cell types. Darker colors indicate a higher estimated proportion
value. Here we used 10x Chromium data for the reference and Smart-seq2 for the pseudobulk.
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Figure S6: Deconvolution with missing cell types in the reference matrix. Deconvolution
was performed in pseudobulk experiments in four different organs from the Tabula Muris Senis (A
– Kidney; B – Marrow; C – Limb muscle; D – Liver). For each organ, we followed a leave-one-
out procedure in which one cell type is removed from the reference at a time. Deconvolution was
then performed with an extra cell type in the pseudobulk in order to examine RNA-Sieve’s ability
to handle such a misspecification. The top row shows the inferred proportions with no missing
reference cell types. Darker colors indicate a higher estimated proportion value. Here we used
Smart-seq2 data for the reference and 10x Chromium for the pseudobulk.
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Figure S7: Deconvolution with missing cell types in the reference matrix. Deconvolution
was performed in pseudobulk experiments in four different organs (A – Kidney; B – Marrow; C –
Limb muscle; D – Liver). For each organ, we followed a leave-one-out procedure in which one cell
type is removed from the reference at a time. Deconvolution was then performed with an extra cell
type in the pseudobulk in order to examine RNA-Sieve’s ability to handle such a misspecification.
The top row shows the inferred proportions with no missing reference cell types. Darker colors
indicate a higher estimated proportion value. Here we used 10x Chromium data for the reference
and Smart-seq2 for the pseudobulk.
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Figure S8: Deconvolution results on validation data. Single-cell expression data in pancreatic
islets from Xin et al. (2016) was used as reference to deconvolve bulk RNA-seq data from Fadista
et al. (2014). Each point represents the estimated beta pancreatic islet cell proportion one of
77 bulks with recorded HbA1c levels. The p-value is for a univariate regression on the estimated
proportions. Circles correspond to healthy samples while triangles represent samples from diabetic
patients.
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Figure S9: RNA-Sieve results with confidence intervals in pseudobulk experiments.
Inferred cell type proportions in pseudobulk experiments using data from the Tabula Muris Senis
experiment. A: Within-protocol, both reference and pseudobulks of 10x Chromium data; B: Across-
protocol, 10x Chromium reference and Smart-seq2 pseudobulk. The black error bars on inferred
proportions show the marginal 95% confidence intervals as computed from the empirical Godambe
information produced by RNA-Sieve. Table S2 contains the cell types in each organ, which could
not be displayed because of space constraints.
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Figure S10: Confidence intervals with real bulk samples A–Limb muscle; B–Marrow; C–
Spleen. For all of each organ’s samples, we produced estimated cell type proportions with 95%
confidence intervals using RNA-Sieve. Smart-seq2 data were used as the reference. Here we present
five randomly chosen samples for each organ (out of ∼40); histograms showing the typical radii are
displayed in Figure S11.
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Figure S11: Histograms of CI radii with real bulk samples. The radius of the 95% confidence
interval for inferred cell type proportions was computed using RNA-Sieve for each real bulk sample
in the listed organs (∼40 per organ). A–Limb muscle; B–Marrow; C–Spleen.
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Figure S12: Effects of different bulk scalings. To determine RNA-Sieve’s sensitivity to the
the application of different scalings to bulk samples, we multiplied pseudobulk counts by different
values across a wide range and performed deconvolution. We then computed RNA-Sieve’s error
for each value. Here we show representative results from four organs. A–Smart-seq2 reference, 10x
Chromium pseudobulk; B–10x Chromium reference, Smart-seq2 pseudobulk.
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