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Supplemental Methods

Semi-supervision with MixMatch

We train semi-supervised scNym models using the MixMatch framework [Berthelot et al., 2019], treating the target
dataset as unlabeled data U . At each iteration, MixMatch samples minibatches from both the labeled dataset (X,y) ∼ D
and unlabeled dataset U ∼ U . We generate “pseudolabels” [Lee, 2013] using model predictions for each observation in
the unlabeled minibatch. While generating pseudolabels, we run the model in typical inference mode–deactivating
dropout layers, not updating batch normalization running statistics, and not propagating gradients. We use the running
estimates of feature mean and variance computed during training for batch normalization during pseudolabeling.

ui ∼ U

zi = fθ(ui)

Our procedure differs slightly from standard MixMatch in that we do not average across several augmented versions
of unlabeled observations, but rather pseudolabel a single, unmodified observation. This choice was motivated by
empirical performance. Augmentation ensembling may be unable to deliver improved accuracy because only simple
augmentations are available for gene expression data, relative to the rich set of transformations available for the imaging
data originally studied with MixMatch.

We next “sharpen” the pseudolabels using a scaling procedure, often referred to as “temperature scaling”
[Hinton et al., 2015, Guo et al., 2017].

Scale(zi, T ) = z
1
T
i /

J∑
j=1

z
1
T
j

where zi is a probability vector and T is a temperature parameter. Values of T > 1 increase the entropy of the probability
vector (“smoothing”), while values of T < 1 decrease the entropy of the probability vector (“sharpening”). For our
experiments, we set T = 0.5 such that the transformation acts as a form of entropy minimization on the pseudolabels.
This entropy minimization encourages unlabeled examples to belong to one of the described classes.

We then randomly mix each observation in both the labeled and unlabeled minibatches with another observation using
MixUp [Zhang et al., 2018]. We allow labeled and unlabeled observations to mix together during this procedure. As in
standard MixUp training, we mix both the observed features and the labels/pseudolabels between the two randomly
paired observations.

λ ∼ Beta(α, α)

λ′ = max(λ, 1− λ)
wm = Mixλ′(wi, wj)

qm = Mixλ′(qi, qj)



where (wi, qi) is either a labeled observation and ground truth label (xi, yi) or an unlabeled observation and the
pseudolabel (ui, zi).

We set the MixUp parameter λ′ = max(λ, 1− λ) such that the first example in the MixUp operation always dominates
the resulting mixed sample. This allows us to maintain the labeled or unlabeled identity of each observation in the
mixed minibatch. This procedure yields a minibatch X′ of mixed labeled observations and a minibatch U′ of mixed
unlabeled observations.

We introduce a semi-supervised interpolation consistency penalty during training in addition to the standard supervised
loss. For observations and pseudolabels in the mixed unlabeled minibatch U ′, we penalize the mean squared error
(MSE) between the mixed pseudolabels and the model prediction for the mixed observation.

LSSL(U
′, fθ) = Eum,zm∼U′‖fθ(um)− zm‖22

This encourages the model to provide smooth interpolations between observations and their ground truth or pseudolabels,
generalizing the decision boundary of the model. We use MSE on the model predictions and mixed pseudolabel rather
than the cross-entropy because it is bounded and therefore less sensitive to incorrect predictions [Berthelot et al., 2019].

We weight this unsupervised loss relative to the supervised cross-entropy loss using a weighting function
λSSL(t) → [0, 1].

L(X′,U′, fθ, t) = LCE(X
′, fθ) + λSSL(t)LSSL(U

′, fθ)

We initialize this coefficient to λSSL = 0 and increase the weight to a final value of λSSL = 1 over 100 epochs using a
sigmoid schedule. We set λSSL based on recommendations from the MixMatch authors. We adopt a sigmoid scaling
function that is common in the semi-supervised learning field [Verma et al., 2019].

λSSL(t) = exp(−5 ∗ (t/100− 1)2)

Domain Adaptation with Domain Adversarial Neural Networks

We use domain adversarial networks (DAN) as an additional approach to incorporate information from the target
dataset during training [Ganin et al., 2016]. DANs are one of a family of domain adaptation approaches that attempt to
transfer labels from a training set to a target set, where the target distribution is systematically different than the training
distribution. We can readily appreciate the application to single cell identity classification, as the training and target
domains are likely to differ across technologies, conditions, batches, and laboratories.

The DAN method encourages the classification model to embed cells from the training and target dataset with similar
coordinates, such that training and target datasets are well-mixed in the embedding. By encouraging the training and
target dataset to be well-mixed, we take advantage of the inductive bias that cell identity classes in each dataset are
similar, despite technical variation or differences in conditions. This bias allows the model to adapt across domains,
producing an embedding where training and target data are well-mixed.

If cell type proportions are different between training and target domains, this inductive bias may be ill-suited and the
domain adversary could conceivably harm performance. For this reason, we use a low weight for the adversarial penalty.
Empirically, we find that the adversary improves performance even when the cell type distributions are imbalanced.
For example, we find that in our Tabula Muris 10x Chromium to Mouse Cell Atlas transfer experiment, the adversary
improves performance even though the cell type distributions differ drastically (Fig. S6).

We introduce this technique into scNym by adding an adversarial domain classification network gφ. We implement gφ
as a two-layer neural network with a single hidden layer of 256 units and a rectified linear unit activation, followed by a
classification layer with two outputs and a softmax activation. This adversary attempts to predict the domain of origin d
from the penultimate classifier embedding v of each observation. For each forward pass, it outputs a probability vector
d̂ estimating the likelihood the observation came from the training or target domain.

We assign a domain label d to each molecular profile based on the experiment of origin. For experiments with only
a single training dataset and single target dataset, we set cells from the training dataset to d = 0 and cells from the
target dataset to d = 1. For multi-domain training experiments in the mouse kidney, we assigned a unique domain label
to each sequencing protocol in the training and target datasets. We likewise assigned a unique domain label for each
experimental method used in multi-domain cortex nuclei task (Fig. S9). We one-hot encode all domain labels.
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During training, we pass a minibatch of labeled observations x ∈ X and unlabeled observations u ∈ U through the
domain adversary to predict domain labels.

d̂ = gφ(v) = gφ(fθ(x)
(l−1))

where d̂ is the domain probability vector and v = fθ(x)
(l−1) denotes the embedding of x from the penultimate layer of

the classification model fθ.

We fit the adversary using a multi-class cross-entropy loss:

Ladv(X,U, fθ, gφ) = E(x,d)∼X;(u,d)∼U

− J∑
j=1

dj log(d̂j)


where j ∈ J are domain indicator indices and J is the set of source domains.

To make use of the adversary for training the classification model, we use the “gradient reversal” trick at each backward
pass. We update the parameters φ of the adversary using the gradients computed during a backward pass from Ladv. At
each backward pass, this optimization improves the adversarial domain classifier. Our update rule for the parameters φ
is therefore a standard gradient descent:

φt = φt−1 − η
∂Ladv

∂φ

where η is the learning rate.

We update the parameters θ of the classification model using the inverse of the gradients computed during a backward
pass from Ladv. Using the inverse gradients encourages the classification model fθ to generate an embedding where it
is difficult for the adversary to predict the domain. Our update rule for the classification model parameters therefore
becomes:

θt = θt−1 − η
(
∂LCE

∂θ
+ λSSL(t)

∂LSSL

∂θ
− λadv(t)

∂Ladv

∂θ

)
We increase the weight of the adversary gradients from λadv → [0, 0.1] over the course of 20 epochs during training
using the sigmoid schedule above. By scaling the adversary’s gradients, we allow both the classification model fθ and
the adversary gφ to find an approximate fit before introducing the adversarial penalty. We scale the adversarial gradients
flowing to θ, rather than the adversarial loss term, so that full magnitude gradients are used to train a robust adversary
gφ.

We set λadv based on the authors’ experiments in the natural image domain [Ganin et al., 2016]. This setting appears
sufficient to promote domain adaptation (Fig. S17) while also training a robust classifier.

Incorporating both MixMatch and the domain adversary, our full loss function becomes:

L(X,U,X′,U′, fθ, gφ, t) = LCE(X
′, fθ) + λSSL(t)LSSL(U

′, fθ) + Ladv(X,U, fθ, gφ, t)

Pseudolabel Thresholding for New Cell Type Discovery

Entropy minimization and domain adversarial training enforce an inductive bias that all cells in the target dataset belong
to a class in the training dataset. For many cell type classification tasks, this assumption is valid and useful. However, it
is violated in the case where new, unseen cell types are present in the target dataset. We introduce an alternative training
configuration to allow for quantitative identification of new cell types in these instances.

We adopt a notion of “pseudolabel confidence thresholding” introduced in the FixMatch method [Sohn et al., 2020].
We set a minimum pseudolabel confidence τ = 0.9 to identify unlabeled observations with high and low confidence
pseudolabels, marked by a binary indicator ci → {0, 1}, where ci = 1 is a high confidence pseudolabel. We determine
pseudolabel confidence before entropy minimization (label sharpening) is applied. We chose τ based on performance in
other problem domains [Sohn et al., 2020].
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zi = fθ(ui)

ci = 1(zi > τ)

where 1(·) is the indicator function.

We have observed that new cell types will receive low confidence pseudolabels, as they do not closely resemble any
of the classes in the training set (Fig. S12). We wish to exclude these low confidence pseudolabels from our entropy
minimization and domain adversarial training procedures, as these methods both encourage the classifier to provide
more confident labels from the training dataset for unlabeled examples. In the case of new cell types, these procedures
may pathologically cause the model to label new cell types with incorrect but high confidence scores for the nearest cell
type in the training set.

Pseudolabels influence the model parameters θ through each of the three components of our loss – supervised, semi-
supervised interpolation consistency, and adversarial. We make two modifications to the training procedure to prevent
low confidence pseudolabels from contributing to any component of the loss.

First, we use only high confidence pseudolabels in the MixUp operation of the MixMatch procedure. This prevents low
confidence pseudolabels from contributing to the supervised classification loss through MixUp with labeled samples. It
also prevents low confidence pseudolabels from mixing with high confidence pseudolabels, allowing us to compute the
semi-supervised loss exclusively on high confidence pseudolabels.

W = X :: Uc=1

wm = Mixλ(wi, wj); qm = Mixλ(qi, qj)

where W is a row-wise concatenation of the labeled minibatch and confident pseudolabeled minibatch and Uc=1 are
the observations in U with confident pseudolabels.

We scale the interpolation consistency loss based on the fraction of confident pseudolabels as in FixMatch
[Sohn et al., 2020]. The semi-supervision penalty therefore scales with the number of high confidence observations
available.

LSSL(U
′, fθ) =

∑N ′

i ci
N ′

E(um,zm)∼U′
c=1
‖fθ(um)− zm‖22

where N ′ is the number of elements in the unlabeled minibatch.

Second, we use only unlabeled examples with high confidence pseudolabels to train the domain adversary. This prevents
unlabeled examples with low confidence pseudolabels from contributing to the adversarial loss. These low confidence
unlabeled examples can therefore occupy a unique region in the model embedding, even if they are easily discriminated
from training examples.

Our adversarial loss is then only slightly modified to penalize domain predictions only on confident samples in the
pseudolabeled minibatch, Uc=1.

Ladv(X,U, fθ, gφ) = E(x,d)∼X;(u,d)∼Uc=1

− J∑
j=1

dj log(d̂j)


where j ∈ J are domain indicator indices and J is the set of source domains.

We found that this pseudolabel thresholding configuration option was essential to provide accurate, quantitative
information about the presence of new cell types in the target dataset (Fig. S13). However, this option does modestly
decrease performance when new cell types are not present. We therefore enable this option when the possibility of new
cell types violates the assumption that the training and target data share the same set of cell types. We have provided a
simple toggle in our software implementation to allow users to enable or disable this feature.

Interpretability Comparison

We compared the biological relevance of features selected by scNym and SVM as a baseline by computing cell type
specific Gene Ontology enrichments. We trained both scNym and an SVM to transfer labels from the Tabula Muris 10x
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Genomics dataset to the Tabula Muris Smart-seq2 dataset. We then extracted feature importance scores from the scNym
model using integrated gradients and from the SVM model based on coefficient weights. We selected cell type markers
for each model as the top k = 100 genes with the highest integrated gradient values or SVM coefficients.

We selected a set of 19 cell types in the Tabula Muris for which cell type specific Gene Ontology terms were available.
We collected all Gene Ontology terms that contained (1) the cell type in the name or (2) the name of the relevant tissue
(e.g. “mammary” for “luminal epithelial cell of mammary gland”). We then computed the enrichment of the relevant
cell type specific Gene Ontology terms in scNym-derived and SVM-derived cell type markers using Fisher’s exact test.
We removed gene sets that had an Odds-Ratio of zero for both methods from further analysis. These gene sets may not
accurately capture gene expression features of the target cell type, and their removal leads to no loss of information
about relative performance as both methods have zero recovery. We present a sample of the gene sets used (Table S4).

Fisher’s exact test yields an Odds-Ratio, the odds that a gene in the cell type marker set is in the Gene Ontology term
relative to a gene not in the cell type marker set. We compared the mean Odds-Ratio across relevant Gene Ontology
terms between scNym-derived markers and SVM-derived markers. To determine statistical significance of a difference
in these mean Odds-Ratios, we performed a paired t-test across cell types.

We performed the procedure above using k ∈ {50, 100, 150} to determine the sensitivity of our results to this parameter.
We found that scNym integrated gradients had consistently stronger enrichments for relevant Gene Ontology terms
across cell types for all values of k.

Baseline Methods

scmap-cluster and scmap-cell: We trained scmap-cluster models using the 1,000 most variable genes selected using
“M3Drop” [Kiselev et al., 2018, Andrews and Hemberg, 2018]. scmap-cell models were trained with k = 10 nearest
neighbors and the 1,000 most variable genes selected with “M3Drop” using cosine similarities as a distance metric. We
constructed the scmap-cell nearest neighbor index using the default number of sub-centroids, ksub =

√
N where N is

the number of cells. We set scmap hyperparameters to maximize performance based on optimizations in the original
publication [Kiselev et al., 2018]. We set the minimum similarity parameter threshold = 0.0 to allow scmap methods
to predict a class for all cells. However, we found that even with this setting, a small number of cells were given the
“unassigned” label. To allow for a more direct comparison, we manually extracted the nearest neighbor graph and called
cell types for cells predicted as “unassigned” by scmap-cell.

scmap-cell-exact: We also implemented a classifier based on scmap-cell with an exact k-nearest neighbors search
algorithm, rather than the approximate search in the original scmap-cell implementation. We refer to this baseline as
“scmap-cell-exact”. We implemented the scmap-cell-exact classifier using scikit-learn “KNeighborsClassifier” with a
cosine distance metric. We fit scmap-cell-exact models on the top 1,000 most variable genes selected using the M3Drop
procedure with k = 10 nearest neighbors, mirroring the settings for the original scmap-cell implementation.

SVM: Our SVM baseline models were trained using the scikit-learn “LinearSVC” implementation with an l2 regular-
ization term weighted with λreg = 1. We fit models using a squared hinge loss objective and used the “one-versus-rest”
multiclass training strategy. This approach and its hyperparameter settings were suggested as the result of a single-
domain benchmarking study [Abdelaal et al., 2019]. We estimated SVM prediction confidence using Platt Scaling
[Platt, 1999] with 5-fold cross-validation to fit the logistic scaling parameters, as implemented in “CalibratedClassi-
fierCV” in scikit-learn.

scPred: We trained scPred models [Alquicira-Hernandez et al., 2019] per the authors’ recommendations, with one
exception. We set threshold = 0 so that scPred predicted a class for all observations. This allowed us to compute
accuracy scores comparable to other methods, whereas scPred would otherwise report “Undetermined” for many
observations.

singleCellNet: We trained singleCellNet models [Tan and Cahan, 2019] per the authors’ recommendations. We used
the parameter settings nRand = 70, nTopGenes = 10, nTrees = 1000, nTopGenePairs = 25 as recommended.

CHETAH: CHETAH models [de Kanter et al., 2019] were trained per the authors’ recommendations. As with scPred
models, we set threshold = 0 so that CHETAH models reported a class label for each observation, rather than
“Undetermined.” This allowed us to compare CHETAH accuracy to other methods on a fair basis.

Harmony-SVM: We used the “harmony” unsupervised domain adaptation procedure as a pre-processing step for SVM
training [Korsunsky et al., 2019]. We fit harmony embeddings using the default parameters in the “harmonypy” imple-
mentation to integrate training and target datasets. We found that harmony integration converged for all benchmarking
tasks. We then trained SVM classifiers as described above using the harmony embedding latent variables as input
features for each cell, rather than gene expression values for each gene.
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LIGER-SVM: We also used the “LIGER” unsupervised domain adaptation procedure as a pre-processing step for
SVM training [Stuart et al., 2019]. We fit the LIGER integrated NMF embedding using a rank k = 20 based on the
authors’ suggestion in their documentation. As for the “harmony-SVM” method, we trained SVM classifiers using the
LIGER latent variables rather than gene expression values.

scANVI: We fit scANVI models [Lopez et al., 2018, Xu et al., 2019] following the authors’ instructions in their tutorial
using their package “scvi-tools”. We fit scANVI models using a set of highly variable genes selected using a heuristic
procedure suggested by the scANVI authors (top 4000 genes based on normalized dispersion). We first optimized
scANVI models for up to 400 epochs in an unsupervised fashion, followed by 100 epochs using cell annotations for
semi-supervision. The exact number of unsupervised epochs is chosen based on the dataset size by the “scvi-tools”
software. We provided domain labels as “batch” labels to the scANVI model for domain adaptation during optimization.
We parameterized scANVI models with single hidden layer encoders and decoders, each containing 128 units. We
used 10 latent dimensions for the autoencoder latent space. We used zero-inflated negative binomial likelihoods as a
reconstruction loss for unsupervised optimization.

Performance Benchmarking

For all benchmarks, we computed the mean accuracy across cells (“Accuracy”), Cohen’s κ-score, and the multiclass
recevier operating characteristic (MCROC). We computed the MCROC as the mean of ROC scores across cell types,
treating each cell type as a binary classification problem.

For the Rat Aging Cell Atlas [Ma et al., 2020] benchmark, we trained scNym models on single cell RNA-seq from
young, ad libitum fed rats (5 months old) and predicted on cells from aged rats (ad libitum fed or calorically-restricted).
We converted the cell type annotations provided by the authors into “cell ontology” terms for consistency with common
nomenclature [Diehl et al., 2016]. We removed genes expressed in < 20 cells to filter uninformative features. We also
filtered cells with < 100 or > 5000 expressed genes to remove low-quality profiles and likely multiplets.

For the human PBMC stimulation benchmark, we trained models on unstimulated PBMCs collected from multiple
human donors and predicted on IFNB1 stimulated PBMCs collected in the same experiment [Kang et al., 2017]. Prior
to training and prediction, we removed doublet cells as annotated by the authors and cells without valid cell type labels
(“nan”).

For the Tabula Muris cross-technology benchmark, we trained models on Tabula Muris 10x Genomics Chromium
platform and predicted on data generated using Smart-seq2. We limited our analyses to tissues with similar cell type
labels between the two technologies: Bladder, Heart and Aorta, Kidney, Limb Muscle, Liver, Lung, Mammary Gland,
Spleen, Thymus, and Tongue. We amended the cell ontology class labels of the Smart-seq2 data to match the degenerate
names provided in the 10x Genomics data. We removed cell types in the Smart-seq2 data that were not present in
the 10x Chromium data. We also removed cells with the ambiguous “kidney cell” label from the 10x Genomics data
which are not found in the Smart-seq2 data. We also corrected labels for a set of “kidney loop of Henle epithelial cells”
(Slc12a1+, Umod+) that were incorrectly labeled as “kidney collecting duct epithelial cells”.

For the Mouse Cell Atlas (MCA) [Han et al., 2018] benchmark, we trained models on single cell RNA-seq from lung
tissue in the Tabula Muris 10x Chromium data [Tabula Muris Consortium, 2018] and predicted on MCA lung data.
Due to the different cell annotation ontologies in these datasets, we manually re-annotated the Mouse Cell Atlas using
the cell ontology class specification so that classes matched the Tabula Muris. During evaluation, we merged “classical
monocyte” and “non-classical monocyte” classes predicted by each model to form a single “monocyte” class to match
annotations available for the MCA.

For the spatial transcriptomics benchmark, we trained models on spatial transcriptomics from a mouse sagittal-posterior
brain section and predicted labels for another brain section. Sagittal-posterior brain section datasets from the 10x
Genomics Visium Spatial Transcriptomics demonstration data were downloaded from https://www.10xgenomics.
com/resources/datasets/. We manually annotated “region” identities based on the predominant cell type markers
in each transcriptional cluster of cells. We clustered cells by selecting highly variable genes, performing principal
component analysis (PCA), and then applying Leiden community detection to the PCA latent space. We considered Neu-
rod1, Cpne7, Ntng1 and Ddn to be neuronal markers, Slc6a11 to be an astrocyte marker, Plp1 to be an oligodendrocyte
marker, and Car8 and Sbk1 to be oligodendrocyte precursor cell markers.

For the single cell to single nucleus benchmark in the mouse kidney, we trained scNym models on all single
cell data from six unique sequencing protocols and predicted labels for single nuclei from three unique protocols
[Denisenko et al., 2020]. For the single nucleus to single cell benchmark, we inverted the training and target datasets
above to train on the nuclei datasets and predict on the single cell datasets. We set unique domain labels for each
protocol during training in both benchmark experiments. To evaluate the impact of multi-domain training, we also
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trained models on only one single cell or single nucleus protocol using the domains from the opposite technology as
target data.

For the multi-domain cross-technology benchmark in mouse cortex nuclei, we generated four distinct subtasks from
data generated using four distinct technologies to profile the same samples [Ding et al., 2020]. We trained scNym and
baseline methods to predict labels on one technology given the remaining three technologies as training data for all
possible combinations. Each combination in this regime represents one of four unique tasks. We used each technology
as a unique domain label for scNym.

For the cross-species mouse to rat demonstration, we selected a set of cell types with comparable annotations in the
Tabula Muris and Rat Aging Cell Atlas [Ma et al., 2020] to allow for quantitative evaluation. We selected kidney
endothelial cells, kidney loop of Henle epithelial cells, liver hepatocytes, and T cells from the kidney and liver data
of both animals. For the rat data, we included B cells in the kidney and liver, while for the Tabula Muris we added
B cells and T cells from the spleen because no B cells were captured in the kidney or liver data. We subset the data
to expressed genes with unambiguous orthology relationships across species based on Ensembl BioMart. We trained
scNym with mouse data as the source domain and rat data as the target domain. We used the new identity discovery
configuration to account for the potential for new cell types in a cross-species experiment.

For the cross-species mouse to human demonstration, we similarly selected a set of cell types with compara-
ble cell annotation ontologies in the Tabula Muris l0x lung data and human lung cells from the IPF Cell Atlas
[Habermann et al., 2020]. We trained an scNym model using mouse data as the source domain and human data as the
target, as for the mouse to rat demonstration.

Hyperparameter Optimization Experiments

We performed hyperparameter optimization across four tasks for the top two baseline methods, the SVM and scmap-
cell-exact. For the SVM, we optimized the regularization strength parameter C at 12 values: C ∈ 10k ∀k ∈ [−6, 5]. For
scmap-cell-exact, we optimized (1) the number of nearest neighbors (k ∈ {5, 10, 30, 50, 100}), (2) the distance metric
(d(·, ·) ∈ {cosine, euclidean}), and (3) the number of features to select with M3Drop (nf ∈ {500, 1000, 2000, 5000}).
We optimized scNym for two of the four tasks, due to computational expense and superiority of default parameters
relative to baseline methods. For scNym, we optimized (1) weight decay (λw ∈ 10−5, 10−4, 10−3), (2) batch
size (M ∈ {128, 256}), (3) the number of hidden units (h ∈ {256, 512}), (4) the maximum MixMatch weight
(λSSL ∈ {0.01, 0.1, 1.0}), and (5) the maximum DAN weight (λAdv ∈ {0.01, 0.1, 0.2}). We did not optimize weight
decay for the PBMC cross-stimulation task. We performed a grid search for all methods.

Hyperparameter optimization is non-trivial in the context of a domain shift between the training and test set. Traditional
optimization using cross-validation on the training set alone may overfit parameters to the training domain, leading to
suboptimal outcomes. This failure mode is especially problematic for domain adaptation models, where decreasing the
strength of domain adaptation regularizers may improve performance within the training data, while actually decreasing
performance on the target data.

In light of these concerns, we adopted a procedure known as reverse cross-validation to evaluate each hyperparameter
set [Zhong et al., 2010]. Reverse cross-validation uses both the training and target datasets during training to account
for the effect of hyperparameters on the effectiveness of transferring labels across domains. Formally, we first split
the labeled training data D into a training set, validation set, and held-out test set D′,Dv,D∗. We use 10% of the
training dataset for the validation set and 10% for the held-out test set. We then train a model fθ : x→ ŷ to transfer
labels from the training set D′ to the target data U . We use the validation set Dv for early stopping with scNym and
concatenate it into the training set for other methods that do not use a validation set. We treat the predictions ŷ = fθ(u)
as pseudolabels for the unlabeled dataset and subsequently train a second model fφ : u→ ỹ to transfer annotations
from the “pseudolabeled” dataset U back to the labeled dataset D. We then evaluate the “reverse accuracy” as the
accuracy of the labels ỹ for the held-out test portion of the labeled dataset, D∗.
We performed this procedure using a standard 5-fold split for each parameter set. We computed the mean reverse
cross-validation accuracy as the performance metric for robustness. For each method that we optimized, we selected the
optimal set of hyperparameters as the set with the top reverse cross-validation accuracy.
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Supplemental Figures

Figure S1: scNym runtime performance is competitive with baseline methods. We evaluated the runtime perfor-
mance of all methods on datasets of increasing size. Each dataset was constructed using a subsample of n cells each for
the training and target dataset from a mouse kidney single cell atlas. All methods were run on the same hardware (Intel
Xeon CPU, 64 GB RAM, 1 Nvidia Titan RTX consumer GPU). Only scANVI and scNym are implemented to take
advantage of GPU hardware. scNym runtime performance was competitive with baseline methods and completed even
the largest annotation transfer task in roughly 10 minutes.
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Figure S2: scNym transfers cell type annotations across species. We trained scNym to transfer annotations from the
Tabula Muris to the Rat Aging Cell Atlas or Human IPF Cell Atlas. We subset each of the source and target datasets
to cell types where the annotation ontologies were well-matched to allow for quantitative evaluation. (A) Mouse
and rat cells from the kidney, liver, and spleen projected in a common latent space with UMAP. Species-specific and
experimental differences lead to a segregation of mouse and rat data in the latent space. (B) Ground truth cell type
labels for the rat data. (C) scNym predictions for rat cells after training on mouse cells. scNym predictions are highly
accurate (98.5% accuracy). (D) Mouse and human cells from the lung segregate in a common latent space, reflecting
species-specific differences. (E) Ground truth cell type labels for the human data. (F) scNym predictions for the human
data are accurate for most cell types. Most errors are confusion between NK cells and T cells.
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Figure S3: Integrated gradient analysis of scNym models reveals genes that drive cell type classification decisions.
We used integrated gradient analysis to identify salient genes for each cell type in the human PBMC cross-stimulation
task [Kang et al., 2017]. (A) Top 5 salient genes for each cell type, computed as the mean across a set of 300 correctly
classified cells. (B) Expression of the most salient gene for each cell type in the UMAP embedding.
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Figure S4: scNym integrated gradient feature attribution reveals cell type markers more effectively than SVM
coefficients. We computed integrated gradients for an scNym model and extracted SVM coefficients for 19 cell types
after training both models on the Tabula Muris 10x Genomics dataset. Cell types were chosen based on the availability
of cell type specific Gene Ontology terms. We computed enrichment scores within cell type specific GO terms using the
top k = 100 ranked genes for each cell type from each method (Methods). (A) The mean enrichment score (Odds-Ratio)
across cell type specific Gene Ontology terms for the 19 cell types. Most cell types showed stronger enrichments
using integrated gradient markers (above grey line), and scNym integrated gradients yielded significantly stronger
enrichments overall (paired t-test for Odds-Ratios across cell types, p = 0.011). scNym models are therefore more
readily interpretable than the best baseline method. (B) Odds-Ratios for individual Gene Ontology terms in a subset of
cell types. Each point is the Odds-Ratio for a single Gene Ontology term specific to a single cell type. scNym models
show stronger enrichments for most relevant Gene Ontology terms in most cell types. (C) We performed a sensitivity
analysis to evaluate the effect of the marker gene set size k on our comparative Gene Ontology enrichments. scNym
integrated gradients showed stronger enrichments than SVM coefficients for smaller (k = 50) and larger (k = 150)
gene set sizes. (D) Top five cell type markers extracted using scNym integrated gradients for a subset of cell types.
Integrated gradients capture well-characterized cell type markers across a range of cell types (e.g. Cd79a/b in B cells,
Fabp4 and Ly6c1 in endothelial cells, Cd3d/g in T cells).

11



Figure S5: scNym transfers cell identity annotations between 10x and Smart-seq2 sequencing technologies in
the Tabula Muris. (A) UMAP projections of ground truth cell type labels in the Tabula Muris 10x training data. We
limited our analyses to tissues with similar cell type labels between the two technologies: Bladder, Heart and Aorta,
Kidney, Limb Muscle, Liver, Lung, Mammary Gland, Spleen, Thymus, and Tongue. (B) Ground truth labels and scNym
predictions overlaid on a UMAP projection. scNym labels match ground truth for the large majority of cells (>92%).
(C) Comparison of classification models on the 10x to Smart-seq2 transfer task. scNym models are significantly more
accurate than baseline methods (Wilcoxon Rank Sums on accuracy scores, p < 0.01). (D) Confusion matrices for
scmap-cell, SVM, and scNym on cells with a ground truth annotation containing “monocyte”. scmap-cell confused
classical monocytes and non-classical monocytes, while an SVM confuses monocytes with macrophages. scNym shows
less confusion overall. (E) Ground truth annotations (left), scmap-cell predictions (left center), SVM predictions (right
center) and scNym predictions (right) for monocytes in the Tabula Muris. scNym more accurately labels both types of
monocytes.
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Figure S6: scNym transfers cell identity annotations in the mouse lung between 10x Chromium data from the
Tabula Muris and Microwell-seq data from the Mouse Cell Atlas. (A) Ground truth annotations for the Tabula
Muris training data and MCA target data are displayed in a UMAP projection. (B) Predictions from scNym and the next
best model scmap-cell-exact are likewise shown in the UMAP projection. scNym predictions are highly concordant
with ground truth labels. (C) Comparison of cell type distributions between the training set (Tabula Muris, TM) and the
target set (Mouse Cell Atlas, MCA). There is a large class imbalance between the two data sets. We quantified this
imbalance using the Earth Mover Distance (EMD) and found the EMD to be roughly 0.65, indicating the majority of
probability mass would need to shift to match the distributions. Despite this class imbalance, scNym classifiers achieved
high performance. (D) Accuracy and κ score comparison of scNym to seven other cell type classifiers. scNym models
show significantly greater performance than the baseline methods (Wilcoxon Rank Sums on accuracy scores, p < 0.01).
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Figure S7: scNym transfers regional identity annotations across spatial transcriptomics data sets. (A) Images
of training and target mouse brain sagittal-posterior sections profiled with spatial transcriptomics. (B) Ground truth
regional identity annotations for the training section. (C) Accuracy score comparison of scNym to seven other state-of-
the-art cell type classifiers. scNym performs competitively relative to baseline methods, modestly less accurate than
scPred and SVM approaches. (D) Ground truth regional identity annotations in the target section, alongside (E) SVM
predictions and (F) scNym predictions.
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Figure S8: Multi-domain training improves performance of cross-technology annotation transfer in the mouse
kidney. We trained scNym using each training domain individually or all domains through multi-domain training for
both a single cell to single nucleus and single nucleus to single cell annotation transfer task. Distinct domains represent
different sample preparation protocols. (A) Performance of different training approaches for the single cell to single
nucleus task. Multi-domain models outperform models trained on any single domain. In a real world scenario, the
benefit of multi-domain training is likely greater than the difference between the best single domain and multi-domain
performance, as the best single domain cannot be determined a priori. (B) Similar results were obtained for single
nucleus to single cell transfer tasks. Here, the benefit of multi-domain training is larger than in the single cell to single
nucleus case (Wilcoxon Rank Sum p < 0.01 for Multi-domain vs. Single Nuclei v2 - Sucrose).
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Figure S9: scNym synthesizes information from multiple domains to transfer annotations across technologies
in mouse cortex nuclei. We trained scNym to transfer annotations in mouse cortex nuclei profiled with distinct
technologies. (A) Mouse cortex nuclei profiled with four distinct sequencing technologies embedded in a latent space
with UMAP. (B) True cell type annotations provided for the mouse cortex nuclei dataset. (C) Schematic representation
of leave-one-out training procedure. We trained scNym using 3/4 domains at a time as source data, and the remaining
domain as the target data in a leave-one-out fashion. This procedure yields four distinct transfer tasks. (D) scNym and
baseline performance across transfer tasks, where the tasks are named based on the held-out target dataset. scNym
offered superior performance to baselines on one task and was competitive for the remaining tasks. scNym was the top
method after rank ordering by mean accuracy or the mean rank across tasks.
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Figure S10: Semi-supervision improves the calibration of scNym models. (A) Expected calibration error (ECE)
and overconfidence error (OE) scores for scNym trained on the Tabula Muris to Mouse Cell Atlas benchmark without
MixUp or MixMatch (Base), with MixUp on labeled data only (MixUp), or with the full MixMatch (MM) and domain
adversarial network (DAN) procedure (MM + DAN). The MixMatch + DAN procedure significantly reduces the
expected calibration error (p < 0.05, Wilcoxon Rank Sums). (B) Calibration curves for different scNym model
configurations comparing the model confidence scores to observed classification accuracies. scNym models with
MixUp, MixMatch, and DAN ablated (“Base”) show overconfident calibration at the high end. Confidence frequency
histograms for each of the model configurations are shown above. (C) UMAP projection of model confidence scores,
ground truth cell labels, and scNym predicted labels. We observed that incorrect predictions have lower confidence
scores (arrows).
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Figure S11: scNym confidence highlights cells for manual curation. (A) Expected calibration error (ECE) and
overconfidence error (OE) scores for scNym models trained on the cross-stimulation benchmark without MixUp or
MixMatch (Base), with MixUp on labeled data only (MixUp), or with the full MixMatch and domain adversarial network
(DAN) procedure (MM + DAN). The MixMatch + DAN procedure significantly reduces the expected calibration
error (p < 0.05, Wilcoxon Rank Sums). (B) Confidence of the scNym model predictions projected in the UMAP
embedding, alongside ground truth cell type annotations and scNym predictions. Low confidence scores identify
incorrectly classified cells for manual curation (arrows).

Figure S12: Confidence scores from pre-trained scNym models highlight new cell type discoveries. We trained
scNym to transfer labels from the Tabula Muris 10x cells to the Smart-seq2 cells, excluding brain tissue from the
training and target sets. We subsequently predicted cell types for cells in the Smart-seq2 Brain (Non-Myeloid) tissue.
(A) UMAP projections of ground truth cell type labels in the Tabula Muris 10x training data. Note that the training data
does not contain any neurons, astrocytes, or other glia. (B) Ground truth cell type annotations in the Tabula Muris brain
tissue captured using Smart-seq2. Note that astrocyte, neuron, olidodendro. precursor, and Bergmann glia represent
new, unseen cell types. (C) scNym confidence scores projected for the Tabula Muris brain data. New cell types receive
low confidence scores, while endothelial cells are correctly predicted with high confidence because they are present in
the training data. (D) Distribution of confidence scores in (C) for each ground truth cell type.
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Figure S13: scNym confidence scores highlight new cell type discoveries after semi-supervised training. We
trained scNym with and without pseudolabel thresholding to transfer labels from the Tabula Muris 10x cells to the
Smart-seq2 cells, including Brain tissue in the target set but not the training set. (A) Ground truth cell type annotations
in the Tabula Muris brain tissue captured using Smart-seq2. Note that astrocyte, neuron, olidodendro. precursor, and
Bergmann glia represent new, unseen cell types. (B) New cell types “discovered” in this simulated experiment are
highlighted in purple. (C) scNym confidence scores displayed in the UMAP projection. (D) Cells highlighted as
potential discoveries by thresholding scNym confidence scores (< 0.5). Models with pseudolabel thresholding correctly
identify the majority (> 97%) of cells with novel types. (E) Embeddings from scNym’s penultimate layer for all target
tissues, projected with UMAP. Cell types not in the training set are labeled. Pseudolabel thresholding allows new
cell types to occupy a distinct region in the embedding (arrows). (F) scNym models’ cell type prediction accuracies.
Pseudolabel thresholding improves performance when new cell types are present. All predictions for new cell types
are counted as incorrect for this accuracy metric. (G) Distribution of confidence scores for each ground truth cell type
for scNym models. Models trained with pseudolabel thresholding correctly provide low confidence scores to new cell
types, while models without pseudolabel thresholding incorrectly provide uniformly high confidence. (H) Average
confidence for each cell type across pseudolabel threshold values τ . Results are robust to a wide range of τ values, with
a critical effectiveness range for τ > 0.5. 19



Figure S14: Clustering low confidence cells in the scNym embedding reveals new distinct cell states. We developed
a clustering procedure in the scNym embedding to describe the distinct cell states within a set of low confidence cells.
We applied this procedure to brain cells in the Tabula Muris Smart-seq2 data, which are a new cell type not found in the
training set. (A) True cell type labels for the Tabula Muris Smart-seq2 brain data. All but the “endothelial cell” class
are new cell types not present in the training data. (B) New cell state clusters suggested as a result of our clustering
procedure. We found these clusters closely matched the true cell type labels – unseen by the scNym model – with
an adjusted Rand index (ARI) of 0.88. (C) scNym embedding of low confidence cells, projected with UMAP. Low
confidence cells form four distinct clusters in the embedding. (D) Cluster optimization results for cells in (C). We
evaluated the Calinski-Harabasz cluster validity index for a range of Leiden community detection resolutions and
selected the top scoring resolution (grey line).
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Figure S15: Clustering in the scNym embedding discriminates potential new cell types from low confidence
predictions on cell type boundaries. We developed a clustering procedure using the scNym embedding for target
cells to generate a metric of average confidence per cluster. We found that low confidence clusters represented either
new cell types, or previously seen cell types with very little training data. Low confidence cells in high confidence
clusters represented boundaries between cell types. (A) Cell type labels and (B) new cell types highlighted for the
Tabula Muris Smart-seq2 data in the scNym embedding projected with UMAP. (C) scNym prediction confidence across
cells. (D) Leiden clustering results for cells in (A) in the scNym embedding across a range of resolution parameters. (E)
Optimal cluster partition in the scNym embedding. (F) Average confidence per cluster. (G) Clusters with low average
confidence may represent new cell types. Here, we found that new cell types all had low cluster confidence. (H) Cells
with low confidence within a high confidence cluster appear to represent cell type boundaries (arrows). (I) One cell
type had low cluster confidence, even though it was not a new cell type. We found that this cell type had very few cells
in the training data (< 30 cells), suggesting another scenario that might lead to low cluster confidence.
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Figure S16: Ablation experiments demonstrate that semi-supervision improves scNym performance. We trained
scNym models with and without semi-supervision components to complete cell annotation transfer tasks. In each case,
we found that inclusion of MixUp augmentations, MixMatch training, and a domain adversary significantly improved
scNym performance relative to a base model (p < 0.05, Rank Sums test).
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Figure S17: Adversarial scNym models adapt training and target domains. We trained scNym models with
MixMatch semi-supervision and a domain adversary for each of our benchmark tasks. Raw gene expression embeddings
derived using PCA and UMAP on normalized gene expression counts are shown on the left for each benchmark dataset.
We have labeled the target and training domains with colors. In the center column, scNym embeddings from the
penultimate neural network layer are projected using PCA and UMAP. Qualitatively, we found that training and target
datasets are more intermixed in the scNym embeddings. We confirmed this observation quantitatively by computing the
entropy of batch mixing (right) on raw gene expression embeddings (Raw, left column embeddings), base scNym model
embeddings (Base), scNym models with MixMatch but no domain adversary (MixMatch), and our complete scNym
model with MixMatch and a domain adversary (DANN, center column embeddings). scNym models with MixMatch
and a domain adversary were significantly more mixed than raw gene expression embeddings for each benchmark task
(p < 0.05 Wilcoxon Rank Sums). This indicates that scNym models are effectively integrating datasets to adapt across
domains. 23



Figure S18: scNym performance is robust across a range of hyperparameter values. We evaluated the sensitivity
of scNym to its hyperparameters by varying their values across a broad range for the human PBMC cross-stimulation
task. For each panel, we held all but one hyperparameter constant at the default values and varied the parameter on
the x-axis. Bolded values on the x-axis are the default parameter settings. We found that performance was robust to
changes within an order of magnitude, suggesting that our default hyperparameters are not “overfit” to the tasks we use
for benchmarking.

Figure S19: scNym models with default hyperparameters are superior to baseline methods with tuned hyperpa-
rameters. We optimized hyperparameters for the top three baseline models (SVM, singleCellNet, scmap-cell-exact)
across four tasks using reverse 5-fold cross-validation. We optimized scNym hyperparameters for two of these tasks.
All models were optimized using a grid search strategy. Across all four tasks, scNym with default parameters is superior
to the baseline methods with optimized hyperparameters.
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Figure S20: scNym and baseline approaches ranked by alternative performance metrics. (A) Models ranked by
Cohen’s κ-score. Model ranking is identical to the ranking derived from accuracy scores. (B) Models ranked by
multi-class receiver operating characteristic (MCROC) score. We computed MCROC as the mean ROC score across
cell types, treating each cell type as a binary classification problem. We could only generate MCROC scores for models
that offer probabilistic outputs or a reasonable approximation (e.g. Platt Scaling for SVMs). Model ranking varies
from the accuracy and κ-score ranks, but scNym remains the top ranked model and the SVM remains the top baseline
method.
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scmap-cell scmap-cell-exact scmap-cluster SVM singleCellNet scPred CHETAH Harmony-SVM LIGER-SVM scANVI scNym

Young to Old Rat 0.838 0.864 0.777 0.912 0.885 OOM 0.695 0.859 OOM 0.812 0.917
hPBMC Cross-Stim 0.513 0.206 0.744 0.806 0.875 0.488 0.488 0.886 0.889 0.779 0.901
TM 10x to MCA 0.775 0.853 0.823 0.838 0.729 0.488 0.787 0.823 0.340 0.807 0.882
TM 10x to SS2 0.599 0.918 0.796 0.926 0.849 0.682 0.860 0.768 0.781 0.881 0.931
Spatial Txn 0.557 0.717 0.758 0.882 0.815 0.886 0.407 0.849 0.888 0.778 0.875
Kidney Cell to Nuc 0.704 0.856 0.718 0.839 0.808 0.551 0.810 0.884 0.865 0.240 0.873
Kidney Nuc to Cell 0.586 0.417 0.745 0.791 0.713 0.735 0.184 0.754 0.762 0.222 0.832
Cortex SS2 0.234 0.791 0.726 0.790 0.762 0.574 0.771 0.782 0.777 0.597 0.790
Cortex 10x 0.732 0.867 0.805 0.866 0.827 0.855 0.897 0.865 0.864 0.699 0.917
Cortex DroNc 0.504 0.606 0.684 0.725 0.760 0.706 0.765 0.743 0.821 0.500 0.851
Cortex sci-seq 0.640 0.511 0.615 0.732 0.703 0.717 0.698 0.709 0.718 0.463 0.728

Table S1: Comparison of model performance across tasks using Cohen’s κ-score. Mean κ-score across 5-fold
training split is reported. OOM indicates the model failed with an out-of-memory error on our hardware (256GB RAM).
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scmap-cell-exact SVM singleCellNet scPred Harmony-SVM scANVI scNym

Young to Old Rat 0.939 0.996 0.995 OOM 0.990 0.920 0.995
hPBMC Cross-Stim 0.703 0.979 0.909 0.909 0.986 0.973 0.982
TM 10x to MCA 0.933 0.984 0.927 0.903 0.973 0.934 0.987
TM 10x to SS2 0.955 0.990 0.982 0.928 0.973 0.939 0.988
Spatial Txn 0.942 0.982 0.977 0.979 0.973 0.980 0.981
Kidney Cell to Nuc 0.901 0.920 0.931 0.786 0.925 0.801 0.968
Kidney Nuc to Cell 0.687 0.842 0.843 0.838 0.822 0.702 0.866
Cortex SS2 0.968 0.973 0.957 0.930 0.965 0.961 0.968
Cortex 10x 0.984 0.994 0.990 0.992 0.991 0.979 0.994
Cortex DroNc 0.872 0.926 0.913 0.916 0.919 0.911 0.927
Cortex sci-seq 0.851 0.898 0.894 0.900 0.891 0.878 0.892

Table S2: Comparison of model performance across tasks using the multi-class area under the Receiver Operat-
ing Characteristic (MCROC). We computed the area-under the receiver operating characteristic curve for each cell
type, treating the classification of each cell type as a binary classification problem. We then computed the multi-class
ROC as the mean of ROC scores across cell types. MCROC could only be computed for models that offered a
probabilistic output or where an established procedure for generating probabilistic predictions was available (e.g. Platt
Scaling for SVM). Mean MCROC-score across 5-fold training split is reported. OOM indicates that a model failed with
an out-of-memory error on our hardware (256GB RAM).
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Cortex DroNc-seq Kidney Nuclei to Cell TM to MCA hPBMC Cross-Stim

scNym:Default 89.13 89.12 91.40 92.89
scNym:CV 89.85 Not Tested Not Tested 92.95
SVM:Default 81.47 86.25 88.40 85.18
SVM:CV 87.32 87.46 88.45 87.27
singleCellNet:Default 83.42 OOM 80.21 90.95
singleCellNet:CV 83.39 OOM 80.61 90.86
scmap-cell-exact:Default 72.44 63.77 89.67 43.57
scmap-cell-exact:CV 72.44 67.02 89.88 75.34

Table S3: scNym comparison to hyperparameter optimized baseline models. We optimized the top three baseline
models (SVM, scmap-cell-exact, singleCellNet) across four tasks using reverse 5-fold cross-validation. We optimized
scNym for two of these tasks. All models were optimized using a grid search strategy. Across all four tasks, scNym
with default parameters is superior to the baseline methods with optimized hyperparameters. Values presented are the
percent accuracy. OOM indicates that models encountered an out-of-memory error on this task when provided with 128
GB of RAM. Not Tested indicates that we did not perform scNym tuning for this task due to superiority of the default
parameters and computational expense.
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Cell Type Gene Ontology Terms

B cell regulation of B cell receptor signaling pathway; B cell homeostasis; negative regulation of B cell activation;
B cell proliferation; ...

T cell regulation of T cell receptor signaling pathway; regulation of alpha beta T cell activation; regulation of T
cell chemotaxis; T cell activation ...

cardiac muscle cell regulation of cardiac muscle tissue development; ventricular cardiac muscle cell differentiation; relaxation
of cardiac muscle; ...

classical monocyte regulation of monocyte differentiation; monocyte chemotaxis; positive regulation of monocyte chemotaxis;
regulation of monocyte chemotaxis; ...

dendritic cell dendritic cell differentiation; myeloid dendritic cell activation; myeloid dendritic cell differentiation;
dendritic cell cytokine production; ...

endocardial cell endocardial cushion development; endocardial cushion morphogenesis; endocardial cushion formation; ...
endothelial cell endothelial cell development; positive regulation of endothelial cell chemotaxis; positive regulation of

endothelial cell differentiation; ...
hepatocyte hepatocyte differentiation
keratinocyte keratinocyte proliferation; regulation of keratinocyte proliferation; regulation of keratinocyte differentia-

tion; ...
kidney loop of Henle as-
cending limb epithelial
cell

negative regulation of kidney development; kidney epithelium development; regulation of epithelial cell
differentiation involved in kidney develop...

luminal epithelial cell of
mammary gland

mammary gland morphogenesis; regulation of mammary gland epithelial cell proliferation; mammary
gland epithelium development; mammary gland development; ...

macrophage positive regulation of macrophage activation; macrophage activation involved in immune response;
regulation of macrophage activation; ...

mas T cell regulation of mas T cell activation involved in immune response; mas T cell activation; positive regulation
of mas T cell activation involved in immune...

mesangial cell lomerular mesangial cell differentiation; lomerular mesangial cell proliferation; positive regulation of
glomerular mesangial cell proliferation; ...

mesenchymal stem cell mesenchymal stem cell differentiation; regulation of mesenchymal stem cell differentiation
natural killer cell natural killer cell differentiation; negative regulation of natural killer cell mediated immunity; regulation

of natural killer cell activation; ...
non-classical monocyte monocyte chemotaxis; regulation of monocyte chemotaxis; negative regulation of monocyte chemotaxis
skeletal muscle satellite
cell

regulation of skeletal muscle tissue development; skeletal muscle tissue regeneration; positive regulation
of skeletal muscle tissue development; ...

type II pneumocyte type II pneumocyte differentiation

Table S4: Sample Gene Ontology terms used for model interpretability comparisons We extracted cell type
specific Gene Ontology terms for each of 19 cell types in the Tabula Muris (Methods). We compared the interpretability
of scNym-derived salient genes and SVM-derived salient genes based on the enrichment of the top-k salient genes
within cell type specific GO terms. A sample of GO Terms used for each cell type is shown above. Ellipses indicate
some terms are not shown due to length.
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