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Supplemental Methods and Materials 

Bioinformatics analysis of single cell/nucleus RNA-sequencing data 

All bioinformatic analyses were performed with Seurat (Butler et al. 2018) (v3.1.5), scran (Lun et 

al. 2016) (v1.16.0), and scater (McCarthy et al. 2017) (v1.16.1) packages in R (R Core Team, 

2020). Data were normalized using a scaling factor of 10,000 and all differential expression 

analyses are conducted by function FindMarkers in Seurat (Butler et al. 2018) R package with 

parameter test.use = ‘MAST’. The detailed data analysis steps for each dataset (GSE98969, 

GSE140511, GSE143758, GSE147528 and GSE138852) are illustrated as below. 

        GSE98969. The data used are collected from whole brain cells of 6 months 5XFAD (n=16) 

and C57BL/6 (n=16) mice (Keren-Shaul et al. 2017). For quality control, cells with mitochondrial 

content >5% and UMIs < 500 were removed. Genes with mean expression smaller than 0.005 

UMIs/cell were discarded for analysis. Data were normalized using a scaling factor of 10,000 

and functions FindIntegrationAnchors and IntegrateData in Seurat (Butler et al. 2018) R 

package are used for batch effect correction. Principle component (PC) analysis was performed 

using the top 2000 most variable genes and clustering was performed using the top 40 PCs and 

resolution of 0.4. After identifying clusters for DAM and HAM, separately (gene markers, see 

Fig. 1b (Keren-Shaul et al. 2017)), DEGs are calculated between DAM and HAM by considering 

cells from 5XFAD mice. 

          GSE140511. The process for clustering different cell types are provided in the original 

literature (Zhou et al. 2020b). We used microglia nuclei and reproduced the clustering 

procedures to isolates DAM and HAM nuclei. Considering all microglia nuclei, PC analysis was 

performed using the top 3000 most variable genes and sub-clustering was performed using the 

top 10 PCs and resolution of 0.1. Again, after identifying clusters enriched in DAM and HAM 
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nuclei using gene markers (Keren-Shaul et al. 2017) in Fig. 1b, DEGs are compared between 

DAM and HAM by considering nuclei from 5XFAD mice. 

          GSE143758. The process for clustering different cell types are provided in the original 

literature (Habib et al. 2020). In this study, we used astrocyte nuclei and reproduced the 

clustering procedures to isolate DAA and non-DAA nuclei. Considering all astrocyte nuclei, PC 

analysis was performed using the top 2000 most variable genes and sub-clustering was 

performed using the top 10 PCs and resolution of 0.3. After identifying clusters enriched in DAA 

nuclei by comparing the expression pattern of marker genes (Habib et al. 2020) in Fig. 1e 

among sub-clusters. We computed DEGs between DAA and non-DAA by considering nuclei 

from 5XFAD mice as well. 

            GSE147528. We considered astrocyte nuclei and clustering analysis was first performed 

by quickCluster function and size factors were computed by computeSumFactors function with 

parameter min.mean = 0.1 in scran R package. Then count matrix was normalized by the 

computed size factors and log-transformed by function logNormCounts in scater R package. 

Top 1000 highly variable genes were selected by functions modelGeneVar and getTopHVGs in 

scran R package. Functions FindIntegrationAnchors and IntegrateData in Seurat (Butler et al. 

2018) R package were used for batch effect correction, and clustering was performed using the 

top 12 PCs and resolution of 0.2 for EC and top 10 PCs and resolution of 0.4 for SFG. After 

identifying clusters enriched in disease associated astrocytes (DAAs, gene markers (Leng et al. 

2020) as listed in Supplemental Fig. S5), DEGs are compared between DAAs and non-DAAs 

for nuclei from both superior frontal gyrus and entorhinal cortex regions. 

GSE138852. The process for clustering different cell types are provided in the original 

literature (Grubman et al. 2019). In this study, we used astrocyte nuclei and reproduced the 

clustering procedures to extract RNA-seq profiles from DAA and non-DAA nuclei. Considering 

all astrocyte nuclei, PC analysis was performed using the top 2000 most variable genes and 
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sub-clustering was performed using the top 10 PCs and resolution of 0.1. In order to identify 

clusters enriched in DAA nuclei, we compared the expression pattern of the selected marker 

genes (Leng et al. 2020) as listed in Supplemental Fig. S5 among sub-clusters. DEGs are 

compared between DAAs and non-DAAs of the entorhinal cortex region. 

 

Building Human Protein-protein interactome  

To build the comprehensive human interactome from the most contemporary data available, we 

assemble 18 commonly used PPI databases with experimental evidence and the in-house 

systematic human PPI we have previously utilized (Menche et al. 2015): (i) binary PPIs tested 

by high-throughput yeast-two-hybrid (Y2H) systems (Luck et al. 2020); (ii) kinase-substrate 

interactions by literature-derived low-throughput and high-throughput experiments from 

KinomeNetworkX (Cheng et al. 2014), Human Protein Resource Database (HPRD) (Peri 2004), 

PhosphoNetworks (Hu et al. 2014), PhosphositePlus (Hornbeck et al. 2015), DbPTM 3.0  and 

Phospho.ELM (Dinkel et al. 2011); (iii) signaling networks by literature-derived low-throughput 

experiments from the SignaLink2.0 (Fazekas et al. 2013); (iv) binary PPIs from three-

dimensional protein structures from Instruct (Meyer et al. 2013); (v) protein complexes data 

(~56,000 candidate interactions) identified by a robust affinity purification-mass spectrometry 

collected from BioPlex V2.0 (Huttlin et al. 2015); and (vi) carefully literature-curated PPIs 

identified by affinity purification followed by mass spectrometry from BioGRID (Chatr-aryamontri 

et al. 2015), PINA (Cowley et al. 2012), HPRD (Goel et al. 2012), MINT(Licata et al. 

2012) ,IntAct (Orchard et al. 2014), and InnateDB (Breuer et al. 2013). In total, a human 

interactome including 351,444 PPIs connecting 17,706 unique proteins was used in this study. 
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Network analysis metabolite-enzyme associations 

We collected 155 AD-related metabolites from 12 studies (Supplemental Table S14) and the 

Human Metabolome Database (HMDB) (Wishart et al. 2018). All metabolites were identified in 

AD-related human samples, including brain tissues, cerebrospinal fluid, and blood. All of these 

results are free available in our website AlzGPS (https://alzgps.lerner.ccf.org/). We collected 

experimentally reported metabolite-enzyme associations from three commonly used data 

sources, including KEGG (Kanehisa et al. 2017), Recon3D (Brunk et al. 2018), and HMDB 

(Wishart et al. 2018), and assembled them with the human PPI network. The updated network 

contains 373,320 links connecting with 17,826 unique proteins (including metabolic enzymes) 

and 1,419 metabolites. Then we mapped 240 DAM and DAA disease module genes and the 

155 AD-related metabolites to the network and computed the maximal subgraph: (1) we found 

624 unique nodes which were the first or second order neighbors of 64 DAM and DAA immune 

genes; (2) we obtained 73 metabolites by considering the intersection of 624 unique nodes and 

155 AD-related metabolites; and (3) a subnetwork connecting 236 enzymes and 30 metabolites 

was generated. Finally, we computed the network paths connecting the DAM and DAA gene 

products on the network as well as the betweenness centrality of each node. 

 

Connectivity Map (CMap) database 

The CMap database used in this study contains 6,100 expression profiles relating 1,309 

compounds (Lamb et al. 2006). A parameter α defined below is used to leverage the extent of 

differential expression for a given set of genes. 

𝛼 =
𝑡 − 𝑐

(𝑡 + 𝑐) 2⁄
 (S1) 

Here t is the scaled and thresholded average difference value for the drug treatment group and 

c is the thresholded average difference value for the control group. Therefore, a zero α value 

indicates no expression change after drug treatment, and a positive α value means elevated 
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expression level after drug treatment and vice versa. Drug gene signatures with α > 0.67 (0.67 

equals the 2-folds increment) are considered as up-regulated drug-gene pairs, and α < -0.67 are 

denoted as down-regulated drug-gene pairs.  

 

Gene Set Enrichment Analysis (GSEA) 

We utilized GSEA algorithm to predict drugs for each cell subtype. GSEA algorithms takes two 

inputs: CMap database and the extracted molecular network. Detailed descriptions of GSEA 

have been illustrated in our recent study (Zhou et al. 2020a). To be specific, the GSEA 

enrichment score (ES) is calculated as shown below. 

ES = -ES./ − ES0123 sgn7ES./8 ≠ sgn(ES0123)
0 otherwise

 (S2) 

Both ESup and ESdown are computed for up- and down-regulated genes in input molecular 

network separately with the same scheme as shown below in a 2-step manner. We first 

compute intermediate parameters a and b: 

𝑎 = max
FGHGI

JH
I
− K(H)

L
M      𝑏 = max

FGHGI
JK(H)

L
− HOF

I
M (S3) 

where j = 1, 2, …, s were the gene sets from molecular network sorted in ascending order by 

their rank in the gene profiles of the drug being evaluated. The rank of gene j is denoted by V(j), 

where 1≤V(j)≤r, with r being the number of genes (12,849) from the drug profile. Then, the 

corresponding ESup and ESdown equal: 

ES./ = P
a./ if	a./ > b./
−b./ ifb./ > a./

        ES0123 = - a0123 if	a0123 > b0123
−b0123 ifb0123 > a0123

 (S4) 

In the above equations, aup/down and bup/down are computed with respect to up- and down-

regulated genes in molecular network, separately. The GSEA ES represents drug potential 

capability to reverse the expression of the input molecular network. Permutation tests repeated 

100 times using randomly gene lists consisting of the same numbers of up- and down-regulated 
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genes as the input molecular network were performed to leverage the significance of the 

computed ES value. The corresponding false positive rate (FDR) values for drug-disease scores 

are computed with ‘qvalue’ (Dabney et al. 2013) R package. Therefore, drugs with large positive 

ES value and significant FDR (q < 0.05) were selected.  

 

Pharmacoepidemiologic validation 

Study cohorts. We used the MarketScan Medicare Claims database from 2012 to 2017 for the 

pharmacoepidemiologic analysis. This dataset included individual-level procedure codes, 

diagnosis codes, and pharmacy claim data for 7.23 million patients. Pharmacy prescriptions of 

fluticasone and mometasone were identified by using RxNorm and National Drug Code (NDC). 

Outcome measurement. For an individual exposed to the aforementioned drugs, a drug 

episode was defined as from drug initiation to drug discontinuation. Specifically, drug initiation 

was defined as the first day of drug supply (i.e., 1st prescription date). Drug discontinuation is 

defined as the last day of drug supply (i.e., last prescription date + days of supply) and without 

drug supply for the next 60 days. The fluticasone cohort included the first fluticasone episode for 

each individual, as well as the mometasone cohort. Further, we excluded observations that 

started within 180-day of insurance enrollment. For the extracted cohorts, demographic 

variables including age, gender and geographical location were collected. Additionally, 

diagnoses of hypertension (HT), coronary artery disease (CAD), and type 2 diabetes (T2D) (the 

International Classification of Disease [ICD], Supplemental Table S16) codes before drug 

initiation were collected, to address potential confounding biases. Last, a control cohort was 

selected from patients who were not exposed to fluticasone. Specifically, non-exposures were 

matched to the exposures (ratio 4:1) by initiation time of fluticasone, enrollment history, gender 

and comorbidities (T2D, CAD and HT). The outcome defined by ICD codes was time from drug 

initiation to diagnosis of AD. For the fluticasone and mometasone cohorts, observations without 
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diagnosis of AD were censored at the end of drug episodes. For the control cohort, the 

corresponding fluticasone episode starting date was used as the starting time. Observations 

without diagnosis of AD were censored at the corresponding fluticasone episode’s end date. 

Propensity score estimation. We define NE = north east, NC = north central, S = south, W = 

west, T2D = type 2 diabetes, HT = hypertension and CAD = coronary artery disease. The 

propensity score of taking fluticasone vs. a comparator drug was estimated by the following 

logistic regression model: 

logit[Pr(Drug = fluticasone)] = 𝛽] + 𝛽F𝐴𝑔𝑒 + 𝛽a𝐺𝑒𝑛𝑑𝑒𝑟 + 𝛽f1(𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = 𝑁𝐸) +

𝛽m1(𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = 𝑁𝐶) + 𝛽o1(𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = 𝑆) + 𝛽q𝑇2𝐷 + 𝛽t𝐻𝑇 + 𝛽v𝐶𝐴𝐷. 
(S5) 

 

Statistical analysis. The survival curves for time to AD were estimated using a Kaplan-Meier 

estimator approach. We used the large number of covariates generated throughout the process 

to address clinical scenarios evaluated in each study. Additionally, propensity score stratified 

survival analyses were conducted to investigate the risk of AD between fluticasone users and 

non-fluticasone users, as well as fluticasone users and mometasone users. Specifically, for 

each comparison, the propensity score of taking fluticasone was estimated by using a logistic 

regression model, in which the covariates included age, gender, geographical location, T2D 

diagnosis and HT diagnosis. Further, propensity score stratified Cox-proportional hazards 

models were used to conduct statistical inference for the hazard ratios (HR) of developing AD 

between cohorts.  
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Supplemental Table S1: Summary of single-cell/nucleus RNA-sequencing datasets used in 
this study. 

 GSE98989 GSE140511 GSE143758 GSE147528 GSE138852 
Organism Mus musculus Mus musculus Mus musculus Homo sapiens Homo sapiens 

Brain region whole brain whole brain hippocampus 
entorhinal cortex 

+ superior 
frontal gyrus 

entorhinal cortex 

Focused Cell 
Type microglia microglia astrocyte astrocyte astrocyte 

Batch Effect 
Correction 

Yes (with Seurat 
Integration tool) 

NA (do not 
provide sample-

batch 
information in 

data) 

Yes (Combat 
function from 

‘sva’ (Leek et al. 
2012) package 

in R) 

Yes (with Seurat 
Integration tool) 

NA (do not 
provide sample-

batch 
information in 

data) 
Cell / Nucleus 
Num (Focused 

Cell Type) 
8,277 4,389 7,748 5,599 (EC), 

8,348 (SFG) 2,119 
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Supplemental Table S2: Numbers of nuclei in disease associated microglia (DAM) and 
homeostasis associated microglia (HAM) in WT and 5XFAD mice (GSE140511). 

 5XFAD1 
(GSM4173510) 

5XFAD2 
(GSM4173511) 

5XFAD3 
(GSM4173512) 

WT1 
(GSM4173504) 

WT2 
(GSM4173505) 

WT3 
(GSM4173506) 

Nucleus Number  
HAM 272 96 298 312 205 213 
DAM 214 151 421 33 12 14 

 

Unpaired t-test 1: 

Null hypothesis: means of DAM nucleus numbers in mouse AD and WT samples are equal. 

Alternative hypothesis: mean of DAM nucleus numbers in mouse AD samples is GREATER 
than that in mouse WT samples. 

Result: t = 2.96, p-value = 0.048 

 

Unpaired t-test 2: 

Null hypothesis: means of HAM nucleus numbers in mouse AD and WT samples are equal. 

Alternative hypothesis: means of HAM nucleus numbers in mouse AD and WT samples are 
NOT equal. 

Result: t = -0.296, p-value = 0.786 
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Supplemental Table S3: Numbers of cells in disease associated microglia (DAM) and 
homeostasis associated microglia (HAM) in wild-type (WT) and 5XFAD mice (GSE98969). 

Cell Number 

 AD_P1-1 
(GSM2629341) 

AD_P1-2 
(GSM2629406) 

AD_P1-3 
(GSM2629412) 

WT_P1-1 
(GSM2629343) 

WT_P1-2 
(GSM2629418) 

WT_P1-3 
(GSM2629424) 

HAM 152 173 166 219 208 207 
DAM 13 19 36 1 0 0 

 AD_P2-1 
(GSM2629344) 

AD_P2-2 
(GSM2629407) 

AD_P2-3 
(GSM2629413) 

WT_P2-1 
(GSM2629342) 

WT_P2-2 
(GSM2629419) 

WT_P2-3 
(GSM2629425) 

HAM 177 193 195 210 268 274 
DAM 13 38 27 3 3 3 

 AD_P3-1 
(GSM2629347) 

AD_P3-2 
(GSM2629408) 

AD_P3-3 
(GSM2629414) 

WT_P3-1 
(GSM2629345) 

WT_P3-2 
(GSM2629420) 

WT_P3-3 
(GSM2629426) 

HAM 181 209 185 215 233 262 
DAM 17 19 25 4 1 4 

 AD_P4-1 
(GSM2629348) 

AD_P4-2 
(GSM2629409) 

AD_P4-3 
(GSM2629415) 

WT_P4-1 
(GSM2629346) 

WT_P4-2 
(GSM2629421) 

WT_P4-3 
(GSM2629427) 

HAM 184 225 201 213 237 267 
DAM 25 19 29 2 1 1 

  AD_P5-2 
(GSM2629410) 

AD_P5-3 
(GSM2629416)  WT_P5-2 

(GSM2629422) 
WT_P5-3 

(GSM2629428) 
HAM  174 155  239 206 
DAM  22 29  1 0 

  AD_P6-2 
(GSM2629411) 

AD_P6-3 
(GSM2629417)  WT_P6-2 

(GSM2629423) 
WT_P6-3 

(GSM2629429) 
HAM  147 139  219 240 
DAM  26 28  2 2 

 

Unpaired t-test 1: 

Null hypothesis: means of DAM cell numbers in mouse AD and WT samples are equal. 

Alternative hypothesis: mean of DAM cell numbers in mouse AD samples is GREATER than 
that in mouse WT samples. 

Result: t = 12.1, p-value = 9.11 × 10-10 

 

Unpaired t-test 2: 

Null hypothesis: means of HAM cell numbers in mouse AD and WT samples are equal. 

Alternative hypothesis: mean of HAM cell numbers in mouse AD samples is LESS than that in 
mouse WT samples. 

Result: t = -6.42, p-value = 2.16 × 10-17 
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Supplemental Table S6: Numbers of nuclei in disease associated astrocytes (DAAs) and non-
DAAs in WT and 5XFAD mice (GSE143758). The sample IDs mentioned in below matches with 
those from Supplementary Table S1 in the original literatures. 

Nucleus Number 

 
Batch1_AD1 
(HipR-AD-

G3-2w) 

Batch1_AD2 
(HipR-AD-

G1-4w)  
Batch1_WT1(HipR-

WT-G3-2w) 

Batch1_WT2 
(HipR-WT-

G1-4w) 
  

non-DAA 1,104 1,143 1,320 1,275   
DAA 329 261 25 20   

 
Batch3_AD1 
(Untreated-
Hip-S2-R) 

Batch3_AD2 
(Untreated-
Hip-S2-L) 

Batch3_AD3 
(Untreated-Hip-S1-

L) 

Batch3_WT1 
(Wt-Hip-S2-

R) 
Batch3_WT2 
(Wt-Hip-S2-L) 

Batch3_WT3 
(Wt-Hip-S1-L) 

non-DAA 122 129 291 450 336 551 
DAA 82 68 215 8 3 16 

 

Paired t-test 1: 

Null hypothesis: means of DAA nucleus numbers in mouse AD and WT samples are equal. 

Alternative hypothesis: mean of DAA nucleus numbers in mouse AD samples is GREATER than 
that in mouse WT samples. 

Result: t = 3.77, p-value = 0.0098 

 

Paired t-test 2: 

Null hypothesis: means of non-DAA nucleus numbers in mouse AD and WT samples are equal. 

Alternative hypothesis: mean of non-DAA nucleus numbers in mouse AD samples is LESS than 
that in mouse WT samples. 

Result: t = -7.08, p-value = 0.001 
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Supplemental Table S10: Numbers of nuclei in disease associated astrocytes (DAAs) and 
non-DAAs in human AD brains entorhinal cortex (EC) region with Braak stages 0, 2, and 6 
(GSE147528). 

Nucleus Number 
Braak Stage 0 

 EC1 (GSM4432646, 
Batch C) 

EC2 (GSM4432645, 
Batch C) 

EC3 (GSM4432647, 
Batch C) 

 

non-DAA 523 271 77  
DAA 16 62 14  

Braak Stage 2 
 EC4 (GSM4432648, 

Batch C) 
EC5 (GSM4432651, 

Batch B) 
EC6 (GSM4432649, 

Batch D) 
EC7 

(GSM4432650, 
Batch D) 

non-DAA 312 341 111 523 
DAA 7 1 1 137 

Braak Stage 6 
 EC8 (GSM4432653, 

Batch B) 
EC9 (GSM4432652, 

Batch B) 
EC10 

(GSM4432654, 
Batch D) 

 

non-DAA 670 1545 707  
DAA 245 23 13  

 

One-way ANOVA test 1: 

Null hypothesis: means of DAA nucleus numbers are same across different Braak stages (0,2,6) 
human brain EC samples. 

Alternative hypothesis: at least one pairs (Braak stages) of means (DAA nucleus numbers) are 
different from each other in human brain EC samples. 

Result: F = 0.53, p-value = 0.608 

 

One-way ANOVA test 2: 

Null hypothesis: means of non-DAA nucleus numbers are same across different Braak stages 
(0,2,6) human brain EC samples. 

Alternative hypothesis: at least one pairs (Braak stages) of means (non-DAA nucleus numbers) 
are different from each other in human brain EC samples. 

Result: F = 4.83, p-value = 0.048 
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Supplemental Table S11: Numbers of nuclei in disease associated astrocytes (DAAs) and 
non-DAAs in human AD brains superior frontal gyrus (SFG) region with Braak stages 0, 2, and 6 
(GSE147528). 

Nucleus Number 
Braak Stage 0 

 SFG1 
(GSM4432636, 

Batch C) 

SFG2 
(GSM4432635, 

Batch C) 

SFG3 
(GSM4432637, 

Batch C) 

 

non-DAA 585 633 445  
DAA 13 117 47  

Braak Stage 2 
 SFG4 

(GSM4432638, 
Batch C) 

SFG5 
(GSM4432641, 

Batch A) 

SFG6 
(GSM4432639, 

Batch D) 

SFG7 
(GSM4432640, 

Batch D) 
non-DAA 921 552 784 357 

DAA 56 105 56 253 
Braak Stage 6 

 SFG8 
(GSM4432643, 

Batch B) 

SFG9 
(GSM4432642, 

Batch A) 

SFG10 
(GSM4432644, 

Batch D) 

 

non-DAA 1411 552 940  
DAA 107 236 178  

 

One-way ANOVA test 1: 

Null hypothesis: means of DAA nucleus numbers are same across different Braak stages (0,2,6) 
human brain SFG samples. 

Alternative hypothesis: at least one pairs (Braak stages) of means (DAA nucleus numbers) are 
different from each other in human brain SFG samples. 

Result: F = 1.72, p-value = 0.246 

 

One-way ANOVA test 2: 

Null hypothesis: means of non-DAA nucleus numbers are same across different Braak stages 
(0,2,6) human brain SFG samples. 

Alternative hypothesis: at least one pairs (Braak stages) of means (non-DAA nucleus numbers) 
are different from each other in human brain SFG samples. 

Result: F = 1.73, p-value = 0.246 
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Supplemental Table S12: Numbers of nuclei in disease associated astrocytes (DAAs) and 
non-DAAs in human AD brains entorhinal cortex (EC) region with AD (Braak stage VI) and 
control (GSE138852). 

Nucleus Number 

 AD1-AD2 
(GSM4120429) 

AD3-AD4 
(GSM4120424) 

AD5-AD6 
(GSM4120423) 

Ct1-Ct2 
(GSM4120427) 

Ct3-Ct4 
(GSM4120426) 

Ct5-Ct6 
(GSM4120425) 

non-
DAA 1 15 144 149 706 623 

DAA 0 229 2 28 155 67 
 

Unpaired t-test 1: 

Null hypothesis: means of DAA nucleus numbers in human AD and control brain samples are 
equal.  

Alternative hypothesis: mean of DAA nucleus numbers in human AD brain samples is 
GREATER than that in human control brain samples. 

Result: t = -0.07, p-value = 0.527 

 

Unpaired t-test 2: 

Null hypothesis: means of non-DAA nucleus numbers in human AD and control brain samples 
are equal.  

Alternative hypothesis: mean of non-DAA nucleus numbers in human AD brain samples is 
LESS than that in human control brain samples. 

Result: t = -2.45, p-value = 0.059 
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Supplemental Table S16: Phenotype definitions for Alzheimer’s disease, Type 2 diabetes, 

Hypertension and Coronary artery disease. 

Alzheimer’s disease (Wei et al. 2016; Wilkinson et al. 2018) 
3310 (Alzheimer's disease), F00 (Dementia in Alzheimer disease), F000A 
(Dementia in Alzheimer disease with early onset), F001A (Dementia in Alzheimer 
disease with late onset), F002A (Dementia in Alzheimer disease, atypical or mixed 
type), F009A (Dementia in Alzheimer disease, unspecified), G30 (Alzheimer's 
disease), G300 (Alzheimer disease with early onset), G301 (Alzheimer disease 
with late onset), G308 (Other Alzheimer disease), G309 (Alzheimer disease, 
unspecified)  

 
Type 2 diabetes (Kho et al. 2012; Wei et al. 2012) 

25000 (Diabetes mellitus without mention of complication, type II or 
unspecified type, not stated as uncontrolled), 25050 (Diabetes with 
ophthalmic manifestations, type II or unspecified type, not stated as 
uncontrolled), 25002 (Diabetes mellitus without mention of complication, 
type II or unspecified type, uncontrolled), 25052 (Diabetes with ophthalmic 
manifestations, type II or unspecified type, uncontrolled), 25010 (Diabetes 
with ketoacidosis, type II or unspecified type, not stated as uncontrolled), 
25060 (Diabetes with neurological manifestations, type II or unspecified 
type, not stated as uncontrolled), 25012 (Diabetes with ketoacidosis, type II 
or unspecified type, uncontrolled), 25062 (Diabetes with neurological 
manifestations, type II or unspecified type, uncontrolled), 25020 (Diabetes 
with hyperosmolarity, type II or unspecified type, not stated as uncontrolled), 
25070 (Diabetes with peripheral circulatory disorders, type II or unspecified 
type, not stated as uncontrolled), 25022 (Diabetes with hyperosmolarity, 
type II or unspecified type, uncontrolled), 25072 (Diabetes with peripheral 
circulatory disorders, type II or unspecified type, uncontrolled), 25030 
(Diabetes with other coma, type II or unspecified type, not stated as 
uncontrolled), 25080 (Diabetes with other specified manifestations, type II or 
unspecified type, not stated as uncontrolled), 25032 (Diabetes with other 
coma, type II or unspecified type, uncontrolled), 25082 (Diabetes with other 
specified manifestations, type II or unspecified type, uncontrolled), 25040 
(Diabetes with renal manifestations, type II or unspecified type, not stated 
as uncontrolled), 25090 (Diabetes with unspecified complication, type II or 
unspecified type, not stated as uncontrolled), 25042 (Diabetes with renal 
manifestations, type II or unspecified type, uncontrolled), 25092 (Diabetes 
with unspecified complication, type II or unspecified type, uncontrolled), 
E089 (Diabetes mellitus due to underlying condition without complications), 
E1100 (Type 2 diabetes mellitus with hyperosmolarity without nonketotic 
hyperglycemic-hyperosmolar coma), E1101 (Type 2 diabetes mellitus with 
hyperosmolarity with coma), E1110 (Type 2 diabetes mellitus with 
ketoacidosis without coma), E1121 (Type 2 diabetes mellitus with diabetic 
nephropathy), E1122 (Type 2 diabetes mellitus with diabetic chronic kidney 
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disease), E1129 (Type 2 diabetes mellitus with other diabetic kidney 
complication), E11311 (Type 2 diabetes mellitus with unspecified diabetic 
retinopathy with macular edema), E11319 (Type 2 diabetes mellitus with 
unspecified diabetic retinopathy without macular edema), E113219 (Type 2 
diabetes mellitus with mild nonproliferative diabetic retinopathy with macular 
edema, unspecified eye), E113291 (Type 2 diabetes mellitus with mild 
nonproliferative diabetic retinopathy without macular edema, right eye), 
E113292 (Type 2 diabetes mellitus with mild nonproliferative diabetic 
retinopathy without macular edema, left eye), E113293 (Type 2 diabetes 
mellitus with mild nonproliferative diabetic retinopathy without macular 
edema, bilateral), E113299 (Type 2 diabetes mellitus with mild 
nonproliferative diabetic retinopathy without macular edema, unspecified 
eye), E113319 (Type 2 diabetes mellitus with moderate nonproliferative 
diabetic retinopathy with macular edema, unspecified eye), E113391 (Type 
2 diabetes mellitus with moderate nonproliferative diabetic retinopathy 
without macular edema, right eye), E113392 (Type 2 diabetes mellitus with 
moderate nonproliferative diabetic retinopathy without macular edema, left 
eye), E113393 (Type 2 diabetes mellitus with moderate nonproliferative 
diabetic retinopathy without macular edema, bilateral), E113399 (Type 2 
diabetes mellitus with moderate nonproliferative diabetic retinopathy without 
macular edema, unspecified eye), E113419 (Type 2 diabetes mellitus with 
severe nonproliferative diabetic retinopathy with macular edema, 
unspecified eye), E113491 (Type 2 diabetes mellitus with severe 
nonproliferative diabetic retinopathy with macular edema, right eye), 
E113492 (Type 2 diabetes mellitus with severe nonproliferative diabetic 
retinopathy with macular edema, left eye), E113493 (Type 2 diabetes 
mellitus with severe nonproliferative diabetic retinopathy without macular 
edema, bilateral), E113499 (Type 2 diabetes mellitus with severe 
nonproliferative diabetic retinopathy without macular edema, unspecified 
eye), E113519 (Type 2 diabetes mellitus with proliferative diabetic 
retinopathy with macular edema, unspecified eye), E113591 (Type 2 
diabetes mellitus with proliferative diabetic retinopathy without macular 
edema, right eye), E113592 (Type 2 diabetes mellitus with proliferative 
diabetic retinopathy without macular edema, left eye), E113593 (Type 2 
diabetes mellitus with proliferative diabetic retinopathy without macular 
edema, bilateral), E113599 (Type 2 diabetes mellitus with proliferative 
diabetic retinopathy without macular edema, unspecified eye), E1136 (Type 
2 diabetes mellitus with diabetic cataract), E1139 (Type 2 diabetes mellitus 
with other diabetic ophthalmic complication), E1140 (Type 2 diabetes 
mellitus with diabetic neuropathy, unspecified), E1142 (Type 2 diabetes 
mellitus with diabetic polyneuropathy), E1143 (Type 2 diabetes mellitus with 
diabetic autonomic (poly)neuropathy), E1144 (Type 2 diabetes mellitus with 
diabetic amyotrophy), E1149 (Type 2 diabetes mellitus with other diabetic 
neurological complication), E1151 (Type 2 diabetes mellitus with diabetic 
peripheral angiopathy without gangrene), E1152 (Type 2 diabetes mellitus 
with diabetic peripheral angiopathy with gangrene), E1159 (Type 2 diabetes 
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mellitus with other circulatory complications), E11610 (Type 2 diabetes 
mellitus with diabetic neuropathic arthropathy), E11618 (Type 2 diabetes 
mellitus with other diabetic arthropathy), E11620 (Type 2 diabetes mellitus 
with diabetic dermatitis), E11621 (Type 2 diabetes mellitus with foot ulcer), 
E11628 (Type 2 diabetes mellitus with other skin complications), E11630 
(Type 2 diabetes mellitus with periodontal disease), E11641 (Type 2 
diabetes mellitus with hypoglycemia with coma), E11649 (Type 2 diabetes 
mellitus with hypoglycemia without coma), E1165 (Type 2 diabetes mellitus 
with hyperglycemia), E1169 (Type 2 diabetes mellitus with other specified 
complication), E118 (Type 2 diabetes mellitus with unspecified 
complications), E119 (Type 2 diabetes mellitus without complications),  
E1300 (Other specified diabetes mellitus with hyperosmolarity without 
nonketotic hyperglycemic-hyperosmolar coma), E1310 (Other specified 
diabetes mellitus with ketoacidosis without coma), E1311 (Other specified 
diabetes mellitus with ketoacidosis with coma), E1322 (Other specified 
diabetes mellitus with diabetic chronic kidney disease), E1329 (Other 
specified diabetes mellitus with other diabetic kidney complication), E1339 
(Other specified diabetes mellitus with other diabetic ophthalmic 
complication), E1349 (Other specified diabetes mellitus with other diabetic 
neurological complication), E1351 (Other specified diabetes mellitus with 
diabetic peripheral angiopathy without gangrene), E13628 (Other specified 
diabetes mellitus with other skin complications), E1365 (Other specified 
diabetes mellitus with hyperglycemia), E1369 (Other specified diabetes 
mellitus with other specified complication), E138 (Other specified diabetes 
mellitus with unspecified complications), E139 (Other specified diabetes 
mellitus without complications)  

Hypertensions (Federman et al. 2005; Banerjee et al. 2012) 
4010 (Malignant essential hypertension), 4011 (Benign essential hypertension), 
4019 (Unspecified essential hypertension), I10 (Essential (Primary) Hypertension), 
I169 (Sequelae of cerebrovascular disease) 

 
Coronary artery disease (Federman et al. 2005; Abul-Husn et al. 2016; Smilowitz 

et al. 2016) 
410 (Acute myocardial infarction), 411 (Other acute and subacute forms of 
ischemic heart disease), 412 (Old myocardial infarction), 4131 (Prinzmetal angina), 
414 (Other forms of chronic ischemic heart disease), I20 (Angina pectoris), I21 (ST 
elevation (STEMI) and non-ST elevation (NSTEMI) myocardial infarction), I22 
(Subsequent ST elevation (STEMI) and non-ST elevation (NSTEMI) myocardial 
infarction), I23 (Certain current complications following ST elevation (STEMI) and 
non-ST elevation (NSTEMI) myocardial infarction (within the 28 day period)), I24 
(Other acute ischemic heart diseases), I25 (Chronic ischemic heart disease) 

 

 



 21 

   

 
 

Supplemental Figure S1: Discovery of disease-associated microglia (DAM) specific molecular networks 
using a scRNA-seq dataset (GSE98969). (A) UMAP plot of clustering 10,836 CD45+ cells into 13 sub-
groups: red dash-circled cluster denoting the homeostasis associated microglia (HAM) and pink dash-
circled cluster denoting the DAM. (B) Expression levels (stacked violin plots) of representative marker 
genes (up-regulation in DAM: Cst7 and Lpl and down-regulation in DAM: P2ry12 and Cx3cr1) in different 
clusters; (C) Extracted cell subtype DAM specific molecular network includes 69 nodes (proteins) and 97 
edges (protein-protein interactions [PPIs]). Node sizes are proportional to their corresponding |log2FC|. 
Node color is coded by known immune pathways from the KEGG database. Edge color is coded by 
experimental evidences of PPIs. Key immune modulators related to AD are highlighted by bold text. 
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Supplemental Figure S2: Nucleus / cell distributions in different immune cell subtypes in both AD mouse 
model and human AD brain samples. Nucleus / cell abundance for homeostasis associated microglia 
(HAM) and disease associated microglia (DAM) clusters in both wild-type (WT) and 5XFAD mouse 
models (A) from snRNA-seq dataset – GSE140511 and (B) from scRNA-seq dataset – GSE98969. (C) 
Bar plot of nucleus abundance in both disease-associated astrocyte (DAA) and non-DAA clusters 
considering both WT and 5XFAD mice (GSE143758). (D-E) Bar plot of nucleus abundance in both DAA 
and non-DAA clusters considering human AD brains (GSE147528) with Braak stages 0, 2, and 6 with 
respect to 2 brain regions – (D) entorhinal cortex (EC) and superior frontal gyrus (SFG). (F) Bar plot of 
nucleus abundance in both disease-associated astrocyte (DAA) and non-DAA clusters considering both 
human AD brains and healthy controls (GSE138852). Detailed results are presented in Supplemental 
Tables S2,S3,S6,S10-S12. 
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Supplemental Figure S3: Differentially expressed genes (DEGs) and pathway enrichment analyses for 
disease associated microglia (DAM) in 2 AD mouse model datasets. Differential expressed gene analyses 
(volcano plot) were compared between DAM and homeostasis associated microglia (HAM) in (A) 
GSE140511 (Supplemental Table S4) and (B) GSE98969 (Supplemental Table S5). (C) Pathway 
enrichment analysis (Supplemental Table S4) for GSE140511. (D) Pathway enrichment analysis 
(Supplemental Table S5) for GSE98969. 
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Supplemental Figure S4: Differentially expressed genes and pathway enrichment analysis for disease 
associated astrocytes (DAAs) built from the AD transgenic mouse model (GSE143758). (A) Stacked violin 
plot displaying the expression patterns of 9 representative genes across different astrocyte sub-clusters. 
(B) Pathway enrichment analysis presented by 13 enriched KEGG immune system pathways 
(Supplemental Table S7). (C) Differential expressed gene analysis (volcano plot) between DAAs and non-
DAAs in 5XFAD mice. 
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Supplemental Figure S5: Differentially expressed genes and pathway enrichment analysis for disease 
associated astrocytes (DAAs) built from 6 human AD brains and 6 healthy controls (GSE138852). (A) 
Stacked violin plot displaying the expression patterns of DAA marker genes across different astrocyte sub-
clusters. (B) Pathway enrichment analysis presented by 6 enriched KEGG immune system pathways 
(Supplemental Table S8). (C) Differential expressed gene analysis (volcano plot) between DAAs and non-
disease associated astrocytes (non-DAAs) among human brain samples. 
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Supplemental Figure S6: Expression levels (UMAP plots) of human DAA marker genes (up-regulation in 
DAA: GFAP, CD44, HSPB1 and TNC, and down-regulation in DAA: SLC1A2, SLC1A3, GLUL, NRXN1, 
CADM2, PTN and GPC5) in all astrocyte sub-clusters with respect to AD human brains. (A) brain region: 
entorhinal cortex (EC) and (B) brain region: superior frontal gyrus (SFG). Data source: GSE147528. 
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Supplemental Figure S7: Differentially expressed genes and pathway enrichment analyses for disease 
associated astrocytes (DAAs) built from human AD patient snRNA-seq data (GSE147528). (A-B) Pathway 
enrichment analyses (Supplemental Table S9) for molecular networks built from (A) entorhinal cortex (EC) 
and (B) superior frontal gyrus (SFG). Differentially expressed gene analyses (volcano plot) between DAAs 
and non-disease associated astrocytes (non-DAAs) in patients’ 2 brain regions: (C) entorhinal cortex (D) 
superior frontal gyrus. 
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Supplemental Figure S8: Network visualization and pathway enrichment analysis for disease associated 
astrocyte (DAA) and disease associated microglia (DAM). (A) A module illustrating the network-based 
relationship between DAA and DAA immune genes associated with AD-related metabolites. (B) Venn 
diagram of enzymes from DAA and DAM. (C) Pathway enrichment of 77 enzymes in DAA and DAM. 
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