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Figs. S1 to S5 

Other Supplementary Material for this manuscript includes the following: 

Movies S1 to S3 



Gene Primer1 Primer2 

scn1lab allele1 (scn1labnv978) AAACTCTTCCTCTTTCTGTTGAGC GTGCAGCTGGAAAGCCCTAT 

scn1lab allele2 (scn1labsa16474) GCCTGTGCTGTGATTGGTTG CGAACTCAGTCTAGACCCCC 

disc1nv1142 GCTCAACAGGTGGTGTGAAT AGCTGGTTAATCGGCTCAGA 

Table S1: Genotyping Primers. 





Figure S1 | Single gene mutations do not affect speed during group assay. (a) Larval and juvenile zebrafish swim 
in bouts, with an overall increase in speed for older animals. (b) A mutation in the scn1lab gene (allele1) leads to more 
dispersed groups, only in 7 dpf larvae (PFisher≈0.03, N+/+ = 11, N+/-=6 groups) and has no effect on group alignment. 
(c) Our data did not allow us to report a speed difference between mutant and wild-type animals, but speed is always
larger in older animals. (d) Correlation of alignment and aggregation in scn1laballele1 7 (top row) and 21 dpf (bottom row)
fish. Our data did not allow us to report a correlation between alignment and aggregation  at 7 dpf (top), while 21 dpf
Mutant scn1laballele2

+/- fish (bottom right) show a positive correlation, similar to the results seen in scn1laballele1
+/- (Fig.

1g). (e) Left: At 7 dpf scn1laballele1
+/- fish show an increase in the tendency to turn away from visual clutter, whereas at

21 dpf scn1laballele2
+/- fish show a reduced tendency to turn towards high visual clutter. Right: The integral of the curves

on the left symmetrized such that repulsion from clutter is negative and attraction is positive.



Figure S2 | More detailed behavioral features and modeling results for the random dot motion integration assay 
for 7 dpf larvae. (a) The same analysis of experimental data as in Fig. 2b–d but for scn1laballele1 mutant fish. The 
phenotypes of a mutation in this allele quantitatively match the ones for scn1laballele2

. (b) Probability correct over time 
for different coherence levels shows that both scn1lab+/- mutants have an increased average probability correct and 
slower integration dynamics compared to scn1lab+/+ sibling controls. For disc1-/- mutants, the response dynamics 
relative to disc1+/+ sibling controls does not change. (c) Turning angle probability density distribution shows that 
scn1lab+/- mutant animals have a slightly higher tendency to make turns (30°-60°) than wild-type control siblings. (d) 
Turning angle probability density distributions for 0 % coherence (non-moving) dots for mutant animals and their sibling 
controls. (e–h) Same analyses as in (a–d) but for the optimized models (same models as in Fig. 2f–h). In general, the 
model captures the phenotypes for scn1laballele2 and the overall dynamics of the probability correct as a function of time. 
It also qualitatively reproduces the turning angle probability density distributions. Color saturation indicates coherence 
level (from less saturated to more saturated: 0%, 25%, 50%, and 100%). Darker colors indicate sibling controls. Red 
and green lines are scn1lab+/- fish, respectively. Violett lines indicate disc1-/- fish. N = 34, 27, 44, 36, 21, and 16 fish for 
genotypes scn1laballele1

+/+, scn1laballele1
+/-, scn1laballele2

+/+, scn1laballele2
+/-, disc1+/+, and disc1-/-, respectively, in a–d. N = 

12 models (different optimization repeats) for each genotype in (e–h). All error bars are ±sem. Same fish and models 



as in Fig. 2b–d,f–h. 



Figure S3 | Multi-objective optimization strategy on surrogate data. (a,b) Schematic of the integrator and decision-
making model. Motion evidence with perceptual noise (σ) is integrated by a leaky integrator with a time constant (τ). 
When the integrated value is below the decision threshold (T), the model creates forward swims with a probability of 
pbelow (blue dots). Otherwise, it makes turns (orange dots) with a probability of pabove. (c) Flow diagram of the 
evolutionary multi-objective optimization strategy. The algorithm starts with a population of randomly chosen individuals 
(parameter sets) and uses evolutionary principles to iteratively propagate models across generations. Models are 
chosen based on 5 multi-objective behavioral features, without needing to weigh them. We determine the general 
reliability and quality of the fitting algorithm by trying to uncover a few hidden model parameter combinations used to 
create artificial surrogate datasets. (d1–d5) The five behavioral features used as error functions during the multi-
objective optimization (same analysis as in Fig. 2b–d and Fig. S2b,c). These example traces were created using the 
manually chosen parameter set given by the red dots for model 1 in panel f. (e) Evolution of error over generations for 
the 5 error functions. After a few generations, these error values converge to nearly zero. The compromise error (a 



range-corrected weighted sum of all 5 error functions, see methods) requires more generations to converge. (f) Minimal 
error for the 5 error functions and the compromise error for the first and last generation for 12 optimization repeats and 
4 example surrogate data sets. In the last generation, all 12 optimization repeats lead to almost identical error values. 
(g) Estimated parameters for the 4 example models. Optimization repeats are indicated with open black circles. The
target parameter used to create the surrogate dataset is indicated with the red circle. The optimization algorithm can
reliably reveal the hidden variables. (h1–h5) Simulation results of the optimized model following parameter optimization
using the surrogate dataset of model 1 as a target (d1–d5). The objectives between the two simulations precisely match.



Figure S4 | Mutant larval zebrafish have specific algorithmic alterations in their ability to integrate motion 
signals. (a) Value of the compromise error function of the best individual in the initial generation and after 80 
generations. 12 optimization runs and 6 target genotypes (3 mutants with respective sibling controls). (b) Estimated 
model parameter values of the best individual for each genotype and optimization run.; N = 12 model optimization 
repeats. Small open circles are individual repeats, bigger open circles are median parameter values. 



Figure S5 | Retinal motion projections and parameter robustness of our agent-based model.  (a–b) Depiction of 
example turning “forces” generated by a fish moving in the vicinity. Turning forces are determined by first computing 
the angular size of the protection of the movement of the other fish. We then multiply the strength of this force with a 
turning weight, as a function of retinal position (c). (d,e) Model performance represented as average group aggregation 
(d) and alignment (e). for systematic variations of the parameters threshold (T) and time constant (𝜏). We started with
the original parameters (Fig. S4) from our agent-based model (Fig. 4) and multiplied them with 5 different scaling
factors (1 indicates that the parameter is not scaled). Values are shown as differences from shuffled control groups
(see methods). Group structure in most pronounced for large time constants (𝜏) and small threshold (T) values. 


