Science Advances

Supplementary Materials for

Therapeutic targeting of SLC6A8 creatine transporter suppresses colon cancer progression and modulates human creatine levels

Isabel Kurth*, Norihiro Yamaguchi, Celia Andreu-Agullo, Helen S. Tian, Subhasree Sridhar, Shugaku Takeda, Foster C. Gonsalves, Jia Min Loo, Afsar Barlas, Katia Manova-Todorova, Robert Busby, Johanna C. Bendell, James Strauss, Marwan Fakih, Autumn J. McRee, Andrew E. Hendifar, Lee S. Rosen, Andrea Cercek, Robert Wasserman, Michael Szarek, Scott L. Spector, Syed Raza, Masoud F. Tavazoie*, Sohail F. Tavazoie*

*Corresponding author. Email: isabel.kurth@inspirna.com (I.K.); masoud.tavazoie@inspirna.com (M.F.T.); stavazoie@rockefeller.edu (S.F.T.)

Published 6 October 2021, *Sci. Adv.* 7, eabi7511 (2021) DOI: 10.1126/sciadv.abi7511

This PDF file includes:

Figs. S1 to S6 Tables S1 and S2

Fig. S1. RGX-202 inhibits liver colonization of metastatic CRC and pancreatic cell lines (A) Bioluminescence plot of liver colonization by $5x10^5$ human Lvm3b metastatic colon cancer cells after intra-splenic injections into NOD-SCID mice. Treatment with control or RGX-202-formulated diet started on day 1, for the duration of the experiment. Mice were imaged on day 22 after injection. Photon flux ratio is the ratio of bioluminescence signal at day 14 normalized to the signal on day 0; n = 4 per group, p = 0.0286. (B and C) Bioluminescence plot of liver colonization by $5x10^5$ human PANC1 pancreatic cells that were pre-treated with RGX-202 at 10 mM for 48h, after intra-splenic injections into NSG mice. Photon flux ratio (B) is the ratio of bioluminescence signal at day 28 normalized to the signal on day 0; n = 5, p = 0.0079. P values are based on Mann-Whitney test. (D) Bioluminescence plot of liver colonization by $5x10^5$ Lvm3b cells expressing either CRISPR control or CRISPR CKB constructs. Mice received daily i.p. injections of PBS control or RGX-202 (650mg/kg). (E) Gross liver images derived from (D). Photo Credit: Jia Min Loo, the Rockefeller University (B); Norihiro Yamaguchi, the Rockefeller University (E).

Fig. S2. Anti-tumor efficacy to RGX-202 is associated with induction of tumor apoptosis and inhibition of proliferation

(A to F) HCT-15 (A to C) or NCI-H508 (D to F) tumors were extracted from animals that were treated with RGX-202-01 (800 mg/kg) or control diet (A, D, n = 7-11/group) and were immunostained for cleaved-caspase 3 (CC3) or Ki67 and counterstained with DAPI (B and E). Graphs depict quantification of CC3 positive area or the number of Ki67 positive cells in RGX-202 or control diet treated HCT-15 (C) or NCI-H508 (F) tumors. N = 3 tumors per group +/-SEM. Scale bar (B and E) 200 μ m.

Fig. S3. Anti-tumor efficacy of RGX-202 in combination with 5-FU and irinotecan

(A) Tumor growth of 1.5×10^5 CT26 cells subcutaneously injected into BALB/c mice. As soon as tumors reached an average of 50 mm³, mice were randomly distributed and received either a control diet, RGX-202-01-supplemented diet (~500 mg/kg, p = 0.092) or a combination of 5-FU (i.p. 30 mg/kg/week) and irinotecan (i.p. 15 mg/kg/week) (p = 0.064) or a combination of RGX-202-01, 5-FU and irinotecan (p = 0.0006); n= 7-8 per group; shown are mean +/-SEM; All p values are based on two-sided t tests; *p = 0.02. (B) Body weight curves of BALB/c mice harboring CT26 tumors. Mice were treated with RGX-202 administered by oral gavage (500 mg/kg) or formulated in chow (500 mg/kg) and body weights were measured twice/week; n = 7-11/cohort.

Fig. S4. Xenograft tumor studies

Tumor growth of 4 x 10⁶ NCI-N87 (p = 0.027), 2 x 10⁶ HepG2, 5 x 10⁶ Colo205 (p = 0.042) and 1 x 10⁶ Lvm3b (p<0.0001) cells subcutaneously injected into athymic nude mice. Treatment with a control or RGX-202/RGX-202-01-supplemented diet (~800 mg/kg/day) started as soon as tumors reached 10-60 mm³; n = 8-10 per group. All p values are based on two-sided t tests; n.s. = not significant. Shown are mean +/- SEM.

Fig. S5. Linear regression analysis demonstrates anti-tumor efficacy of RGX-202 in CKB high expressing cell lines

(A to C) Linear regression analyses of the percentage of tumor growth inhibition (TGI) as a function of SLC6A8 mRNA (A), TGI as a function of CKB H-score (B) and CKB mRNA levels as a function of CKB H-score (C) in the tumors of the xenograft models tested. mRNA levels were measured by qPCR. Each dot represents the mean value of data points from one xenograft model, n=4-6 tumors/xenograft model. (**D**) qPCR analysis of CKB, CKM, CKMT1 and CKMT2 in the xenograft models tested. Relative expression is shown in Δ Ct values; n = 7-11 models; 4-5 tumors/models. Shown is the average +/- SEM. (**E** to **G**) Linear regression analysis of TGI as a function of CKM mRNA (E), CKMT1 mRNA (F) and CKMT2 (G) tumoral mRNA levels.

one xenograft model, n=4-5 tumors/xenograft model. (H-I) Linear regression analyses of the TGI and the fold change of cleaved caspase-3 (H) or Ki67 (I) positive tumor area assessed by IHC in RGX-202-01-treated tumors relative to control tumors; n = 3 tumors/model. Each dot represents the mean value of data points from one xenograft model.

Fig. S6 CKB expression in patient specimen and healthy tissue

(**A** and **B**) CKB expression was assessed by IHC in 23 metastatic CRC specimens. Quantification of TPS is shown in (A) and representative images are shown in (B). (L) Human tumor microarray (TMA) comprising 10 healthy tissues were immunostained with CKB and counterstained with hematoxylin. Scale bar (B and C) 200 μ m; except brain and IgG control, 400 μ m. (**D**) Organ-based physiological CKB mRNA expression levels from the Genotype-Tissue Expression (GTEx) database in human specimen. Horizontal bars in box plots show 25, 50, and 75 percentiles.

Table S1. PDX models utilized in the PDX trial

Summary of PDX tumor growth data, KRAS and BRAF status. TGI(21) = Tumor growth

inhibition on Day $21 = ((C_{21}-C_0)/C_{21}) - ((T_{21}-T_0)/T_0)$. Change in tumor size relative to control.

Cancer Type	ID	TGI(21)	Change in tumor size	KRAS	BRAF
CRC	CR5039	-3.67	147%	WT	WT
CRC	CR3280	-3.74	141%	p.G12R	D22N
CRC	CR5053	-2.78	71%	p.A146V	WT
CRC	CR2554	-1.03	44%	p.G12V	WT
CRC	CR5032	-1.91	41%	p.G13D	WT
CRC	CR6251	-2.79	29%	WT	WT
CRC	CR5066	-0.61	24%	p.G12C	WT
CRC	CR5075	-1.23	17%	WT	V600E
CRC	CR5033	-0.47	14%	WT	WT
CRC	CR5080	0.50	6%	p.G12D	WT
CRC	CR5081	-0.15	1%	p.G12D	WT
CRC	CR1287	0.04	0%	p.G12D	WT
CRC	CR5059	-0.18	-2%	WT	V600E
CRC	CR3151	0.23	-2%	p.G12A	WT
CRC	CR2491	0.26	-4%	p.G12V	WT
CRC	CR5052	0.11	-5%	WT	V600E
CRC	CR5046	0.43	-8%	p.G12R	WT
CRC	CR6460	2.26	-14%	p.Q61L	WT
CRC	CR5082	0.35	-16%	WT	V600E
CRC	CR6863	0.55	-19%	WT	V600E
CRC	CR5043	0.57	-26%	p.G13D	WT
CRC	CR3085	3.28	-27%	WT	WT
CRC	CR5058	1.81	-32%	WT	WT
CRC	CR5044	1.69	-32%	WT	WT
CRC	CR5048	1.00	-33%	p.G12C	WT
CRC	CR5038	-0.07	-34%	p.Q61H	WT
CRC	CR5101	1.10	-36%	WT	WT
CRC	CR2526	1.01	-42%	WT	WT
CRC	CR5040	6.75	-42%	p.G12V	WT
CRC	CR2179	3.34	-45%	WT	V600E
CRC	CR6249	3.08	-45%	WT	WT
CRC	CR11372	1.79	-47%	WT	WT
CRC	CR6256	3.82	-48%	p.G12C	WT
CRC	CR1795	9.37	-48%	WT	WT
CRC	CR5026	2.94	-49%	WT	V600E
CRC	CR3079	3.01	-49%	p.G12D	WT
CRC	CR3099	4.05	-49%	p.G12D	WT
CRC	CR2533	4.18	-51%	WT	WT
CRC	CR5030	4.43	-51%	WT	WT
CRC	CR3448	5.94	-56%	p.G12D	WT
CRC	CR2110	5.72	-63%	p.G12S	WT
CRC	CR5062	6.37	-66%	p.G12D	WT
CRC	CR1451	14.05	-83%	p.G12C	WT

Table S2. Information on cell lines

Anti-tumor efficacy and mutational status of the cell lines used in the xenograft studies. TGI =

Tumor growth inhibition.

Cancer Type	Cell line	TGI	CKB TPS	KRAS	BRAF	p53	Mismatch repair mutations
CRC	HCT-8	80%	75	G13D			MSH6
CRC	Lvm3b	85%	87	G12D	V600E		MSH3
CRC	HCT116	58%	100	G13D			MLH1, MSH2, MSH3, MSH6
CRC	HCT15	47%	0	G13D		S241F	MSH2, MSH6
CRC	SW480	45%	65	G12V		R273H	wild type
CRC	HT29	39%	100	WT	V600E	R273H	MLH1, MLH2
CRC	Colo205	26%	0	WT	V600E		
CRC	NCI-H508	9%	2	WT		R273H	
Gastric	NCI-N87	38%	14	WT		R248Q	
Gastric	Hs746T	8%	0	WT		K319	
Hepatic	HepG2	19%	3	WT			