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Referees' comments: 
 
Referee #1 (Remarks to the Author): 
 
In this manuscript, the authors present a single nucleus DNA methylation dataset of over 110K nuclei 
from 45 regions of the mouse brain. In addition to a very useful resource for the field, they report some 
interesting findings. They identified 161 cell clusters with distinct spatial locations and projection targets 
and showed that the methylation landscape of excitatory neurons in the cortex and hippocampus varied 
continuously along spatial gradients. They further integrated the DNA methylomes with the single cell 
chromatin accessibility to predict the enhancer-gene interaction for given cell types and combined the Hi-
C dataset to annotate the regulatory genome of those cell types from the mouse brain. This is a 
comprehensive datasets and will be very useful for the field. I have several comments for the authors to 
improve their manuscript. 
 
Specific comments: 
1. Summary: The authors used NeuN-based sorting and analyzed mostly neuronal methylome at the 
single-cell level (92%) and only 8% cells were NeuN- non neuronal cells. The coverage of non neuronal 
cell types is much less compared to neurons and it is not the focus of the current study. This information 
should be clear in the summary for the general readers. 
2. In the introduction, some references should be cited. The first paper identified nonCpG in the brain is 
PMID: 22608086. The first paper identified MeCP2 as the nonCpH reader is PMID: 24362762, which was 
then characterized in detail in PMID: 28498846. It should be also acknowledge that 5hmC is highly 
abundant in the brain and will not be differentiated from 5mC in the current study. 
3. What reference source did the author use to annotate the cell types from the methylation data? 
4. Please provide QC comparison on sn-m3C-seq, sn-mC-seq2, sc-ATAC-seq, in terms of how many 
reads/cell, genes/cell, Pearson correlation among individual sample as a supplementary table. 
5. The authors need to do a better job to sequentially refer to figures in the text. For example, Fig. 2a 
and 2b wwere not mentioned before Fig. 2c. 
6. It will be useful to validate methylation detection for both mCG sites and mCH sites in a cell-type 
specific context using a different approach. 
7. When mapping methylome data using bismark with bowtie, did the author allow mismatching? How 
many mismatched was accepted? This is particularly important for mCH calling. 
8. For the ANP anp-dg cluster, are they most similar to DG granule neurons? 
9. Can the authors provide example of functional validation of their predicted enhancer-gene pairs? 
10. The high overlapping of DMRs and open chromatin regions in the hippocampus confirmed the idea 
that the open chromatin regions are mostly cis-regulatory regions, but not necessary confirmed the 
correct match of cell-type identities. The author should modify their statement or give more explanation. 
11. The analysis on key transcriptional factor identification in specific cell types is interesting. 
Considering the low expression level of TFs in single cell RNA-seq dataset, the analysis in this study 
provide a unique angle on cell-type specification. It will be interesting to perform an integrated analysis 
on those candidate TFs’ ChIP-seq dataset. 
12. Is the role of mCG and mCH in cell type specification different or similar? Are there any genomic 
region of DMRs, like promoters, enhancers, TSSs or gene bodies, play predominant roles? 
13. For sn-m3C-seq analysis, were nuclei sorted by NeuN? 
14. Several genes show a gradient of expression along the dorsal-ventral (septo-temporal) axis in the 



 

adult mouse gyrus, for example sfrp3 (PMID: 26337530). How does the methylation status of these 
genes look like in UMAP (Fig. 5g)? 
15. Are there sufficient cells to train the artificial neural network to predict non neuronal cells? Do non 
neuronal cells exhibit strong region specificity? 
 
 
 
Referee #2 (Remarks to the Author): 
 
Summary 
 
Liu and Zhou et al. present a large-scale epigenetic landscape of the mouse brain in single cells. 
Specifically, more than 100,000 nuclei from 45 annotated regions within the cortex, hippocampus, 
striatum, palladium, and olfactory spaces. This manuscript in conjunction with associated companion 
manuscripts, take multiple "views" of the same tissue using previously published epigenetic and 
structural 'omics approaches at varying resolutions to provide a more comprehensive analysis of the 
data. Overall, the data and analysis are well carried out and address a critical need in the field. As 
evidenced by the multiple companion manuscripts, the sheer scale of the data and necessary analyses 
are somewhat prohibitive in a single paper to move to more granular understanding and validation of 
predicted subtypes. Nevertheless, this paper represents a critical resource that will be generally of 
interest to the field. Further, the authors should be commended for making the data and code available 
for such a valuable resource, although the sn-m3C-seq data seem to be missing from the NeMO website; 
I was only able to find the snmc-seq data. There is also a visualization website that presents the data in 
a more accessible form. However, with this volume and high dimensionality of the data, it is clear that 
they faced similar challenges of many such large-scale papers, where it is often hard to get into the 
granularity, and cover enough details. 
 
 
Main comments: 
 
1) Binning: Lines 112 to 114 discuss the level of methylation coverage represented across the mouse 
genome in 100-kb bins being on average 95% with gene bodies at 81% on average. This is highly 
confusing and somewhat misleading as currently written, since the data were summarized into 100-kb 
bins and the discrepancy between genome-wide and gene body percentages is unclear. Each cell 
received about 1.5M reads (after filtering), or ~6% of the genome. Using 100-kb bins helps reducing the 
impact of such sparsity in the data, but at the 100-kb size range, different information is captured than 
at more granular levels. Long-range effects such as PMD hypomethylation will tend to dominate, while 
smaller features such as CpG islands, promoters, and enhancers will be lost. Despite the binning, heavy 
imputation was needed nonetheless (and performed; Line 742 onwards). It seems the global mean of the 
cell was used as the prior. The rationale for this choice is not clear. If anything, it should be the mean 
per locus across the cells. And why impute features with less cov (coverage?, not covariance or 
coefficient of variation, correct?) to have a mean methylation level value close to 1? It would be helpful 
to show the number of CpG or CpH sites covered by at least one read, since tiling the genome at a single 
resolution introduces a bin-size bias in the representation of the data. There may be added value to 
varying the bin sizes and combining them for a more multi-scale view of the data, as opposed to PMD-
level binning, given the size of the data. That being said, going back and reanalyzing for TF motifs and 
DMRs/DMGs was great and does address this concern to some extent. 
 
2) Filtering: The filtering choices are not always clear. For example, 100-kb genomic bin features were 
filtered by removing bins with mean total cytosine base calls < 250 or > 3000. It makes sense to filter 
the sparse bins, but why filter bins with high coverage? Is this an attempt to remove CpG islands? 
Samples were filtered based on a mCCC rate of 3%. It is not clear that this is good enough for studies 
that focus on mCH methylation, where the average level falls well below 3%. In addition, another filter of 



 

20% mCH was applied. It is curious that after the 3% mCCC filtration there would still be cells with 
>20% mCH methylation (how often?). This would actually indicate that there’s true CpH methylation in 
those cases? 
 
3) Neuron Classification: How are the excitatory and inhibitory neurons classified in Figure 1b and 1c? 
These are ad hoc drawn clusters so presumably a priori information was used to delineate these cell 
types. However, this is not described well in the manuscript. This is critical given it is the highest level in 
the hierarchical clustering performed that underlies the main conclusions of the paper. 
 
4) The authors should be commended for their robust exploration of clustering parameters by a grid 
search for hyperparameter (namely the resolution parameter) tuning - however it remains unclear how 
the cluster labels for each level of iterative cluster were generated with regards to cell type/subtype. 
 
5) The initial data matrix construction of PCs for downstream clustering analysis was done using the 
elbow method, which is somewhat arbitrary. How many PCs were chosen? The plots of variance 
explained for the mc rates, along with an indication of the cutoff used, need to be shown as a 
supplemental figure for possible reproducibility. Additionally, splitting up the CG and CH methylation into 
separate matrices, performing PCA, and concatenating the matrices is unclear in the motivation to do so. 
Specifically, the correlation structure between the two types of methylation is destroyed despite having 
biological ties to one another. The correlation between the PCs from CG and CH also should be shown to 
understand the degree to which this correlation exists between them. Why not use NMF or ICA as an 
initialization using the full matrix (e.g. both CG and CH normalized bins)? Finally, why initialize with PCA 
as opposed to the normalized, 100kb binned methylation values since the binning approach drastically 
reduces the total number of features per cell, which is often the goal of data compression with something 
like PCA? 
 
6) The use of a neural network to simultaneously predict subtypes and dissection regions is great. 
However, the motivation or need to use a neural network for the prediction approach versus something 
more interpretable like a penalized regression model is not clear. This would allow a somewhat more 
direct interpretation of the contribution of individual features. Does the neural network outperform the 
use of somewhat "simpler" regression models? 
 
7) DMRs: The total number of significant DMRs found is startling - using a permutation based goodness 
of fit approach is intriguing, but the ability to control type I error is unclear with so many sites and 
cells/subtypes. This needs to be commented on to discuss the possible impact of false discovery rate in 
such a large-scale analysis. Using randomly sampled groups there were 2,003 DMRs, as shown in Fig 5H, 
and removing them from the gradient DMR set was an interesting approach but the logic is not entirely 
clear. One would not expect the same false positives in both experiments, likely also the reason for the 
minimal overlap. What is the FDR rate (2,003/how many total)? Knowing the FDR rate and keeping the 
whole set is going to be more informative than removing a mere 0.04% overlap with DMRs from 
scrambled setup. 
 
8) The use of gene-body CpH methylation as a surrogate for inverse expression levels, and correlating it 
with CpG DMRs as surrogate or regulatory elements is clever. However, gene-body CpG methylation is 
positively correlated with gene expression. Why not use the more abundant (and therefore higher signal-
to-noise ratio) CpG methylation, rather than the noisier CpH methylation? More importantly, CpH level is 
dependent on cell type and there are cell types with much lower level or no detectable CpHs. Gene body 
CpH levels in those cells are overall lower than those with high DNMT3A (and high global CpH), but not 
directly associated with host gene expression level difference. Also, it was stated that there were sn-
RNA-seq data, and I feel those data could have been better used in this part of analysis - it could have 
been used for expression in this model, or if not, for assessing the suitability of gene body CpH and CpG 
methylation as surrogates for expression in this analysis, or as validation for discoveries. 
 



 

9) The use of “rate” for methylation levels throughout the manuscript is confusing, since the word “rate” 
implies a time-dependent function. In most cases, the word “rate” could be replaced by the word 
“fraction”. I realize that the authors have used this terminology in past papers, but I am not enthusiastic 
about promoting this usage. Scientists studying other types of genomic events have moved away from 
the use of the word “rate” and tend to use words like “density”, “frequency”, or “load”, as in genomic 
mutational density per Mb, as opposed to mutation rate, which would instead be per cell division or time 
unit. 
 
10) sn-m3C-seq: R1 and R2 reads were mapped separately, and they then claimed a higher mapping 
rate than previous methods. However, mapping separately would achieve that. They split up the 
unmapped reads into first 40bp, middle segment and final 40bp, likely to deal with the 3C part. There 
may not be that many options with Bismark, but HiC data processing methods may reveal smarter ways 
of doing this than just the 40bp split - e.g. searching for ligation site etc. It is not clear how they dealt 
with chimeric reads generated by Klenow to distinguish them from chromatin contacts. 
 
11) Controls: The authors should be commended for including controls for most analyses. However, 
sometimes the control did not seem to be used properly (the Figure 5h example above), or the results 
were not impressive compared to controls. For example, in Figure 4k, the observed data (22-23 is not 
very high level of enrichment compared to random (16.5). Similar with 4h. Statistical significance is one 
thing and easy to achieve when there are so many data points in the genome, but if the effect size is not 
that big it calls into question how good the algorithm actually is. Sometimes controls are not included 
when they could. e.g., mCCC plots as controls for bisulfite conversion in a lot of the mCH analyses. 
 
 
Minor comments: 
 
1) Lines 134-136 about using UMAP to visualize differences based on cell location is unclear given that 
UMAP optimizes a cost function for both local and global distances rendering "location" somewhat 
confounded with the general classification of different brain regions. Were global distances weighted in 
the UMAP embeddings to account for spatial distance? 
 
2) Line 152 suggesting high RNA expression of Unc5c given the low methylation - this needs to be 
evaluated in terms of actual gene expression from the Allen Brain Institute scRNA-seq brain atlas. 
 
3) Line 243, how was 0.3 chosen as a reasonable threshold for impact score and thus, gene assignment 
to each branch in the tree? 
 
4) Line 768, the word "significant" is used without any association with a p-value or other significance 
value. 
 
5) Some of the results were puzzling and not explained very well. For example, why would CpH 
methylation correlate with # of intra-domain contacts? Does the same trend show up if mCCCs are 
plotted instead of CpH? Or in Fig. 4h, why would the number of enhancer-gene pairs differ so much 
between the two cell types? Or, in Fig 3i and 3k - why are the TF motifs different for CpH-DMGs and 
CpG-DMRs for the same cluster? 
 
6) In figure 3A, 2 of the 3 CG-DMRs for BCL11b seemed to be at about 50% methylated in cell type B. 
This seems to suggest cell type B is still heterogeneous (or this gene is monoallelicly methylated). Since 
this is single cell data, can the authors look within B and see if it was indeed a mixture of methylated and 
unmethylated cells in B, or if it was monoallelic methylation. 
 
7) In figure 2, m/n/p panel colors - do these stand for subtype assignments? Many colors are so similar 
that it is hard to assess the UMAPs 



 

Author Rebuttals to Initial Comments: 

Referee #1 (Remarks to the Author): 
 
In this manuscript, the authors present a single nucleus DNA methylation dataset of over 
110K nuclei from 45 regions of the mouse brain. In addition to a very useful resource for 
the field, they report some interesting findings. They identified 161 cell clusters with 
distinct spatial locations and projection targets and showed that the methylation 
landscape of excitatory neurons in the cortex and hippocampus varied continuously along 
spatial gradients. They further integrated the DNA methylomes with the single-cell 
chromatin accessibility to predict the enhancer-gene interaction for given cell types and 
combined the Hi-C dataset to annotate the regulatory genome of those cell types from 
the mouse brain. This is a comprehensive dataset and will be very useful for the field. I 
have several comments for the authors to improve their manuscript. 
R1.1 
We thank the reviewer for appreciating the significance and impact of our manuscript and 
providing helpful comments to improve our study. In response to the reviewer’s concerns 
raised below, our major efforts have focused on constructing a comprehensive web 
application (http://neomorph.salk.edu/omb) to help the general audience access the 
description and marker genes of the cell types we annotated and expanding the 
discussion on the cell types we described. Specifically, we added more discussion on the 
methylation gradient of dentate gyrus granule cells, which suggests the genes showing 
methylation variation that correlated with global mCH changes are related to granule cell 
maturation. Below we provide detailed responses to each of the comments. 

 
Specific comments: 

 
1. Summary: The authors used NeuN-based sorting and analyzed mostly neuronal 
methylome at the single-cell level (92%), and only 8% of cells were NeuN- nonneuronal 
cells. The coverage of non-neuronal cell types is much less compared to neurons, and it 
is not the focus of the current study. This information should be clear in the summary for 
the general readers. 
R1.2 
We have added the following sentence to the summary paragraph to clarify the number 
of neuron/non-neuronal cells: 

 
“We carried out a comprehensive assessment of the epigenomes of mouse brain cell 
types by applying single nucleus DNA methylation sequencing to profile 103,982 nuclei 
(including 95,815 neurons and 8,167 non-neuronal cells) from 45 regions of the mouse 
cortex, hippocampus, striatum, pallidum, and olfactory areas.” 

http://neomorph.salk.edu/omb


 

 
2. In the introduction, some references should be cited. The first paper identified nonCpG 
in the brain is PMID: 22608086. The first paper identified MeCP2 as the nonCpH reader 
is PMID: 24362762, which was then characterized in detail in PMID: 28498846. 
R1.3.1 
We have added these important references to the introduction. 
(Note from the authors about “the first paper to describe nonCpG in the brain”.  After 
revisiting the reviewers suggested citation (PMID: 2260806), we found this study to 
irrelevant to the topic. The paper (PMID 2260806) describes profiling of 5hmC in 
embryonic stem cells using the TAB-seq technology, no brain tissue was profiled in the 
manuscript. Instead we have cited Hon et al. (PMID: 23995138) for mouse brain and 
Lister et al. for human brain (PMID: 23828890) as the appropriate citations) 

 
It should also be acknowledged that 5hmC is highly abundant in the brain and will not 
be differentiated from 5mC in the current study. 
R1.3.2 
We have added a paragraph in the discussion as follows: 

 
“Notably, snmC-seq2 is a sodium bisulfite-based method which does not distinguish 
between 5-methylcytosine and 5-hydroxymethylcytosine (Huang et al., 2010), which has 
been shown to accumulate to significant levels in certain brain regions (Khare et al., 2012; 
Szulwach et al., 2011). New high-throughput methods will be needed to simultaneously 
measure the full complement of cytosine base modifications in single brain cells.” 

 
3. What reference source did the author use to annotate the cell types from the 
methylation data? 
R1.4 
For annotation purposes, we did not use a single database but instead used a 
combination of well-described marker genes, dissection location, and gating 
information from sorting. Below we describe the information used for cell-type 
annotation. All details about cell type annotation can be found in Supplementary Table 
7. To help the general audience better access these detailed annotations, we have 
developed a web application to interactively visualize the gene-level DNA methylation and 
metadata of single cells (e.g., browser page for IT-L2/3, 
http://neomorph.salk.edu/omb/cell_type?ct=IT-L23). Each cell type has a corresponding 
data browser, whose URL can also be found in the Supplementary Table 7. 

 
1. Cell class (level 1 clustering) annotation. 
We annotated non-neuronal cells based on both the NeuN- gate origin and low global 
mCH fraction (Fig. R1). Given the strong anti-correlation between CH methylation and 

https://paperpile.com/c/FAJPwh/e0sO
https://paperpile.com/c/FAJPwh/QeYY%2BGI0H
https://paperpile.com/c/FAJPwh/QeYY%2BGI0H
https://paperpile.com/c/FAJPwh/QeYY%2BGI0H
http://neomorph.salk.edu/omb/cell_type?ct=IT-L23


 

gene expression, we used hypo-CH-methylation at gene bodies ± 2 kb (-2 kb from TSS 
and +2 kb from TES) of pan-excitatory markers such as Slc17a7, Sv2b and pan-inhibitory 
markers such as Gad1, Gad2 (Fig. R2) to annotate excitatory and inhibitory cell classes, 
respectively. 

 

Fig. R1. Non-neuronal cell class identification. a, b, L1-UMAP embedding of all cells 
pass QC (n=103,982), colored by NeuN+/- gate information during FANS (a) and cell 
global mCH fraction (b). c, scatter plot of major cell type mean NeuN-% (x-axis) and global 
mCH fraction (y-axis), non-neuronal cell types have low global mCH and high NeuN-%. 
 

 



 

 

Fig. R2. Pan-excitatory and pan-inhibitory marker genes. Colors showing z-score (per row) of 
major cell types’ gene body mean mCH fraction. 

 
2. Major type (level 2) and subtypes (level 3) annotations. 
Here we used gene body ± 2 kb hypo-CH-methylation (or hypo-CG-methylation for non-
neurons) of well-known marker genes along with dissection information to annotate 
neuron and non-neuron clusters. All cluster marker genes are listed in Supplementary 
Table 7, together with the description of the cluster names and references to the marker 
gene information. The major cell types were annotated based on well-known marker 
genes reported in previous studies (Habib et al., 2016; Krienen et al., 2019; Lein et al., 
2007; Luo et al., 2017; Tasic et al., 2018; Yao et al., 2020; Zeisel et al., 2018). Whenever 
possible, we name these clusters with canonical names (e.g., IT-L23, L6b) or using 
descriptive names that reflect the specific spatial location of the cluster (e.g., EP, CLA, 
IG-CA2). For subtypes, we named the clusters via its parent major type name followed 
by a short description or just a subtype marker gene name. 
 

https://paperpile.com/c/FAJPwh/4Wxg%2BazPO%2BubbW%2Bvo3t%2BcSQB%2BJXDY%2Bh14X
https://paperpile.com/c/FAJPwh/4Wxg%2BazPO%2BubbW%2Bvo3t%2BcSQB%2BJXDY%2Bh14X


 

The above information has been added to the Methods. A description of the new web 
application for browsing these data has been added to the main text and the data 
availability section of the manuscript: 

 
“A web application (Brain Cell Methylation Viewer) is provided to aid in visualization of 
cell- and cluster-level methylation data (http://neomorph.salk.edu/omb), as well as to 
access annotations and descriptions of marker genes for each cluster.” 

 
We will continue to improve this tool by adding more additional information as it becomes 
available along with detailed documentation. 

 
4. Please provide QC comparison on sn-m3C-seq, sn-mC-seq2, sc-ATAC-seq, in terms 
of how many reads/cell, genes/cell, Pearson correlation among individual samples as a 
supplementary table. 
R1.5 
We thank the reviewer for this suggestion. We now provide QC metrics for snmC-seq2 
(Supplementary Table 5) and snm3C-seq (Supplementary Table 8) cells, including the 
number of reads/cell, the number of genes detected/cell and other essential mapping 
metrics for each technology, respectively. The data generation, mapping, and QC metrics 
for snATAC-seq data are detailed in the companion paper by Li et al.(Li et al., 2020) 

 
For snmC-seq2, the final number of reads/cell is 1.54 ± 0.63 million (Mean ± SD, 
Extended Data Fig. 2c). The number of genes detected/cell is 45,193 ± 4,598 (81% of 
total genes annotated in GENCODE vm22). Pearson correlations among individual 
samples were provided in Supplementary Table 4 and plotted in Extended Data Fig. 2d. 
The correlation between replicates ranged from 0.883 to 0.998. 

 
For snm3C-seq, the final number of reads/cell is 1.56 ± 0.64 million, the number of genes 
detected/cell is 44,492 ± 5,319. snm3C-seq is based on snmC-seq2 protocol(Lee et al., 
2019), therefore, the mapping metric is very similar. For the chromatin contact modality, 
the long-range cis contact number is 152 ± 61 k (both ends of the fragment mapped to 
the same chromosome with insertion size > 1 kb), the cis-trans ratio is 2.03 ± 0.42 (# cis 
contact / # trans contact). 

For snATAC-seq, the preprocessing and quality control steps were described in Li et al.(Li 
et al., 2020) In brief, the number of fragments per cell is 4,930 ± 4,109. The number of 
genes detected/cell is 2,398 ± 1,400. 

 
5. The authors need to do a better job to sequentially refer to figures in the text. For 
example, Fig. 2a and 2b were not mentioned before Fig. 2c. 

http://neomorph.salk.edu/omb
https://paperpile.com/c/FAJPwh/ULjv
https://paperpile.com/c/FAJPwh/ULjv
https://paperpile.com/c/FAJPwh/ZHcC
https://paperpile.com/c/FAJPwh/ZHcC
https://paperpile.com/c/FAJPwh/ZHcC
https://paperpile.com/c/FAJPwh/ULjv
https://paperpile.com/c/FAJPwh/ULjv


 

R1.6 
We thank the reviewer for pointing out the discrepancy in the sequence order of figures. 
We have revised the text and figures to ensure that the order of figure panels match their 
first mention in the text. The changes are: 

1. In Fig.1, we swapped the four anatomical schematics panels with the UMAP and 
sunburst chart. 

2. In Fig. 2, we added the description of Fig. 2a and b, and swapped Fig. 2j and k. 
3. In Fig. 3, we rewrote the description to sequentially refer to each panel. 

 
6. It will be useful to validate methylation detection for both mCG sites and mCH sites in 
a cell-type-specific context using a different approach. 
R1.7 
Since bisulfite sequencing is considered the gold standard for DNA methylation detection, 

we used whole-genome bisulfite sequencing on purified cell types (Mo et al., 2015) to 
validate the cell type specificity of our single-cell sequencing and clustering approaches. 
UMAP embedding of methylomes from bulk purified excitatory neurons, PV and VIP 
neuron nuclei and snmC-Seq2 data showed excellent correspondence among all of the 
major types (Fig. R3a). Based on both mCH and mCG profiles, the strong correlations 
were observed between the bulk and single-cell samples (Fig. R3b). These results 
validated the detection of mCG and mCH at the major cell type level. 

https://paperpile.com/c/FAJPwh/9aBz
https://paperpile.com/c/FAJPwh/9aBz


 

Fig. R3. Validation of cell-type-specific methylation pattern with bulk methylomes. 
a, The UMAP embedding of snmC-Seq2 cells in our study (n=104,340) together with bulk 
methylomes from purified neural types (n=3) using both mCH and mCG. The major types 
relevant to the bulk cell types are colored and the other major types are greyed. b, The 
Pearson correlation coefficient between the major types and the bulk methylomes across 
3,000 highly variable 100 kb bins using mCH (top) and mCG (bottom). The two replicates 
of bulk methylomes were shown separately. 

 
7. When mapping methylome data using bismark with bowtie, did the author allow 
mismatching? How many mismatches were accepted? This is particularly important for 
mCH calling. 
R1.8 
We used default parameters of bismark (v0.20.0 and bowtie2 v2.3.4) that allowed 
mismatches (--score_min L,0,-0.2) in the final alignments but did not allow mismatch in 
seed alignments (-N 0). For final alignments, “--score_min L,0,-0.2” roughly corresponds 
to four mismatches per read, which is already more stringent than bowtie2’s default 
setting (L,-0.6,-0.6). In addition, all sources of possible mismatches are well-controlled, 
as described below. 

 
Bismark parameters 
In bismark, the parameter “--score_min L,0,-0.2”, i.e. f(x) = 0 + -0.2 * x (where x is the 
read length) is for lowest alignment score. For a trimmed read of ~127bp, this would mean 
that a read can have the lowest alignment score of -25 before an alignment would become 
invalid, roughly four mismatches. Bismark uses a three-base mapping strategy to map 
the fully converted three-base reads onto similarly converted three-base genomes 
(Krueger and Andrews, 2011). Therefore, only reads with bisulfite converted mutations 
(C to T in the forward strand or G to A in the reverse strand) will be fully aligned without 
mismatches in the bismark mapping step, regardless of how many bisulfite-converted 
mutations it has. All distinguishable mismatches are non-bisulfite mismatches. 

 
Source of non-bisulfite mismatches are well-controlled 
The non-bisulfite mismatches that might impact alignment or methylation calling of the 
reads come from 1) SNPs, 2) technical sequencing errors (such as SNP/Indel caused 
by random primer  and adaptase, or low-quality bases), and  3) bisulfite 
conversion-related non-bisulfite mismatches (mismatch positions which have a C in the 
BS-read but a T in the genome, which may occur due to the way bisulfite read 
alignments  are performed, see the documentation  of  bismark 
https://rawgit.com/FelixKrueger/Bismark/master/Docs/Bismark_User_Guide.html#iv-run 
ning-bismark-methylation-extractor). 

 

https://paperpile.com/c/FAJPwh/eQOn
https://rawgit.com/FelixKrueger/Bismark/master/Docs/Bismark_User_Guide.html#iv-running-bismark-methylation-extractor
https://rawgit.com/FelixKrueger/Bismark/master/Docs/Bismark_User_Guide.html#iv-running-bismark-methylation-extractor


 

SNPs impact methylation calling in heterozygous organisms (e.g., humans), but our 
study used inbred mice. Therefore, The source of variance is well-controlled. 

 
To minimize technical sequencing errors in the snmC-seq2 reads, we trimmed the reads 
before mapping, as described in Luo et al.(Luo et al., 2018) to remove any low-quality 
bases (q>20). After trimming, 66.2% ± 3.0% of the reads were uniquely mapped by 
bismark which is comparable to previous PBAT based bulk (66.3%)(Miura et al., 2012) or 
single cell (64.7% ± 2.6%)(Luo et al., 2018) mouse WGBS-seq. The high mapping rate 
indicates the good quality of the trimmed reads. 

 
For the last case, the bisulfite conversion-related non-bisulfite mismatches only account 
for 0.07% - 0.09% of the total mismatches (counted from 50 high-quality random cells). 
This small portion indicated that most of the alignments were selected from the correct 
alignment combination by bismark. Note that this type of mismatch was also discarded in 
methylation calling. 

 
Non-bisulfite mismatches not likely confounding mCH/mCG calling 
Finally, mismatches happening in the base following a cytosine might impact methylation 
context thus causing error in mC calling: changed from A, C, T to G (CH to CG) or from 
G to A, C, T (CG to CH). We counted such changes in 50 high-quality random cells and 
found such changes are infrequent and neglectable: 0.17% - 0.21% (CH to CG / all CG 
sites) and 0.01% - 0.02% (CG to CH / all CH sites). 

 
8. For the ANP anp-dg cluster, are they most similar to DG granule neurons? 
R1.9 
This cluster is mainly dissected from DG and is very similar to DG granule cells (see 
below). In addition, the ANP anp-dg were labeled as non-neuronal cells due to a low 
global mCH / CH fraction and their large proportion (41% of the cells) in the NeuN- gate 
during FANS (Fig. R1 in R1.4). 

 
In the level 1 UMAP embedding (Fig. R4a), we noticed that the “ANP anp-dg” cells have 
a continuous link to the DG granule neurons while the other ANP subtype “ANP anp-olf-
cnu” links to the olfactory inhibitory neurons (OLF). Both DG and OLF are known to be 
related to adult neurogenesis (Ming and Song, 2011). The UMAP embedding and the 
partial NeuN- identity of these ANP cells indicate these cells may be the adult neuron 
precursor populations for DG and OLF, respectively. 

 
The spatial location of these ANP cells further supports their precursor identity. The “ANP 
anp-dg” cells mostly come from DG dissection (Fig. R4b, c), corresponding to the 
subgranular zone (SGZ) within the dentate gyrus of the hippocampus where 
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neurogenesis happens (Ming and Song, 2011). The “ANP anp-olf-cnu” cells mainly come 
from olfactory and striatum dissection regions that overlap with the Rostral Migratory 
Stream (RMS), a tube-like structure that starts from the subventricular zone (SVZ) of the 
lateral ventricles and ends at the olfactory bulb (Fig. R4d). 

 
Fig. R4. Spatial distribution of the ANP cells. a, b, L1-UMAP embedding of related cell types 
(n=7878) colored by subtype (a) or sub-region (b). c, bar plots showing dissection region 
composition of the two ANP subtypes. d, adult mouse brain schematic adapted from (Ming and 
Song, 2011). 

 
9. Can the authors provide an example of the functional validation of their predicted 
enhancer-gene pairs? 
R1.10 
We appreciate the reviewer's comment but providing functional validation of enhancer-
gene interactions in the context of our cell-type atlas is beyond the scope of our study. 
Recent functional enhancer studies in mice limb development (Osterwalder et al., 2018) 
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and the human neural stem cell line (Geller et al., 2019) both indicated that enhancer 
redundancy is common in mammalian genomes. Multiple enhancers interacting with the 
same gene confer phenotypic robustness to deletion or perturbation of individual 
enhancers (Geller et al., 2019; Osterwalder et al., 2018). As a result, knock-out (or 
inhibition through CRISPRi) of single specific enhancers may not be sufficient to reveal 
their true target genes. This feature reveals the complexity of enhancer-gene regulation; 
therefore, providing in vivo functional validation of enhancer-gene pairs would need 
substantial new experiments that we believe are beyond this study’s scope. 

 
10. The high overlapping of DMRs and open chromatin regions in the hippocampus 
confirmed the idea that the open chromatin regions are mostly cis-regulatory regions, but 
not necessarily confirmed the correct match of cell-type identities. The author should 
modify their statement or give more explanation. 
R1.11 
We agree with the reviewer that only showing the overlap between DMR and peaks in 
specific clusters is not sufficient to support the correct match of clusters. Therefore, we 
further plotted the mCG fraction and chromatin accessibility level of each set of DMRs 
across all hippocampus subtypes (Fig. R5). The same set of regions show similar cell-
type-specificity in both modalities, which together with the overlap score (Fig. 2o) 
indicates the correct matching of cell-type identities. 

 
We added Fig. R5 as Extended Data Figure 5c and revised the text of the results  related 
to Fig. 2p as follow: 

 
“We then performed co-clustering of the integrated data and calculated Overlap Scores 
(OS, see Methods) between the original methylation subtypes (m-types) and the 
chromatin accessibility subtypes (a-types, from Li et al.), which further quantified the 
matching of subtypes between the two modalities (Fig. 2o, Extended Data Fig. 5b, 
Supplementary Table 7). In addition, the CG-DMRs highly overlap with open chromatin 
peaks in corresponding subtypes of the hippocampus (Fig. 2p). Their mCG fractions and 
chromatin accessibility levels show similar cell-type-specificity across hippocampus 
subtypes, confirming the correct match of cell-type identities (Extended Data Fig. 5c).” 
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Fig. R5. mCG fraction (left) and chromatin accessibility (right) of cluster-specific CG-
DMRs (columns) in hippocampus subtypes (rows). 
 

4. The analysis on key transcriptional factor identification in specific cell types is interesting. 
Considering the low expression level of TFs in the single-cell RNA-seq dataset, the 
analysis in this study provides a unique angle on cell-type specification. It will be 
interesting to perform an integrated analysis on those candidate TFs’ ChIP-seq datasets. 
R1.12 
We greatly appreciate the reviewers’ acknowledgment of this unique aspect of our study. 
However, Existing ChIP-seq datasets generated from different tissues or developmental 
stages do not overlap with the cell type class and brain regions. We found only one 
example ((RARB ChIP-seq (GSM1656748)) in adult mouse brain ventral striatum 
(Niewiadomska-Cimicka et al., 2017) that fits with data in our study. Integration of the 
RARB dataset reveals that distal peaks identified in bulk ChIP-seq are in excellent 

 agreement with our cell-type-specific hypo-mCG and gene body hypo-mCH. Specifically, 
the Rarb gene is highly expressed in the mouse striatum and is an important regulator of 
normal striatal functions (Zetterström et al., 1999). As expected, the gene body of Rarb 
shows specific hypo-mCH in striatal major neuronal cell types, including “MSN-D1”, 
“MSN-D2”, “D1L-Fstl4”, “D1L-PAL”, “Foxp2” etc. (Fig. R6a, b, and in the web application 
here: http://neomorph.salk.edu/omb/gene?gene=Rarb). We overlapped peaks identified 
from the ChIP-seq with eDMRs identified in our study. Consistent with its   gene   body   
methylation   pattern,   the   binding peaks  of  the  RARB  protein  are specifically enriched 
in the hypo-eDMRs of corresponding cell types (one-sided Fisher’s exact test with 
Benjamini-Hochberg correction, see FDRs in Fig. R6c and ChIP-seq peaks’ mCG / CG in 
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Fig. R6d). 
 

Fig. R6. RARB ChIP-seq integration. a, b, subtype level normalized gene body mCG 

(a) and mCH (b) fraction of RARB gene. c, -log10(FDR) of the RARB ChIP-seq peak 
enrichment in each cell-type-specific hypo-DMR region. d, heatmap of ChIP-seq peaks’ 
mCG / CG at 161 subtypes. 

 
11. Is the role of mCG and mCH in cell-type specification different or similar? Are there 
any genomic regions of DMRs, like promoters, enhancers, TSSs or gene bodies, play 
predominant roles? 
R1.13 
We interpret the “role” of mCH and mCG as the level of the cell-type-specific information 
contained in each methylation type in a specific set of genomic regions. To quantify this 
level, we used the ratio of between-cluster variance versus within-cluster variance for 
different methylation types in each region set. Based on the new analysis described 
below, we found that the mCG has higher cell type-specificity than mCH in distal 
enhancer-like regions. In contrast, the gene-body mCH in neurons is more cell-type-
specific than gene-body mCG. Neither methylation type shows strong cell-type-specificity 
in promoter and CGI regions. To study the “mechanistic role” of mCG and mCH in cell-
type specification would require developmental and functional experimental data, which 
we believe is beyond the scope of this study. 
 



 

Region sets definition 

First, we define the region sets as follow: 1) “Gene”: all protein-coding gene body region 
defined in GENCODE vm22; 2) “CGI”: mm10 CpG island regions downloaded from UCSC 
table browser on July 1st, 2020; 3) “Promoter”: TSS ± 2 kb of each protein-coding gene 
transcripts defined in GENCODE vm22; 4) “enhancer (eDMR)”: we selected all eDMRs 
from subtypes related to the dataset we used (see below) and removed any regions that 
overlapped with “Promoter” or “CGI”. 5) “enhancer (peak)”: since the eDMR regions were 
identified based on CpG differential methylation analysis, which might be biased in 
comparing different methylation types, here we also added the ATAC peaks from Li et al. 
(Li et al., 2020) as another enhancer-like region set. The peaks were identified using 
snATAC-seq data only and removed any region that overlapped with “Promoter” or “CGI.” 
We calculated the methylation fractions in CH and CG context of all these regions in each 
cell from two replicates of the MOp-2 dissection as examples (each replicate has ~1,200 
nuclei passing QC). 

 
Comparing mCH and mCG 

We then used these methylation fractions to calculate ratios of between/within-cluster 
variance. For each region set, the between-cluster variance 𝑣𝑣𝑣𝑣𝑣𝑣𝑏𝑏 is calculated as the 
variance of the mean of each cluster; the within-cluster variance 𝑣𝑣𝑣𝑣𝑣𝑣𝑤𝑤 is calculated as the 
variance across all cells, after subtracting the cluster mean. A higher ration (𝑣𝑣𝑣𝑣𝑣𝑣𝑏𝑏/𝑣𝑣𝑣𝑣𝑣𝑣𝑤𝑤) 
means the methylation fraction of that region contains larger cluster-specific variance. We 
then calculate the Cumulative Distribution Function (CDF) of the ratios for each set of 
genomes regions for cross-comparison (Fig. R7). 
 
In promoter and CGI regions (Fig. R7a, b), we found that both mCH and mCG fractions 
have smaller ratios than other region sets. This low level of cell-type-specificity agrees 
with the previous report that these regions are hypo-methylated consistently in adult 
tissues and do not preserve much cell type or tissue-specific methylation patterns 
(Roadmap Epigenomics Consortium et al., 2015; Schultz et al., 2015). 

 
In contrast, distal enhancer-like elements defined by both eDMR and ATAC peaks (Fig. 
R7c, d) show substantially higher ratios, indicating stronger cell type-specific methylation 
patterns in enhancers compared to promoters and CGIs. Also, in these enhancer-like 
regions, mCG has higher cell type-specificity than mCH (Fig. R7c, d). 
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In gene bodies, the distribution of mCH and mCG is different in neurons and non-neurons 
(Fig. R7e, f). The ratio calculated with neurons indicates that mCH consists of higher 
variance across cell types than mCG. Such differences become minor when calculating 
the ratio using non-neurons, whose mCH level is also much lower than neurons. 
Fig. R7. Between-cluster variance vs. within-cluster variance ratio in different sets of genome 

regions. Please see the illustration on the left. 

 
12. For sn-m3C-seq analysis, were nuclei sorted by NeuN? 
R1.14 
We did not perform NeuN sorting for the snm3C-seq experiment; all cell-types were 
profiled in these experiments. We also added this sentence in the method section: 

 
“Nuclei were then stained with Hoechst 33342 (but not stained with NeuN antibody) and 
filtered through a 0.2µM filter and sorted similarly to the snmC-seq2 samples.” 

 
13. Several genes show a gradient of expression along the dorsal-ventral (Septo-
temporal) axis in the adult mouse gyrus, for example, sfrp3 (PMID: 26337530). How does 
the methylation status of these genes look like in UMAP (Fig. 5g)? 
R1.15 
We  plotted  the  gene  body  mCH  and  mCG  level  of  several  ventral  genes  (e.g., 
Sfrp3/Frzb) and dorsal genes (e.g., Abcb10) (Zhang et al., 2018) on our DG UMAP, and 
no methylation gradient patterns were observed (Fig. R8a). We also looked at these 
genes in Zhang et al., where both bulk RNA-Seq and bisulfite sequencing were performed 

https://paperpile.com/c/FAJPwh/TJbn2


 

in manually dissected dorsal and ventral DG. Both Frzb and Abcb10 are dorsal-ventral 
DEGs, but no corresponding dorsal-ventral DMRs can be identified surrounding their 
gene bodies (Fig. R8b). These data are consistent with our findings, indicating that the 
differential expression of Frzb or Abcb10 is not associated with changes of DNA 
methylation. 

 
Given that the brains were dissected into 600-micron coronal slices in our study, we do 
not have a gold-standard label of the dorsal-ventral axis of DG. Nevertheless, to more 
thoroughly explore whether the DG methylation gradient corresponds to known dorsal-
ventral methylation differences, we compared our data with the published dorsal/ventral 
methylome (Zhang et al., 2018). As described in the previous version of our manuscript, 
we divided the granule cells into four groups based on their global  mCH, and identified 
DMRs between the groups whose mCG levels were positively correlated with global mCH 
(+DMRs) or negatively correlated with global mCH (-DMRs). We found that 15% of the 
dorsal-hypo DMRs from Zhang et al. (Zhang et al., 2018) overlapped with +DMRs (P < 
0.001 ave. shuffle overlap 3.0 ± 0.1%), and 4% of the dorsal-hypo DMR overlapped with 
-DMRs (P < 0.001, ave. shuffle overlap 1.7 ± 0.1%) (Fig. R8f). Similarly, 13% of the 
ventral-hypo DMRs overlap with -DMRs (P < 0.001, ave. shuffle overlap 0.06 ± 0.02%) 
(Fig. R8f). Together, these moderate but significant overlaps imply that the axis of global 
mCH gradient is partially explained by the traditionally defined dorsal-ventral axis. It would 
require corresponding dissections, or spatially-resolved single-cell epigenetic data to 
comprehensively evaluate the methylation differences along the dorsal-ventral axis of DG 
granule cells. 
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Fig. R8. Supporting information for the dorsal-ventral DEGs. a, L3-UMAP colored by mCH and 
mCG fraction of Frzb (first column) and Abcb10 (second column). b, genome browser
 from Zhang et al 
(https://brainome.ucsd.edu/annoj/mm_dentate_ee_sh/browser.html), showing mCH, mCG and 
RNA expression level surrounding Frzb and Abcb10. c, dorsal-ventral DMRs identified from Zhang 
et al. overlapping with +/- DMRs (f) in our DG cells. 

 
Finally, we examined what the implications of the global mCH gradient could be. Our 
hypothesis is the global mCH difference may be related to the maturation of granule cells. 
Previous studies have also demonstrated the accumulation of global mCH during the 
development of different brain structures (He et al., 2020; Lister et al., 2013). 

 
To further explore whether mCH gradients are related to granule cell maturation, we 
selected genes that are enriched for +DMRs in their gene bodies (+DMRgenes) or 
enriched for -DMRs (-DMRgenes), and then examined the expression of these genes 
across development time points. We used a scRNA-seq dataset (Dataset C in 
Hochgerner et al.) that contains 24,185 DG cells from eight developmental time points 
(E16.5-P132). Eight cell types were selected from the original study, including radial glia-
like cells (RGL), neuronal intermediate progenitor cells (nIPC), neuroblast, immature, and 
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mature granule cells, which cover the whole developmental trajectory of granule cells. 
Intriguingly, the +DMRgenes and -DMRgenes have substantially different dynamic 
expression patterns across the eight cell types along their developmental trajectories. The 
+DMRgenes have higher expression in the immature cell types than mature cell types, 
while the -DMRgenes show the reverse trend (Fig. R9a-c). This finding indicates the 
+DMRgenes and -DMRgenes may be repressed and activated during granular cell 
maturation, respectively. Two example genes Rfx3 and Tcf4 are shown in more detail to 
better illustrate the consistent trend between methylation gradient and developing RNA 
expression profile (Fig. R9d, e). 

 
In summary, these results are consistent with our hypothesis that young DG granule cells 
have low global mCH, and low methylation at genes associated with neural precursors. 
Older DG granule cells have accumulated greater global mCH, and have low methylation 
at genes associated with mature neurons. 

 
 

 

 



 

 
Fig. R9 +/- genes are developmentally associated. a, violin plot summarizing cluster mean CPM of +/-
genes in the eight clusters identified in Hochgerner et al. b, c, cluster mean-centered CPM of individual 
genes in eight clusters. Clusters are ordered based on their position in developmental trajectory from left 
to right, i.e., from immature to mature. d,e, Two examples from +gene Tcf4 (left) and -gene Rfx3 (right). 
From top to bottom showing 1) gene model; 2) two DMR groups; 3) mCG fraction (range 0-1) of the DG cell 
groups and the “ANP dg-all” subtype; 4) mCH fraction (range 0-0.03) of the DG cell groups and the “ANP 
dg-all” subtype; 5) normalized gene body mCG fraction of granule cells (n=6,179); 6) RNA expression level 
of the developing DG scRNA-seq dataset, image downloaded from http://linnarssonlab.org/dentate/ 

4. Are there sufficient cells to train the artificial neural network to predict nonneuronal 
cells? Do nonneuronal cells exhibit strong region specificity? 
R1.16 
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We thank the reviewer for this suggestion. After further examination of the non-neuronal 
cell data, we indeed have evidence that non-neuronal cell types also exhibit regional 
specificity. By incorporating non-neuronal cells into the ANN model, we observed an 
average accuracy of 95% to predict cell types, and 42% to predict their anatomic location. 
The accuracy to predict region specificity is highly dependent on the cell type. Specifically, 
we noted stronger predictability in astrocytes (ASC, 62%) and oligodendrocytes (ODC, 
52%) that are comparable to cortical inhibitory neurons, while weaker predictability 
comparable to random in the other non-neuronal types (OPC, 13%; MGC, 2%; Others, 
17%). The sample sizes of oligodendrocyte progenitor cells and microglia are comparable 
with the subtypes of ASC and ODC. Thus, the differences of performances are less likely 
due to insufficient cell numbers. It is worth noting that unsupervised clustering did not 
separate non-neuronal cells from different regions into different clusters, which further 
emphasizes the utility of supervised analyses to study the regional specificity of these cell 
types. 

 
These results are further supported by previously published literature. It has been 
reported that astrocytes are derived from regionally patterned radial glia (Bayraktar et al., 
2014), while the signature of oligodendrocytes depends on the local environment rather 
than their progenitor cells (Floriddia et al., 2019). Indeed, we observed a high 
performance of region prediction for ODC, but baseline level performance in OPC. These 
results demonstrated that ASC and ODC show moderate regional specificity, while OPC 
and other non-neural cells do not. We have updated the main text and corresponding 
figure in Extended Data Fig. 11 to include this analysis. 

 
“We also observed moderate spatial specificity of non-neuronal cells. With the same 
network structure and features, we achieved 42% accuracy to predict the cell body 
location of non-neuronal cells. The accuracy depends highly on the cell types, with 
stronger predictability in astrocytes (ASC, 62%) and oligodendrocytes (ODC, 52%) that 
are comparable to cortical inhibitory neurons (Extended Data Fig. 11d). This is further 
supported by the evidence that astrocytes are derived from regionally patterned radial 
glia(Bayraktar et al., 2014), while the signature of oligodendrocytes depends on the  local 
environment(Floriddia et al., 2019). It is worth noting that unsupervised clustering did not 
separate non-neuronal cells from different regions into different clusters, which further 
emphasizes the utility of supervised analyses to study the regional specificity of these cell 
types.” 
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Fig. R10. The dissection region prediction accuracy of nonneuronal cells. The colored points 
denote the prediction accuracy of the model, while the grey ones denote the random guess 
accuracy when cell subtypes and corresponding spatial distributions are given. 

 

 

Referee #2 (Remarks to the Author): 
 
Summary 

 
Liu and Zhou et al. present a large-scale epigenetic landscape of the mouse brain in 
single cells. Specifically, more than 100,000 nuclei from 45 annotated regions within the 
cortex, hippocampus, striatum, palladium, and olfactory spaces. This manuscript in 
conjunction with associated companion manuscripts, take multiple "views" of the same 
tissue using previously published epigenetic and structural 'omics approaches at varying 
resolutions to provide a more comprehensive analysis of the data. Overall, the data and 
analysis are well carried out and address a critical need in the field. As evidenced by the 
multiple companion manuscripts, the sheer scale of the data and necessary analyses are 
somewhat prohibitive in a single paper to move to more granular understanding and 
validation of predicted subtypes. Nevertheless, this paper represents a critical resource 
that will be generally of interest to the field. Further, the authors should be commended 
for making the data and code available for such a valuable resource, although the sn-



 

m3C-seq data seem to be missing from the NeMO website; I was only able to find the 
snmC-seq data. There is also a visualization website that presents the data in a more 
accessible form. However, with this volume and high dimensionality of the data, it is clear 
that they faced similar challenges of many such large-scale papers, where it is often hard 
to get into the granularity, and cover enough details. 
R2.1 
We thank the reviewer for appreciating the significance of the study and the critical need 
for these data in the field, and for providing very helpful comments to improve our study. 
To address the reviewer’s comments raised below, we performed analyses showing the 
robustness of our clustering results as well as justifying the preprocessing steps. We also 
compare our snmC-Seq data with scRNA-Seq data to validate the corresponding cell 
types in the two modalities and the gene-enhancer pairs linked by the correlation 
analyses. Below we provide responses to each of the comments. 

 
For the data sharing, we have uploaded the missing snm3C-seq data to GEO 
(GSE132489, the Reviewer Access Token is oxcbgqsazjenxcl). To better share our data 
and analysis with the general audience, we now provide an interactive web application 
(http://neomorph.salk.edu/omb/home, please see R2.4) for cell-level and cluster-level 
data visualization. We have rewritten the data availability section of the manuscript, and 
now include the above data links. 

 

 

Main comments: 
 
1) Binning: Lines 112 to 114 discuss the level of methylation coverage represented 
across the mouse genome in 100-kb bins being on average 95% with gene bodies at 81% 
on average. This is highly confusing and somewhat misleading as currently written since 
the data were summarized into 100-kb bins and the discrepancy between genome-wide 
and gene body percentages is unclear. 
R2.2.1 
We thank the reviewer for pointing this out. There are, in fact, two metrics that we used 
to measure coverage. The first is the coverage of single cytosine sites (6%), which 
represents the proportion of cytosines in the genome that has been covered by at least 
one read. The second is the coverage of larger regions (95% of 100 kb bins and 81% of 
genes), which represents the proportion of regions that the methylation fraction can be 
reliably computed. Based on the estimation of a binomial model, the reliability of 
methylation level quantification depends on the length of the region ((Luo et al., 2017), 
Fig. S1). Specifically, a larger region is covered by more sites and reads, which reduces 
the uncertainty of methylation quantification. Since a large number of genes are shorter 
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than 100 kb, the average percentage for accurate quantification is higher for 100 kb bins 
than gene bodies. Given that most of our downstream analyses were applied to the bins 
and genes, we believe that both metrics are important and are explicitly described in the 
text. We have made the following edits to this section to make this more clear. 

 
“In total, we profiled the DNA methylomes of 110,294 single nuclei yielding, on average, 
1.5 million stringently filtered reads/cell (mean ± SD: 1.5×106 ± 5.8×105), covering 6.2 ± 
2.6% of the cytosines in the mouse genome in each cell. These parameters allowed 
reliable quantification of the DNA methylation fraction for 25905 ± 1090 (95 ± 4%) 100 kb 
bins and 44944 ± 4438 (81 ± 8%) gene bodies (Fig. 1i). The global non-CG methylation 
levels range from 0.2% to 7.6%, and global CG methylation levels range from 61.6% to 
88.8% (Extended Data Fig. 2b, c).” 

 

Each cell received about 1.5M reads (after filtering), or ~6% of the genome. Using 100-
kb bins helps reduce the impact of such sparsity in the data, but at the 100-kb size range, 
different information is captured than at more granular levels. Long-range effects such as 
PMD hypomethylation will tend to dominate, while smaller features such as CpG islands, 
promoters, and enhancers will be lost. 
R2.2.2 
As the reviewer suggested here and below (R2.2.5), we evaluated the clustering ability 
of mCH and mCG in eight different bin sizes (from 5 kb to 1 Mb) on the MOp-2 dataset 
(2386 nuclei from two replicate), and observed robust clustering results across these 
parameters. 

 
For each bin size, we performed the same preprocessing steps as described in the 
methods. We used different cutoffs corresponding to each bin size (e.g., coverage cutoff 
is linearly scaled up or down for longer or shorter bins, respectively). All filtering steps aim 
to keep a similar percentage of features as the original 100 kb bin analysis. After 
preprocessing, we then performed PCA (Fig. R11a, b), UMAP embedding on PCA space 
(Fig. R11c), UMAP embedding without PCA (see discussion in R2.6.3), and clustering 
(Fig. R11d) at each bin size. 

 
For both mCH and mCG, the trend of explained variance ratio for top PCs and the shape of PC1 & PC2 
embeddings are consistent among most binning sizes (Fig. R11a, b). While the UMAP embeddings are 
altered by different binning sizes, the overall cell type structures are still preserved (Fig. R11c). We further 
checked the consistency of clustering for different methylation types and bin sizes combinations by 
calculating the adjusted rand score (ARS) (Hubert and Arabie, 1985) between the clustering result of each 
combination and the original subtype labels. Again, both mCH and mCG have consistent ARS across bin 
sizes. In summary, the bin-size does not have a notable impact on the clustering results of the snmC-seq2 
data and we chose the 100 kb bin-size to be consistent with prior analysis (Luo et al., 2017). Although we 
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agree with the reviewer, that smaller features might better capture enhancer level information, the results 
here indicate that methylation features at different sizes contain redundant information to determine 
clusters. The benefit of using 100 kb bins is that it's usually an order of magnitude faster than smaller bins 
such as 5 kb, which allows us to explore more hyperparameters given the same amount of computation 
resources. 

 

 



 

Fig. R11. Comparing the bin-size effect on embedding and clustering results. a, 
explained variance ratio of top PCs calculated from mCH and mCG matrix. b, c, scatter 
plot of PC1-PC2 and UMAP embeddings (n=2386 for all plots). Each group is clustered 
separately, but here all scatter plots are colored using original subtype labels to allow 
easy visual comprehension. d, ARS comparing the clusters identified by each feature set 
with original subtype labels. 

 
Despite the binning, heavy imputation was needed nonetheless (and performed; Line 742 
onwards). It seems the global mean of the cell was used as the prior. The rationale for 
this choice is not clear. If anything, it should be the mean per locus across the cells. And 
why impute features with less cov (coverage?, not covariance or coefficient of variation, 
correct?) to have a mean methylation level value close to 1? 
R2.2.3 
The use of the beta-binomial distribution to estimate the methylation level has been 
described previously for single-cell methylome data (Smallwood et al., 2014). The original 
study only focused on mCG and used a constant beta prior (a=1, b=1). Since the 
methylation levels of CH and CG are very distinct, we also tested the clustering and 
embedding performances using two more specific priors for each methylation type, which 
are 1) calculating the prior based on the mean and variance of each cell, 2) as the 
reviewer mentioned, calculating the prior based on the mean and variance of each 
feature/locus. Similar to R2.2.2, we evaluated the impact of three different priors, using 
the MOp-2 dataset and 100 kb bins as features. 

 
We found that the constant beta prior (a=1, b=1) does not work for the CH methylation, 
and also gives worse performance for the CG methylation (Fig. R12a, b). Calculating 
priors by cell mean or by feature mean gives very similar clustering results which are 
considerably better than the constant beta prior (Fig. R12a, b). From an implementation 
aspect, when doing such calculations for the full dataset, we need to use a chunk-by-
chunk implementation as the total amount of the data is very large and the requirement 
for physical memory is large. Because the data is natively stored by cell chunks (as the 
data is generated continuously along the time), calculating mean per cell is practically 
easier than calculating mean per feature. As the comparison here indicates, the two 
calculations performed equally well, and thus we chose cell-level normalization which is 
more efficient to implement. 

 
For the last question about normalization to 1, the purpose of this step is to normalize the 
bin-level methylation fractions in a cell by its global methylation level. This was applied to 
not only the low coverage features but all features. We have modified the 

methods section to make this more clear. This approach is similar to the use of CPM 
normalization in the single-cell RNA-seq analysis (Luecken and Theis, 2019), to prevent 

https://paperpile.com/c/FAJPwh/WKqsy
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PC1 from being dominated by the global methylation level. We also compared the 
embedding and clustering with or without normalization (Fig. R12c, d). Similar clustering 
results were observed (Fig. R12d), but the UMAP embeddings without normalization are 
more stretched (Fig. R12c). In some cases, such an effect makes the embedding less 
visually clear to illustrate the cluster structure. 

 
Fig. R12 Comparing the effect of priors and normalization on UMAP embedding and clustering. 
a, b, UMAP embedding using different methylation types (columns), different prior calculation 
methods (rows), and whether normalize the fraction per cell (a is normalized, b is no 
normalization). Each group is clustered separately, but here all scatter plots are colored using 
original subtype labels to allow easy visual comprehension. c, d, ARS comparing clusters identified by 
each condition with original subtype labels. 

 



 

It would be helpful to show the number of CpG or CpH sites covered by at least one read, 
since tiling the genome at a single resolution introduces a bin-size bias in the 
representation of the data. 
R2.2.4 
As described in R2.2.1, the original text “covering 6.2 ± 2.6% of the mouse genome per 
cell” in the manuscript corresponds to the number of cytosines covered by at least one 
read. We used the total number of cytosine covered by at least one read divided by total 
cytosine in the mappable genome to get this percentage. We have rephrased the text and 
methods to make this more clear. 

 
“In total, we profiled the DNA methylomes of 110,294 single nuclei yielding, on average, 
1.5 million stringently filtered reads/cell (mean ± SD: 1.5×106 ± 5.8×105), covering 6.2 ± 
2.6% of the cytosines in the mouse genome in each cell.” 

 
Many previous single-cell methylome studies(Luo et al., 2017; Mulqueen et al., 2018; 
Smallwood et al., 2014) used tilling to reduce feature number and data sparsity before 
embedding and clustering since the total number of cytosine detected is too large (109) 
to be used as individual features. Please see our response to R2.2.2 showing that bin-
size does not have a large impact on clustering. 

 
There may be added value to varying the bin sizes and combining them for a more multi-
scale view of the data, as opposed to PMD-level binning, given the size of the data. That 
being said, going back and reanalyzing for TF motifs and DMRs/DMGs was great and 
does address this concern to some extent. 
R2.2.5 
We thank the reviewer’s recognition of the post-clustering analysis of gene and regulatory 
elements. Please see our reply to question R2.2.2, where we discuss our analysis of 
different bin-sizes of features (from 5 kb to 1 Mb). Since bin-size does not have a notable 
impact on the clustering results of the snmC-seq2 data (Fig. R11), we chose 100 kb as a 
suitable size for large-scale clustering analysis. 

2) Filtering: The filtering choices are not always clear. For example, 100-kb genomic bin 
features were filtered by removing bins with mean total cytosine base calls < 250 or > 
3000. It makes sense to filter the sparse bins, but why filter bins with high coverage? Is 
this an attempt to remove CpG islands? 
R2.3.1 
We do not attempt to remove the CpG islands here. This step is designed to remove 
regions that have “mapping issues”. The minimum and maximum cutoff for total cytosine 
base calls are selected based on the distribution of total cytosine base calls of all 100 kb 
bins. As shown in Fig. R13, the minimum cutoff cov. < 250 is intended to remove regions 
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that are poorly covered or unmappable (n=977, 3.7% of total 100 kb bins). The maximum 
cutoff (cov. > 3000) is intended to remove some regions showing extremely high coverage 
(n=6, 0.023% of total). Five out of the six extremely high-coverage regions are also 
overlapped with “High Signal Regions” in the ENCODE mm10 blacklist v2 (Amemiya et 
al., 2019), which means these regions are known to have mapping issues and not 
recommended to be included in the analysis. To clarify this step as the reviewer 
mentioned, we have added a better explanation of our filtering strategy in the Methods. 

 
“Feature filtering. 100 kb genomic bin features were filtered by removing bins with mean 
total cytosine base calls < 250 (low coverage) or > 3000 (unusually high-coverage 
regions). Regions that overlap with the ENCODE blacklist(Amemiya et al., 2019) were 
also excluded from further analysis.” 

Fig. R13. Mean total cytosine base calls of all 100-kb non-overlapping genome bins. 

Samples were filtered based on a mCCC rate of 3%. It is not clear that this is good enough 
for studies that focus on mCH methylation, where the average level falls well below 3%. 
R2.3.2 
The maximum cutoff of mCCC fraction was chosen based on the overall mCCC 
distribution, as shown in Fig. R14. Because this step was applied before any clustering 
analysis, we decided to use a loose cut off to prevent removing any population that might 
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be biologically meaningful. 
Fig. R14. Distribution of mCCC fraction across single cells (n=110,294). 
 
We further evaluated the impact of decreasing the mCCC cutoff down to 1%. Among the 
1636 cells with mCCC fraction falling between 0.01 to 0.03, 253 of them passed all QC 
filters and were assigned to clusters, the other cells were filtered out due to other criteria. 
These 253 cells (“high mCCC”) come from 70 different subtypes, while most of them only 
contribute a tiny portion of the total subtype populations. Notably, a subset of them with 
47 cells were assigned to the “PAL-Inh Chat” subtype (cell type browser 
http://neomorph.salk.edu/omb/cell_type?ct=PAL-Inh%20Chat), which contributes to 24% 
of the total “PAL-Inh Chat” population. This subtype indeed also has the highest mean 
mCH fraction (0.039 ± 0.008) among all subtypes we defined and is clearly marked by 
the choline acetyltransferase gene Chat (Fig. R15a), corresponding to cholinergic 
neurons in the striatum and pallidum. Other cells from the same experiments that contain 
these “high mCCC” cells do not show abnormal mCCC levels in general (For example, 
two replicates of CP-1 dissection region, Fig. R15b). 

 
In addition, we also had unmethylated lambda DNA spike-in in all of our experiments as 
non-conversion control. In these “high mCCC” cells, the average lambda DNA mC fraction 
is low (0.0087), further confirming the high mCCC is not due to non-conversion. 

 

Note that not every cell has enough lambda DNA reads to calculate the non-conversion 
rate, so we used the mCCC fraction as a proxy at the single-cell level (see discussion in 
R2.12.3). 

 
Based on this evidence, we believe that the 3% mCCC cutoff is appropriate for initial pre-
clustering filtering. We respectfully disagree with the reviewer that “the average  level falls 
well below 3%” (and apologies for not being more clear). As shown in Fig.R15c below, 
the mean mCH fraction of many cell types is close to or even above 
0.03. Indeed, the reviewer is correct that the average mCH fraction is below 3% based 
on the previous reports using bulk methylome data (He et al., 2020; Lister et al., 2013). 
However, our more extensive survey of cell types in this new dataset provides an  update 
to this initial observation. We find many neuronal cell types can have a global mCH 
fraction as high as 0.03. The lower global mCH levels detected in bulk samples represent 
averages between neurons having high global mCH levels and non-neuronal cells with 
<1% mCH. We have added the global mCH range of all the cells in the main text. 

 
“The global non-CG methylation levels range from 0.2% to 7.6%, and global CG 
methylation levels range from 61.6% to 88.8% (Extended Data Fig. 2b, c). ” 

http://neomorph.salk.edu/omb/cell_type?ct=PAL-Inh%20Chat
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Fig. R15. Supporting information for mCCC cutoff. a, Chat normalized gene body mCH in PAL-Inh 
cells, L3-UMAP (n=4307). b, mCCC distribution of two replicates of CP-1. “PAL-Inh Chat” cells 
shown in red. c, cell global mCH fraction on L1-UMAP (n=103,982) 

 

In addition, another filter of 20% mCH was applied. It is curious that after the 3% mCCC 
filtration there would still be cells with >20% mCH methylation (how often?). This would 
actually indicate that there’s true CpH methylation in those cases? 
R2.3.3 
We thank the reviewer for pointing out these two redundant cutoffs. We only found 2 cells 
having >20% mCH fraction but <3% mCCC fraction. These cells have only 8 reads and 



 

1012 reads, which didn’t pass the final reads > 500,000 cutoff. These “cells” might 
correspond to empty wells or debris, where the extreme shallow coverage made it 
meaningless to evaluate its whole genome methylation level. By combining both the 
methylation level and final reads filters, these abnormal cells were excluded. 

 
3) Neuron Classification: How are the excitatory and inhibitory neurons classified in 
Figure 1b and 1c? These are ad hoc drawn clusters so presumably, a priori information 
was used to delineate these cell types. However, this is not described well in the 
manuscript. This is critical given it is the highest level in the hierarchical clustering 
performed that underlies the main conclusions of the paper. 
R2.4 
For the cell class annotation, we first did the unsupervised clustering (see methods) and 
then annotated the cell classes using ad hoc information. Specifically, we annotated non-
neuronal cell clusters based on both the NeuN- gate origin and low global mCH fraction 
(Fig. R16). Given the strong anti-correlation between CH methylation and gene 
expression, we used hypo-CH-methylation at gene bodies ± 2 kb of pan-excitatory 
markers such as Slc17a7, Sv2b and pan-inhibitory markers such as Gad1, Gad2 (Fig. 
R17) to annotate excitatory and inhibitory cell classes, respectively. 

 
All details about cell type annotation can be found in Supplementary Table 7. To help the 
general audience better access these detailed annotations, we have developed a web 
application (http://neomorph.salk.edu/omb/home) to interactively visualize the gene-level 
DNA methylation and metadata of single cells. Each cell type has a corresponding page, 
whose URL can also be found in the Supplementary Table 7. 

 

 
Fig. R16. Non-neuronal cell class identification. a, b, L1-UMAP embedding of all cells 
pass QC (n=103,982), colored by NeuN+/- gate information during FANS (a) and cell 
global mCH fraction (b). c, scatter plot of major cell type mean NeuN-% (x-axis) and global 
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mCH fraction (y-axis), non-neuronal cell types have low global mCH and high NeuN-%. 
 

 

 

 

Fig. R17. Pan-excitatory and pan-inhibitory marker genes. Colors showing z-score (per row) of 
major cell types gene body mean mCH fraction. 

 
4) The authors should be commended for their robust exploration of clustering 
parameters by a grid search for hyperparameter (namely the resolution parameter) tuning 
- however, it remains unclear how the cluster labels for each level of iterative cluster were 
generated with regards to cell type/subtype. 
R2.5 
Below we describe the process of Major type (level 2) and subtypes (level 3) annotations. 
Similar to R2.4, the details about cell type annotation can be found in Supplementary 
Table 7, and the interactive web application for cell type and genes 
(http://neomorph.salk.edu/omb/home). 

http://neomorph.salk.edu/omb/home


 

 
We used gene body ± 2 kb hypo-CH-methylation (or hypo-CG-methylation for non-
neurons) of well-known marker genes along with dissection information to annotate 

neuron and non-neuron clusters. All cluster marker genes are listed in Supplementary 
Table 7, together with the description of the cluster names and references to the marker 
gene information. The major cell types were annotated based on well-known marker 
genes reported in previous studies (Habib et al., 2016; Krienen et al., 2019; Lein et al., 
2007; Luo et al., 2017; Tasic et al., 2018; Yao et al., 2020; Zeisel et al., 2018). Whenever 
possible, we name these clusters with canonical names (e.g., IT-L23, L6b) or using 
descriptive names that reflect the specific spatial location of the cluster (e.g., EP, CLA, 
IG-CA2). For subtypes, we named the clusters via its parent major type name followed 
by a sort description or just a subtype marker gene name. 

 
The above information has been added to the Methods. A description of the new web 
application for browsing these data has been added to the main text and the data 
availability section of the manuscript: 

 
“A web application (Brain Cell Methylation Viewer) is provided to aid in the visualization 
of cell- and cluster-level methylation data (http://neomorph.salk.edu/omb), as well as to 
access annotations and descriptions of marker genes for each cluster.” 

 
We will continue to improve this tool by adding more additional information as it becomes 
available along with detailed documentation. 

 
 
5) The initial data matrix construction of PCs for downstream clustering analysis was 
done using the elbow method, which is somewhat arbitrary. How many PCs were chosen? 
The plots of variance explained for the mc rates, along with an indication of the cutoff 
used, need to be shown as a supplemental figure for possible reproducibility. 
R2.6.1 
As suggested by the reviewer, we plotted PCs from the L1 (Fig. R18a, b), L2-Inh (Fig. 
R18c, d), and L3-MSN-D1 analysis (Fig. R18e, f) as three examples that paired with Fig. 
1b. For the purpose of reproducibility, we have provided all of the parameters for each 
level of clustering analysis in Supplementary Table 6. 

 

 

https://paperpile.com/c/FAJPwh/4Wxg%2BazPO%2BubbW%2Bvo3t%2BcSQB%2BJXDY%2Bh14X
https://paperpile.com/c/FAJPwh/4Wxg%2BazPO%2BubbW%2Bvo3t%2BcSQB%2BJXDY%2Bh14X
http://neomorph.salk.edu/omb


 

 
Fig. R18 Three example PCA plot. From Level 1 (a, b, from all cells), Level 2 (c, d, from 
all inhibitory cells), Level 3 (e, f, from MSN-D1 cells) analysis. a, c, e, showing explained 
variance ratio of top PCs of the mCH or mCG matrix, b, d, f, showing scatter plots using 
eight pairs of PCs, colored by corresponding cell type labels from original study to help 
visually evaluate the information content in each PC. 

 
Additionally, splitting up the CG and CH methylation into separate matrices, performing 
PCA, and concatenating the matrices is unclear in the motivation to do so. Specifically, 
the correlation structure between the two types of methylation is destroyed despite having 
biological ties to one another. The correlation between the PCs from CG and CH also 
should be shown to understand the degree to which this correlation exists between them. 
Why not use NMF or ICA as an initialization using the full matrix (e.g. both CG and CH 
normalized bins)? 
R2.6.2 
As suggested by the reviewer, we now provide Pearson correlations between the PCs of 
the mCH matrix and the mCG matrix (Fig. R19a). The top PCs (which are most 
informative for clustering and embedding) from the two matrices are highly correlated, 
indicating that both methylation types capture similar dominant variances. This also 
supports the previous results described in our responses in R2.2 or R2.6.1 that indicate 
both methylation types are able to give very similar clustering results. 



 

 
Since the PCs of the two matrices do not represent the same space, we also provided 
Pearson correlations between the mCH and mCG fractions on the original 100 kb bin 
feature spaces. We calculate the correlation between mCG and mCH using the raw 100 
kb bin matrices before PCA, and also the reconstructed 100 kb bin matrices by the top 
30 PCs of each methylation type. As shown in Fig. R19b, the mCH, and mCG fractions 
of most 100 kb bin features are positively correlated, and selecting top PCs indeed 
enhanced such correlation as it “denoised” the matrices by removing later PCs. These 
results demonstrate that the intrinsic correlation structure between the two types of 
methylation is not destroyed by performing PCA separately on the two matrices. 

 
Fig. R19. Pearson correlation of mCH and mCG. a, Correlation between top 30 PCs of 
mCH (y-axis) and mCG (x-axis) matrix. b, Distribution of the feature mCH and mCG 
Pearson correlation of each cell. The Raw is the correlation calculated using input matrix; 
the Reconstruct is the correlation calculated using the top 30 PCs reconstructed matrix. 

 
Next, we tested how different decomposition methods might impact clustering results. 
Using the 100 kb bin features of the MOp-2 dataset (the same as R2.2), we tested six 
decomposition strategies: 1) PCA on the mCH matrix only, 2) PCA on the mCG matrix 
only; 3) Concatenate PCs from 1 and 2; 4-6) Concatenate mCH and mCG matrix, then 
run PCA (4), ICA (5), NMF (6). For all three decomposition algorithms (PCA, ICA, NMF), 
we used the implementations from the “sklearn.decomposition” (scikit-learn 0.23.1) with 
default parameters and a different number of components from 3 to 30. As shown in Fig. 



 

R20, all six strategies resulted in very similar UMAP embedding and clustering 
results, indicating the choice of decomposition method does not have a large impact on 

clustering results. 

Fig. R20. Testing different decomposition strategies. a, UMAP embedding using 
selected components in each group. Each group is clustered separately, but here all 
scatter plots are colored using original subtype labels to allow easy visual comprehension. 



 

b, ARS comparing clusters identified by each condition with original subtype labels. 
 
Finally, why initialize with PCA as opposed to the normalized, 100kb binned methylation 
values since the binning approach drastically reduces the total number of features per 
cell, which is often the goal of data compression with something like PCA? 
R2.6.3 
There are 27,269 100-kb bins in the mm10 genome, and even after filtering and highly 
variable feature selection, we still maintain ~3000 100-kb bins, many of which are highly 
correlated with each other. Therefore, as suggested by wildly used single-cell analysis 
packages (Luecken and Theis, 2019; Satija et al., 2015; Wolf et al., 2018), we performed 
PCA to further reduce dimensions to reduce the “curse of dimensionality” that may occur 
in the nearest neighbor graph building (Wolf et al., 2018). 

When answering R2.2.2, we ran UMAP and clustering directly on all the remaining 
features without doing PCA. As shown in Fig. R21, although in some mCH conditions 
(e.g. mCH of 100 kb bins), direct embedding on feature space gives comparable results; 
it does merge many clusters and gives less clear UMAP embeddings in most mCG 
conditions and some mCH conditions when bin size is smaller. These results indicate that 
running PCA before embedding and clustering is a more robust approach. 
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Fig. R21. UMAP embedding of the same datasets used in R2.2.2, with or without PCA. 
 

1) The use of a neural network to simultaneously predict subtypes and dissection regions is 
great. However, the motivation or need to use a neural network for the prediction 
approach versus something more interpretable like a penalized regression model is not 
clear. This would allow a somewhat more direct interpretation of the contribution of 
individual features. Does the neural network outperform the use of somewhat "simpler" 
regression models? 

R2.7 
We benchmarked the neural network against random forest and logistic regression. All 
three models achieved >95% accuracy for subtype prediction (Fig. R22a, top). However, 



 

our neural network model outperformed both random forest and logistic regression 
models to predict the dissected region. The performances increased by 16% and 7% 
respectively measured by exact accuracies (Fig. R22a, middle; only the exact region is 
considered correct prediction), or 6% and 4% measured by fuzzy accuracies (Fig. R22a, 
bottom; either the exact region or its anatomical neighbors is considered correct 
prediction; as described in Methods in the previous version of the manuscript). The 
increases in performance were observed for almost all of the major cell types (Fig. R22b). 
These results demonstrate the necessity of using the neural network for the prediction 
task, and this information has been added to the main text and Extended Data Fig. 11. 

 
“The performance of ANN on subtype prediction is comparable with logistic regression 
(LR) and random forest (RF), while its performance on location prediction is substantially 
improved against the other two models (Extended Data Fig. 11b). This suggests that 
distinguishing the cells from different dissected regions would require non-linear 
relationships between genomic regions.” 

 
Note that the major aim of Fig. 6 is to emphasize the predictability of detailed cell location 
in the brain by DNA methylation. In comparison, the cell-type-specific features, including 
gene and regulatory elements, were elaborately explored in Fig. 3-5 with simpler and 
statistical models. Thus, we decided to use the neural network in Fig. 6 which performed 
the best in these classification tasks. 

 

 



 

 
Fig. R22. Performance of the neural network and baseline models. a, The overall 
exact accuracies (top and middle) or fuzzy accuracies (bottom) of neural network (NN), 
logistic regression (LR, multinomial), and random forest (RF, n_estimator=1000) for 
subtype prediction (top) and region prediction (middle and bottom). Scikit-learn was used 
for LR and RF implementation. b, c, Performance of region prediction in each major type. 
Each circle shows the exact (b) or fuzzy (c) accuracy of NN and the improved accuracy 
against LR (top) or RF (bottom) in a major type. The sizes of circles are proportional to 
the cell numbers of the major type, and the colors of circles represent different categories 
of major types. 

 

6) DMRs: The total number of significant DMRs found is startling - using a permutation-
based goodness of fit approach is intriguing, but the ability to control type I error is unclear 
with so many sites and cells/subtypes. This needs to be commented on to discuss the 
possible impact of the false discovery rate in such a large-scale analysis. 
R2.8.1 
We used methylpy 1.4.4 (https://github.com/yupenghe/methylpy) “DMRfind” to identify 
DMRs as we have previously described (He et al., 2020; Schultz et al., 2015). In brief, 
methylpy first tests differential methylated sites (DMS) and then merges DMS within 250 

https://github.com/yupenghe/methylpy
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bp into DMRs. For the sequential-permutation-based (Besag and Clifford, 1991) P values 
of the goodness-of-fit statistic at DMS level, methylpy did implement a false discovery 
rate (FDR) control method designed to compare multiple sequential permutation-derived 
P values (Bancroft et al., 2013) to the desired rate of 1%. 

 
To further estimate the empirical FDR at the DMR level, we shuffled the cell type labels 
and merged single-cell profiles according to the “fake cell types”. Then we called shuffle-
DMRs using the same process. In the shuffled run, we identified 143,615 total shuffle-
DMRs before applying any additional filters. Compared to 4,722,053 total subtype-DMRs 
when merged based on the real subtypes, the overall false discovery rate is 3.0%. After 
using the same robust-mean and blacklist filtering (see methods), the FDR is 2.7% 
(105,310 shuffle-DMRs and 3,947,795 subtype-DMRs). 

 
We then divided the DMRs into different groups based on the number of DMSs and the 
effect size of the DMR, and computed the FDR within each group. For each DMR, the 
effect size was calculated by subtracting the minimum mCG fraction across samples from 
the robust mean (see methods) of samples. We then assigned both shuffle-DMR and 
subtype-DMR into joint bins of the number of DMSs and effect size ranges (Fig. R23a, 
b). Most (93%) of the shuffle-DMRs only have a single DMS (no other DMS  within ± 250 
bp), while this proportion decreases to 35% for subtype-DMRs. For effect size > 0.3 bins, 
the FDR for DMS = 1 bins range from 0.071 to 0.093. The FDR for the remaining bins 
having DMS > 1 is close to or well below 0.01 (Fig. R23c). 
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Fig. R23 Distribution of DMRs by effect size and number of DMSs. a, b, Portion of DMRs fall into 
corresponding effect size and # of DMS paris blocks. c, empirical FDR of each block, calculated by 
(# of shuffle-DMRs / # of subtype-DMRs) in each block. Effect size < 0.3 is not used in analysis. 

 
The remaining question is whether we should keep those 1,645,355 (35%) single-DMS 
DMRs. Using the single-DMS shuffle-DMR as background regions, we performed motif 
enrichment analysis on single-DMS subtype-DMRs (sDMRs) and multi-DMS subtype-
DMRs (mDMRs). We found 108 / 174 motifs enriched in mDMRs are also enriched in 
sDMRs, and the odds ratio of all mDMR-enriched motifs are highly correlated (Fig. R24, 
Pearson’s r=0.86, P = 1e-53). These results indicate that although the single-DMS DMRs 
are noisier than multi-DMS DMRs, they are still biologically relevant. Removing these 
single-DMS DMRs will improve the overall FDR from 3.0% to 0.3%, with the cost of 
reducing the power to identify true positives. We now provide the number of DMRs that 
remained for each subtype using different filtering criteria in Supplementary Table 12, 
while keeping the single-DMS DMRs in our genome-wide analysis. For prioritizing DMRs 
for further experimental purposes (such as enhancer-AAV testing (Hrvatin et al., 2019; 
Mich et al., 2020)), one could filter DMR by DMS > 1 and increase the effect size cutoff 
to select candidates with higher confidence. 

 

 

Fig. R23 and Fig. R24 are added as Extended Data Fig. 7 and the discussion of FDR 
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controlling has been added to the Methods. 
 

Fig. R24. The odds ratio of TF motif enrichment in single-DMS DMRs (sDMRs) and multi-DMS 
DMRs (mDMRs). Each dot represents a TF motif. The TF motifs significantly enriched in both 
sDMRs and mDMRs were colored in green, and significant TF motifs in only sDMR or mDMR are 
colored in orange or blue, respectively. Non-significant TFs are greyed. 

 
Using randomly sampled groups there were 2,003 DMRs, as shown in Fig 5H, and 
removing them from the gradient DMR set was an interesting approach but the logic is 
not entirely clear. One would not expect the same false positives in both experiments, 
likely also the reason for the minimal overlap. What is the FDR rate (2,003/how many 
total)? Knowing the FDR rate and keeping the whole set is going to be more informative 
than removing a mere 0.04% overlap with DMRs from scrambled setup. 

R2.8.2 
We agree with the reviewer that keeping the whole set of DMRs and reporting the FDR 
would be more reasonable. The FDR of DG DMRs (related to Fig. 5h) is 0.8% (2,003 / 
243,312). We have updated the figures and Methods to make this more clear. Given the 
tiny overlap between the random DMRs and real DMRs, the results are unchanged. 

 

 

7) The use of gene-body CpH methylation as a surrogate for inverse expression levels, 
and correlating it with CpG DMRs as surrogate or regulatory elements is clever. However, 
gene-body CpG methylation is positively correlated with gene expression. Why not use 
the more abundant (and therefore higher signal-to-noise ratio) CpG methylation, rather 
than the noisier CpH methylation? 



 

R2.9.1 
We thank the reviewer for appreciating our correlation analyses to link enhancers and 
genes based on methylation levels. Here we systematically compare gene body mCH 
and mCG, and concluded that in neuronal cell types, 1) as we have previously published 
((Luo et al., 2017; Mo et al., 2015)), both mCH and mCG are negatively correlated with 
gene expression, 2) mCH is a better surrogate for gene expression, and 3) the abundance 
and signal-to-noise ratio of mCH and mCG are comparable. 

 
First, to evaluate the correlation between gene expression and the two types of 
methylation, we used our snmC2T-Seq data of human cortical neurons (Luo et al., 2019), 
where DNA methylation and RNA expression are simultaneously quantified in the same 
single nuclei. These analyses revealed that both mCG and mCH at gene bodies and 
promoters are anti-correlated with gene expression (Fig. R25a). This finding is consistent 
with our previous studies using brain cells (Luo et al., 2017; Mo et al., 2015), and in 
contrast to embryonic stem cells (Lister et al. 2009) and cancer cells (Yang et al., 2014) 
where mCG is positively correlated with gene expression. The results also indicated that 
the feature having the strongest anti-correlation with gene expression is mCH at gene-
body, which is also consistent with our previous conclusion using bulk methylome in a 
limited number of purified cell types (Mo et al., 2015). As an example shown in the 
genome browser (Fig. R25b, Cux2 as an IT-L23 marker), the cell-type-specific hypo CH 
methylation usually spans the whole gene body, while the cell-type-specific hypo CG 
methylation majorly locates in limited smaller regions (CG-DMRs) inside or surrounding 
the gene body. This illustrates why mCH has stronger correlations with RNA in many cell 
type marker genes. 

 
Besides, many predicted enhancers are intragenic. Therefore, gene body mCG therefore 
contains the information of enhancer mCG, and leads to higher correlations with enhancer 
mCG intrinsically. 

 
It is also worth noting that the total number of methylated CH sites is usually comparable 
with methylated CG sites in neuronal genomes (Fig. R25c). This is because the total 
number of CH sites is 30 times more than CG sites, although the methylation level is 20-
85 fold higher for CG. Nevertheless, we acknowledge that the relative error of mCH 
detection could be higher than mCG (Fig. R25d). However, since we used cluster-level 
pseudo-bulk methylome (usually >10x coverage) in this analysis, the relative error of the 
mCH level estimation is smaller than 5% (signal/noise > 20) for  more than 80% of genes 
in subtypes (Fig. R25d). Therefore, we consider the estimation to be reasonably accurate, 
and we remain confident to use mCH in this analysis as a surrogate of gene expression 
given their higher correlation. 
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To emphasize the correlation between gene expression and mCH/mCG, we have revised 
the main text as follow: 

 
“A unique advantage of single-neuron methylome profiling is that it captures the 
information of both cell-type-specific gene expression and predicted regulatory elements. 
Specifically, both gene body mCH and mCG are negatively correlated with gene 
expression in neurons, with mCH showing a stronger correlation than mCG (Lister et al., 
2013; Luo et al., 2017, 2019; Mo et al., 2015). CG-DMRs provide predictions about cell-
type-specific regulatory elements and TFs whose motifs enriched in these CG-DMRs 
predict the crucial regulators of the cell type (He et al., 2020; Luo et al., 2017; Mo et al., 
2015).” 
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Fig. R25. Comparison of mCH and mCG as surrogates of gene expression. a, The 
Pearson correlation coefficient between gene expression and mCH (blue) or mCG 
(orange) level at different genomic locations. Correlations were computed across 17 
major cell types of the human prefrontal cortex for 2,154 differentially methylated genes 
(FDR < 1e-10, Kruskal-Wallis test). b, Genome browser view of a well-known cell type 
marker gene Cux2 for IT-L2/3. CT-L6 subtypes are used as negative examples. Red 
arrows pointing to IT-L2/3 hypo-DMRs located inside the Cux2 gene body. c, The 
proportion of mC in CH and CG context in each major type. The number of mC were 
averaged across cells of each major type and then normalized to the sum of 1. d, 
Histogram of estimated signal to noise ratio of gene body methylation (n=33,099x145) for 
all DMGs (n=33,099) in all subtypes (n=145), see methods noted below. 
 
Methods of Fig. R25d: To calculate the signal-to-noise ratio on mC fraction calculation, 
assuming 𝑚𝑚 ~ 𝐵𝐵𝐵𝐵(𝑐𝑐𝑐𝑐𝑐𝑐,𝑝𝑝), where p is the methylation level, the mean is 𝑐𝑐𝑐𝑐𝑐𝑐, 𝑝𝑝 or 𝑚𝑚𝑚𝑚, and 
standard deviation is �𝑐𝑐𝑐𝑐𝑐𝑐 ∙ 𝑝𝑝 ∙ (1 − 𝑝𝑝) or �𝑚𝑚𝑚𝑚(𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑚𝑚𝑚𝑚) for each gene in each 
subtype. The mean and standard deviation of binomial distribution were used to estimate 
the signal and noise respectively. 
 
More importantly, CpH level is dependent on cell type and there are cell types with much 
lower level or no detectable CpHs. Gene body CpH levels in those cells are overall lower 
than those with high DNMT3A (and high global CpH), but not directly associated with host 
gene expression level difference. 
R2.9.2 
We agreed with the reviewer that the difference in the global mCH fraction between cell 
types will impact differential analysis (e.g. elevating the number of CH-DMG if using 
unnormalized mCH fraction). Therefore, in all of our analyses we have normalized the 
mCH fraction by the global mCH fraction of the cluster when comparing between clusters 
(e.g., in CH-DMG analysis). We improved the method section to make this important point 
more clear: 

 
“We used the single-cell level mCH fraction normalized by the global mCH level (same 
as the “Computation and normalization of the methylation level” in the clustering step 
above) to calculate markers between all neuronal clusters. We compared non-neuron 
clusters separately using the mCG fraction normalized by the global mCG level.” 

 
Also, it was stated that there were sn-RNA-seq data, and I feel those data could have 
been better used in this part of analysis - it could have been used for expression in this 
model, or if not, for assessing the suitability of gene body CpH and CpG methylation as 
surrogates for expression in this analysis, or as validation for discoveries. 
R2.9.3 



 

The only currently snRNA-seq data (Yao et al., 2020) covers cortex and hippocampus, 
which does not fully match the regions that we have profiled in our study. Never-the-lless, 
we perform RNA-based correlation analyses only using cell types from these two 
tissue/age matched brain regions in order to add orthogonal validation to our methylation-
based correlation analysis. Specifically, we integrated snmC-seq2  data from this study 
with snRNA-seq data, using the two matched brain regions. Similar to integration with 
snATAC-seq data, we separately carried out integration for each of the five major 
neuronal cell-type groups: 1) cortical IT and CLA neurons, 2) cortical ET neurons, 3) 
cortical CT, NP, and L6b neurons, 4) hippocampal excitatory neurons, and 

5) cortical and hippocampal MGE and CGE inhibitory neurons. In general, all  cell groups 
integrated well as the cluster structure from both datasets are maintained in the 
integrative  UMAP  embedding  (Fig.  R26a).  Within  each  group,  we used the  overlap 
score to match transcriptome cell types to methylome cell types at the subtype level (Fig. 
R26b and Supplementary Table 11). In total, we were able to match 233 snRNA-seq cell 
types (deepest level in Yao et al.) with 90 snmC-seq2 neuronal subtypes. We used the 
matched cluster to calculate the RNA expression profile of the 90 methylation subtypes. 
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Fig. R26. Integration of snmC-seq2 with snRNA-seq data. a, Integration UMAP 
embeddings of five cell-type groups. Left column shows snRNA-seq cells colored by 
snRNA-seq cell types using the same palette as Yao et al. 2020, right column shows 
snmC-seq2 cells colored by subtype labels. b, Heatmap showing overlap  score between 
snmC-seq2 subtypes (x-axis) and snRNA-seq cell type identified in Yao et al (y-axis). 

 
We then compared eDMR-gene correlation pairs using three different types of gene 
information in these 90 methylation subtypes: 1-2) using mCH (1) and mCG (2) fraction 
of gene body ± 2 kb; 3) using RNA expression from integrated snRNA-seq data. First, all 
three different calculations generate similar null distributions (Fig. R27a), therefore, we 



 

kept the correlation cutoff as described in our original manuscript (> 0.3 for positively 
correlated and < -0.3 for negatively correlated). The correlation calculated using RNA 
expression is reversed to match the correlation calculated using the two methylation types 
(Table R1). 

 
Table R1. Correlation analysis groups 

 
In total, we identified more activation pairs than repression pairs in all groups (Fig. R27b). 
The mCG group gives the highest number of correlated pairs; however, this elevation of 
correlation is expected since many eDMRs are intragenic and using mCG as the 
measurement in both eDMRs and genes contains overlapping information. We compared 
the mC-based pairs with RNA-based pairs, and observed 27% (24%) of the activation 
pairs based on mCH (mCG) overlapped with RNA-based activation pairs (Fig. R27c, e). 
The observed repression pairs based on mCH (mCG) overlapped with RNA-based 
repression pairs were 18% (17%) (Fig. R27d, f). 

 
In addition to the overlap, we also plotted the correlation of eDMR-gene pairs based on 
different gene measurements (Fig. R28). Both mCH and mCG are negatively correlated 
with the RNA-based correlation (Fig. R28), indicating general agreement of the mC and 
RNA based analysis regardless of the cutoffs. 

 

Together, the correlation between gene RNA expression and eDMR mCG fraction 
validates the correlation based on gene mCH/mCG fractions and provides an additional 
source of information that prioritize the most-likely active eDMR-gene interactions in adult 
mouse brain neuronal types. 



 

 

 

Fig. R27. Overlap between RNA-based pairs with mC-based pairs. a, Null distribution 
of the eDMR-gene correlations, gray lines and numbers mark the portion of shuffled 
correlation exceeding the cutoff of -0.3 and 0.3. b, number of positive or negative pairs 
found in each group. c, d, portion of mC-based paris that overlapped with RNA-based 
pairs. e, f, portion of RNA-based pairs that overlapped with mC-based pairs. 



 

 

Fig. R28. Scatter plots showing all individual eDMR-gene pairs. a, b, comparing RNA-based (x-
axis) eDMR-gene correlation with mCH (a) or mCG (b) based eDMR-gene correlation (y-axis). c, 
d, Zoom-in view of pairs having < -0.3 correlation in both groups. e, f, Zoom-in view of pairs having 
> 0.3 correlation in both groups. 

9) The use of “rate” for methylation levels throughout the manuscript is confusing, since 
the word “rate” implies a time-dependent function. In most cases, the word “rate” could 
be replaced by the word “fraction”. I realize that the authors have used this terminology 
in past papers, but I am not enthusiastic about promoting this usage. Scientists studying 
other types of genomic events have moved away from the use of the word “rate” and tend 
to use words like “density”, “frequency”, or “load”, as in genomic mutational density per 
Mb, as opposed to mutation rate, which would instead be per cell division or time unit. 



 

R2.10 
We agreed with the reviewer and have changed the all related terms into “methylation 
fraction” or “methylation level” throughout the manuscript. 

 
10) sn-m3C-seq: R1 and R2 reads were mapped separately, and they then claimed a 
higher mapping rate than previous methods. However, mapping separately would achieve 
that. 
R2.11.1 
It is standard in Hi-C data processing pipelines to separately map the paired-end reads 
to the genome and re-pair them after quality control (alternatively, parameters can be 
used to “skip-pairing” in alignment where read 1 and 2 are mapped independently, such 
as in BWA-MEM “-SP5M” based alignment). In our previous Nature Methods paper where 
snm3C-Seq was developed (Lee et al., 2019), we demonstrated that we could achieve 
increased mapping rates by splitting un-aligned reads, compared with alternative 
methods that either did not split unmapped reads or that used aligners that attempt to 
split (i.e. soft or hard clip) reads during alignment (i.e. bwa-meth). 

 
They split up the unmapped reads into the first 40bp, middle segment and final 40bp, 
likely to deal with the 3C part. There may not be that many options with Bismark, but HiC 
data processing methods may reveal smarter ways of doing this than just the 40bp split - 
e.g. searching for a ligation site, etc. 
R2.11.2 
The reviewer is correct that alternative mapping strategies for Hi-C data have been 
developed, including using aligners that split reads by soft- or hard-clipping (BWA-MEM) 
or where potential ligation junctions can be identified due to the sequence at the ligation 
site. In our previous Nature Methods paper where snm3C-Seq was developed (Lee et al., 
2019), we tested read both using split-read aligners (bwa-meth) and splitting based on 
restriction enzyme cutting sites, and observed improved alignment accuracy and rates 
using our manual read splitting approach. In terms of splitting reads based on the ligation 
site, the reason this is less useful in our snm3C-seq method (as compared to in standard 
Hi-C experiments) is that we do not fill-in ends of DNA with nucleotides to label DNA ends 
with biotin. As a result, the ligation junctions are formed with sticky ends. As a 4-base 
NlaIII cutter is used for digestion, the ligation site motif is only 4 base in length, CATG. 
After bisulfite conversion (C to T and G to A), there is additional ambiguity that is 
introduced (for example, the motif could be present as CATG or TATG as a result of the 
presence or absence of cytosine methylation). As a result, the motif becomes very 
frequent in the converted genome. This is problematic as 1) it will lead to many “false 
positive” ligation sites being identified if considering all the possible converted or 
unconverted motifs, and 2) read splitting splits into small fragments leading to reduced 
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mapping qualities. This is in contrast to a normal Hi-C protocol, where blunt ends were 
used and no bisulfite conversion was performed. The motif in this case will be 
CATGCATG and the reads are mapped to the normal genome, which considerably 
reduces the frequency. 

 
It is not clear how they dealt with chimeric reads generated by Klenow to distinguish 
them from chromatin contacts. 
R2.11.3 
Based on our previous experiments, Klenow usually generated <2% fragments that 
consisted of two parts mapping to two genomic loci > 1 kb apart from each other. 
Compared to the snm3C-Seq data, this number is 22%. We therefore reasonably 
estimate the false discovery rate of cis contacts is less than 10%. Additionally, the 
enrichment of cell-type-specific genes and enhancers at the loop anchors (Fig. 4) also 
supports the high quality of the chromatin contact data. 

 
11) Controls: The authors should be commended for including controls for most 
analyses. However, sometimes the control did not seem to be used properly (the Figure 
5h example above), 
R2.12.1 
Please see R2.8 for Figure 5h related response. 
 

or the results were not impressive compared to controls. For example, in Figure 4k, the 
observed data (22-23 is not a very high level of enrichment compared to random (16.5). 
Similar with 4h. Statistical significance is one thing and easy to achieve when there are 
so many data points in the genome, but if the effect size is not that big it calls into question 
how good the algorithm actually is. 
R2.12.2 
We agree with the reviewer that statistical significance is easier to achieve when the 
sample size is larger, which does not equate to large absolute differences or fold-change. 
Accordingly, we have modified the statement in the text to describe the moderate but 
significant differences. We note that statistical tests consider the variance of the null 
distribution, which is also an important aspect in addition to the absolute differences. For 
example in Fig. 4k, although the means are not different by more than a few fold, the 
variability of random distribution is small, which leads to a large enrichment (Z-score ~ 
60). 

 
In Fig. 4h, the blue and orange colors correspond to the different y-axes, as shown on 
the left and right, representing the number of gene-enhancer pairs located on separate 
anchors of the same loop, or within the same loop, respectively. Therefore, we intended 



 

to show the trend of increasing numbers of gene-enhancer pairs supported by chromatin 
contacts (y-axis) with the increasing of gene mCH and enhancer mCG correlation (x-axis), 
rather than comparing the two lines in the same subpanel. We have added more 
information into the figure legend to make this more clear. 

 
Note that all analyses are presenting the patterns that we observed from the data using 
well-established algorithms, rather than determine the performance of these algorithms. 
The algorithms used in these panels involve standard processing and loop calling of Hi-
C data, and standard correlation analysis between gene and enhancer methylation. The 
REPTILE enhancer calling is also published and benchmarked (He et al., 2017; Sethi et 
al., 2020). 

 
Sometimes controls are not included when they could. e.g., mCCC plots as controls for 
bisulfite conversion in a lot of the mCH analyses. 
R2.12.3 
The mCCC fraction is used as the proxy of the upper bound of the non-conversion rate 
for cell-level QC. However, mCCC contains biological signals and are not due to failed 
conversion. In the cells that passed QC filters, we believe it was not appropriate to use 
mCCC as quantitative controls in the other computational analyses (see discussion 
below). We added additional clarification of this information in Methods. 

 
In all of our experiments, every well contains a spike-in of unmethylated lambda DNA as 
non-conversion control. The lambda mC fraction at each library preparation batch is 
below 1.5%. As an additional ‘metric” for a more complex mammalian genomic, we 
monitor the methylation level at CCC sites as it is the lowest among all of the different 3 
base-contexts, and, in fact, it is very close to the unmethylated lambda mC fraction (Fig. 
R29a). Therefore, in addition to lambda, we use mCCC fraction as the single-cell level 
QC metric for non-conversion fraction in mammalian genomic DNA. 

 
However, mCCC also positively correlates with mCH at the single-cell level (Pearson’s 
r=0.53, P = 1e-300). Such a high correlation does not exist between lambda mC and 
mCCC or mCH (Fig. R29b), indicating that the mCCC fraction, although being very low, 
is also impacted by the methyltransferase expression (Dnmt3a). In addition, using “PAL-
Inh Chat” as an example, we also discussed in R2.3.2 that some fraction of mCCC may 
represent real signals. Thus, mCCC should not be treated as “pure noise” and we have 
not used mCCC as a control for any quantitative computational analyses such as the 
eDMR-gene correlation analysis. 
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Fig.  R29.  Comparison  of  unmethylated  lambda  DNA  mC,  mCCC  and  mCH. a, 
Lambda mC fraction, mCCC fraction, mCH fraction distribution in all cells with lambda 
DNA reads (n=59,720). b, Pearson correlation between three types of methylation 
fractions using all cells in (a). 

 
Minor comments: 

 
1) Lines 134-136 about using UMAP to visualize differences based on cell location is 
unclear given that UMAP optimizes a cost function for both local and global distances 
rendering "location" somewhat confounded with the general classification of different 
brain regions. Were global distances weighted in the UMAP embeddings to account for 
spatial distance? 
R2.13 
We agree with the reviewer. The UMAP coordinates were computed only based on DNA 
methylation, and the cells were then colored based on their spatial localization for 
visualization. Thus, the locations of different colors on the UMAP represent the similarities 
of DNA methylation between the cells located in different regions. Therefore, we have 
now changed “based on” to “between”. 

 
2) Line 152 suggesting high RNA expression of Unc5c given the low methylation - this 
needs to be evaluated in terms of actual gene expression from the Allen Brain Institute 
scRNA-seq brain atlas. 



 

R2.14 
We plotted Unc5c gene mCH fraction and RNA expression (from AIBS snRNA-seq) using 
the integrated UMAP embedding from R2.9.3 (Fig. R31). Note that Unc5c gene has 
lowest mCH and highest expression in the “Unc5c” cell types, but it is also expressed in 
a few other cell types. This cluster corresponds to the Lamp5+/Lhx6+ type in the snRNA-
seq study (Yao et al., 2020). We also plotted Lamp5 and Lhx6 below (Fig. R31). All three 
genes have corresponding expression and methylation patterns, which clearly indicates 
this Unc5c cell type is found in both modalities. 

 

 
Fig. R30. Hypo-mCH in the gene body corresponding to high level RNA expression. a, b, 
integration UMAP showing snmC-seq2 and snRNA-seq cell types. c-h, Normalized gene 
body mCH fraction (first row) and RNA expression level (second row, from snRNA-seq) 
of Unc5c (c, d), Lamp5 (e, f), and Lhx6 (g, h) that marked the “Unc5c” cell type. 

 
3) Line 243, how was 0.3 chosen as a reasonable threshold for impact score and thus, 
gene assignment to each branch in the tree? 
R2.15 
The threshold of 0.3 was empirically chosen. At each node in the dendrogram, all DMGs 
or differential enriched motifs were assigned with impact scores. With the cutoff of 0.3, 
71% of DMGs (75% of differential enriched motifs) on average were selected to represent 
the differential features between the two branches of the node. 

 
4) Line 768, the word "significant" is used without any association with a p-value or other 
significance value. 
R2.16 
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We agreed with the reviewer and have now removed the word “significant” here. We 
also discussed the PC selection in R2.6. 

5) Some of the results were puzzling and not explained very well. For example, why 
would CpH methylation correlate with # of intra-domain contacts? Does the same trend 
show up if mCCCs are plotted instead of CpH? 
R2.17.1 
As we have discussed in the results, this observation might indicate the local 
chromosome architecture is more compact in mature cells where global mCH is higher. 

 
This trend is also true in mCCC. However, as discussed in R2.12.3, mCCC is only used 
for a quality control metric, and is not considered as an exact quantitative measurement 
of the non-conversion rate. 

 
Or in Fig. 4h, why would the number of enhancer-gene pairs differ so much between the 
two cell types? 
R2.17.2 
The numbers of enhancer-gene pairs are similar in these two cell types. However, the 
numbers of loops identified in the two cell types are different. In snm3C-Seq data, we 
have 1,933 cells labeled as DG while 686 cells are labeled as CA1. Thus, the coverage 
of DG contact map is 3-fold more than CA1, which leads to twice as many loops being 
called by HICCUPS in DG compared with CA1, and more longer-range loops were also 
identified. Therefore, the numbers of gene-enhancer pairs that overlap or within loops 
were different, as shown in Fig. 4h. To make it more explicit, we have added the following 
discussion in the Methods. 

 
“Note that the abundance of cell types is highly variable, leading to different coverages of 
contact maps after merging all the cells from each cell type. Since HICCUPS loop calling 
is sensitive to the coverage, the more loops were identified in the abundant cell types 
(e.g. 12,614 loops were called in DG, containing 1933 cells) compared to the less 
abundant ones (e.g. 1,173 loops were called in MGE, containing 145 cells). Therefore, 
we do not compare the feature counts related to the loops across cell type directly in the 
following analyses.” 

 
Or, in Fig 3i and 3k - why are the TF motifs different for CpH-DMGs and CpG-DMRs for 
the same cluster? 
R2.17.3 
Fig. 3h (3i in the original version) is based on CH-DMG analysis of all TF genes, while 
Fig. 3j (3k) is based on motif enrichment analysis in CG-DMRs, computed for a subset of 
TFs (719 / 1309 TFs). Many TF genes in Fig. 3h do not have known motifs (e.g., 



 

Zfp462, Hivep1) in the JASPAR2020 database (Fornes et al., 2020) due to lack of ChIP-
Seq/SELEX data. Besides, some TFs (e.g., Fos, Jun) show universally hypo-mCH in their 
gene bodies across all cell types. These TFs were not identified in CH-DMG analysis, but 
their motifs were differentially enriched in CG-DMRs of different cell types. 

 
In summary, although most of the examples shown in the results are consistent between 
gene body and regulatory motif analyses, we still acknowledge that the two types of 
analyses represent different information and are expected to have different results. The 
TFs that are the top candidates in both analyses represent those with the strongest 
evidence of cell-type specificity. 

 
6) In figure 3A, 2 of the 3 CG-DMRs for BCL11b seemed to be at about 50% methylated 
in cell type B. This seems to suggest cell type B is still heterogeneous (or this gene is 
monoallelicly methylated). Since this is single cell data, can the authors look within B and 
see if it was indeed a mixture of methylated and unmethylated cells in B, or if it was 
monoallelic methylation. 
R2.18 
Since the coverage of our data is around 6% of the genome for every single cell, a single 
cytosine site is only covered by one read in most of the cells. Therefore, the partial 
methylation of a DMR is due to a mixture of methylated and unmethylated cells in that 
cell type. Besides, we can not determine alleles from the pseudo bulk data, because our 
data were collected from inbred BL6 mice, where most alleles show little sequence 
variation. 

 
7) In figure 2, m/n/p panel colors - do these stand for subtype assignments? Many colors 
are so similar that it is hard to assess the UMAPs 
R2.19 
The reviewer is correct, colors in Fig. 2m,n,p indicate cell subtypes. The original color 
was intended to be consistent with other figures and Li et al (Li et al., 2020). We have 
now updated the figure with more distinguishable colors. 
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