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Reviewer Reports on the Initial Version: 

 
Referee #1 (Remarks to the Author): 

 
The creation of the isoform marker atlas for the mouse brain is intriguing and convincing. However, 
the links between the three technologies is not clear, nor is the overall biological significance of the 
findings. There are some gaps in ruling out techncial or computational artifacts that could drive some 
of the most important results 

 
The authors quantified isoforms using kallisto on SMART-seq data, and t tests were performed for 
each cluster (vs its complement) and each isoform, as well as each gene. The methodology to find 
isoforms-specific (but not-gene-specific) clusters is new and interesting. 10x was used to validate the 
isoform quantifications by SMART-seq by comparing isoforms with unique 3’ ends. However it is not 
clear how or why 10x identifies more clusters than SS2. 

 
Major issues: 
1) The authors use kallisto to compute isoform abundance. It is not clear how robust the isoform 
estimates are to the annotation input to kallisto? Could the authors compare different annotations and 
show robustness of their findings? 
2) How do the authors control for technical confounders such as artifacts introduced by cell sorting or 
batch effects? 
3) The data on which the authors apply t-tests are not normally and or are not approximately normal; 
this means the results could be biased. How do the authors control for this? 
4) MERFISH returns spatial information for a limited number of genes (254 in this case) but is not 
suitable for isoform quantification. If one of these genes is specific to a cluster, and also has a 
relationship with isoform expression, then we can use the gene level as measured by MERFISH to link 
the cell with the isoform level (i.e., let’s say every cell expressing a high level of Pou3f3 expresses 
Pvalb isoform 201 (which we’d know based on the SMART-seq data); then when we see a high level of 
Pou3f3 in MERFISH data, we can assume Pvalb-201 was there too.This appears to be a tenuous way 
to argue that isoforms are driving differential MERFISH measurements. What if both are driven by 
technical artifacts? 

 
5) NCA: if this is commonly used for scRNA-seq probably don’t need to spend as much time on it; if 
not then it seems a little randomly thrown into the paper and I’d want to see more of a reason not to 
use more standard visualizations (PCA). In addition, what’s the difference between class, subclass, 
and cluster? This should be more explicitly defined early on in the paper and results should be 
presented to show that isoform switching is robust to different clustering methods. 
Minor notes: 
• Spatial atlas (Extended Data Figure 8): doesn’t seem to have specifically spatial information; rather 
it seems to link clusters with genes/isoforms, which seemingly could be done with just the SMART-seq 
data 
• I believe the “spatial isoform atlas” in Extended Data Figure 8a is only for Pvalb; is that correct? (I 



assumed so because of the annotations of isoforms as 201 or 202) 
• The naming of the isoform-informed approach at gene count estimation as “valid” in Extended Data 
Figure 9 seemed a bit presumptuous to me; it seemed like this figure was supposed to argue that it 
was valid 
• Not clear how False positives and false negatives were determined in Extended Data Figure 9 
• Please describe more how the work in the paper is a general workflow 
• "Our analyses suggest that a workflow consisting of droplet-based single-cell RNA-seq to identify cell 



types, then SMART-seq for isoform analysis, and finally spatial RNA-seq with a panel based on 
isoform-specific markers identified by SMART-seq, would effectively leverage different technologies’ 
strengths” ← this seems to be a broad description of the workflow. This all seems valid, but doesn’t 
necessarily form one cohesive analysis (especially 10x and SMART-seq) 

 
 

Does the manuscript have flaws which should prohibit its publication? 
 

One of the main aims of this paper, to provide an example of how SMART-seq data can be used in 
conjunctions with other scRNA-seq technologies, did not seem fully fleshed out in and it is not not 
totally clear how the analysis was enhanced by the other technologies. Please provide a clear workflow 
that used them all in conjunction with each other. 

 
 

Other comments requested: 
 
 

The methods to synthesize results from multiple single cell sequencing methods are of great interest 
in the single cell sequencing field currently. This paper is a step towards a workflow that can draw 
conclusions based on multiple sources of information at the same time. Extrapolation of isoform levels 
to spatial data is especially relevant, as spatial isoform quantification for multiple genes at the same 
time is currently difficult. The methodology for identifying isoform markers for clusters seems sound, 
and a move in the more informative direction of using isoform-level rather than purely gene-level 
analysis of single cell sequencing data. 

 
 

No error bars are shown in the manuscript. The t test seems like an appropriate test to identify if the 
mean isoform level (or gene level) of a cluster was different from its complement (though I don’t 
believe it’s addressed whether the data would be expected to follow a normal distribution). P values 
were corrected using Bonferroni correction. 

 
 
 

Referee #2 (Remarks to the Author): 
 
 

This manuscript explores the use of SMART-seq single-cell RNA-seq data can be used to analyze 
isoform expression in single cells, analyzing over 6000 cells from the mouse primary motor cortex, 
using SMART-seq v4 and also comparisons to larger numbers of cells analyzed using the 10x 
Genomics Chromium and MERFISH approaches. The conclusions reached are that specific mRNA 
isoforms can often be used to distinguish cell types, even when no difference in expression is apparent 
at the gene level. Several clear examples of this phenomenon are shown. From a biological point of 
view, this result is not terribly surprising as alternative splicing is known to vary substantially during 
cellular differentiation and between various mammalian cell and tissue types from previous studies 
using a variety of approaches (e.g., PMID 17606642, 28673540, 30028642). The specific analysis of 
isoform-specific usage between glutamatergic and GABAergic neurons is interesting but largely 
confirmatory of the previous work on differential single-cell exon usage between the same types of 
neurons in the primary visual cortex that inspired this analysis 
(https://www.nature.com/articles/nn.4216). The novelty is therefore more of a technical nature, in 
the study of isoform distributions at single cell resolution and their application as cell type markers. 

 
A challenge in the use of scRNA-seq to assess isoform abundance is the limited capture efficiency of 
mRNAs, which results in the problem of gene dropouts (failing to capture any reads from a gene that 
is expressed), which is even more serious at the level of mRNA isoforms which are expressed at levels 
that may be a small or large fraction of the expression of the corresponding gene, and which require 

http://www.nature.com/articles/nn.4216)


reads to cross the particular splice junctions that distinguish them from related isoforms. More explicit 
attention to issues of capture efficiency and coverage (see below) would make the results more 
convincing. 

 
Cross-platform comparisons are also used to assess the strengths and weaknesses of different 
approaches, a worthwhile technical contribution. The manuscript is written clearly and the authors 
have done a commendable job in ensuring the reproducibility of their work by providing clear methods 
and links to code, etc. However, what is almost completely lacking from the manuscript is some sense 
of the biological importance of the descriptions of differential isoform usage across cell types and of 
the inferences the authors make – the paper feels descriptive and lacking in context. The main 
conclusions relate to which combinations of methodologies are best for scRNA-seq analyses, and which 
isoforms can be used as markers of particular cell types, but these conclusions are likely to be of 
interest primarily to specialists. No attempt is made to draw biological conclusions that might be of 
interest to a broader audience. 

 
Specific issues: 

 
1. Recent work has challenged the applicability of most scRNA-seq datasets to reliably estimate 
isoform abundance from all but the most highly expressed genes 
(https://www.biorxiv.org/content/10.1101/2019.12.19.883256v1), showing by simulation that 
presence of multiple isoforms in a single cell is often obscured by limited coverage resulting from 
insufficient mRNA capture efficiency in scRNA-seq library preps. Further, this study shows that isoform 
abundance can only reliably be estimated from scRNA-seq data by modeling coverage of each gene 
based on estimates of mRNA capture efficiency and expression level to assure sufficient depth of 
coverage. More attention should be given to these issues to convincingly show that the genes and 
datasets analyzed have sufficient coverage to reliably estimate isoform abundance. 

 
2. In the section accompanying Fig 3 the authors use single-cell data to note that of the two isoforms 
of the Pvalb gene, only one (Pvalb-201) is expressed in the MOp region of the brain, and then 
extrapolate based on cell-type markers to map the isoform expression patterns onto spatial 
expression data. Given that only one of the two isoforms is expressed at a detectable level, the 
extrapolation reduces to the inference that any cell which expresses Pvalb expresses the Pvalb-201 
isoform. That is, the authors are only mapping the spatial patterns of Pvalb isoform expression by 
virtue of the fact that it is the only isoform detectably expressed. This seems like a reasonable 
extrapolation, but it is not clear that it provides any clear advantage in terms of cell type classification 
over the use of the Pvalb gene as a marker, or other desirable outcome. Can the authors explain why 
this extrapolation adds something important, or provide a more compelling example of where an 
important biological inference is enabled by this sort of extrapolation? 

 
3. The figures are somewhat difficult to follow and need better legends. For example: 
a. In Fig1e and e what do the dotted lines and circles represent? This should be explained in the 
legend. 
b. Figure 2 and Ext Fig 8 are somewhat visually overwhelming. In interpreting the 289 distributions 
displayed as violin plots, what should the reader focus on? Most readers will focus on the centers of 
the distributions, or just the presence or absence of expression. Further, the variable y-axes and that 
the bulk of many distributions (and their means) are cut off by the axis limits makes this plot difficult 
to read. If the mean expression level is the most important piece of information, a heat map might be 
easier for readers to digest. 
c. The legend to Figure 3a appears to apply to 3c, while the legends to 3b and 3c appear to apply to 
3a and 3b. 
d. In Figure 4c, the isoforms should be labeled for clarity. 

 
 
 

Author Rebuttals to Initial Comments: 

http://www.biorxiv.org/content/10.1101/2019.12.19.883256v1)


Referee #1 (Remarks to the Author): 
 

The creation of the isoform marker atlas for the mouse brain is intriguing and convincing. 
However, the links between the three technologies is not clear, nor is the overall 
biological significance of the findings. There are some gaps in ruling out technical or 
computational artifacts that could drive some of the most important results 

 
The authors quantified isoforms using kallisto on SMART-seq data, and t tests were performed 
for each cluster (vs its complement) and each isoform, as well as each gene. The methodology 
to find isoforms-specific (but not-gene-specific) clusters is new and interesting. 10x was used to 
validate the isoform quantifications by SMART-seq by comparing isoforms with unique 3’ ends. 
However it is not clear how or why 10x identifies more clusters than SS2. 

 
Major issues: 

 
1) The authors use kallisto to compute isoform abundance. It is not clear how robust the 
isoform estimates are to the different annotations and show robustness of their findings? 

 
To demonstrate the robustness of our findings to the choice of reference we re-quantified 
all 15,229,289,826 SMARTSeq reads against the GENCODE M25 mouse transcriptome 
reference. The estimated isoform abundances are consistent between the BICCN 
reference annotation and the Gencode reference annotation, with a mean Pearson 
correlation of 0.965 across all 107,639 common isoforms. We have added this result to the 
main text and have included the distribution of correlation across isoforms as Extended 
Figure 6. These results show that our quantifications are robust to annotation. 

 
We have also expended considerable effort with this revision to update our Jupyter 
notebooks (see 
https://github.com/pachterlab/BYVSTZP_2020/tree/master/analysis/notebooks) so as to 
ensure that the entire analysis is reproducible, and all of our results can therefore be 
easily updated with respect to new annotations in the future. Running our entire 
workflow and quantifying isoform abundances with the EM algorithm on the ~15 billion 
read dataset we have processed takes approximately 6 hours using 16 threads on our 
server. This is thanks to the fast pre-processing of the data with the kallisto program. 

 
2) How do the authors control for technical confounders such as artifacts introduced by 
cell sorting or batch effects? 

 
Thank you for raising this point. First, upon reviewing our manuscript in light of your 
question we realized we did not effectively explain that while we leverage the 10xv3 data 
for validation purposes and for cluster identification, our isoform analysis of the SMART- 
seq data is independent of the 10xv3 data. In other words, our analysis is sensitive to 
potential batch effects between the SMART-seq and 10xv3 datasets only with respect to 
the subclass and cluster comparisons. We have added a Methods description 

https://github.com/pachterlab/BYVSTZP_2020/tree/master/analysis/notebooks


to clarify how the SMART-seq labels were obtained and to highlight that we did not 
analyze the data in a manner that is affected by the 10xv3 data. It is true that cell sorting 
was performed prior to the single-cell RNA-seq, and while in principle this could result 
in a bias in cells assayed, the detailed analyses and validation of the MOp 
transcriptomics paper co-submitted with our manuscript to Nature (BRAIN Initiative Cell 
Census Network (BICCN) et al. 2020) (Tasic et al. 2018) (Yao et al. 2020) provides ample 
evidence, via known cell types, gene markers etc., that the cells assayed 
comprehensively and uniformly cover the MOp. 

 
To determine if there were significant batch effects that may have affected the 10x- 
SMART-Seq comparison we began by looking at sex as one of the possible confounders, 
since we noticed that the ratio of Male:Female cells was not the same in the two datasets. 
In the 10x data we observed that sex resulted in separation of all clusters in the t-SNE 
indicating a batch effect: 

 
 

 
 

This disturbing figure worried us. Moreover, since not all clusters were segregated 
completely based on sex we hypothesized that there was possibly an additional 
confounding batch effect. After examining the sample metadata more carefully, we 
observed that the data was collected in three batches on three different dates (November 
29, 2018, December 7, 2018 and April 26, 2019), and that sex was confounded with these 
batches. When painting cells based on their assay date we observed that almost all 
clusters were entirely segregated by batch, thus indicating a significant batch effect in 
the 10x data: 

http://sciwheel.com/work/citation?ids=9884931&pre&suf&sa=0
http://sciwheel.com/work/citation?ids=9884931&pre&suf&sa=0
http://sciwheel.com/work/citation?ids=9884931&pre&suf&sa=0
http://sciwheel.com/work/citation?ids=8332908&pre&suf&sa=0


 

 
 
 

To mitigate this problem we restricted the analysis to the third 10xv3 dataset that 
contained both male and female cells and covered all the cell types. We have included 
this visualization as a new Extended Data Figure 8a and 4a and have also notified the 
transcriptomics group within the BICCN consortium of the presence and significance of 
this batch effect in the data. 

 
The restricted dataset passes our quality control (inset, bottom right of Extended Data 
Figure 8a), also reproduced below. Now the cells are mixed with respect to sex in every 
subclass: 

 

 
We therefore recomputed our results with respect to it (new Extended Data Figure 1). Our 
analysis is now based on 26,870 10x cells. We note that the previous low correlation we 
saw for the L5 IT subclass was directly due to this batch effect, and while we had 



discarded analysis of it earlier assuming there was some underlying problem with the 
data, we now know what the problem is, and we thank you for leading us to this 
discovery. 

 
The SMART-seq data, which is collected in plates, has the property that effectively every 
cell is a “batch”. We did not notice significant issues associated with the metadata we 
examined. After restricting the 10xv3 data to one batch, we see high correlations in 
quantifications between all three technologies we analyzed (10xv3, MERFISH and 
SMART-seq), suggesting that there was high reproducibility and no additional significant 
technical confounding variables in any single technology. The MERFISH technology has 
been separately validated (Chen et al. 2015; Zhang et al. 2020), but we also searched for 
batch effect in that dataset and didn’t see anything out of the ordinary (see new Extended 
Data Figure 4b). 

 
There is one additional potential source of batch effect that could have affected our 
corrected results, and that is that batch effect may be present in the four different 10xv3 
libraries prepared on the same day, which we did combine for our analysis. Your 
question prompted us to check for batch effect between the lanes sequenced on that 
date. We performed pairwise comparison of gene counts for each of the 4 10xv3 batches 
and found the Pearson correlation to be very high for all pairs, with a mean of 0.9979 
(see Figure below). We note that the correlation was just under 1.0, but is reported as 1.0 
in the plots due to rounding. 

http://sciwheel.com/work/citation?ids=93458%2C9039512&pre&pre&suf&suf&sa=0%2C0


 
 
 
We also looked at the distribution of batch labels across clusters and subclasses, and 
found that the observed fraction of cells per batch in each cluster was almost exactly the 
expected fraction of cells per batch assuming uniform mixing (see Figure below): 



 

 
 
 

These results confirm there is minimal batch effect in the filtered 10xv3 data we have now 
used to validate the SMART-seq and that our analysis of them together is valid. We have 
added the statements about the validity of our comparisons as noted above to the paper 
but have not included the two figures above because we don’t believe they provide much 
value to readers beyond the summary statistics. 

 
3) The data on which the authors apply t-tests are not normally and or are not approximately 
normal; this means the results could be biased. How do the authors control for this? 

 
We chose to use the t-test since the t-test was found to exhibit low bias as one of the top 
performing methods of 36 differential expression methods (ranked by 14 different 
criteria) studied by (Figure 5, Soneson and Robinson 2018). Our straightforward 
experimental design makes the test suitable for use according to Soneson et al. 
Additionally, we filtered out lowly expressed genes since the Soneson & Robinson 
analysis on real and synthetic datasets found that results were significantly improved 
after filtering, namely p-values were uniformly distributed under the null hypothesis after 
filtering for lowly expressed genes. 

 
4) MERFISH returns spatial information for a limited number of genes (254 in this case) but is 
not suitable for isoform quantification. If one of these genes is specific to a cluster, and also has 
a relationship with isoform expression, then we can use the gene level as measured by 
MERFISH to link the cell with the isoform level (i.e., let’s say every cell expressing a high level 
of Pou3f3 expresses Pvalb isoform 201 (which we’d know based on the SMART-seq data); 
then when we see a high level of Pou3f3 in MERFISH data, we can assume Pvalb-201 was 
there too.This appears to be a tenuous way to argue that isoforms are driving differential 
MERFISH measurements. What if both are driven by technical artifacts? 

http://sciwheel.com/work/citation?ids=4904129&pre&suf&sa=0


 

We agree that MERFISH is not suitable for isoform quantification and that in order to infer 
spatial isoform expression the isoform quantification and spatial gene expression must 
not be driven by technical artifacts. Inference of spatially resolved isoform markers is only 
performed if the gene marking a specific cell type in the spatial data has one of its 
isoforms marking the same cell type in the isoform data. This one-to-one relationship 
ensures that spatial isoform inference is specific to genes/isoforms that are localized to a 
cell type instead inferring relationships between isoforms and genes that mark cell types. 

 
Additionally, given the numerous studies validating SmartSeq for isoform quantification 
and MERFISH for spatial gene expression we do not think it is the case that inferring 
spatial isoform expression for a specific isoform is a tenuous argument. SmartSeq has 
been studied and validated extensively in the context of identifying isoforms: 

 
-   (Ramsköld et al. 2012) Which first introduced the Smart-Seq protocol found that 

Smart-Seq “...has improved read coverage across transcripts, which significantly 
enhances detailed analyses of alternative transcript isoforms and identification of 
SNPs.” 

-   (Picelli et al. 2014) Introduced SMART-Seq2 which improved on the original 
 

SMART-Seq protocol in numerous ways. One in particular is the uniformity of 
read coverage across transcripts for all genes. Supplementary Figure 9a is 
reproduced below: 

 
[Redacted] 
 

-      (Seirup et al. 2020) Find that Smart-seq’s higher sensitivity and read-depth allow for 
analysis of lower expressed genes and isoforms in their biological system, identifying 
isoforms with distinct expression in cases where 10x and MarsSeq could not. 

 
Similarly, MERFISH has been studied and validated extensively on many panels of genes 
in other biological systems as well as in the mouse primary motor cortex as a BICCN 

http://sciwheel.com/work/citation?ids=24780&pre&suf&sa=0
http://sciwheel.com/work/citation?ids=349184&pre&suf&sa=0
http://sciwheel.com/work/citation?ids=9770822&pre&suf&sa=0


companion paper (Chen et al. 2015; Zhang et al. 2020). We use these complementary 
methods for measuring RNA expression to establish a link between gene space, isoform 
space, and physical space, and in doing so leverage the technologies in a way where the 
whole is greater than the sum of the parts. We have clarified this in a new figure we have 
included in the manuscript (Figure 1). 

 
5) NCA: if this is commonly used for scRNA-seq probably don’t need to spend as much time on 
it; if not then it seems a little randomly thrown into the paper and I’d want to see more of a 
reason not to use more standard visualizations (PCA). In addition, what’s the difference 
between class, subclass, and cluster? This should be more explicitly defined early on in the 
paper and results should be presented to show that isoform switching is robust to different 
clustering methods. 

 
Standard visualization techniques developed for single-cell RNA-sequencing typically 
use a combination of a linear dimensionality reduction such as PCA followed by a non- 
linear dimensionality reduction such as t-SNE. The idea is that PCA will find a subspace 
that maximizes variance in the data, and t-SNE will faithfully project that subspace into 
two dimensions all while preserving the local/global structure of the cells. 

 
While NCA is an established method in the field of machine learning, to our knowledge it 
has not been coupled with t-SNE before as we did in this manuscript. Interestingly NCA 
was published by the developer of t-SNE, see (Goldberger et al. 2004), but the two have 
not been linked previously. The reason we are doing so is not by choice, but by 
necessity: unlike standard single-cell RNA-seq studies, we had a special situation where 
we needed to visualize the SMART-Seq data with predefined cluster labels produced via a 
joint analysis with many other data types that had already been undertaken by the 
BICCN. This was essential in order to ensure that our analysis was concordant with the 
BICCN flagship manuscript. Thus we had a unique challenge; typically, in single-cell RNA 
seq, data is usually clustered de-novo and then visualized. We realized as a result of your 
question that we had not explained this well in the manuscript, and have therefore now 
added discussion of this in the main text, and have also added the rationale to the 
methods section to clarify this important point in the paper: 

 
“We first sought to visualize our SMART-Seq data using gene derived cluster labels from 
the BICCN analysis (see Methods). Rather than layering cluster labels on cells mapped to 
2-D with an unsupervised dimensionality reduction technique such as t-SNE18 or UMAP19, 
we utilized a supervised learning approach to project cells so that they are best 
separated according to BICCN consortium (Yao et al. 2020) annotations using 
neighborhood component analysis (NCA). ” 

 
Regarding the terms class/subclass/cluster, thank you for pointing out that we forgot 
to define them. This was a major oversight, and we have fixed it by adding the 
following to the manuscript: 

http://sciwheel.com/work/citation?ids=93458%2C9039512&pre&pre&suf&suf&sa=0%2C0
http://sciwheel.com/work/citation?ids=10194625&pre&suf&sa=0
http://f1000.com/work/citation?ids=8333227&pre&suf&sa=0
http://f1000.com/work/citation?ids=6094688&pre&suf&sa=0
http://sciwheel.com/work/citation?ids=8332908&pre&suf&sa=0


 

“The clustering method generates three hierarchies of cells: classes, subclasses, and 
clusters. The SMART-Seq data has 2 major classes (Glutamatergic, GABAergic), 18 
subclasses that subdivide the classes, and 62 clusters that subdivide the subclasses.” 

 
 
Minor notes: 

 
• Spatial atlas (Extended Data Figure 8): doesn’t seem to have specifically spatial information; 
rather it seems to link clusters with genes/isoforms, which seemingly could be done with just the 
SMART-seq data 

 
Thank you for pointing this out, the figure did not explicitly contain spatial information 
and relied on the knowledge that each subclass has a physical location in the MERFISH 
data. We regret omitting this. We have added this to Figure 3 and have also added plots 
to the left of each subclass indicating their physical location within a slice of the mouse 
primary motor cortex (see also Supplementary Table 9) . We have also clarified and 
extended the caption per your suggestion. In this figure we are showing genes that are 
differential in the MERFISH data and the underlying isoforms that are differential in that 
cluster in the SMART-Seq data. This is a more detailed look of spatial isoform inference. 
If one just knew the differential isoforms for that cluster then the positional coordinate of 
the cell would be lost. There are methods (Lebrigand et al. 2020) being developed to 
perform spatial isoform sequencing but these suffer from the limited number of distinct 
isoforms that can be detected. The novelty of our approach combines multiple methods 
of measuring RNA inside cells to provide insights that no single method could generate 
on its own; full length isoform data overcomes the lack of full isoform resolution in 
spatial methods. 

 
• I believe the “spatial isoform atlas” in Extended Data Figure 8a is only for Pvalb; is that 
correct? (I assumed so because of the annotations of isoforms as 201 or 202) 

 
We have clarified the caption for Extended Data Figure 8 (now Figure 3) and have 
included additional clarifying plots. The isoform atlas is showing the physical location of 
sets of cells (black points) belonging to a subclass (left scatter plots) in a slice of the 
mouse primary motor cortex. The violin plots are showing expression of marker isoforms 
from the SMART-Seq data (along the diagonal) where the MERFISH marker genes 
(columns) are also differential for each of the subclasses (rows). Spatial isoform 
inference links isoform expression from the SMART-Seq data with physical location of 
the cells expressing that isoform from the MERFISH data. 

 
• The naming of the isoform-informed approach at gene count estimation as “valid” in 
Extended Data Figure 9 seemed a bit presumptuous to me; it seemed like this figure was 
supposed to argue that it was valid 

https://docs.google.com/spreadsheets/d/1BgL_odYUIm3F5s0bZqXPHrEfbtC9_9gq3dVKMZW27T4/edit?usp=sharing
http://sciwheel.com/work/citation?ids=9530664&pre&suf&sa=0


Thanks for your comment. You are right that the word “valid” was inappropriate. We have 
added a discussion point in the methods along with supporting citations to explain what 
we mean. This analysis attempts to show that normalizing full length isoform 
quantifications is important in determining marker genes. Since reads can come from 
anywhere in the transcriptome it is likely that read counts for longer isoforms are 
enriched. Therefore it is important to normalize isoform quantification by length prior to 
downstream analysis. This is supported by extensive analysis in bulk RNA-seq (Jiang 
and Wong 2009; Trapnell et al. 2013). We have therefore renamed the gene count estimate 
to “EM” estimate to reflect the method by which transcript abundances are quantified, 
rather than calling them “valid”, which is indeed a poor descriptor. 

 
• Not clear how False positives and false negatives were determined in Extended Data Figure 9 

 
This was poorly worded and we have changed the language. Since we have no “ground 
truth” it is impossible to claim that a gene is a false positive or a false negative marker 
gene when comparing the EM gene quantifications vs the naive strategy. We now simply 
note that results can be very different with and without the EM algorithm, and we rely on 
the extensive prior literature establishing much better accuracy with the EM algorithm for 
the reader to deduce the practical implications of utilizing the naive counting method. We 
have added a few sentences to the Methods section elaborating this point. The relevant 
figure is now Extended Data Fig. 15. 

 
• Please describe more how the work in the paper is a general workflow 

 
We have created a new figure (Figure 1) and have added a paragraph in the discussion 
section explaining the general workflow. Briefly, we propose using UMI-based gene 
tagging methods for high cell capture at low depth in order to identify rare cell types, 
full-length isoform methods for isoform quantification on the cells of interest, and spatial 
methods for determining isoform localization or spatial methods that use isoform 
quantification to develop isoform panels for cell types of interest. This multi-platform 
approach measures RNA in three different ways with each way providing a valuable but 
orthogonal piece of supporting information for studying the MOp. The result of our 
approach is a “whole is greater than the sum of its parts”, illustrated graphically in 
Figure 1. 

 
• "Our analyses suggest that a workflow consisting of droplet-based single-cell RNA-seq to 
identify cell types, then SMART-seq for isoform analysis, and finally spatial RNA-seq with a 
panel based on isoform-specific markers identified by SMART-seq, would effectively leverage 
different technologies’ strengths” ← this seems to be a broad description of the workflow. 
This all seems valid, but doesn’t necessarily form one cohesive analysis (especially 10x and 
SMART-seq) 

http://sciwheel.com/work/citation?ids=162093%2C81190&pre&pre&suf&suf&sa=0%2C0
http://sciwheel.com/work/citation?ids=162093%2C81190&pre&pre&suf&suf&sa=0%2C0


We agree, and appreciate that we did not make it clear exactly what the workflow 
entailed. As mentioned above we created a new descriptive figure (Figure 1 in the main 
manuscript) that demonstrates how we leverage three distinct ways of measuring RNA 
content of cells to infer spatial isoform information. The workflow consists of using 
primarily gene tagging technologies such as 10x Chromium to perform cell type 
identification, isoform sequencing with technologies such as SMARTSeq to identify 
isoform markers in cell types, and spatial RNA capture with technologies such as 
MERFISH to spatially place cell-type isoform markers. We have also added an extended 
discussion point to address how these three methods are used. We note that our 
transparent code, fully reproducing our workflow in a series of 56 notebooks (see 
https://github.com/pachterlab/BYVSTZP_2020/tree/master/analysis/notebooks), is in and 
of itself a detailed Methods section, leaving nothing to the imagination. 

 
Does the manuscript have flaws which should prohibit its publication? 

 
One of the main aims of this paper, to provide an example of how SMART-seq data can be used 
in conjunctions with other scRNA-seq technologies, did not seem fully fleshed out in and it is not 
not totally clear how the analysis was enhanced by the other technologies. Please provide a 
clear workflow that used them all in conjunction with each other. 

 
As mentioned above we have created a new Figure and have added an extended 
discussion in the results section on how the three methods are used in conjunction and 
how each method enhances the other. We have used the analogy of positive epistasis 
from population genetics where “the whole is greater than the sum of the parts”. We feel 
this is an apt descriptor for what we are doing. We are using different measurements of 
the same quantity, each with distinct advantages and disadvantages, to ultimately 
improve the precision with which we understand the RNA content of the MOp. 

 
Other comments requested: 

 
The methods to synthesize results from multiple single cell sequencing methods are of great 
interest in the single cell sequencing field currently. This paper is a step towards a workflow that 
can draw conclusions based on multiple sources of information at the same time. Extrapolation 
of isoform levels to spatial data is especially relevant, as spatial isoform quantification for 
multiple genes at the same time is currently difficult. The methodology for identifying isoform 
markers for clusters seems sound, and a move in the more informative direction of using 
isoform-level rather than purely gene-level analysis of single cell sequencing data. 

 
 
No error bars are shown in the manuscript. The t test seems like an appropriate test to identify if 
the mean isoform level (or gene level) of a cluster was different from its complement (though I 
don’t believe it’s addressed whether the data would be expected to follow a normal distribution). 
P values were corrected using Bonferroni correction. 

https://github.com/pachterlab/BYVSTZP_2020/tree/master/analysis/notebooks


 

Thank you for pointing out the lack of error bars. We have added them to our figures 
indicating +/- one standard deviation of the mean and have noted this in the Methods 
section (added to Figure 2, ). As we mentioned above in the response to Reviewer 1, the 
use of the t-test was justified by (Soneson and Robinson 2018). In their analysis the t-test 
was one of the top performing differential expression methods among 36 different 
methods. 

http://sciwheel.com/work/citation?ids=4904129&pre&suf&sa=0


Referee #2 (Remarks to the Author): 
 

This manuscript explores the use of SMART-seq single-cell RNA-seq data can be used to 
analyze isoform expression in single cells, analyzing over 6000 cells from the mouse primary 
motor cortex, using SMART-seq v4 and also comparisons to larger numbers of cells analyzed 
using the 10x Genomics Chromium and MERFISH approaches. The conclusions reached are 
that specific mRNA isoforms can often be used to distinguish cell types, even when no 
difference in expression is apparent at the gene level. Several clear examples of this 
phenomenon are shown. From a biological point of view, this result is not terribly surprising as 
alternative splicing is known to vary substantially during cellular differentiation and between 
various mammalian cell and tissue types from previous studies using a variety of approaches 
(e.g., PMID 17606642, 28673540, 30028642). The specific analysis of isoform-specific usage 
between glutamatergic and GABAergic neurons is interesting but largely confirmatory of the 
previous work on differential single-cell exon usage between the same types of neurons in the 
primary visual cortex that inspired this analysis (https://www.nature.com/articles/nn.4216). The 
novelty is therefore more of a technical nature, in the study of isoform distributions at single 
cell resolution and their application as cell type markers. 

 
While our manuscript does present a novel technical framework for studying isoforms at 
single-cell resolution, there are several additional contributions we feel are important: 

- We present, for the first time, a catalog of isoform markers at different hierarchies 
of the cell type classification of the BICCN (Yao et al. 2020; BRAIN Initiative Cell 
Census Network (BICCN) et al. 2020; Zhang et al. 2020). Our work is a companion 
to the numerous other BICCN projects on the primary motor cortex, and our 
manuscript is the (only) one presenting the isoform resolved atlas. We believe that 
this resource will be of value to the community. 

- While it is true that several of our isoform markers are well known, a result which 
provides validation of our novel technical framework, our catalog contains many 
additional isoforms that have not been studied in detail, and these are prime 
candidates for follow-up studies. As we explain below, there are now experimental 
techniques for such isoform-level studies (e.g., (Thomas et al. 2020) ), an advance 
in the field that goes hand-in-hand with our work. 

- Our workflow and framework for isoform analysis is built on reproducible, 
transparent, and efficient code that will provide researchers direct access to all 
types of analyses with BICCN transcriptomic data, not just at the isoform-level but 
also at the gene-level. This is another key resource contribution of our paper. As 
we remarked in a response to Reviewer #1, all of our results are reproducible in 
about 7 hours making possible updates to the BICCN catalogs when annotations 
are updated and improved. 

- Following up on other remarks, also from the other reviewer, we highlight several 
interesting biological findings. We acknowledge that detailed follow-up 
experiments on some of our interesting findings are beyond the scope of this 
paper. 

https://pubmed.ncbi.nlm.nih.gov/17606642/
https://pubmed.ncbi.nlm.nih.gov/28673540/
https://pubmed.ncbi.nlm.nih.gov/30028642/
https://www.nature.com/articles/nn.4216
http://sciwheel.com/work/citation?ids=8332908%2C9884931%2C9039512&pre&pre&pre&suf&suf&suf&sa=0%2C0%2C0
http://sciwheel.com/work/citation?ids=8332908%2C9884931%2C9039512&pre&pre&pre&suf&suf&suf&sa=0%2C0%2C0
http://sciwheel.com/work/citation?ids=8068327&pre&suf&sa=0


 

To summarize: Overall we identify 5,658 isoforms from 3,132 genes that mark the major 
classes and 7,588 isoforms belonging to 4,171 genes within the glutamatergic class and 
4,359 isoforms belonging to 2,614 genes within the GABAergic class marking the 
subclasses. At the cluster level for the 48 clusters passing filter 3,171 isoforms belonging 
to 2,461 genes mark the cluster. Thanks to your remarks and that of the other reviewer, 
we have gone to considerable lengths to organize this catalog better in a new 
Supplementary Table (Supplementary Table 9). 

 

We note that importantly, we find isoform markers when the overlying gene does not 
mark the cell type. We show that 398 isoforms belonging to 310 genes mark the classes 
and 654 isoforms from 550 genes within the glutamatergic class and 381 isoforms from 
332 genes within the GABAergic mark the subclasses even when the overlying gene is 
constant. This highlights the importance of isoform quantification with full length RNA 
sequencing. Additionally our methodology for identifying spatially-resolved isoform 
markers yields 16 subclasses with their spatial location and associated isoform markers, 
and crucially, we highlight isoform markers that split clusters indicating possible new 
cell types, a result that has bearing on numerous other single-cell RNA-seq studies with 
both SMART-seq and 10x Chromium data (there are many such studies, see (Svensson et 
al. 2020) ). We also describe isoforms that we find to be differential between males and 
females, and we now highlight isoform markers that provide exciting glimpses into the 
varied biology occurring at the isoform level. 

 
In response to the question about biological discovery, we introduce a method for 
studying isoform variability across the depth of the mouse primary motor cortex by using 
MERFISH data to screen for gradients across subclass depth and SMART-Seq data to 
determine isoform expression across the depth. We have added a new Extended Data 
Figure 12 and have added a discussion point on this. While we find many isoforms that 
exhibit a significant change associating with depth, none of the isoforms passing our 
filters exhibit a monotonic change with respect to the mean. This suggests that non- 
linear models may be better suited to study isoform variability across the depth of the 
mouse primary motor cortex (Rash and Grove 2006; Sansom and Livesey 2009). 

 

As mentioned above, when curating the isoform atlas we identified numerous isoforms 
that were differential when the gene was not. We have now added short vignettes to the 
manuscript discussing the biological relevance of these markers. Specifically we discuss 
the relevance of isoform marker Oxr1-204 in marking Glutamatergic neurons, Snap25-202 
in marking L6b cells, and Stxbp2-207 in marking a cluster of the L6b cells. 

 
We have also added an analysis that searches for previously unannotated cell types that 
have isoform markers that were not identified with the gene clustering method. We show 
that the App-205 isoform splits the L6 CT Grp_1 cluster with a much larger effect size 
than the gene. Indicating high isoform expression variability within the cell type and 
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providing supporting evidence that isoform resolution aids in refining cell types when 
gene quantifications alone cannot. 

 
Lastly we have added a new analysis that looks at isoform expression between males 
and females in the SMART-Seq data. After searching in all subclasses for autosomal 
isoforms that best mark male versus female cells we found that the Vip subclass was 
marked by differential expression of Shank1-203. 

 
A challenge in the use of scRNA-seq to assess isoform abundance is the limited capture 
efficiency of mRNAs, which results in the problem of gene dropouts (failing to capture any reads 
from a gene that is expressed), which is even more serious at the level of mRNA isoforms which 
are expressed at levels that may be a small or large fraction of the expression of the 
corresponding gene, and which require reads to cross the particular splice junctions that 
distinguish them from related isoforms. More explicit attention to issues of capture efficiency and 
coverage (see below) would make the results more convincing. 

 
The SMART-Seq dataset generated 15,229,289,828 sequencing reads with an average of 
2,419,268 reads per cell. Since every analysis involving SMART-Seq was aggregated at the 
cluster/subclass/class level, we looked at the number of reads contained within each 
cluster as it represents the fewest number of reads used in our analysis since all isoform 
markers are generated by comparing cells between classes, subclasses and clusters. 

 
Comparing clusters against each other is equivalent to comparing multiple (pseudo) bulk 
RNA-seq samples to each other. We looked at the number of reads per cluster and found 
that the minimum number of reads per cluster was 9,499,100, the maximum was 
2,264,376,507 and the median was 109,875,084. Since we are performing differential 
expression on the clusters, we can think of each cluster as a (pseudo) bulk RNA seq 
sample, and from this point of view the read depths in our “samples” are comparable or 
better than what is typical in RNA-seq. We also note that other papers report high 
coverage and capture efficiency for SMART-seq on real and simulated datasets (Westoby 
et al. 2018), and validate the accuracy of isoform quantifications. We quote a main result 
from Westoby et al. below: 

http://sciwheel.com/work/citation?ids=5990853&pre&suf&sa=0
http://sciwheel.com/work/citation?ids=5990853&pre&suf&sa=0


[Redacted] 
 

From Figure 2a from (Westoby et al. 2018) 
 

“However, the extremely high recall of all the isoform quantification tools considered in 
this benchmark means that the overwhelming majority of isoforms from which reads are 
captured will be called as expressed.“ 

 
Additionally 

 
"Our simulation-based analyses have demonstrated that Kallisto, Salmon, Sailfish, and 
RSEM can accurately detect and quantify isoforms in scRNA-seq to nearly the same 
accuracy as bulk RNA-seq data... Taken together, our findings show that isoform 
quantification is possible with scRNA-seq for SMARTer and SMART-seq2 data." 

 
Our tools have been shown to be appropriate for quantifying isoforms. Isoform counts 
are assigned using kallisto’s equivalence classes and the expectation maximization 
algorithm. The pseudoalignment step retains information about alignment across 
genomic locations and the expectation maximization algorithm assigns counts to 
transcripts in an iterative fashion such that the log likelihood of the count 
assignments are maximized (Bray et al. 2016). 

 

In one simulated bulk RNA-seq dataset of 50 million reads based on the Human Brain 
Reference RNA HBRR-C4 dataset our tools demonstrated very low mean absolute 
relative differences and a high pearson correlation across all isoforms (Zhang et al. 
2017). The figure is reproduced below. 

http://sciwheel.com/work/citation?ids=5990853&pre&suf&sa=0
http://sciwheel.com/work/citation?ids=1345325&pre&suf&sa=0
http://sciwheel.com/work/citation?ids=4045366&pre&suf&sa=0
http://sciwheel.com/work/citation?ids=4045366&pre&suf&sa=0


[Redacted] 

Figure 2 from (Zhang et al. 2017) 
 

In summary, we believe that our datasets have sufficient read coverage when grouped 
together, as was done for every analysis step we have performed, and that our tools are 
accurate and properly assign counts to isoforms in a manner that minimizes dropout. 

 
Cross-platform comparisons are also used to assess the strengths and weaknesses of different 
approaches, a worthwhile technical contribution. The manuscript is written clearly and the 
authors have done a commendable job in ensuring the reproducibility of their work by providing 
clear methods and links to code, etc. However, what is almost completely lacking from the 
manuscript is some sense of the biological importance of the descriptions of differential isoform 
usage across cell types and of the inferences the authors make – the paper feels descriptive 
and lacking in context. The main conclusions relate to which combinations of methodologies are 
best for scRNA-seq analyses, and which isoforms can be used as markers of particular cell 
types, but these conclusions are likely to be of interest primarily to specialists. No attempt is 
made to draw biological conclusions that might be of interest to a broader audience. 

 
Thank you for the comments. Our paper originally lacked detailed biological conclusions 
and per your suggestion we have added them. As mentioned above, we have identified 
novel isoform markers that appear to be sex-specific. The Shank1-203 isoform effectively 
distinguises male and female cells within the Vip subclass a finding that refines previous 
data showing that Shank1, which has been shown to localize in Purkinje cells in the cortex 
(Böckers et al. 2004), is a sex specific gene who’s expression is regulated by sex 
hormones (Berkel et al. 2018). Also, as mentioned above, we have developed a 
methodology that searches for isoform specific expression across the depth of the mouse 
primary motor cortex. While we have identified significant isoforms that vary across the 
depth, using a linear model, we believe that non-linear models may be better suited. We 
have also found numerous isoform specific markers for cell-types where the gene does 
not mark the cell-type. We have added these vignettes to the main manuscript. 

http://sciwheel.com/work/citation?ids=4045366&pre&suf&sa=0
http://sciwheel.com/work/citation?ids=3737870&pre&suf&sa=0
http://sciwheel.com/work/citation?ids=10156569&pre&suf&sa=0


Our findings also present, for the first time, a collection of isoform markers for cell types 
that are physically located within the mouse primary motor cortex. The scale and breadth 
of this transcriptomic “atlas” will certainly be useful to a general audience. To further 
make our findings available and accessible, we have created a searchable database for 
the isoform atlas (Supplementary Table 9). A user can search for cell types of interest 
and immediately know the set of isoforms that mark that cell type as well as the location 
of the cells for that cell type. 

 
 

Specific issues: 
 

1. Recent work has challenged the applicability of most scRNA-seq datasets to reliably estimate 
isoform abundance from all but the most highly expressed genes 
(https://www.biorxiv.org/content/10.1101/2019.12.19.883256v1), showing by simulation that 
presence of multiple isoforms in a single cell is often obscured by limited coverage resulting 
from insufficient mRNA capture efficiency in scRNA-seq library preps. Further, this study shows 
that isoform abundance can only reliably be estimated from scRNA-seq data by modeling 
coverage of each gene based on estimates of mRNA capture efficiency and expression level to 
assure sufficient depth of coverage. More attention should be given to these issues to 
convincingly show that the genes and datasets analyzed have sufficient coverage to reliably 
estimate isoform abundance. 

 
We are aware of the preprint you linked to, and agree with its contents. A key point of the 
(Buen Abad Najar et al. 2019) paper is the claim that alternative splicing cannot be 
performed on individual cells. We acknowledge that studying individual cells may require 
modelling capture efficiency. However, when aggregating cells to perform differential 
expression, as we do in our manuscript, such a step is not necessary as the aggregate of 
a collection of cells is similar to deeply sequenced (pseudo) bulk RNA sequencing and as 
such contains sufficient information to perform differential expression at the isoform 
level. Nowhere in our manuscript do we make claims about isoform abundance in 
individual cells, but rather focus on clusters (or subclasses, and classes). In all of our 
analyses we have aggregated cells and this provides substantial additional power. 

 
The depth of our pseudobulk is substantial: the SMART-Seq data was sequenced to an 
average depth of 2,419,268 reads per cell which is sufficient to accurately detect genes 
(Ziegenhain et al. 2017) and when aggregated at the cluster level as discussed above is 
sufficient to accurately quantify isoforms (Zhang et al. 2017; Westoby et al. 2018). The 
figure below (new Extended Data Fig. 15a) shows the distribution of reads per cluster in 
our dataset. This is an order of magnitude higher than typical bulk RNA-seq experiments. 

https://docs.google.com/spreadsheets/d/1BgL_odYUIm3F5s0bZqXPHrEfbtC9_9gq3dVKMZW27T4/edit?usp=sharing
https://www.biorxiv.org/content/10.1101/2019.12.19.883256v1
http://sciwheel.com/work/citation?ids=8044796&pre&suf&sa=0
http://sciwheel.com/work/citation?ids=3174121&pre&suf&sa=0
http://sciwheel.com/work/citation?ids=4045366%2C5990853&pre&pre&suf&suf&sa=0%2C0


 

 
 
 

Additionally we are using SMART-Seq2 developed by (Picelli et al. 2014) which 
improved on the original SMART-Seq protocol in numerous ways. One in particular is 
the uniformity of read coverage across transcripts for all genes (Supplementary Figure 
9a in their paper). Furthermore, (Seirup et al. 2020) find that SMART-seq’s higher 
sensitivity and read-depth allow for analysis of lower expressed genes and isoforms in 
their biological system, identifying isoforms with distinct expression in cases where 10x 
and MarsSeq could not. 

 
 

2. In the section accompanying Fig 3 the authors use single-cell data to note that of the two 
isoforms of the Pvalb gene, only one (Pvalb-201) is expressed in the MOp region of the brain, 
and then extrapolate based on cell-type markers to map the isoform expression patterns onto 
spatial expression data. Given that only one of the two isoforms is expressed at a detectable 
level, the extrapolation reduces to the inference that any cell which expresses Pvalb expresses 
the Pvalb-201 isoform. That is, the authors are only mapping the spatial patterns of Pvalb 
isoform expression by virtue of the fact that it is the only isoform detectably expressed. This 
seems like a reasonable extrapolation, but it is not clear that it provides any clear advantage in 
terms of cell type classification over the use of the Pvalb gene as a marker, or other desirable 
outcome. Can the authors explain why this extrapolation adds something important, or provide a 
more compelling example of where an important biological inference is enabled by this sort of 
extrapolation? 

 
Each method of transcriptome mesurement yields different information: 3’ capture allows 
for cell-type identification, full length allows for isoform identification, and spatial capture 
enables positioning the cell in space. By identifying Pvalb-201 as the specific isoform 

http://sciwheel.com/work/citation?ids=349184&pre&suf&sa=0
http://sciwheel.com/work/citation?ids=9770822&pre&suf&sa=0


being expressed in the Pvalb subclass in the SMART-Seq data and then, by extrapolation, 
assigning the specific isoform expression to the Pvalb cells in the MERFISH data, we are 
linking isoform expression with spatial with a known spatial location. We argue that 
inferring spatially-resolved cell-type-specific isoform expression is critical for multiple 
reasons: 

 
 Spatial RNA sampling is limited to a panel of genes (Wang et al. 2020), identifying 

isoform markers may aide in expanding spatial tag panels and in cell type 
identification and functional relevance in tissue 

 Inferring cell-type specific isoform expression may reveal spatial patterns of 
alternative splicing, providing insight into the mechanism of cell signaling (Li et al. 
2020) and spatial isoform regulation (McMillan et al. 2008) during brain 
development 

 Spatial isoform markers enable more targeted assays for "automatic expression 
histology", for example new genetic tools are now available to knock-out isoforms 
(Thomas et al. 2020). A spatially resolved cell type specific atlas therefore 
provides actionable hypotheses, with inferred locations of expression that can 
help guide follow-up targeted assays. 

 
We believe that spatially resolved isoform expression will also help in future image based 
screening techniques (He et al. 2020) where specific isoform markers are gleaned from 
paired spatial and isoform level RNA sequencing data that would otherwise be hidden at 
the gene level. 

 
3. The figures are somewhat difficult to follow and need better legends. For example: 

 
a. In Fig1e and e what do the dotted lines and circles represent? This should be explained in 
the legend. 

 
Thank you for pointing this out. We have rewritten the figure legend to make it clearer 
that we are demonstrating, across the class, subclass, and cluster, differential 
isoforms for which the corresponding gene is not differential. We have also noted that 
the dotted lines correspond to the collection of cells that belong to the specific class, 
subclass, or cluster of interest. 

 
b. Figure 2 and Ext Fig 8 are somewhat visually overwhelming. In interpreting the 289 
distributions displayed as violin plots, what should the reader focus on? Most readers will focus 
on the centers of the distributions, or just the presence or absence of expression. Further, the 
variable y-axes and that the bulk of many distributions (and their means) are cut off by the axis 
limits makes this plot difficult to read. If the mean expression level is the most important piece of 
information, a heat map might be easier for readers to digest. 

 
We agree that there is a lot of information contained within the violin plots and believe 
that it is important to show the expression of each isoform across all clusters. To make 

http://sciwheel.com/work/citation?ids=9443787&pre&suf&sa=0
http://sciwheel.com/work/citation?ids=8911232&pre&suf&sa=0
http://sciwheel.com/work/citation?ids=8911232&pre&suf&sa=0
http://sciwheel.com/work/citation?ids=8911232&pre&suf&sa=0
http://sciwheel.com/work/citation?ids=4553900&pre&suf&sa=0
http://sciwheel.com/work/citation?ids=8068327&pre&suf&sa=0
http://sciwheel.com/work/citation?ids=9131007&pre&suf&sa=0


the visualization more clear we have rewritten the legend to better guide the reader. As 
a supplement to these plots we have also made heat maps that highlight the normalized 
mean expression of each isoform relative to each cluster (new Extended Data Figure 
10b,c). 

 
c. The legend to Figure 3a appears to apply to 3c, while the legends to 3b and 3c appear 
to apply to 3a and 3b. 

 
Thank you for pointing this out, we have fixed it. 

 

d. In Figure 4c, the isoforms should be labeled for clarity. 
 

Thank you for pointing this out, we have fixed it. 
 
 

Reviewer Reports on the First Revision: 
 

Referee #3 (Remarks to the Author): 
 

Booeshaghi present an approach for quantifying gene expression isoforms from the recent BICCN 
datasets related to the mouse motor cortex. The authors apply these methods to SMART-Seq and 
10xv3 datasets and identify novel splicing isoforms that, when applied in the context of clustering 
analyses, reveal additional diversity among cells and cell types beyond what can be identified through 
gene-level analyses. The level of correspondence between isoform identification between both 
technologies, which are quite different, is interesting and reassuring. Lastly, the authors present an 
approach for spatial positioning of isoform information onto MERFISH-based spatial transcriptomics 
data. 

 
This work is technically rigorous and the results are presented clearly. I commend the authors for their 
extensive efforts to make their analyses and code reproducible and publicly accessible. Given that this 
manuscript has already been through one round of extensive review (which I did not contribute to), I 
will focus my comments on the perceived novelty of the work. 

 
Regarding the perceived impact of this work, it is difficult to justify publication of this paper in Nature. 
There is little in the paper regarding the functional or biological consequences of the splice isoforms 
identified in the manuscript. While this issue was brought up by other reviewers in the previous round 
of review (Reviewer #2 specifically), this has not been adequately or sufficiently addressed in the 
current manuscript. Efforts to link the observed isoform diversity with other indices of biological utility, 
for example, whether such isoforms are conserved in orthologous cell types in other species have 
been not pursued. Critically, there has been no demonstration of the functional utility of any of the 
novel splice isoforms through direct perturbation methods. 

 
A second point regarding the novelty of this work is that this paper is but one of many pursuing an 
identical question using similar datasets. For example, in a recent study by Feng et al, recently 
published in PNAS,( https://www.pnas.org/content/118/10/e2013056118), took a similar approach to 
isoform identification using datasets collected by the Allen Institute but with four times the number of 
SMART-seq characterized cells. 

 
I understand the value of “focusing” the analysis here on mouse motor cortex to be consistent with 

http://www.pnas.org/content/118/10/e2013056118)
http://www.pnas.org/content/118/10/e2013056118)


other work from the BICCN, but for the purposes of isoform identification and cell type mapping, given 
the relative paucity of sampled cells in the motor cortex relative to other brain regions, this is more a 
hindrance than a benefit. 

 
 

Author Rebuttals to First Revision: 
 

Response to reviewers 2 
We appreciate the recent reviewer comments, and below provide a point-by-point 
response describing some of the work we have performed in response to the questions. 

 
Referee #3: 

 
Remarks to the Author: 

 
Booeshaghi present an approach for quantifying gene expression isoforms from the recent 
BICCN datasets related to the mouse motor cortex. The authors apply these methods to 
SMART-Seq and 10xv3 datasets and identify novel splicing isoforms that, when applied in the 
context of clustering analyses, reveal additional diversity among cells and cell types beyond 
what can be identified through gene-level analyses. The level of correspondence between 
isoform identification between both technologies, which are quite different, is interesting and 
reassuring. Lastly, the authors present an approach for spatial positioning of isoform 
information onto MERFISH-based spatial transcriptomics data. 

 
This work is technically rigorous and the results are presented clearly. I commend the authors 
for their extensive efforts to make their analyses and code reproducible and publicly accessible. 

 
In light of questions we have received about the BICCN data, and to facilitate cross- 
comparisons with other datasets (see response to questions below), we have gone a 
step further and now taken the time to make our notebooks runnable on Google Colab. 

 
Given that this manuscript has already been through one round of extensive review (which I 
did not contribute to), I will focus my comments on the perceived novelty of the work. 

 
Regarding the perceived impact of this work, it is difficult to justify publication of this paper in 
Nature. There is little in the paper regarding the functional or biological consequences of the 
splice isoforms identified in the manuscript. While this issue was brought up by other reviewers 
in the previous round of review (Reviewer #2 specifically), this has not been adequately or 
sufficiently addressed in the current manuscript. Efforts to link the observed isoform diversity 
with other indices of biological utility, for example, whether such isoforms are conserved in 
orthologous cell types in other species have been not pursued. Critically, there has been no 
demonstration of the functional utility of any of the novel splice isoforms through direct 
perturbation methods. 



In order to obtain a deeper understanding of the links between the isoform diversity and 
orthologous cell types, which we agree would add an important dimension to the paper, 
we investigated several datasets and performed several comparisons which we detail 
below. First, the question of cell type and splicing orthology across species is complex. 
While the BICCN consortium has generated full-length single-cell RNA-seq data from the 



mouse primary motor cortex, in other species the full-length single-cell RNA-seq is 
single-nuclei RNA-seq data (from the marmoset and macaque). We explored whether it 
would be tractable to assess whether isoforms in the mouse MOp are conserved in 
orthologous cell types in macaque and marmoset, but concluded this would be 
extremely challenging / impossible with the data currently at hand. While there has been 
some methods development specific to cross-species single-cell comparison 
(https://internal-journal.frontiersin.org/articles/10.3389/fcell.2019.00175/full), there are still 
several major methodological gaps, and much research is still required for such analysis 
to be effective and reliable. Specific to our challenge, in addition to identifying and 
selecting orthologous cell-types in the marmoset and macaque, questions of isoform 
diversity require annotations that, while developed in the mouse, are lacking in 
marmoset and macaque. While the macaque and marmoset annotations are improving 
(https://science.sciencemag.org/content/370/6523/eabc6617, 
https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-020-6657-2) they are 
incomplete and may make such isoform level comparisons challenging. Additionally, 
single-nuclei assays (macaque / marmoset) yield a greater fraction of reads from intronic 
regions, with high sequence homology across the transcriptome, making it challenging 
to assign UMIs to specific splice isoforms and compare isoform specificity to standard 
single-cell assays (mouse) (https://www.nature.com/articles/s41587-020-0465-8). Thus, 
while we agree the suggested investigation is interesting, it is beyond the scope of our 
current paper. 

 
Nevertheless, motivated by the question of isoform diversity across orthologous cell 
types, we decided to compare and contrast our findings with those from recently 
published data from the mouse isocortex (https://doi.org/10.1016/j.cell.2021.04.021). This 
dataset provides an exceptional opportunity to ask whether the isoform diversity we 
discovered, specifically isoform markers present in the absence of differential gene 
expression, are conserved across brain regions. To examine this we solicited the help of 
a rotation student in the lab (Nicholas Markarian) who, in order to answer questions 
about isoform diversity in the mouse isocortex, re-processed and analyzed the data of 
https://doi.org/10.1016/j.cell.2021.04.021. 

 

We have confirmed that many of our findings do, in fact, replicate across brain regions. 
For example, in a comparison of the Isocortex and Hippocampal formation structure 
comprising nine regions (Hippocampal region; Retrospenial area; Subiculum, 
prosubiculum; Entorhinal area, lateral and medial part; Temporal association areas, 
perirhinal area, ectorhinal area; Prelimbic area, Infralimbic area; Agranular insular area; 
Orbital area) the Myl6-203 isoform is differentially expressed in the GABAergic class 
while the gene is not. This is consistent with our results from the MOp for the 
GABAergic class. 

https://internal-journal.frontiersin.org/articles/10.3389/fcell.2019.00175/full
https://science.sciencemag.org/content/370/6523/eabc6617?ijkey=99105f7475f577d192d8731a1ad7b6d1aa19156d&keytype2=tf_ipsecsha
https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-020-6657-2
https://www.nature.com/articles/s41587-020-0465-8
https://doi.org/10.1016/j.cell.2021.04.021
https://doi.org/10.1016/j.cell.2021.04.021


 
 

Figure 1: Example of a gene with an isoform specific to the GABAergic class. The Myl6 
gene abundance distribution in log1p(Transcripts per million (TPM)) units across cells 
and Myl6-206 isoform distribution in log1p(TPM) units across cells. The violin plots of the 
Myl6 gene and Myl6-206 isoform distributions show that the gene is not differential but 
the isoform is. 

 
Moving down the hierarchy, we have similar results for the Aldoa-203 isoform in the 
Sst subclass. The isoform is differentially expressed while the gene is not. 

 



Figure 2: Example of a gene with an isoform specific to the Sst subclass. The Aldoa 
gene abundance distribution in log1p(Transcripts per million (TPM)) units across cells 
and Aldoa-203 isoform distribution in log1p(TPM) units across cells. The violin plots of 
the Aldoa gene and Aldoa-203 isoform distributions show that the gene is not 
differential but the isoform is. 

 
These preliminary anecdotal results show conserved isoform splicing in matching cell 
types in different brain regions, though further analysis is required to fully understand 
these similarities, as well as possible differences. We’ve begun detailed analyses of 
these other brain regions comprising 24 notebooks, but as the analysis has ballooned 
in scope and complexity, we feel it is beyond the scope of this paper. 

 
We agree that direct perturbation methods would be useful and informative to 
demonstrate the functionally utility of novel splice isoforms. Validation studies with 
assays such as pgFARM (https://www.nature.com/articles/s41588-019-0555-z) are one of 
the BICCN’s high priority research areas, and will undoubtedly lead to interesting future 
results. 

 
A second point regarding the novelty of this work is that this paper is but one of many pursuing 
an identical question using similar datasets. For example, in a recent study by Feng et al, 
recently published in PNAS,( https://www.pnas.org/content/118/10/e2013056118), took a 
similar approach to isoform identification using datasets collected by the Allen Institute but with 
four times the number of SMART-seq characterized cells. 

 
We are aware of this paper which came out while our paper was in review and we are 
excited that more researchers are focusing on isoform diversity and its implications for 
understanding cell types. 

 
The Feng et al. paper studies alternative splicing events in the various cell-type 
hierarchies using full-length single-cell RNA-seq (SMART-Seq assay) from 17,222 cells 
from the primary visual cortex (VISp) and 10,068 cells from anterior lateral motor cortex 
(ALM). Their analysis is focused on isoform markers and alternative splicing events that 
can be derived from full-length RNA-seq data and they validate their results with bulk 
RNA-seq. Our analyses use full length SMART-Seq, 3’ UMI 10xv3, and spatial MERFISH 
assays in numerous novel ways: 

1. We use the full-length SMART-Seq data to find isoform markers for all collections 
of cells within the cell-type hierarchy. We find isoform markers that would be 
masked at a gene level analysis, and find multiple examples of transcriptional 
and post-transcriptional programs. This is an important advance that may help 
researchers characterize cell-types with more granularity. 

2. We show how isoforms could be used to refine cell-type annotations with a higher 
average effect size than standard gene expression. This addresses one of the 
major questions posed by the BICCN consortium: What level of granularity of cell 
type definition is required for understanding the function of a given neural circuit? 

https://github.com/nmarkari/BYVSTZP_2020
https://www.nature.com/articles/s41588-019-0555-z
https://www.pnas.org/content/118/10/e2013056118


3. We perform extensive isoform and gene-level validation between all assays 
demonstrating that our quantifications are consistent. This is a novel 
advancement over Feng et al paper which simply validates against bulk RNA- 
seq. 

4. We develop a framework and show, by way of example, how MERFISH spatial 
RNA-seq data can be used to infer spatial isoform expression for isoforms 
identified with the SMART-Seq data on the cell-types derived from the 10xv3 
data. We believe this framework will be useful for developing, analyzing, and 
interpreting future single-cell spatial RNA-seq datasets. 

5. As an example of how to use this framework, we show how isoform 
expression varies across the depth of the MOp. 

 
We are excited about the future of isoform level biology and believe that our paper 
makes numerous novel advances over existing published literature and provides a 
coherent conceptual framework for studying the brain. It's likely that other brain 
regions exhibit similar patterns of isoform expression and analyzing these brain 
regions in a multi-assay approach will produce stronger and more detailed 
conclusions about splicing biology. 

 
I understand the value of "focusing" the analysis here on mouse motor cortex to be 
consistent with other work from the BICCN, but for the purposes of isoform identification 
and cell type mapping, given the relative paucity of sampled cells in the motor cortex 
relative to other brain regions, this is more a hindrance than a benefit. 

 
We agree that there are limits to this BICCN effort, which serves as a pilot and 
precursor to studying the whole mouse brain. he BICCN consortium initial focus on 
the mouse primary motor cortex limits not just our study but others as well, and yet it 
has been essential in establishing cross-consortium standards and protocols. As 
more data continues to be collected, the reproducibility standards we have enforced 
in our project, via fully functional shared notebooks that can reproduce results from 
raw data, the isoform atlas we have established will continue to evolve and be better 
understood in the context of other multimodal brain data that is being collected not 
just by BICCN, but around the world. 

 
 
 
 
 
 
 
 
 
 
 
 




