Applied Microbiology and Biotechnology

Supplementary Material

Increased biosynthesis of acetyl-CoA

in the yeast Saccharomyces cerevisiae

by overexpression of a deregulated pantothenate kinase gene

Judith Olzhausen¹, Mathias Grigat, Larissa Seifert²,

Tom Ulbricht and Hans-Joachim Schüller

Center for Functional Genomics of Microbes,

Abteilung Molekulare Genetik und Infektionsbiologie, Universität Greifswald,

Felix-Hausdorff-Strasse 8, D-17487 Greifswald, Germany

For correspondence:

Hans-Joachim Schüller, E-mail: <u>schuell@uni-greifswald.de</u>; Tel. +49 3834 4205703; Fax +49 3834 4205709.

Present address:

¹ Cendres+Métaux SA, CH-2501 Biel/Bienne, Switzerland

² Universitätsklinikum Hamburg-Eppendorf, Medizinische Klinik, Nephrologie

Supplementary Table S1: Complete list of *S. cerevisiae* strains.

Otrain	Canatura
JS91.15-23	MATα ura3 leu2 trp1 his3
JS91.14-24	MAT α ura3 his3 cab1 ^{is, 63313}
JS19.1	MAT α ura3 leu2 trp1 his3 cab1 Δ ::HIS3 [pJO57: ARSH4
	CEN6 URA3 CAB1]
LSY20	MATα ura3 leu2 trp1 his3 cab4Δ::HIS3 [pGE7: ARSH4 CEN6
	URA3 CAB4]
LSY21	MATα ura3 leu2 trp1 his3 cab5Δ::HIS3 [pGE9: ARSH4 CEN6
	URA3 CAB5]
BY4741	MATa ura3 leu2 his3 met15
MGY5	MAT α ura3 leu2 trp1 his3 + pSH62 (2 μ m HIS3 GAL1-cre)
(derived from JS91.15-23)	HIP1::TPI1 _{PRO} -HA ₃ -CAB2-CYC1 _{TER}
MGY12	MAT α ura3 leu2 trp1 his3 + pSH62 (2µm HIS3 GAL1-cre)
(derived from MGY5)	HIP1::TPI1 _{PRO} -HA ₃ -CAB2-CYC1 _{TER}
	ENO1::TPI1 _{PRO} -HA ₃ -CAB3-CYC1 _{TER}
MGY14	MATα ura3 leu2 trp1 his3 + pSH62 (2µm HIS3 GAL1-cre)
(derived from MGY12)	HIP1::TPI1 _{PRO} -HA ₃ -CAB2-CYC1 _{TER}
	ENO1::TPI1 _{PRO} -HA ₃ -CAB3-CYC1 _{TER}
	MRH1::TPI1 _{PRO} -HA ₃ -CAB4-CYC1 _{TER}
MGY16	MATa ura3 leu2 trp1 his3 + pSH62 (2um HIS3 GAL1-cre)
(derived from MGY14)	HIP1::TPI1 _{PRO} -HA ₃ -CAB2-CYC1 _{TER}
	ENO1::TPI1 _{PRO} -HA ₃ -CAB3-CYC1 _{TER}
	MRH1::TPI1 _{PRO} -HA ₃ -CAB4-CYC1 _{TER}
	ADH3::TPI1 _{PRO} -HA ₃ -CAB5-CYC1 _{TER}
MGY18	$MAT\alpha$ ura3 leu2 trp1 his3 + pSH62 (2um HIS3 GAL1-cre)
(derived from MGY16)	HIP1::TPI1 _{PPO} -HA ₂ -CAB2-CYC1 _{TEP}
	ENO1::TPI1 _{PRO} -HA ₃ -CAB3-CYC1 _{TER}
	MRH1::TPI1 _{PRO} -HA ₃ -CAB4-CYC1 _{TER}
	ADH3::TPI1 _{PRO} -HA ₃ -CAB5-CYC1 _{TER}
	ZPS1::TPI1 _{PRO} -HA ₃ -CAB1 _{W331R} -CYC1 _{TER}
MGY20	$MAT\alpha$ ura3 leu2 trp1 his3 + pSH62 (2um HIS3 GAL1-cre)
(derived from MGY16)	HIP1::TPI1 _{PRO} -HA ₃ -CAB2-CYC1 _{TER}
	ENO1::TPI1 _{PRO} -HA ₃ -CAB3-CYC1 _{TER}
	MRH1::TPI1 _{PRO} -HA ₃ -CAB4-CYC1 _{TER}
	ADH3::TPI1 _{PRO} -HA ₃ -CAB5-CYC1 _{TER}
	ZPS1::TPI1 _{PRO} -HA ₃ -CAB1-CYC1 _{TER}
MGY22	MATα ura3 leu2 trp1 his3 + pSH62 (2µm HIS3 GAL1-cre)
(derived from MGY18)	HIP1::TPI1 _{PRO} -HA ₃ -CAB2-CYC1 _{TER}
	ENO1::TPI1 _{PRO} -HA ₃ -CAB3-CYC1 _{TER}
	MRH1::TPI1 _{PRO} -HA ₃ -CAB4-CYC1 _{TER}
	ADH3::TPI1 _{PRO} -HA ₃ -CAB5-CYC1 _{TER}
	ZPS1::TPI1 _{PRO} -HA ₃ -CAB1 _{W331R} -CYC1 _{TER}
	CUP9::TPI1 _{PRO} -HA ₃ -HAL3 _{aa 260-495} -CYC1 _{TER}
MGY24	MAT α ura3 leu2 trp1 his3 + pSH62 (2 μ m HIS3 GAL1-cre)
(derived from MGY20)	HIP1::TPI1 _{PRO} -HA ₃ -CAB2-CYC1 _{TER}
	ENO1::TPI1 _{PRO} -HA ₃ -CAB3-CYC1 _{TER}
	MRH1::TPI1 _{PRO} -HA ₃ -CAB4-CYC1 _{TER}
	ADH3::TPI1 _{PRO} -HA ₃ -CAB5-CYC1 _{TER}
	ZPS1::TPI1 _{PRO} -HA ₃ -CAB1-CYC1 _{TER}
	CUP9::TPI1 _{PRO} -HA ₃ -HAL3 _{aa 260-495} -CYC1 _{TER}
MGY6	MATa ura3 leu2 his3 met15 + pSH62 (2µm HIS3 GAL1-cre)
(derived from BY4741)	HIP1::TPI1 _{PRO} -HA ₃ -CAB2-CYC1 _{TER}

MGY13	MATa ura3 leu2 his3 met15 + pSH62 (2um HIS3 GAL1-cre)
(derived from MGY6)	$HIP1''TPI_{PPO}-HA_2-CAB2-CYC_{TFP}$
	FNO1TPI1ppo-HA-CAB3-CYC1rp
MGV15	$MAT_{PRO} = 100000000000000000000000000000000000$
(derived from MGV13)	$HID_1 HID_1 HID_2 = HA = CAB_2 - CVC_1 = -2$
(derived from MG 113)	$\frac{11171.1711}{1000}$
	$ENO1TPT1_{PRO}$ - PA_3 - $CAD3$ - $CTCT_{TER}$
M0)/47	
	MATA URAS IEUZ NISS METTS + PSH62 (2µm HISS GALT-Cre)
(derived from MGY15)	HIP1::IPI1 _{PRO} -HA ₃ -CAB2-CYC1 _{TER}
	ENO1:: IPI1 _{PRO} -HA ₃ -CAB3-CYC1 _{TER}
	MRH1::TPI1 _{PRO} -HA ₃ -CAB4-CYC1 _{TER}
	ADH3::TPI1 _{PRO} -HA ₃ -CAB5-CYC1 _{TER}
MGY19	MATa ura3 leu2 his3 met15 + pSH62 (2µm HIS3 GAL1-cre)
(derived from MGY17)	HIP1::TPI1 _{PRO} -HA ₃ -CAB2-CYC1 _{TER}
	ENO1::TPI1 _{PRO} -HA ₃ -CAB3-CYC1 _{TER}
	MRH1::TPI1 _{PRO} -HA ₃ -CAB4-CYC1 _{TER}
	ADH3::TPI1 _{PRO} -HA ₃ -CAB5-CYC1 _{TER}
	ZPS1::TPI1 _{PRO} -HA ₃ -CAB1 _{W331R} -CYC1 _{TER}
MGY21	MATa ura3 leu2 his3 met15 + pSH62 (2µm HIS3 GAL1-cre)
(derived from MGY17)	HIP1::TPI1 _{PRO} -HA ₃ -CAB2-CYC1 _{TER}
	ADH3::TPI1ppo-HA2-CAB5-CYC1TEP
	$ZPS1$ " $TPI1_{PPO}$ -HA2-CAB1-CYC17EP
MGY23	$M\Delta Ta \mu ra3 leu2 his3 met15 + nSH62 (2 \mu m HIS3 GAI 1-cre)$
(derived from MGV19)	$HIP1"TPI1_{2222} = HA_{22}CAB2 = CVC1_{222}$
	FNO1::TPI1apa-HA-CAB3-CVC1
	MRH1"TPI1ppo-HA-CAB4-CVC1
	$ADTSTFTTPROTTA_CADD-CTCTTER$
MCV2E	MATe ure 2 lou 2 hie 2 met 15 u no HIG2 (2 um HIG2 CAL 1 ere)
(derived from MCV21)	μ_{III} μ_{III} μ_{III} μ_{III} μ_{IIII} μ_{IIII} μ_{IIII} μ_{IIII} μ_{IIII} μ_{IIII} μ_{IIII} μ_{IIII} μ_{IIII} μ_{IIIII} μ_{IIIII} $\mu_{IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$
(derived from MG f 2 f)	$\prod_{PI} \prod_{PRO} \prod_{PRO} \prod_{A_3} (AD2 - C) C \prod_{TER}$
	$ADH3::IPI1_{PRO}-HA_3-CAB5-CYC1_{TER}$
	$2PS1::TPI1_{PRO}$ -HA ₃ -CAB1-CYC1 _{TER}
	CUP9:: IPI1 _{PRO} -HA ₃ -HAL3 _{aa 260-495} -CYC1 _{TER}
	MA I α ura3 leu2 trp1 his3 + pSH62 (2µm HIS3 GAL1-cre)
(derived from JS91.15-23)	ZPS1::TPI1 _{PRO} -HA ₃ -CAB1 _{W331R} -CYC1 _{TER}
TUY4	MAT α ura3 leu2 trp1 his3 + pSH62 (2 μ m HIS3 GAL1-cre)
(derived from MGY22)	HIP1::TPI1 _{PRO} -HA ₃ -CAB2-CYC1 _{TER}
	ENO1::TPI1 _{PRO} -HA ₃ -CAB3-CYC1 _{TER}
	MRH1::TPI1 _{PRO} -HA ₃ -CAB4-CYC1 _{TER}
	ADH3::TPI1 _{PRO} -HA ₃ -CAB5-CYC1 _{TER}
	ZPS1::TPI1 _{PRO} -HA ₃ -CAB1 _{W331R} -CYC1 _{TER}
	CUP9::TPI1 _{PRO} -HA ₃ -HAL3 _{aa 260-495} -CYC1 _{TER}
	GAT1::TPI1 _{PRO} -HA ₃ -FEN2-CYC1 _{TER}
LRY1	MAT α ura3 leu2 trp1 his3 + pSH62 (2µm HIS3 GAL1-cre)
(derived from MGY22)	HIP1::TPI1 _{PRO} -HA ₃ -CAB2-CYC1 _{TER}
	ENO1::TPI1 _{PRO} -HA ₃ -CAB3-CYC1 _{TER}
	MRH1::TPI1 _{PRO} -HA ₃ -CAB4-CYC1 _{TFR}
	ADH3::TPI1 _{PRO} -HA ₃ -CAB5-CYC1 _{TER}
	ZPS1::TPI1PRO-HA3-CAB1W331P-CYC1TED
	CUP9::TPI1 _{PRO} -HA ₃ -HAL3 _{aa 260-495} -CYC1 _{TER}

	pcd1∆::LEU2
LRY2	MATα ura3 leu2 trp1 his3 + pSH62 (2μm HIS3 GAL1-cre)
(derived from TUY4)	HIP1::TPI1 _{PRO} -HA ₃ -CAB2-CYC1 _{TER}
	ENO1::TPI1 _{PRO} -HA ₃ -CAB3-CYC1 _{TER}
	MRH1::TPI1 _{PRO} -HA ₃ -CAB4-CYC1 _{TER}
	ADH3::TPI1 _{PRO} -HA ₃ -CAB5-CYC1 _{TER}
	ZPS1::TPI1 _{PRO} -HA ₃ -CAB1 _{W331R} -CYC1 _{TER}
	CUP9::TPI1 _{PRO} -HA ₃ -HAL3 _{aa 260-495} -CYC1 _{TER}
	GAT1::TPI1 _{PRO} -HA ₃ -FEN2-CYC1 _{TER}
	pcd1∆::LEU2

Supplementary Table S2: Plasmids used and constructed in this work.

Plasmid	Genetic markers
pRS415	ARSH4 CEN6 LEU2 (Sikorski and Hieter, 1989)
pRS416	ARSH4 CEN6 URA3 (Sikorski and Hieter, 1989)
p415-MET25	ARSH4 CEN6 LEU2 MET25 _{PRO} (Mumberg et al., 1994)
p416-MET25	ARSH4 CEN6 URA3 MET25 _{PRO} (Mumberg <i>et al.</i> , 1994)
p426-MET25HA	2µm URA3 MET25 _{PRO} -HA ₃ (Mumberg et al., 1994)
pSH62	2µm HIS3 GAL1-cre (Güldener et al., 1996)
pTM8	ARSH4 CEN6 URA3 MET25 _{PRO} -CAB1 (wild-type)
pLS12-S8	ARSH4 CEN6 URA3 MET25 _{PRO} -CAB1 ^{G351S W331L}
pLS12-S9	ARSH4 CEN6 URA3 MET25 _{PRO} -CAB1 ^{G351S D114E}
pLS12-S10	ARSH4 CEN6 URA3 MET25 _{PRO} -CAB1 ^{G351S F103V}
pLS12-Y6	ARSH4 CEN6 URA3 MET25 _{PRO} -CAB1 ^{G351S A22G}
pJO20	CAB1
pJO57	ARSH4 CEN6 URA3 CAB1
pKH45	ARSH4 CEN6 LEU2 MET25 _{PRO} -CAB1
pKH46	ARSH4 CEN6 LEU2 MET25 _{PRO} -CAB1 ^{W331L}
pKH48	ARSH4 CEN6 LEU2 MET25 _{PRO} -CAB1 ^{Y326A F330A}
pKH49	ARSH4 CEN6 LEU2 MET25 _{PRO} -CAB1 ^{I234E}
pKH50	ARSH4 CEN6 LEU2 MET25 _{PRO} -CAB1 ^{N155V}
pKH51	ARSH4 CEN6 LEU2 MET25 _{PRO} -CAB1 ^{S158V}
pKH52	ARSH4 CEN6 LEU2 MET25 _{PRO} -CAB1 ^{R173A}
pKH53	ARSH4 CEN6 LEU2 MET25 _{PRO} -CAB1 ^{A233E}
pKH54	ARSH4 CEN6 LEU2 MET25 _{PRO} -CAB1 ^{W331R}
pSBS5	2µm URA3 MET25 _{PRO} -HA ₃ -CAB1 (Olzhausen et al., 2009)
pJO3	2µm URA3 MET25 _{PRO} -HA ₃ -CAB3
pJO73	2µm URA3 MET25 _{PRO} -HA ₃ -PANK3 (Olzhausen et al., 2009)
pEB5	2µm URA3 MET25 _{PRO} -HA ₃ -CAB1 ^{Y326A F330A}
pEB6	2µm URA3 MET25 _{PRO} -HA ₃ -cab1 ^{l234E}
pEB8	2µm URA3 MET25 _{PRO} -HA ₃ -CAB1 ^{W331L}
pEB22	$2\mu m URA3 MET25_{PRO}$ -HA ₃ -CAB1 ^{N155V}
pEB23	$2\mu m URA3 MET25_{PRO}$ -HA ₃ -cab1 ^{S158V}
pEB25	$2\mu m URA3 MET25_{PRO}$ -HA ₃ -cab1 ^{R173A}
pEB26	2µm URA3 MET25 _{PRO} -HA ₃ -CAB1 ^{A233E}
pEB27	2µm URA3 MET25 _{PRO} -HA ₃ -CAB1 ^{W331R}
pGE7	ARSH4 CEN6 URA3 CAB4
pGE8	ARSH4 CEN6 LEU2 CAB4
pGE9	ARSH4 CEN6 URA3 CAB5
pGE10	ARSH4 CEN6 LEU2 CAB5
pLS14	2µm URA3 MET25 _{PRO} -HA ₃ -hCOASY (full-length)

pLS15	2µm URA3 MET25 _{PRO} -HA ₃ -hCOASY (aa 30-564)
pLS20	ARSH4 CEN6 LEU2 MET25 _{PRO} -hCOASY (full-length)
pSBS7	<i>cab1∆::HI</i> S3 (Olzhausen <i>et al</i> ., 2009)
pSB2	<i>cab4∆::HI</i> S3 (Olzhausen <i>et al</i> ., 2009)
pSB5	<i>cab5∆::HI</i> S3 (Olzhausen <i>et al</i> ., 2009)
pLR2	pcd1∆::LEU2
pLEUTEX3	<i>TPI1</i> _{PRO} -HA ₃ -CYC1 _{TER} ::loxP:: <i>LEU</i> 2::loxP
pLEUTEX-CAB1	ZPS1-5´-flank::TPI1 _{PRO} -HA ₃ -CAB1-CYC1 _{TER} ::ZPS1-3´-flank
pLEUTEX-CAB1	ZPS1-5´-flank::TPI1 _{PRO} -HA ₃ -CAB1 _{W331R} -CYC1 _{TER} ::ZPS1-3´-flank
W331R	
pLEUTEX-CAB2	HIP1-5´-flank::TPI1 _{PRO} -HA3-CAB2-CYC1TER::HIP1-3´-flank
pLEUTEX-CAB3	ENO1-5´-flank::TPI1 _{PRO} -HA ₃ -CAB3-CYC1 _{TER} ::ENO1-3´-flank
pLEUTEX-CAB4	MRH1-5´-flank::TPI1 _{PRO} -HA3-CAB4-CYC1TER::MRH1-3´-flank
pLEUTEX-CAB5	ADH3-5´-flank::TPI1 _{PRO} -HA3-CAB5-CYC1TER::ADH3-3´-flank
pLEUTEX-HAL3	CUP9-5´-flank::TPI1 _{PRO} -HA3-HAL3aa260-495-CYC1 _{TER} ::CUP9-3´-flank
pLEUTEX-FEN2	GAT1-5´-flank::TPI1 _{PRO} -HA ₃ -FEN2-CYC1 _{TER} ::GAT1-3´-flank

aa, amino acids; PRO, promoter; TER, terminator.

Supplementary Table S3: Oligonucleotides used in this work.

Name	Gene	Position	Sequence (5´-3´)
ORF-Primer			
CAB1-Bam-	CAB1	+1/+19	gactggatccATGCCGCGAATTACTCAAG
Start			
CAB1-Hind-	CAB1	+1104/+1084	gactaagcttCTACGTACTTGTTTTCTTAGT
Stop			
YIL083C-	CAB2	+1/+20	gactggatccATGCCACCTCTACCCGTGCT
BamHI			
YIL083C-	CAB2	+1098/+1075	gactctcgagTTATTTCGTAGCTAGCTTAGTTTT
Xhol			
YKL088W-	CAB3	+1/+20	gactggatccATGACGGATGAAAAAGTGAA
Start			
YKL088W-	CAB3	+1716/+1693	gactaagcTTAAACTTGCGTTTTCACGTCTTC
Stop			
CAB4-Bam-	CAB4	+1/+20	gactggatccATGGTTGAGGAAAATTCCAG
Start			
CAB4-Hind-	CAB4	+918/+897	gactaagcTTATACGCAAGGGTTTTGTGGA
Stop			
CAB5-Bam-	CAB5	+1/+20	gactggatccATGCTGGTAGTGGGATTGAC
Start			
CAB5-Cla-	CAB5	+726/+705	gactatcgatTTATACCGCTGAAGACTTTTTA
Stop			
Hal3-BgIII	HAL3	+778/+798	gatcagatctAAAATGGATGATGGAAAATTGCACGTG
Start260			
Hal3-HindIII	HAL3	+1485/+1464	gatcaagcttTTAGTTATTTTTTGGGTACCCACCC
Stop495			
FEN2-BamHI	FEN2	+1/+22	gatcggatccATGATGAAGGAATCGAAATCTA
Start			
FEN2-HindIII	FEN2	+1539/+1517	gatcaagcttCTATCGGAAAGGATTTGAAATTT
Stop			
Mutagenic pri	mer		
CAB1-	CAB1	+445/+483	TACCCATACCTTCTAGTC GTG ATAGGGT-

N155V-F			CGGGTGTCTCA
CAB1-	CAB1	+483/+445	TGAGACACCCGACCCTAT CAC GACTAGA-
N155V-R	_		AGGTATGGGTA
CAB1-	CAB1	+453/+489	CCTTCTAGTCAATATAGGGG GTG GGTGTC-
S158\/-F	0/10/	1100/1100	
	CAP1	1/20/1/52	
	CADI	+409/+400	CTACAACC
5130V-K		. 400/. 507	
CAB1-	CAB1	+499/+537	GAACCAAACAATTTAGT GCC GTAGGCG-
R173A-F			GITCTICACIG
CAB1-	CAB1	+537/+499	CAGTGAAGAACCGCCTAC GGC ACTAAAA-
R173A-R			TTGTTTGGTTC
CAB1-I234E-	CAB1	+682/+717	GGTCTAAAGTCGTCAGCT GAG GCAAGTT-
F			CATTTGGT
CAB1-I234E-	CAB1	+717/+682	ACCAAATGAACTTGC CTC AGCTGACGAC-
R	• / . _ .		TTTAGACC
CAB1-	CAB1	+682/+716	GGTCTAAAGTCGTCA GAG ATTGCAAGTT.
V335-E		1002/1710	CATTICC
	CAD1	1716/690	
	CADI	+/10/002	TTACACC
A233E-R	0.00	070//0/0	
CAB1-	CAB1	+972/1013	GAGCIACGCIATIAATITI CGG ICACAA-
W331R-F			GGATCAAAGCAAGC
CAB1-	CAB1	+1013/972	CGTTGCTTTGATCCTTGTGA CCG AAAATT-
W331R-R			AATAGCGTAGCTC
CAB1-	CAB1	+972/+1013	GAGCTACGCTATTAATTTT TTG TCACAA-
W331L-F			GGATCAAAGCAAGC
CAB1-	CAR1	±1013/±072	
W331L-R		11013/13/2	
	CAP1	1059/11009	
CAD 1-1320A	CADI	+950/+1000	
F330A-F		. 1000/. 050	
CAB1-Y326A	CAB1	+1008/+958	CTTIGATCCTTGTGACCACGCAATAATAGC-
F330A-R			CGCGCTCAAAGTGTTCATGGT
Primers for a	mplificati	on of flanking	regions to be inserted into pLEUTEX cassettes
ADH3 5F	ADH3	-2100/-2081	gatcgagctcCTGCATGTTTACAAGGCAAA
Sacl			
ADH3 5F	ADH3	-1631/-1650	gatcagatctTGGTCAAGACCAGAATTACT
BgIII			
ADH3 3F	ADH3	-1550/-1531	gatcgctagcCAAGGAGTAGCTTCCTTCAA
Nhel			
ADH3 3F	ADH3	-1131/-1150	gatcogtaccCATTGTGCAAAGACCCATGC
Kpnl	_		
ADH3 Veri	ADH3	-2140/-2121	CAGAAGCTTTCGTGAGATAC
CLIP9 5E	CLIPQ	-1570/-1551	
Soci	0013	-1070/-1001	galcyayeleonoooonnonnoooonnooo
		1111/1100	
	CUP9	-1141/-1160	gaicagaiciAGGGGCCCGACAATATTGCT
Bgill	01/170	4000/4044	
	CUP9	-1030/-1011	gategetageGTAGTATGCCTCCGAAGCTC
Nhel			
CUP9 3F	CUP9	-601/-620	atcggtaccGTGCTCAGAAAACCCCGTGG
Kpnl			
CUP9 Veri	CUP9	-1620/-1601	GATATTTGAATCAGCTGGAG
ENO1 5F	ENO1	-1580/-1561	gatcgagctcTACATTCATGTTTGCACGCT
Sacl			
FNO1 5F	FNO1	-1231/-1250	
Balli		1201/ 1200	
		-1106/-1096	
ENUT 3F	ENUT	-1100/-1000	yailyliaylaa I GGCCCTATATTGAAAGC

Nhel			
ENO1 3F	ENO1	-771/-790	gatcggtaccGCTCAAGTGCCCGCGGCATC
Kpnl			
ENO1 Veri	ENO1	-1210/-1191	TGACTCAAATTCTTCTCGAC
GAT1 5F Sacl	GAT1	+1881/+1900	gatcgagctcAACCGAGACCTGAACATCCT
GAT1 5F BamHI	GAT1	+2320/+2301	gatcggatccAGCGGGAAACTCCTTAGTGT
GAT1 3F Nhel	GAT1	+2451/+2460	gatcgctagcGCCCCAAATGTCAGTGATGG
GAT 3F Kpnl	GAT1	+2870/+2851	gatcggtaccAGAAACGATATTAAGCCTGG
GAT1 Veri	GAT1	+1811/+1830	CTAAACCAGTTATCCTAGGC
HIP1 5F Sacl	HIP1	-1573/-1554	gactgagctcTTGTCTGCCGAAATTCTGTG
HIP1 5F BamHI	HIP1	-1162/-1171	gactggatccAGTAGCTTGTGAACGATAGG
HIP1 3F Nhel	HIP1	-960/-941	gactgctagcTTTACCCCTCTCCACAGATC
HIP1 3F Kpnl	HIP1	-636/-655	gactggtaccCCAGGTTGAATACAAAACGG
HIP1 5-Veri	HIP1	-1620/-1601	ATTGAGCCACCGCTTCATCT
MRH1 5F Sacl	MRH1	-1860/-1841	gatcgagctcTCTTGTTCCCATCTACGGGT
MRH1 5F Balll	MRH1	-1471/-1490	gatcagatctGGAAGCGTTGGAAAAGAAGG
MRH1 3F Nhel	MRH1	-1230/-1211	gatcgctagcCTCCTCGAGACAAGGTCGCT
MRH1 3F Kpnl	MRH1	-851/-870	gatcggtaccGTTTGGGTCTCTTGGTAACC
MRH1 Veri	MRH1	-1940/-1921	ACTTGGCGCGCCGACATTTG
ZPS1 5F Sacl	ZPS1	-2380/-2361	atcgagctcAGGCGCGTGTCTACCTCGTA
ZPS1 5F Balll	ZPS1	-1931/-1150	gatcagatctGGCCTCGGCAACTTTCAGGG
ZPS1 3F Nhel	ZPS1	-1560/-1541	gatcgctagcGGTATGATCTACCCCATTGC
ZPS1 3F Kpnl	ZPS1	-1241/-1250	gatcggtaccCCGCGAAGACTACGCAAATA
ZPS1 Veri	ZPS1	-2430/-2411	AGTTAGTGGTTGCCTTCCGT
Construction	of pLEU	TEX3	
LEU2-LBN			gactggatccatgcatCAACCCTTAATATAACTTCGTAT
LEU2-RXN			gactctcgaggctagcACCTAATAACTTCGTATAGCAT
MET25HAX			gacttctagaAAAATGTATCCTTATGATGTTCC
CYC1TER NSI			gactatgcatCGGCCGCAAATTAAAGCCTT
TPI1-Prom	TPI1	-600/-580	gactgagctcagatctGAGACCTAACTACATAGTGT
TPI1PR-XB	TPI1	-26/-5	gacttctagaGTTTATGTATGTGTTTTTTGT

Authentic gene sequences are shown in capital letters; auxiliary sequences are depicted in lower case letters. Bold letters indicate the sequence of mutations introduced.

Supplementary Figure S1: Presumed binding of acetyl-CoA to the substrate binding site of yeast PanK (derived from the crystal structure of human PanK3 isoenzyme in the presence of acetyl-CoA; taken from Hong *et al.* [2007] and assigned to the yeast enzyme)

Cab1	(Sc)	MPRITQEISYNCDYGDNTFNLAIDIGGTLAKVVFSPIHSNRLMFYTIETEKIDKFMELLH	60
CoaA	(Sa)	QDNQRTFKTELTKNIDQVVEWLN	40
Cab1	(Sc)	SIIKEHNNGCYRMTHIIATGGGAFKFYDLLYENFPQIKGISRFEEMEGLIHGLDFFIHEI	120
CoaA	(Sa)	QQQAQIFVEFDAASQGLGILLKEQ	85
Cab1	(Sc)	PDEVFTYNDQDGERIIPTSSGTMDSKAIYPYLLVNIG <mark>S</mark> GVSILKVTEPNNFSRVGGSSLG	180
CoaA	(Sa)	GHDLADYIFANVGTGTSLHYFDGQ-SQRRVGGIGTG	120
Cab1	(Sc)	GGTLWGLLSLITGAQTYDQMLDWAQEGDNSSVDMLVGDIYGTDYNKIGLKSSATASSFGK	240
CoaA	(Sa)	GGMIQGLGYLLSQITDYKQLTDMAQHGDRNTIDLKVRHIY-KDTE-PPIPGDLTAANFGH	178
Cab1	(Sc)	VFQNRMTSNKSLENNENKLYSSHESIEKNNGQMFKNPDICKSLLFAISNNIGQIAYLQAK	300
CoaA	(Sa)	VLHHLDADFTPSNKLAAVIGVVGEVVTTMAITVAR	213
Cab1	(Sc)	INNIQNIYFGGSYTRGHLTTMNTLS <mark>Y</mark> AIN <mark>FW</mark> SQGSKQAFFLKHEGYLGAMGAFLSASRHS	360
CoaA	(Sa)	EFKTENIVYIGSSFHNNALLRKVVEDYTVLRGCKPYYVENGAFSGAIGALYLEK*	267
Cab1	(SC)	STKKTST* 367	

Supplementary Figure S2: Similarity of pantothenate kinases from *Saccharomyces cerevisiae* (Sc; *CAB1* gene product) and *Staphylococcus aureus* (Sa; *coaA* gene product). Conserved amino acids are shaded in grey. Amino acids used for mutational analysis of Cab1 are indicated in bold and by inverse shading.

Supplementary Figure S3: Functional analysis of *CAB1* variants by plasmid shuffling. Strain JS19.1 with a chromosomal *cab1* Δ null allele and *ARS CEN URA3 CAB1* rescue plasmid (pJO57) was transformed with *ARS CEN LEU2* plasmids containing the *CAB1* variants indicated. All transformants were able to grow on double-selective synthetic medium (SCD-Ura-Leu) while only functional variants of *CAB1* allowed growth on FOA-containing medium after loss of the rescue plasmid. FOA: 5-Fluoroorotic acid.

Supplementary description: Construction of pLEUTEX3

Plasmid pLEUTEX3 was constructed in a three-step-procedure:

1. Insertion of selection marker LEU2 into pBluescript

Plasmid pJS491 (unpublished) had been constructed by inserting the selection marker *LEU2* flanked by loxP sites into the backbone of pUC19. Using pJS491 as a template together with PCR primers LEU2-LBN (introduces restriction sites for *Bam*HI and *Nsi*I) and LEU2-RXN (introduces restriction sites for *Xho*I and *Nhe*I), a 1.73 kb loxP::*LEU2*::loxP fragment was amplified, digested with *Bam*HI + *Xho*I and inserted into *Bam*HI + *Xho*I cleaved pBluescript II KS(+) to give pLEUTEX1.

2. Insertion of the HA₃ epitope and CYC1 terminator

Using p425-MET25HA as a template together with PCR primers MET25HAX (introduces restriction site for *Xba*I) and CYC1TERNSI (introduces restriction site for *Nsi*I), a 0.4 kb fragment was amplified. This PCR fragment was digested with *Xba*I + *Nsi*I and inserted into pLEUTEX1 which had been also digested with these restriction enzymes (giving pLEUTEX2).

3. Insertion of *TPI1* promoter

The *TPI1* promoter was amplified using chromosomal DNA as a template together with PCR primers TPI1-Prom (introduces restriction sites for *Sacl* + *BgI*II) and TPI1PR-XB (introduces restriction site for *Xba*I). The resulting 0.6 kb fragment was digested with *Sacl* + *Nsi*I and inserted into pLEUTEX2 which had been digested with the same restriction enzymes (to give pLEUTEX3).

Using pLEUTEX3, gene-specific expression cassettes can be constructed by inserting the coding region of a CoA biosynthetic gene (*TPI1-CAB* fusion) and ligating flanking sequences (about 400 bp; left flank: *Sacl* + *Bg/*II fragment, right flank: *Nhe*I + *Kpn*I fragment) on both sides. Following release of the expression cassette by cleavage with *Sacl* + *Kpn*I, recombination can occur at the chromosomal site homologous to the flanking region.

Supplementary Figure S4: Functional elements of pLEUTEX expression cassettes suitable for repeated integration of CoA biosynthetic genes. Selection marker *LEU2* flanked by loxP sites can be removed after a successful transformation by induction of cre recombinase which targets loxP sites. Several unique restriction sites following the *TPI1*-HA promoter/epitope segment allow insertion of *CAB* reading frame cassettes. For integration of the expression/selection cassette by homologous recombination, flanking sequences from a genomic site of choice must be inserted by using restriction sites *Sacl* + *Bg/*II (left flank) and *Nhe*I + *Kpn*I (right flank), respectively. Prior to yeast transformation, expression cassettes together with flanking regions can be released by cleavage with *Sacl* + *Kpn*I.

Supplementary Method: Enzymatic assay of CoA + acetyl-CoA concentrations

The cycling assay described by Bergmeyer (1974) allows repeated use of CoA and acetyl-CoA by regeneration of CoA to acetyl-CoA catalyzed by phosphotransacetylase (PAT), leading to signal amplification. Using the citrate synthase (CS) reaction, acetyl-CoA and oxaloacetate react to give citrate. Oxaloacetate is synthesized from malate by NAD-dependent malate dehydrogenase which serves as a preceding indicator reaction, leading to an increase of absorbance by NADH at 340 nm.

NEM (N-ethylmaleimide) can react with free SH group of CoA so that only acetyl-CoA is detected.

Various samples containing CoA + acetyl-CoA with known concentrations (ratio 1:1) were used for calibration and validation of CoA assays in protein-free metabolite extracts. Dilution of these extracts as a result of protein removal was considered by calculation of the dilution factor.

Reaction mixture (final concentrations):

- 140 mM Triethanolamine/HCI
- 10.5 mM Malate (potassium salt)
- 0.46 mM DTT or 0.46 mM NEM
- 1.4 mM NAD
- 4.6 mM Acetylphosphate (lithium salt)
- 7000 U/I PAT
- 1300 U/I CS
- 9800 U/I MDH