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Supplementary Note 1: Characterization of CsPbBr3
NCs

Supplementary Figure 1: Analysis of CsPbBr3 NCs used in MPRS experiment.
(a),(b) Representative TEM image and corresponding particle size analysis,
showing an average NC size of 11 ± 3 nm. (c) 4 K PL/PLE measurements
showing an emission energy of 2.38 eV with a FWHM of 63 meV. Note that
the NC dimensions are several times larger than the estimated CsPbBr Bohr
radius,1 and the bulk emission energy for CsPbBr3 is around 2.29 eV,2 meaning
that quantum confinement is remains relatively weak in the current sample.

Supplementary Note 2: Fröhlich Interaction: Weak,
Strong, and Intermediate Coupling
Weak coupling corresponds to a small carrier self-energy and a small correction
of its effective mass, whereas strong coupling is characteristic of materials with
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Supplementary Figure 2: TEM image (a) and size analysis (b) of the CsPbBr3
NCs used in the THz-TDS experiment.

a strong dielectric contrast and can result in significant enhancements of the
carrier binding energy and effective mass.

The spatial extent of the lattice interaction is given by the polaron radius, rp,
which is defined for each of the two limits of the phonon coupling strength. In the
weak coupling limit, the radius is given by the fundamental uncertainty in the
carrier position associated with a period of the characteristic lattice vibration:3,4

rWp =

√
h̄

2mω0
(1)

where m is the bare carrier mass (i.e. in the absence of the polarization cloud)
and ω0 is the lattice frequency. For strong coupling, the polaron radius is found
by minimizing the self-energy of the carrier, and can be expressed as:3

rSp =
4π2h̄2ε̄

me2
(2)

While expressions 1 and 2 are accurate in the limits of weak and strong couping
respectively, intermediate values of α (i.e. α ' 1) require a different approach.
Within the Feynman polaron picture, the carrier is approximated as a harmonic
oscillator coupled to the crystal lattice. The polaron radius is then the root
mean square value of the oscillator position, and the corresponding expression
is:5

rp = ArWp (3)

where A is inversely related to α.
In very polar materials (i.e. strong coupling), there is a significant difference

between the short and long-range Coulomb potential, as the dielectric constant
changes from εS to ε∞. This induces a self-trapping potential for the carrier,
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which represents the long-range carrier-phonon interaction. There is also a
short-range interaction, which occurs as the carrier induces a local strain in the
lattice in its vicinity. The strain of the lattice modifies the wave function, and
hence the energy, of the carrier which produced the deformation. This interaction
induces a potential well for the carrier, as nearest ions relax into a new position
to lower the energy of the carrier-lattice system. The relative strength of the
short and long-range carrier-phonon interactions determines the spatial extent
of the polarization induced by the carrier in the lattice and hence the radius
of self-trapping. As such, for strong coupling, we distinguish between ‘small
and ‘large’ polarons. In the case of a small polaron, the short range interaction
dominates, and the length scale of the lattice deformation is comparable to the
lattice constant. Small polarons exhibit hopping transport, and are characterized
by a low, thermally-activated mobility. In the absence of strong short-range
carrier-phonon interaction, the long-range Coulomb interaction polarizes the
lattice on a much larger length scale, resulting in a large polaron, which is free
to move continuously across the lattice. The mobility then shows an inverse
relationship with temperature, as carrier-phonon scattering limits the polaron
mean free path.

Measurements of carrier mobility in lead halide perovskites show a tempera-
ture dependence ∂µ/∂T < 0,6–9 which is indicative of large polarons, and as such
we will consider that the short-range carrier-phonon interaction is negligible.

Supplementary Note 3: Selection Rules for First-
Order Raman Scattering
In Resonant Raman spectrosopy a sample is illuminated with laser radiation at
an energy above the material band gap. When the incoming photons are close
to resonance with a real electronic state, strong scattering involving LO phonons
can be observed, with intense overtones visible up to very high orders.10 The
overtone progression is produced via the Fröhlich interaction, as excited states
couple to the macroscopic electric field of lattice vibrations. The observed spectra
can be explained in terms of either a configuration coordinate model, similar
to the Franck-Condon principle,11–13 henceforth referred to as resonant Raman
scattering (RRS), or a cascade model, where hot carriers relax via consecutive
emissions of single LO phonons, i.e. hot luminescence (HL).14–16

The model of multiphonon scattering depends on the material system under
consideration. A distinction can be made between free and localized carriers,
with regards to the selection rules for first order scattering. Inelastic scattering
of light with free excitons in a periodic potential requires strict momentum
conservation. At higher orders, wave vector conservation is observed by involving
multiple phonons with a total wave vector sum of zero. Conversely, first order
scattering (i.e. by one phonon) can only involve phonons of wave vector k∼= 0.
In ionic crystals, the dominant scattering mechanism for excited carriers is an
intraband Fröhlich scattering, for which the interaction Hamiltonian diverges
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at the center of the Brillouin zone.17 Consequently, first order scattering is
essentially forbidden (see also main text). If however the lattice translation
symmetry is locally broken, momentum conservation rules are relaxed, and first
order inelastic scattering becomes an allowed process. The symmetry breaking
may arise from imperfections in the crystal lattice around which carriers can
become localized, such as defects or impurities. For a localized carrier the matrix
elements for Fröhlich coupling to phonons of wave vector k > 0 are enhanced, as
the exciton charge distribution is spread out in reciprocal space.18 Through the
involvement of phonons with non-zero wave vector, first order ‘forbidden’ LO
phonon scattering thus becomes possible. First order scattering involving defects
is thereby governed by the same mechanism as the higher order processes, while
the free-carrier response remains negligible in comparison.

Supplementary Note 4: RRS versus HL
The models for resonant Raman scattering and hot luminescence are schematically
presented in Supplementary Fig. 3, where the vibrational states are represented
as the energy levels of simple harmonic oscillators. In RRS, an exciton transitions
from a certain vibrational level of its excited state into a different vibrational
level of the ground state. The excess energy is released into the lattice as LO
phonons. Conversely, in HL, excitons relax into a lower vibrational level of the
excited state via consecutive LO phonon emissions followed by relaxation into
the ground state via photon emission. In both situations, as long as crystal
momentum is conserved, the transition involving a single phonon is forbidden.

In the MPRS experiment discussed in the main text, an indication of the
dynamics of phonon emission stems from the FWHM of consecutive phonon lines,
Γ, which is inversely related to the scattering lifetime. The implied scattering
time in our measurement is h̄/Γ ∼ 10−13 s (see Figure 1a in main text), which
is consistent with typical LO phonon scattering times.15 It can be therefore
assumed that no significant contributions from other broadening mechanisms are
present in the observed spectrum. In the case of RRS the FWHM is linked to
the anharmonic decay time of the lattice polarization into LO phonons, and is
proportional to the number of involved phonons. Consequently, a linear increase
in Γ is expected with increasing overtone order.19 Conversely, in the case of
hot luminescence, the width of each consecutive peak is expected to decrease,
as successive LO phonon emissions bring carriers closer to the center of the
Brillouin zone. The continuously smaller range of accessible wave vectors implies
a smaller energy dispersion for the scattered carriers, and a reduced FWHM. The
inset to Figure 1a in the main text shows an increasing FWHM with increasing
order, and as such the dominant multiphonon emission mechanism is resonant
Raman scattering.
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Supplementary Figure 3: Schematic representation of the resonant Raman
scattering (RRS) and hot luminescence (HL) processes. The lower and upper
parabolas represent the ground and excited excitonic states, respectively. The
red lines represent the different vibrational levels of the harmonic oscillators.
Solid black arrows represent excitation, blue arrows denote LO phonon emission,
and dashed arrows denote PL transitions.

Supplementary Note 5: Comparison between NCs
and bulk systems
Within the perovskite family, lead halide perovskite nanocrystals (NCs) are highly
regarded for their remarkable light emission properties. They have therefore been
intensely studied, with much emphasis placed on their potential optoelectronic
applications. On a fundamental level, the physics of perovskite NCs are strongly
influenced by the large surface-to-volume ratio of such small particles. This ratio
leads to different electronic behavior in NCs compared to bulk materials, since
the surface may introduce a significant number of localized states that affect the
energy landscape in the material. While a certain degree of surface passivation is
achieved by encapsulating perovskite NCs in an organic ligand shell, it has been
shown that the attachment of the ligands to the surface is imperfect,20 resulting
in only a partial coverage, that may still allow carriers to become localized.
Carrier localization is likely to have an impact on polar exciton-phonon coupling,
as the excitonic charge distribution can be modified by the localizing potential,
breaking its overall neutrality. Note that a large average electron-hole distance
can also reduce the compensation of their respective phonon clouds, thereby
producing a non-zero exciton charge distribution. Such a separation may arise
due to the presence of an electric field, or if the exciton Bohr radius is simply
much larger than the free carrier polaron radii.

Further differences between lead halide perovskites in their bulk and NC
form which are relevant to polar exciton-phonon coupling may be stem from
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differences in the crystal lattice symmetry between the two systems. A significant
change of symmetry can affect the dielectric function and therefore result in a
change in the lattice polarity, that will impact the macroscopic electric field of
LO phonons. In the case of CsPbBr3 the crystal lattice is orthorhombic from
cryogenic temperatures up to well above room temperature21,22 for both bulk
materials and colloidal NCs. As such, the dielectric function is not expected
to change significantly, neither between cryogenic and room temperature, nor
between the bulk and NC geometries. The NC system at cryogenic temperatures
is therefore a good indicator of general exciton-phonon coupling in CsPbBr3, with
the caveat that the surface effects which may modify the Fröhlich interaction in
NCs are less prominent in bulk single crystals. Polycrystalline thin films, on the
other hand, may exhibit behavior more comparable to NCs, due to the increased
number of defects at the surface and at inter-grain boundaries, which will have
a similar effect as surface-localized states in NCs.

Supplementary Note 6: The Huang-Rhys Factor of
Free versus Trapped Carriers, and Non-Adiabatic
Effects
In the case of free polarons, the wave vectors available for the carrier-phonon
interaction span the range determined by the thermally-available kinetic energy
of the heavy carrier, with the maximum value given by:

k0 =

√
mpkBT

2h̄2 (4)

where mp is the polaron mass, and kBT is the thermal energy of the carrier.18
The Huang-Rhys factor then becomes:

S =
∑
k<k0

2π

V

e2

ε̄

h̄ω0

k2

[
h̄ω0 +

h̄2k2

2m

]−2

(5)

where V is the crystal volume, h̄ω0 is the LO phonon energy, and ε̄ is the
dielectric contrast, defined in the main text. Note that the Huang-Rhys factor
and the Fröhlich constant are intimately linked through the dielectric contrast
and the LO phonon energy, thus illustrating how the coupling strength for a
particular mode is dependent on the intrinsic strength of the Fröhlich interaction:

S =
∑
k<k0

2π

V
α (h̄ω0)

2

√
2h̄

mω0

[
h̄ω0 +

h̄2k2

2m

]−2

, (6)

Alternatively, the Huang-Rhys factor can be defined as the square of the
total displacement in the phonon coordinate of the excited electronic state
(configuration coordinate model).11

S = ∆2 =
∑
k

∆2
k. (7)
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The squared partial displacement corresponding to a certain wave vector k is:

∆2
k =

2π

V

e2

h̄ω0

1

ε̄

ρ∗2k
k2

, (8)

where h̄ω0 is the energy of the phonon mode involved (assumed to be dispersion-
less), while V is the crystal volume and e is the unit charge. Finally, ρ∗k represents
the Fourier component of the exciton charge distribution, corresponding to the
wave vector k.

If either the electron or the hole becomes trapped, we may assume a 1s-
like charge distribution, where one carrier is pinned at an imperfection and its
counterpart remains bound in its vicinity. The real-space charge distribution is
then given by:

ρ(~r) =
1

πa3
0

e−2
|~r−~r0|
a0 − δ(~r − ~r0) (9)

At low temperatures, the Fourier components ρ∗k extend far beyond the thermal
limit k0, and phonon coupling away from the center of the Brillouin zone is
extrinsically enhanced, as compared to the intrinsic case of free carriers. Note
that while in typical quantum dots the carrier wave functions, and hence the
exciton charge distribution, are strongly affected by quantum confinement, this
is not true for the current system, because the NCs are significantly larger
than the exciton Bohr diameter (11 nm and respectively 4 nm, as estimated
from the effective masses and dielectric function of CsPbBr3). Therefore the
bulk-like wave-functions considered in this calculation provide a good first-order
approximation of the Huang-Rhys factor. With the chosen charge distribution,
the S-factor becomes:11,12

S =
e2

a0ε̄h̄ω0

2

π

∫ π
2

0

x4(2 + x2)2

(1 + x2)4
dx (10)

where a0 is the exciton Bohr radius, which in our case represents the confinement
length scale. The summation over Fourier space is done within the interval
0 ≤ k ≤ k0 = π

a0
, i.e. the range of available k-vectors for the carrier confined

within a distance a0. Note that in addition to the intrinsic relationship between
S and α, Supplementary Equation (10) also contains the extrinsic contribution
due to localization, in the form of the charge distribution ρ(~r) which reduces
to a proportionality factor upon summation. Interestingly, the Huang-Rhys
factor defined in Supplementary Equation (10) above is simply the ratio between
an electrostatic potential, proportional to e2

ε̄a0
, and the energy of the involved

LO phonon mode, h̄ω0. It thus represents the approximate number of phonons
‘contained’ in the phonon cloud of the excitonic polaron.

In the absence of carrier localization, low-temperature investigations of pho-
toluminescence and resonant Raman scattering in semiconductor nanocrystals
have also demonstrated the influence of non-adiabatic effects on the carrier-
phonon interaction.23,24 Enhanced coupling, beyond the adiabatic free-exciton
Huang-Rhys factor, may stem from the Jahn-Teller and pseudo Jahn-Teller
effects, when the nanocrystal size is smaller than the exciton dimensions (i.e.
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strong quantum confinement). In the experiment described in the main text, the
quantum confinement regime of the NCs is weak, meaning that non-adiabatic
carrier-phonon coupling is likely negligible and is not considered in our calcula-
tions. This approach is sufficient, as demonstrated by the excellent agreement
between the experimental and calculated relative cross sections of the M0 peak
and its overtones (Fig. 2b in the main text).

Supplementary Note 7: Modeling the Huang-Rhys
Factor
In typical Raman scattering experiments, the energy of the incoming radiation is
chosen below the band gap or HOMO-LUMO transition energy of the investigated
material. This is done to eliminate the PL background, which is much stronger
than the scattered light intensity. When Raman scattering experiments are
conducted above the material band gap (RRS), the observed spectrum can differ
significantly from the non-resonant case. In an RRS experiment, the energy
of the incoming radiation corresponds to that of excited electronic states (i.e.
excitons) in the material. Each electronic state can also be vibrationally excited.
The vibrational excitation represents the number of phonons which are present
in the electronically-excited state, and which are emitted in the scattering event.
The resonance condition for the RRS experiment is given by the denominator
of eq. (6) in the main text. The cross-section for allowed scattering increases
when the energy of incoming light is resonant with a vibrational level of an
electronically excited state. In the case of NCs, the energy of electronic states
varies between particles, and therefore a certain distribution is assumed. This
means that only a subset of the NCs will be in resonance with the incoming
photons, and in order to correclty estimate the scattering cross-section for the
experiment, contributions corresponding to all exciton energies must be added
together.

In modeling the Huang-Rhys factor from the MPRS data, the total Raman
cross section is:12

σ
(n)
tot =

∫
σ

(n)
E G(Eg, E

0
g , σ)dE, (11)

where G(Eg, E
0
g , σ) is the normal probability distribution function centered at

E0
g with variance σ. The real distribution of Eg is similar to the PL lineshape of

the NC ensemble shown in Figure 1c of the main text. However, inter-NC energy
transfer, charging, and other such effects alter the energy distribution of emitted
photons with respect to the real density of NC states. The Huang-Rhys factor
corresponding to the multiphonon progression also depends on the damping
factor Γ0, which represents the linewidth of a single NC. This parameter has been
determined experimentally.25,26 Within a first-order approximation, a choice
of Γ0 = 1 meV is sufficiently accurate. For this value, and using E0

g = 2.375
eV and σ = 32.5 meV, we obtain S ' 0.39, and the relative intensities of the
multiphonon lines closely match the experimental data, as shown in Figure 2b
in the main text.
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The Huang-Rhys factor agrees with the previous experimental value,27
whereas the value of σ is somewhat larger than the variance of the low-temperature
inhomogeneous PL of the NC sample, but remains comparable to it, as expected.
Similarly, the center of the distribution of transition energies is realistically close
to the position of the NC PL band.

Supplementary Figure 4: Dependence of the Huang-Rhys factor a) on the spread
in excitonic transition energies, given by the variance σ of a Gaussian distribution
(when Γ0 = 1 meV), and b) on the homogeneous broadening represented by the
damping factor Γ0 (for σ = 32.5 meV) (b). The value of E0

g = 2.375 eV was used
in both (a) and (b). The red lines are guides to the eye.

Supplementary Fig. 4 shows the change in S as functions of σ and Γ0,
respectively. From the figure it is evident that, as the parameters are varied
within the spread of experimental values, the Huang-Rhys factor does not
change significantly, and the obtained value remains accurate within a first order
approximation.

Supplementary Note 8: Terahertz Time-Domain
Spectroscopy
Measurements were conducted on a high density colloidal suspension of CsPbBr3
nanocrystals in hexane. The NCs were synthesized via the method described by
De Roo et al.20 TEM analysis reveals a size of roughly 9.5 nm. The sample was
placed in a quartz cuvette, with an optical path length d = 4 mm, as shown in
Supplementary Fig. 5.

The THz-TDS measurement consists of sending a focused THz pulse through
the sample and comparing the incoming and transmitted signal. The time-
resolved signal of the transmitted THz pulse is shown in Supplementary Fig. 6.
The signal transmitted through air is considered the incoming pulse, and we
obtain the refractive index and extinction coefficient as functions of the phase
shift and relative absorption of the pulse transmitted through the sample of
interest. By also measuring the contribution of hexane alone, we can extract the
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Supplementary Figure 5: THz-TDS measurement of a cuvette containing a
suspension of CsPbBr3 NCs. The amplitude and phase of the transmitted beam
depends on the interfaces and distance travelled through the media ñ2 and ñ3.

refractive index, n, and the extinction coefficient, κ, of the CsPbBr3 NCs.

Supplementary Figure 6: Time-domain THz signal, corresponding to the empty
sample cuvette (Air), hexane reference sample (Solvent), and the sample of
interest (NC solution).

We measured the transmitted THz pulse through a suspension of CsPbBr3
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NCs in hexane. The transfer function of the sample is defined as:

T̂ (ω) =
Êsamplet (ω)

Êreft (ω)
(12)

where T̂ (ω) and Êt(ω) are Fourier transforms of the time-dependent transfer
function and time-resolved THz signal that we measure. In order to calculate
T̂ (ω), a reference measurement is conducted, of the same quartz cuvette contain-
ing a known substance (in this case, an empty cuvette). The analytic definition
of T̂ (ω) is:

T̂ (ω) =
Êt(ω)

Êreft (ω)
=

t̂23t̂32

t̂ref23 t̂ref32

ei(ñ3−ñref3 )ωdc (13)

where t̂ij are Fresnel transmission coefficients, with the subscript indices cor-
responding to the media defined in Supplementary Fig. 5. By solving for
the absolute value and argument of the complex valued function, the complex
refractive index ñ = n+ iκ of the NC suspension is obtained.

In order to consider only reliable data, the analysis is restricted to regions
where the transmitted signal-to-noise ratio (SNR) is sufficiently high. As such, a
trusted range of frequencies can be defined. Supplementary Fig. 7 shows the
Fourier transformed transmitted signals corresponding to the three different
samples. The shaded areas correspond to frequencies outside the trusted range,
where the calculated SNR is less than 25 dB. The trusted frequency range is
then between 0.2 and 1.7 THz.

Supplementary Figure 7: Frequency-domain amplitude of the THz signal, corre-
sponding to the empty cuvette (Air), hexane reference sample (Solvent), and
the sample of interest (NC solution). The shaded areas mark frequencies outside
of the trusted range.
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To determine the dielectric function of CsPbBr3, effective medium theory is
used to separate the contributions of the solvent and the NCs. The dielectric
function of the solvent is determined in the same way as that of the NC solution.
The dielectric function of CsPbBr3 is determined by considering the NCs as
polarizable spheres of volume V , having a polarizability given by:28

αNC = 3εsolvV

(
εNC − εsolv
εNC + 2εsolv

)
(14)

where εNC is the dielectric function of the particle and εsolv corresponds to
the medium in which it is dispersed. We introduce this polarizability into the
Clausius-Mossotti relation, which expresses the dielectric function of a material
in terms of the polarizability of its constituent atoms or molecules:

εNC − 1

εNC + 2
=
NαNC

3
(15)

obtaining the equation for the effective dielectric function of a composite material
containing polarizable inclusions, known as the Maxwell-Garnett equation:

εeff − εsolv
εeff + 2εsolv

= f
εNC − εsolv
εNC + 2εsolv

(16)

Here, f corresponds to the volume fraction of the solution occupied by the NCs,
and εeff is the effective dielectric function which is obtained from measurements.
In this approximation, the Maxwell-Garnett equation estimates the dielectric
response of a suspension of polarizable spheres. Although at large contrasts
between the NC and solvent dielectric functions the spherical assumption fails,
the range of reported dielectric function values for CsPbBr31,29 suggests that the
assumption is quite accurate, with an underestimation of the particle polarizabil-
ity of only ∼ 5%.28 The volume fraction 1.8±0.27 % is obtained by weighing the
residue of a known volume of NC solution after evaporation of the solvent. Note
that the reported volume fraction corresponds strictly to the CsPbBr3 inclusions,
without the contribution of the organic ligand shell, which has a similar response
as the organic solvent. By solving the Maxwell-Garnett equation we find the real
and imaginary parts of the frequency-dependent dielectric function of CsPbBr3,
as shown in the main text.

The relative error in the calculated dielectric function can be obtained by
propagating the noise in the THz signal, and the result is shown in Supplementary
Fig. 8. The relative error within the trusted range of frequencies is below 1%.

The results obtained here represent the room-temperature dielectric behavior
of CsPbBr3. In the main text, the Fröhlich constant is calculated using the
dielectric contrast, and correlated to the low-temperature phonon coupling
behavior. It has been shown that CsPbBr3 crystallizes in the orthorhombic Pnma
space group both at room temperature30,31 and at cryogenic temperatures.27
The absence of crystal phase transitions between cryogenic and room temperature
suggests that the dielectric function does not change significantly in between,
and the use of the room temperature dielectric function in the interpretation of
low temperature phonon coupling is therefore valid.
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Supplementary Figure 8: Relative error in the calculated dielectric function.

Supplementary Figure 9: Imaginary part of the dielectric response of the CsPbBr3
NCs compared to that of the solvent. The low-frequency relaxation and the
Lorentz resonance are only observed in the presence of CsPbBr3 NCs.
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