A Chemical Probe Based on the PreQ₁ Metabolite Enables Transcriptome-wide Mapping of Binding Sites

Sumirtha Balaratnam^{1*}, Curran Rhodes^{1*}, Desta Doro Bume¹, Colleen Connelly¹, Christopher C. Lai¹, James A. Kelley¹, Kamyar Yazdani¹, Philip J. Homan^{2,3}, Danny Incarnato⁴, Tomoyuki Numata^{5,6} and John S. Schneekloth Jr^{*1,†}

Supporting Information

Section 1: Tables and Figures

Table S1: Summary of data collection and refinement statistics

	ab13_14- 11	Wild type-11
Data collection		
Space group	P6 ₁ 22	P6 ₃ 22
Cell dimensions		
<i>a, b, c</i> (Å)	52.7, 52.7, 177.0	113.2, 113.2, 59.5
Wavelength (Å)	1.0	1.0
Resolution (Å)	45.6-1.57 (1.62-1.57)	41.0-2.80 (2.98-2.80)
$R_{\rm merge}^{\rm a}$	0.123 (2.22)	0.177 (1.92)
R _{p.i.m.} ^b	0.028 (0.506)	0.061 (0.655)
$\text{CC}_{1/2}^{c}$	0.999 (0.641)	0.997 (0.663)
<1>/<\sigma1>	16.2 (1.3)	9.4 (1.3)
Completeness (%)	100 (100)	98.1 (96.0)
Redundancy	20.5 (20.1)	8.2 (8.5)
Refinement		
Resolution (Å)	45.6-1.57	41.0-2.80
No. reflections	21,395	5,768
$R_{\rm work}^{\rm d}/R_{\rm free}^{\rm e}$	0.190/0.208	0.193/0.235
No. atoms		
RNA	694	686
Ligand	22	22
Ions	13	5
Water	86	2
B-factors (Å ²)		
RNA	40.2	87.1

,

Ligand	37.5	97.7
Ions	110.3	147.0
Water	46.3	61.1
R.m.s. deviations		
Bond lengths (Å)	0.004	0.006
Bond angles (°)	0.900	1.175
PDB ID	7E9E	7E9I

The values in parentheses are for the outermost shell.

^a $R_{\text{merge}} = \sum_{hkl} \sum_{i} |I_i(hkl) - \langle I(hkl) \rangle | / \sum_{hkl} \sum_{i} I_i(hkl)$, where $I_i(hkl)$ is the observed intensity and $\langle I(hkl) \rangle$ is the average intensity over symmetry-equivalent measurements.

^b Definition of $R_{p.i.m.}$ can be found in Ref. 1.

^c Pearson correlation coefficient between intensities of random half-dataset (Ref. 2).

^d $R_{\text{work}} = \Sigma |F_{\text{o}} - F_{\text{c}}| / \Sigma F_{\text{o}}$ for reflections of working set.

^e $R_{\text{free}} = \Sigma |F_0 - F_c| / \Sigma F_0$ for reflections of test set (5.0% of total reflections).

Table S2: Sequences of primers used in qPCR experiments.

Gene name		Sequence (5'-3')
RF00024 (ENSG00000277925.1)	Forward Primers	AAC CCT AAC TGA GAA GGG CG
	Reverse Primers	AGA ATG AAC GGT GGA AGG CG
HIST2H2BF (ENSG00000203814.6)	Forward Primers	TTC GCG CAA AAA TGC CG
	Reverse Primers	CTT CAG CAC CTT GTA CAC GTA A
HIST1H3F (ENSG00000277775.1)	Forward Primers	CAG CTC GTA AGT CCA CTG GC\
	Reverse Primers	CGA TTT CTG ATA GCG GCG GA
GAPDH	Forward Primers	AGG TCG GTG TGA ACG GAT TTG
(ENSG00000111640.14)	Reverse Primers	GGG GTC GTT GAT GGC AAC A

Figure S1: PAGE analysis of electrophilic probes **1-10** reactivity towards the *Tt*-preQ₁-RS. No evidence of higher molecular weight covalent adducts was observed in this case for any of the 10 compounds tested. For these experiments, the molar ratio between the *Tt*-preQ₁-RS aptamer and electrophilic probes was 1:50. The experiment was repeated three time independently. Full image was provided in the Source Data file.

Figure S2: PAGE analysis of photoaffinity probes reactivity towards to *Bs*-preQ₁-RS aptamer. The unstabilized probes (**11**, **12**, and **13**) and stabilized probes (**15** and **16**) expect **14** showed formation the higher molecular weight covalent adduct. The molar ratio between the aptamer and probe was 1:50 under this experimental condition. The experiment was repeated three time independently and source data are provided as a Source Data file.

Figure S3: Orbitrap-LC/MS based characterization of dose (left) and time (right) dependent crosslinking efficiency of compound **11** towards *Ss*-preQ₁-RS (5 μ M). In the dose dependent experiments, the "x" represents the molar ratio between probe and *Ss*-preQ₁-RS aptamer. The molar ratio between the aptamer and probe **11** was 1:50 in the time dependent crosslinking experiments. At molar ratios of 50x and above and/or with extended UV irradiation time, a second peak corresponding to a higher mass species consistent with a secondary covalent crosslinking event can be observed.

Figure S4: Crystal structures of the wild-type *Tt*-preQ₁-RS riboswitch aptamer complexed with **11**. **(A)** Overall structure of the complex. **(B)** Close up view of the binding site of **11**. S1, S2, L1, L2, and L3 are colored green, cyan, pink, gray, and orange, respectively. The m F_0 – D F_c electron density map for **11** is colored blue and contoured at 3.0 σ . The nucleotides interact with the compound are labeled, and hydrogen bonds are indicated as dotted lines.

Figure S5: Representative PAGE gel image showing photocrosslinking of **11** to the WT and 3 different mutants of *Tt*-preQ₁-RS aptamers. The molar ratio between the aptamer and probe was 1:50 under this experimental condition. The experiment was repeated three time independently. Source data are provided as a Source Data file.

Figure S6: Representative PAGE gel images of the ³²P-labeled RNA products of in vitro transcription of the *Ss*-preQ1-RS template in the presence of increasing concentrations of (A) PreQ1 and (B) 11. Bands corresponding to the read-through transcription product (RT) and terminated transcription product (T) are indicated. Each experiment was repeated three time independently. Source data are provided as a Source Data file.

Figure S7: Binding curves generated by Microscale thermophoresis (MST) for binding of (A) $PreQ_1$ to the *Bs*-preQ_1-RS aptamer, (B) **11** to the *Bs*-preQ_1-RS aptamer, (C) $PreQ_1$ to the *Tt*-preQ_1-RS aptamer and (D) **11** to the *Tt*-preQ_1-RS aptamer. The opposite change in thermophoretic behavior suggest that aptamer undergo different conformation change upon binding to **11**. The binding constant was calculated by fitting the data in GraphPad Prism using a single-site mode of binding. The data are presented as the mean \pm SEM (n=3) of three independent experiments. Each experiment was repeated three time independently. Source data are provided as a Source Data file.

Figure S8: MALDI-TOF analysis of reactivity of Bio-**11** towards the *Ss*-preQ₁-RS aptamer. The appearance of the higher molecular weight species after UV irradiation confirms the formation of a covalent adduct between Bio-**11** (500 μ M) and the *Ss*-preQ₁-RS (10 μ M). While the specific identify of this adduct is unknown (multiple products will be formed upon UV irradiation) the observed mass is consistent with the addition of 1 equivalent of Bio-**11** to the *Ss*-preQ₁-RS.

Figure S9: MALDI-TOF analysis of photocrosslinking and click catalyzed addition of **(A)** Cy5-picolyl-azide probe **(B)** biotin-(PEG)₃-azide towards the *Ss*-preQ₁-RS. In these experiments, the *Ss*-preQ₁-RS (10 μ M) was first treated with 500 μ M of **11**. After incubation the sample was UV irradiated to crosslink **11** to the *Ss*-preQ₁-RS. Finally, this mixture was treated with Cy5-picolyl-azide **(A)** and biotin-(PEG)₃-azide **(B)** using the copper catalyzed click protocol described above. The higher molecular weight species indicated here is consistent with potential covalent adducts between the **11**-crosslinked-*Ss*-preQ₁-RS and **(A)** Cy5-picolyl azide or **(B)** biotin-(PEG)₂-azide. A peak corresponding to the adduct of *Ss*-preQ₁-RS and **11** (no Bio-**11** click product) is visible in panel B due to incomplete reaction with the biotin-(PEG)₃-azide under these conditions.

TAMRA Imaging

Figure S11: Competitive photocrosslinking experiments in MCF-7 total RNA imaged by SYBR gold stain (top) and TAMRA labeling (bottom). Compound **11** (250 μ M) selectively labeled the *Bs*-preQ₁-RS full length (1 μ M, or 1.1 μ g) in the presence of cellular total RNA (5 μ g) while no detectable crosslinked product was observed with compound **17** (250 μ M). Co-incubation of **11** (250 μ M) with excess PreQ₁ (500 μ M and 1000 μ M concentrations) resulted in competitive decrease of TAMRA signal. The experiment was repeated three time independently.

Gene Symbol	log ₂ (Fold-change)	Adj. P-value
HIST2H2BE	1.11	3.5e-31
HIST2H2BF	1.20	1.2e-23
HIST1H1B	1.12	4.6e-20
HIST1H3B	1.13	4.6e-20
RMRP	0.98	1.3e-18
HIST1H4E	1.01	2.0e-16
HIST2H3A	1.03	1.2e-11
HIST1H3F	1.37	5.9e-12
HIST1H2BC	1.05	1.6e-9
TERC	1.37	1.1e-8
HIST1H3H	1.31	4.7e-7
HIST1H3G	1.10	1.5e-6
HIST1H2BL	1.50	3.8e-7
HIST1H2BJ	1.45	5.8e-7
HIST1H2AC	1.05	2.3e-6
HIST2H2AB	1.40	8.4e-4

Figure S12: Volcano Plot showing differential expression analysis (DeSeq2) between **11** and **17** treated samples. The points in red are significantly enriched (log_2 (Fold-change) > 0.95, adjusted p-value < 10^{-3}). These hits are labelled with the gene name on the plot. Corresponding values for enrichment and significance are provided in the accompanying table.

Section 2:

Synthesis and characterization of electrophoretic and photoaffinity probes

A) Substitution reaction between PreQ1 and alkyl halides

To a solution of $PreQ_1 \cdot 2TFA$ (20 mg, 49 μ mol, 1.0 equiv.) in DMF, K₂CO₃ (21 mg, 15 μ mol, 3.1 equiv.) and alkyl halide (49 μ mol, 1.0 equiv.) were added, and the reaction mixture was stirred at room temperature for 1 h. Then, the reaction mixture was concentrated, and purified via column chromatography on a silica gel using gradient based MeOH:DCM (0-20 % MeOH) on CombiFlash® Rf system.

B) Coupling reaction between PreQ1 and carboxylic acid-based substrates

To a solution of a carboxylic acid substrate (37 μ mol, 1.0 equiv.) in DMF (1 mL) cooled to 0 °C, HATU (14 mg, 37 μ mol, 1.0 equiv.) and diisopropylethylamine (20 μ L, 118 μ mol, 3.2 equiv.) were added and stirred for 10 min. Then, PreQ₁•2TFA (15 mg, 37 μ mol, 1.0 equiv.) was added, warmed the reaction mixture to room temperature and stirred for 1 hr. Then, the reaction mixture was concentrated and purified via column chromatography on a silica gel eluting with gradient based MeOH:DCM on CombiFlash® Rf system or preparative HPLC eluting with 10-90 % gradient of H₂O:MeCN containing 0.1% TFA.

Mass Spectral Analysis

LC/MS analysis of accurate mass measurements was carried out on the Orbitrap LTQ-XL system. A 2.0- μ L aliquot of an analytical solution (about 58 μ g/ml in LC/MS-grade 1:1 CH₃CN/H₂O) was injected onto a 2.1 X 100 mm, 3.5- μ m Zorbax SB-C18 narrowbore HPLC column and eluted at flow rate of 250 μ L/min with a 15-min combination of both isocratic and linear gradient elution using mobile phase varying from 2-90% CH₃CN/H₂O and containing 0.1% formic acid. **Compound 1** (Methyl (*E*)-4-(((2-amino-4-oxo-4,7-dihydro-3*H*-pyrrolo[2,3-*d*]pyrimidin-5-yl)methyl)amino)but-2-enoate).

Prepared according to the general procedure **A** isolated as TFA salt (5.0 mg, 35% yield) . White solid. ¹H NMR (500 MHz, DMSO): δ 11.32 (s, 1H), 10.97 (s, 1H), 9.37 (brs, 2H), 6.92-6.83 (m, 1H), 6.84 (s, 1H), 6.42 (brs, 2H), 6.24 (d, *J* =

15.4 Hz, 1H), 4.20 (t, J = 5.2 Hz, 2H), 3.86 (m, 2H), 3.71 (s, 1H); ${}^{13}C{}^{1}H$ NMR (126 MHz, DMSO): 165.69, 160.81, 158.54 (q, J = 35.4 Hz), 153.18, 152.58, 139.05, 125.68, 118.12, 115.4 (q, J = 294.0 Hz), 108.54, 98.71, 52.23, 46.28, 43.18; HRMS m/z: calcd. for C₁₂H₁₆N₅O₃ [M+H]⁺ 278.1248, found 278.1240.

Compound 2 (*N*-((2-amino-4-oxo-4,7-dihydro-3*H*-pyrrolo[2,3-*d*]pyrimidin-5-yl)methyl)methacrylamide).

To a solution of PreQ₁•2HCl (20 mg, 80 μ mol, 1.0 equiv.) and DIEA (30 μ L, 160 μ mol, 2.0 equiv.) in DMF (1.0 mL), methacrylic anhydride (15 μ L, 96 μ mol, 1.2 equiv.) was added and the reaction mixture was stirred at room temperature for 18 h. Then, the reaction mixture was concentrated and via column chromatography on a silica gel using MeOH:DCM. White solid. ¹H NMR (500 MHz, DMSO): δ 10.89 (s, 1H), 10.49 (s, 1H), 8.74 (t, *J* = 5.4 Hz, 1H) , 6.54 (s, 1H), 6.14 (s, 2H), 5.70 (s, 1H), 5.33 (t, *J* = 1.6 Hz, 1H), 4.35 (d, *J* = 5.4 Hz, 2H), 1.89 (s, 3H); ¹³C{¹H} NMR (126 MHz, DMSO): 166.9, 160.4, 152.7, 152.3, 140.5, 119.5, 115.6, 114.2, 99.0, 35.8, 19.0; HRMS m/z: calcd. for C₁₁H₁₄N₅O₂ [M+H]⁺ 248.1142, found 248.1137.

Compound 3 ((*E*)-*N*-((2-amino-4-oxo-4,7-dihydro-3*H*-pyrrolo[2,3-*d*]pyrimidin-5-yl)methyl)-2-phenylethene-1-sulfonamide).

The reaction is run according the procedure for compound **6**. White solid. ¹H NMR (500 MHz, DMSO): δ 10.88 (s, 1H), 10.67 (brs, 1H), 7.73 (brs, 1H), 7.56-7.54 (m, 2H), 7.41-7.38 (m, 3H), 7.30 (d, *J* = 15.6 Hz, 1H) , 7.03 (d, *J* = 15.6 Hz, 1H) , 6.59 (s, 1H), 6.21 (s, 2H), 4.15 (d, *J* = 3.8 Hz, 2H); ¹³C{¹H} NMR (126 MHz, DMSO): 160.4, 152.9, 152.3, 139.4, 133.4, 130.8, 129.3, 128.6, 127.5, 114.8, 98.8; HRMS m/z: calcd. for C₁₅H₁₆N₅O₃S [M+H]⁺ 346.0968, found 346.0955.

Compound 4 (*N*-((2-amino-4-oxo-4,7-dihydro-3*H*-pyrrolo[2,3-*d*]pyrimidin-5-yl)methyl)-2-(2,5-dioxo-2,5-dihydro-1*H*-pyrrol-1-yl)acetamide).

To a solution of PreQ₁•2TFA (20 mg, 49 μ mol, 1.0 equiv.) and triethylamine (15 μ L, in DMF (1.0 mL) at room temperature, maleimidoacetic acid *N*-hydroxysuccinimide ester (12 mg, 49 μ mol, 1.0 equiv.) was added and stirred for 4 h. Then, the reaction mixture was concentrated, and purified via column chromatography using a silica gel and eluting with gradient based MeOH:DCM to obtain the titled compound as a white solid. ¹H NMR (500 MHz, DMSO): δ 10.86 (s, 1H), 10.34 (s, 1H), 8.57 (t, *J* = 5.4 Hz, 1H), 7.11 (s, 2H), 6.49 (s, 1H), 6.08 (s, 2H), 4.30 (d, *J* = 5.4 Hz, 2H), 4.04 (s, 2H); ¹³C{¹H} NMR (126 MHz, DMSO): 171.18, 165.99, 159.95, 152.73, 151.96, 135.33, 115.36, 114.34, 98.78, 35.67; HRMS m/z: calcd. for C₁₃H₁₃N₆O₄ [M+H]⁺ 317.0993, found 317.0982.

Compound 5 (*N*-((2-amino-4-oxo-4,7-dihydro-3*H*-pyrrolo[2,3-*d*]pyrimidin-5-yl)methyl)-3- (2,5-dioxo-2,5-dihydro-1*H*-pyrrol-1-yl)propenamide).

Prepared according to the procedure described for Compound 4. White solid. ¹H NMR (500 MHz, DMSO): δ 10.82 (s, 1H), 10.31 (s, 1H), 8.29 (t, *J* = 5.4 Hz, 1H), 6.97 (s, 2H), 6.46 (brs, 1H), 6.07 (s, 2H), 4.24 (d, *J* = 5.1 Hz, 2H),

3.62 (m, 2H), 2.37 (m, 2H); ${}^{13}C{}^{1}H$ NMR (126 MHz, DMSO): 171.2, 169.2, 160.0, 152.7, 151.9, 135.0, 115.7, 114.3, 98.8, 46.2, 35.5, 34.5; HRMS m/z: calcd. for $C_{14}H_{15}N_6O_4$ [M+H]⁺ 331.1149, found 331.1138.

Compound 6 (Ethyl ((2-amino-4-oxo-4,7-dihydro-3*H*-pyrrolo[2,3-*d*]pyrimidin-5-yl)methyl)carbamate).

A solution of PreQ₁•2HCl (20 mg, 80 μ mol, 1.0 equiv.) in DMF (1.0 mL) and cooled to 0 °C was treated with diisopropylethylamine (27 μ L, 160 μ mol, 2.0 equiv.). Then, ethyl chloroformate (8 μ L, 88 μ mol, 1.1 equiv.) was added, the reaction mixture was allowed to warm to room temperature and stirred for 3 h. Consequently, the reaction mixture was concentrated, triturated with 20% MeOH/DCM, and the resulting precipitate was collected to obtain the titled compound as a white solid. ¹H NMR (500 MHz, DMSO): δ 11.31 (s, 1H), 11.23 (s, 1H), 7.31 (s, 1H), 6.58 (s, 1H), 4.23 (s, 2H), 3.99 (q, *J* = 7.1 Hz, 2H),1.16 (t, *J* = 7.1 Hz, 3H); ¹³C{¹H} NMR (126 MHz, DMSO): 158.2, 156.1, 151.5, 116.8, 114.5, 98.4, 59.7, 36.5, 14.7; HRMS m/z: calcd. for C₁₀H₁₄N₅O₃ [M+H]+ 252.1091, found 252.1084.

Compound 7 (4-nitrophenyl ((2-amino-4-oxo-4,7-dihydro-3*H*-pyrrolo[2,3-*d*]pyrimidin-5-yl)methyl)carbamate).

Prepared according the procedure for compound **9**. White solid. ¹H NMR (500 MHz, DMSO): δ 10.92 (s,1H), 10.43 (s, 1H), 8.37 (s, 1H), 8.27 (d, *J* = 8.2 Hz, 2H), 7.43 (d, *J* = 8.2 Hz, 2H), 6.61 (s, 1H), 6.13 (s, 2H), 4.36 (brs, 2H);

 $^{13}C\{^{1}H\}$ NMR (125 MHz, DMSO): 160.10, 153.36, 152.81, 152.14, 144.58, 125.58, 125.58, 123.00, 115.12, 114.50, 98.80, 37.76; HRMS m/z: calcd. for $C_{14}H_{13}N_6O_5$ [M+H]+ 345.0942, found 345.0933.

Compound 8 (*N*-((2-amino-4-oxo-4,7-dihydro-3*H*-pyrrolo[2,3-*d*]pyrimidin-5-yl)methyl)-1*H*-imidazole-1-carboxamide).

To a solution of PreQ₁•2HCl (20 mg, 80 μ mol, 1.0 equiv.) in DMF (1.0 mL), carbonyldiimidazole was added and the resulting reaction mixture was stirred at room temperature for 18 h. Then, the reaction mixture was concentrated, triturated with 20% MeOH/DCM, and the resulting precipitate was collected to obtain the titled compound as a white solid. ¹H NMR (500 MHz, DMSO): δ 11.03 (s, 1H), 10.58 (s, 1H) 9.39 (t, *J* = 5.3 Hz, 1H), 8.30 (s, 1H), 7.73 (s, 1H), 7.09 (s, 1H), 6.70 (s, 1H), 6.21 (s, 2H), 4.56 (d, *J* = 5.3 Hz, 2H); ¹³C{¹H} NMR (126 MHz, DMSO): 159.88, 152.27, 151.77, 148.42, 135.87, 129.57, 116.44, 114.43, 114.12, 98.32, 36.75; HRMS m/z: calcd. for C₁₁H₁₂N₇O₂ [M+H]⁺ 274.1047, found 274.1040.

Compound 9 (3-(((2-amino-4-oxo-4,7-dihydro-3*H*-pyrrolo[2,3-*d*]pyrimidin-5-yl)methyl)amino)-4-methoxycyclobut-3-ene-1,2-dione).

To a solution of PreQ₁•2TFA in anhydrous DMF (600 μ L) under N₂, dimethyl squarate (7.0 mg, 49 μ mol, 1.0 equiv.) and triethylamine (15 μ L, 103 μ mol, 2.1 equiv.) dissolved in anhydrous DMF (400 μ L) was added and stirred at room temperature for 18 h. Then, the reaction mixture was concentrated under reduced pressure, diluted with 1.0 mL of MeOH, and resulting precipitate was collected by filtration to obtain the titled compound as a white solid (57% yield). ¹H NMR (500 MHz, DMSO): δ 10.94 (s, 1H), 10.37 (s, 1H), 9.02-8.92 (s, 1H), 6.58 (d, *J* = 2.1 Hz, 1H), 6.13 (s, 2H), 4.75 (d, *J* = 5.6 Hz, 1H), 4.54 (d, *J* = 5.6 Hz, 1H), 4.30-4.27 (s, 3H); ¹³C{¹H} NMR (126 MHz, DMSO): 190.0, 189.7, 172.5, 172.2, 159.9, 159.9, 157.5, 152.9, 152.5, 152.2, 114.9, 114.4, 98.6, 98.6, 60.6, 60.3, 41.1 (Note that the compound exist as a mixture of tautomers and as a result, there are more carbon peaks observed); HRMS m/z: calcd. for C₁₂H₁₂N₅O₄ [M+H]⁺ 290.0884, found 290.0877.

Compound 10 (*N*-((2-amino-4-oxo-4,7-dihydro-3*H*-pyrrolo[2,3-*d*]pyrimidin-5-yl)methyl)-4-(4-(bis(2-chloroethyl)amino)phenyl)butanamide).

Prepared according to the general procedure **B**. ¹H NMR (500 MHz, DMSO): δ 10.89 (s, 1H), 10.44 (s, 1H), 8.24 (t, *J* = 5.4 Hz, 1H), 7.06 (d, *J* = 8.7 Hz, 2H) , 6.71 (d, *J* = 8.7 Hz, 2H) , 6.54 (s, 1H), 6.18 (s, 2H), 4.35 (d, *J* = 5.3 Hz, 2H), 3.79-3.73 (m, 8H), 2.47 (t, *J* = 7.5 Hz, 2H), 2.16 (t, *J* =

7.5 Hz, 2H),1.79 (qt, J = 7.5 Hz, 2H); ¹³C{¹H} NMR (126 MHz, DMSO): 71.7, 160.0, 152.7, 152.0, 144.8, 130.4, 129.8, 116.0, 114.1, 112.3, 98.8, 52.7, 41.6, 35.6, 35.5, 34.1, 27.9; HRMS m/z: calcd. for C₂₁H₂₇Cl₂N₆O₂ [M+H]⁺ 465.1567, found 465.1555.

Compound 11 (2-amino-5-(((2-(3-(but-3-yn-1-yl)-3*H*-diazirin-3-yl)ethyl)amino)methyl)-3,7-dihydro-4*H*-pyrrolo[2,3-*d*]pyrimidin-4-one).

To a solution of PreQ₁•2TFA (40 mg, 98 μ mol, 1.0 equiv.) and K₂CO₃ (43 mg, 314 μ mol, 3.2 equiv.) in DMF (1.0 mL), 3-(but-3-yn-1-yl)-3-(2-iodoethyl)-3*H*-diazirine (prepared according to the literature procedure (25 μ L, 98 μ mol, 1.0 equiv.) in MeCN (0.5 mL) was slowly added and stirred at room temperature for 1 h in dark. Then, the reaction mixture was concentrated and purified via column chromatography using a silica gel and eluting with gradient based MeOH:DCM to obtain the titled compound as a white solid. ¹H NMR (500 MHz, DMSO): δ 11.27 (s, 1H), 10.85 (brs, 1H), 8.87 (brs, 1H), 6.81 (s, 1H), 6.32 (s, 2H), 4.14 (s, 2H), 2.91-2.87 (m, 2H), 2.85 (t, *J*=2.7 Hz, 1H) , 2.00 (td, *J*=7.3, 2.7 Hz, 2H), 1.75-171 (m, 2H), 1.63 (t, *J*=7.3 Hz, 2H); ¹³C{¹H} NMR (126 MHz, DMSO): 160.8, 153.2, 152.7, 117.9, 108.7, 98.7, 83.4, 72.4, 43.4, 41.3, 31.2, 29.8, 26.9, 13.1; HRMS m/z: calcd. for C₁₄H₁₈N₇O [M+H]⁺ 300.1567, found 300.1558.

Compound 12 (*N*-((2-amino-4-oxo-4,7-dihydro-3*H*-pyrrolo[2,3-*d*]pyrimidin-5-yl)methyl)-3-(3-methyl-3*H*-diazirin-3-yl)propenamide).

The 3-(3-methyl-3*H*-diazirin-3-yl)propanoic acid was prepared according the literature protocol. Then, compound 20 was prepared according to the general procedure **B**. White solid (12.0 mg, 85% yield). ¹H NMR (500 MHz, DMSO): δ

10.82, 10.32, 8.22 (t, J = 5.3 Hz, 1H), 6.50 (s, 1H), 6.08 (s, 1H), 4.29 (d, J = 5.3 Hz, 2H), 2.02-1.99 (m, 2H), 1.60-1.57 (m, 2H), 0.99 (s, 3H); ¹³C{¹H} NMR (126 MHz, DMSO): 170.5, 160.0, 152.72, 151.91, 115.84, 114.25, 98.82, 35.58, 30.34, 30.28, 26.30, 19.78; HRMS m/z: calcd. for C₁₂H₁₆N₇O₂ [M+H]⁺ 290.1360, found 290.1352.

Compound 13 (*N*-((2-amino-4-oxo-4,7-dihydro-3*H*-pyrrolo[2,3-*d*]pyrimidin-5-yl)methyl)-3-(3-(but-3-yn-1-yl)-3*H*-diazirin-3-yl)propenamide).

Prepared according to the general procedure **B** (Note that the reaction was performed in dark). White solid. ¹H NMR (500 MHz, DMSO): δ 10.83 (s, 1H), 10.34 (s, 1H), 8.21 (t, *J* = 5.4 Hz, 1H) , 6.50 (s, 1H), 6.08 (s, 2H),

4.28 (d, J = 5.4 Hz, 2H), 2.82 (t, J = 2.6 Hz, 1H), 2.00 (ddd, J = 7.5, 4.8, 2.6 Hz, 2H), 1.97-1.92 (m, 2H) 1.68-1.65 (m, 2H), 1.57 (t, J = 7.4 Hz, 2H). ¹³C{¹H} NMR (126 MHz, DMSO): 170.5, 160.0, 152.7, 151.9, 115.8, 114.3, 98.8, 83.7, 72.2, 35.6, 31.9, 30.1, 28.8, 28.6, 13.1; HRMS m/z: calcd. for C₁₅H₁₈N₇O₂ [M+H]⁺ 328.1516, found 328.1511.

Compound 14 (2-amino-5-(((4-(3-(trifluoromethyl)-3*H*-diazirin-3-yl)benzyl)amino)methyl)-3,7-dihydro-4*H*-pyrrolo[2,3-*d*]pyrimidin-4-one).

The 3-(4-(iodomethyl)phenyl)-3-(trifluoromethyl)-3*H*-diazirine was prepared according to the literature procedure. Then, compound **15** was prepared according the procedure for compound **14**. White solid. ¹H NMR (500 MHz, DMSO): δ 11.28 (s, 1H), 10.86 (s, 1H), 9.37 (s, 1H), 7.61 (d, *J* = 8.5 Hz, 2H), 7.37 (d, *J* = 8.1 Hz, 2H), 6.84 (d, *J* = 2.2 Hz, 1H) 6.35 (s, 2H), 4.23 (s, 2H), 4.16 (s, 2H); ¹³C{¹H} NMR (126 MHz, DMSO): δ 160.9, 153.1, 152.8, 131.1, 128.4, 127.3, 123.4 (q, *J* = 276 Hz), 117.7, 98.7, 49.3, 43.6, 40.9, 28.3 (q, *J* = 40.0 Hz); ¹⁹F NMR (471 MHz, DMSO) δ -64.6; HRMS m/z: calcd. for C₁₆H₁₅F₃N₇O [M+H]⁺ 378.1285, found 378.1271.

Compound 15 (2-amino-5-(12-(4-(3-(trifluoromethyl)-3*H*-diazirin-3-yl)phenyl)-5,8-dioxa-2,11-diazadodecyl)-3,7-dihydro-4*H*-pyrrolo[2,3-*d*]pyrimidin-4-one).

White solid. ¹H NMR (500 MHz, DMSO): δ 11.44 (s, 1H), 11.14 (s, 1H), 10.47 (s, 1H), 7.81 (brs, 3H), 7.64 (d, *J* = 8.1 Hz, 2H), 7.37 (d, *J* = 8.1 Hz, 2H), 6.92 (s, 1H), 6.54 (s, 2H), 4.58-4.31(m, 4H), 3.73 (m, 2H), 3.57-3.46 (m, 6H), 3.34-3.18 (m, 2H), 3.00-2.90 (m, 2H); ¹³C{¹H} NMR (126 MHz, DMSO): 161.2, 158.6 (q, *J* = 34.6 Hz), 153.3, 153.0, 132.9, 132.5, 129.2, 127.3, 119.4, 116.7 (q, *J* = 293.6 Hz), 107.3, 98.6, 69.9, 69.8, 67.1, 64.8, 56.2, 51.9, 51.1, 39.0; HRMS m/z: calcd. for C₂₂H₂₈F₃N₈O₃ [M+H]⁺ 509.2231; found 509.2224.

Compound 16 (2-amino-5-(15-(4-(3-(trifluoromethyl)-3*H*-diazirin-3-yl)phenyl)-5,8,11-trioxa-2,14-diazapentadecyl)-3,7-dihydro-4*H*-pyrrolo[2,3-*d*]pyrimidin-4-one).

Prepared according to the procedure for compound **15**. White solid. ¹H NMR (500 MHz, DMSO): δ 11.43 (s, 1H), 11.11 (s, 1H), 10.48 (s, 1H) 7.78 (brs, 3H), 7.67 (d, J = 8.1 Hz, 2H), 7.37

(d, J = 8.1 Hz, 2H), 6.92 (s, 1H), 6.49 (s, 2H), 4.57-4.17 (m, 4H), 3.72 (m, 2H), 3.59-3.45 (m, 10H), 3.34-3.18 (m, 2H), 3.00-2.91 (m, 2H); ¹³C{¹H} NMR (126 MHz, DMSO): 161.2, 158.6 (q, J = 36.0 Hz), 153.3, 153.0, 132.9, 132.5, 129.2, 127.3, 121.1, 119.4, 116.4 (q, J = 293.0 Hz), 107.3, 98.7, 70.0, 69.9, 67.2, 64.8, 56.3, 51.8, 51.1, 39.0; HRMS m/z: calcd. for C₂₄H₃₂F₃N₈O₄ [M+H]⁺ 553.2493; found 553.2484.

Compound 17 (*N*-((2-amino-4-oxo-4,7-dihydro-3*H*-pyrrolo[2,3-*d*]pyrimidin-5-yl)methyl)-3-(2-(2-((4-(3-(trifluoromethyl)-3*H*-diazirin-3-yl)benzyl)amino)ethoxy)ethoxy) propenamide).

This compound was synthesized using the general procedure **B** for the coupling reaction. White solid. ¹H NMR (500 MHz, DMSO): δ 7.94 (s, 1H), 3.31 (d, *J* = 5.8 Hz, 2H),

3.23 (s, 3H), 3.21-3.14 (m, 2H), 2.82 (t, J = 2.7 Hz, 1H), 1.98 (td, J = 7.4, 2H), 1.94-1.86 (m, 2H), 1.62 (t, 2H), 1.56 (t, J = 7.4 Hz, 2H); ¹³C{¹H} NMR (126 MHz, DMSO): δ 170.72, 83.18, 71.74, 70.62, 57.88, 38.36, 31.40, 29.37, 28.15, 12.65; HRMS m/z calculated for C₁₀H₁₇N₃O [M+H]+ 196.2619, found 196.2599.

Compound Bio-11. (*N*-(2-(2-(2-(2-(2-(2-(((2-amino-4-oxo-4,7-dihydro-3*H*-pyrrolo[2,3-d]pyrimidin-5-yl)methyl)amino)ethyl)-3*H*-diazirin-3-yl)ethyl)-1*H*-1,2,3-triazol-1-yl)ethoxy)ethoxy)ethyl)-5-((3a*R*,4*R*,6a*S*)-2-oxohexahydro-1*H*-thieno[3,4-d]imidazol-4-yl)pentanamide).

To a solution of compound **14** (30.0 mg, 100 μ mol, 1.0 equiv.) and Biotin-PEG-N₃ (45 mg, 100 μ mol, 1.0 equiv.) in anhydrous DMF (2.0 mL), sodium ascorbate (100 μ l of 0.2 M, 20 μ mol, 0.2 equiv.) and CuSO₄ (100 μ L of 0.2M, 20 μ mol, 0.2 equiv.) and the reaction mixture was stirred at room temperature for 14 hr under N₂ atmosphere. Then, the reaction mixture was concentrated under reduced pressure and purified by preparative HPLC eluting with H₂O:MeCN containing 0.1% TFA to obtain the titled compound as white solid (40.0 mg, 54% yield). ¹H NMR (500 MHz, DMSO): δ 11.34 (s, 1H), 11.0 (s, 1H), 9.04 (s, 2H), 7.85-7.82 (m, 2H), 6.82 (s, 1H), 6.44 (brs, 3H), 4.48 (t, *J* = 5.2 Hz, 2H) , 4.32 (dd, *J* = 7.6, 4.8 Hz, 1H), 4.18-4.12 (m, 3H), 3.79 (t, *J* = 5.2 Hz, 2H), 3.52-3.47 (m, 8H), 3.38 (t, *J* = 6.0 Hz, 2H), 3.18 (q, *J* = 6.0 Hz, 2H), 3.12-3.07

(m, 1H), 2.93-2.86 (m, 2H), 2.82 (dd, J = 12.4, 5.0 Hz, 1H), 2.59 (d, J = 12.4 Hz, 1H), 2.44-2.40 (m 2H), 2.06 (t, J = 7.4 Hz, 2H), 1.82-1.24 (m, 10H); $^{13}C{^{1}H}$ NMR (126 MHz, DMSO): 172.7, 163.3, 160.7, 153.2, 152.1, 118.0, 108.7, 98.7, 70.2, 70.1, 70.02, 70.00, 69.6, 69.2, 61.5, 59.7, 55.9, 49.8, 43.3, 41.3, 38.9, 35.6, 31.6, 29.9, 28.6, 28.5, 27.1, 25.7, 20.0; HRMS m/z: calcd. for $C_{32}H_{50}N_{13}O_6S$ [M+H]⁺ 744.3722, found 744.3716.

References:

- 1. Weiss, M. S. Global indicators of X-ray data quality. *J Appl Crystallogr* **34**, 130-135 (2001).
- 2. Karplus, P. A. & Diederichs, K. Linking crystallographic model and data quality. *Science* **336**, 1030-1033 (2012).