Supporting Information # Organofluorine Mass Balance Analysis of Whole Blood Samples in Relation to Gender and Age Rudolf Aro, Ulrika Eriksson, Anna Kärrman, Leo W.Y. Yeung* Man-Technology-Environment (MTM) Research Centre, School of Science and Technology, Örebro University, Sweden, SE-701 82 *Corresponding author E-mail: <u>leo.yeung@oru.se</u> #### **Summary** Number of Pages: 17 Supplemental Figures: 4 Supplemental Tables: 10 ### Table of Contents | 1. | Chemicals | S3 | |----|------------------------------|-----| | 2. | Sampling Locations | S3 | | 3. | Sample Extraction | S3 | | 4. | List of Analytes | S6 | | 5. | Mass Spectrometer Parameters | S8 | | 6. | Results of PFAS Analysis | S10 | | 7. | Ratio of PFOS Isomers | S16 | | 8. | Results from NIST SRM1957 | S16 | | 9. | Bibliography | S17 | #### 1. Chemicals Methanol (MeOH) for extractions and mobile phases was purchased from Fisher Scientific (Hampton, United States) and the additives for ultra performance liquid chromatography (UPLC) mobile phases (ammonium acetate and 1-methylpiperidine) were purchased from Sigma-Aldrich (Saint Louis, United States). Water used for extractions and mobile phases was purified with a MilliQ system to a resistance of 18.2 M Ω . Additional chemicals for sample extraction, tetrabutyl-ammonium sulfate (TBA) and methyl tert-butyl ether (MTBE), were purchased from Sigma-Aldrich. For supercritical fluid chromatography (SFC) the eluent additive, ammonia, and mobile phase, CO₂, were purchased from Fisher Scientific and AGA (Lidingö, Sweden), respectively. The standard for ion chromatography, multielement anion standard solution (product nr: 89886), was purchased from Sigma-Aldrich. The standard reference material for sample extraction, SRM1957 (Organic Contaminants in Non-Fortified Human Serum), was purchased from the National Institute of Standards and Technology (NIST). #### SWEDEN Group 1 Group 2 Group 3 18 - 44 years 45 - 70 years 71 - 97 years Female Female Female Male Male Male n for EOF 21 26 18 27 18 20 analysis (n=130) UPPSALA STOCKHOLN n for PFAS 33 21 24 29 20 21 analysis (n=148) #### 2. Sampling Locations Figure S1. Sampling locations and the demographic information. #### 3. Sample Extraction All samples were extracted in duplicate (see Figure S2), the first one (Replicate 1) was spiked with internal standards (IS) before the extraction and used for target analysis (Figure S2). The second replicate (Replicate 2) was extracted without spiking any IS and analyzed for EOF content. Figure S2. Schematic representation of the workflow in this study. Prior to sample extraction, individual whole blood samples were vigorously shaken and/or vortexed to mix the contents of each vacutainer. Two aliquots of the whole blood were taken into pre-cleaned 15 mL polypropylene (PP) tubes (rinsed three times with methanol (MeOH) and allowed to dry), the mass of each sub-sample was recorded. The subsample for target analysis (Replicate 1) was spiked with an IS mixture (10 µL, 2 ng of each IS apart from monoPAPs and HFPO-DA of which 5 ng were added); the second subsample, for EOF analysis (Replicate 2), was extracted without any IS. The omission of IS for Replicate 2 was necessary as this would interfere with the EOF analysis, because the CIC system cannot differentiate between different sources of fluorine. These duplicate samples were extracted in the same batch to minimize the variability between them. Samples were extracted in duplicates using the ion pair method 1 . In brief, 2 mL of 0.5 M tetrabutyl-ammonium (TBA) solution in water was added to the extract. Then, 5 mL of methyl tert-butyl ether (MTBE) was added to the tube. The mixture was shaken horizontally for 15 minutes at 250 rpm and centrifuged for 10 minutes at 8000 g to separate the organic and aqueous phases. The top layer (MTBE) was transferred to a new pre-cleaned PP tube and the extraction was repeated twice with 3 mL of MTBE. The extracts were combined and evaporated to 200 μ L using an evaporation system. The combined extracts were reconstituted to 1.0 mL with MeOH and evaporated 0.2 mL (replicate 1) and 0.5 mL (replicate 2) with the evaporation system and the supernatants were transferred to LC vials. Most of the analytes were quantified in the sample with 40% organic solvent content. The sample with 80% organic solvent content was used for PAPs and ultra-short chain PFAS analyses. Details on how the samples were split for instrumental are shown in Figure S3. Figure S3. Detailed scheme of how the samples were divided for different instrumental analysis. Replicate 1 was analyzed with two different methanol compositions, 40% and 80% to improve chromatography. Replicate 2 was analyzed for the EOF content with CIC. RS – mass labelled recovery standard; aqueous phase – 2 mmol/L ammonia acetate in MilliQ water; all extracts were in methanol (MeOH). ### 4. List of Analytes Table S1. List of abbreviations of target PFASs in this study. | Class | Subgroup | Acronym | Name | |---------|----------------------|---------------|---| | PFSA | Ultra-short chain | PFEtS | Perfluoroethane sulfonic acid | | | Ultra-short chain | PFPrS | Perfluoropropane sulfonic acid | | | Short-chain | PFBS | Perfluorobutane sulfonic acid | | | Short-chain | PFPeS | Perfluoropentane sulfonic acid | | | Long-chain | PFHxS | Perflurohexane sulfonic acid | | | Long-chain | PFHpS | Perfluoroheptane sulfonic acid | | | Long-chain | PFOS | Perfluorooctane sulfonic acid | | | Long-chain | PFNS | Perfluorononane sulfonic acid | | | Long-chain | PFDS | Perfluorodecane sulfonic acid | | | Long-chain | PFDoDS | Perfluorododecane sulfonic acid | | PFCA | Ultra-short chain | TFA | Trifluoroacetic acid | | | Ultra-short chain | PFPrA | Perfluoropropanoic acid | | | Short-chain | PFBA | Perfluorobutanoic acid | | | Short-chain | PFPeA | Perfluoropentanoic acid | | | Short-chain | PFHxA | Perfluorohexanoic acid | | | Short-chain | PFHpA | Perfluoroheptanoic acid | | | Long-chain | PFOA | Perfluorooctanoic acid | | | Long-chain | PFNA | Perfluorononanoic acid | | | Long-chain | PFDA | Perfluorodecanoic acid | | | Long-chain | PFUnDA | Perfluoroundecanoic acid | | | Long-chain | PFDoDA | Perfluorododecanoic acid | | | Long-chain | PFTrDA | Perfluorotridecanoic acid | | | Long-chain | PFTDA | Perfluorotetradecanoic acid | | | Long-chain | PFHxDA | Perfluorohexadecanoic acid | | | Long-chain | PFOcDA | Perfluorooctadecanoic acid | | FTCA | Intermediate | 3:3 FTCA | 3:3 Fluorotelomer carboxylic acid | | | Intermediate | 5:3 FTCA | 5:3 Fluorotelomer carboxylic acid | | | Intermediate | 7:3 FTCA | 7:3 Fluorotelomer carboxylic acid | | FTUCA | Precursor | 6:2 FTUCA | 6:2 Fluorotelomer unsaturated carboxylic acids | | | Precursor | 8:2 FTUCA | 8:2 Fluorotelomer unsaturated carboxylic acids | | | Precursor | 10:2 FTUCA | 10:2 Fluorotelomer unsaturated carboxylic acids | | FTSA | Precursor | 4:2 FTSA | 4:2 Fluorotelomer sulfonic acid | | | Precursor | 6:2 FTSA | 6:2 Fluorotelomer sulfonic acid | | | Precursor | 8:2 FTSA | 8:2 Fluorotelomer sulfonic acid | | | Precursor | 10:2 FTSA | 10:2 Fluorotelomer sulfonic acid | | monoPAP | Precursor | 6:2 monoPAP | 6:2 Fluorotelomer phosphate monoester | | | Precursor | 8:2 monoPAP | 8:2 Fluorotelomer phosphate monoester | | | Precursor | 10:2 monoPAP | 10:2 Fluorotelomer phosphate monoester | | diPAP | Precursor | 6:2 diPAP | 6:2 Fluorotelomer phosphate diester | | | Precursor | 8:2 diPAP | 8:2 Fluorotelomer phosphate diester | | | Precursor | 6:2/8:2 diPAP | 6:2/8:2 Fluorotelomer phosphate diester | | | Precursor | 10:2 diPAP | 10:2 Fluorotelomer phosphate diester | | PFPA | | PFHxPA | Perfluorohexyl phosphonic acid | | | | PFOPA | Perfluorooctyl phosphonic acid | | | | PFDPA | Perfluorodecyl phosphonic acid | | PFPiA | Potential precursors | C6/C6 PFPiA | Bis (perfluorohexyl) phosphinic acid | | | | C6/C8 PFPiA | Perfluoro (hexyloctyl) phosphinic acid | | | | C8/C8 PFPiA | Bis (perfluorooctyl) phosphinic acid | | FASA | Precursor | FBSA | Perfluorobutane sulfonamide | | | | MeFBSA | Methyl perfluorobutane sulfonamide | | | | PFHxSA | Perfluorohexane sulfonamide | | | | MeFHxSA | Methyl perfluorohexane sulfonamide | | | | FOSA | Perfluorooctane sulfonamide | | FASAA | Precursor | FOSAA | Perfluorooctane sulfonamidoacetic acid | | | Precursor | MeFOSAA | Methyl perfluorooctane sulfonamidoacetic acid | | | | | | | | Precursor | EtFOSAA | Ethyl perfluorooctane sulfonamidoacetic acid | |-------|-----------|----------------------|--| | PFCHS | Novel | PFECHS | Perfluoroethylcyclohexane sulfonic acid | | PFECA | Novel | ADONA | 3H-perfluoro-3-[(3-methoxy-propoxy)propanoic acid] | | | Novel | HFPO-DA (GenX) | Hexafluoropropylene oxide dimer acid | | PFESA | Novel | 6:2 Cl-PFESA (F-53B) | 6:2 chlorinated polyfluorinated ether sulfonate | | | Novel | 8:2 Cl-PFESA | 8:2 chlorinated polyfluorinated ether sulfonate | ### 5. Mass Spectrometer Parameters Table S2. List of analytes, MRM transitions, cone voltage, and collision energy used for quantification and qualification of PFAS. | | Precursor/ product ions | Cara | Call | Precursor/ product ions | Como | Call | Into | |-------------------|-------------------------|-----------|-----------------------|--------------------------------|------|--------------|---------------------------| | Analyte | quantification
(m/z) | Cone | Coll
(eV) | qualification
(m/z) | Cone | Coll
(eV) | Internal
standard | | TFA | 112.9/68.96 | (V)
26 | 10 | (III/Z) | (V) | (ev) | 13C-PFBA | | FPrA | 162.97/118.9 | 20 | 10 | | | | ¹³ C-PFBA | | FBA | 212.97/169 | 20 | 11 | | | | ¹³ C-PFBA | | FPeA | 262.97/219 | 20 | 8 | | | | ¹³ C-PFPeA | | FHxA | 312.97/269 | 20 | 9 | 312.97/118.95 | 20 | 26 | ¹³ C-PFHxA | | FHpA | 362.97/319 | 20 | 10 | 362.97/168.97 | 20 | 16 | ¹³ C-PFHpA | | FOA | 412.97/369 | 20 | 10 | 412.97/168.97 | 20 | 18 | ¹³ C-PFOA |
| FNA | 462.99/419 | 20 | 12 | 462.99/219 | 20 | 18 | ¹³ C-PFNA | | FDA | 512.97/469 | 20 | 11 | 512.97/219 | 20 | 18 | ¹³ C-PFDA | | FUnDA | 562.97/519 | 20 | 12 | 562.97/268.99 | 20 | 18 | ¹³ C-PFUnDA | | FDoDA | 612.97/569 | 34 | 14 | 612.97/168.96 | 40 | 22 | ¹³ C-PFUnDA | | FTrDA | 662.9/619 | 20 | 14 | 662.9/168.96 | 20 | 26 | ¹³ C-PFUnDA | | FTDA | 712.9/669 | 20 | 14 | 712.9/168.97 | 20 | 28 | ¹³ C-PFUnDA | | FHxDA | 812.9/769 | 30 | 15 | 812.9/168.96 | 42 | 32 | ¹³ C-PFUnDA | | FOcDA | 912.9/869 | 36 | 15 | 912.9/168.96 | 36 | 36 | ¹³ C-PFUnDA | | FEtS | 198.8/79.8 | 65 | 20 | 714.7/100.70 | 50 | 50 | ¹³ C-PFBS | | FPrS | 248.9/80.0 | 70 | 25 | | | | ¹³ C-PFBS | | FBS | 298.9/98.9 | 20 | 26 | 298.9/79.96 | 20 | 26 | ¹³ C-PFBS | | FPeS | 348.90/98.96 | 20 | 26 | 348.90/79.96 | 20 | 30 | ¹³ C-PFHxS | | FHxS | 398.9/98.9 | 20 | 30 | 398.9/79.96 | 20 | 34 | ¹⁸ O-PFHxS | | FHpS | 448.97/98.90 | 20 | 30 | 448.97/79.96 | 20 | 35 | ¹³ C-PFOS | | FOS | 498.97/98.96 | 20 | 38 | 498.97/79.96,
498.97/169.03 | 20 | 44, 34 | ¹³ C-PFOS | | FNS | 548.90/98.96 | 20 | 38 | 548.90/79.96 | 20 | 44 | ¹³ C-PFOS | | FDS | 598.97/98.9 | 20 | 42 | 598.97/79.96 | 20 | 58 | ¹³ C-PFOS | | FDoDS | 698.90/98.90 | 20 | 40 | 698.90/79.96 | 20 | 45 | ¹³ C-PFOS | | :3 FTCA | 240.9/136.97 | 10 | 16 | 240.9/116.93 | 10 | 22 | ¹³ C-PFPeA | | :3 FTCA | 340.9/236.97 | 10 | 16 | 340.9/216.93 | 10 | 22 | ¹³ C-PFHpA | | :2 FTUCA | 356.9/292.91 | 10 | 18 | 356.9/242.95 | 10 | 36 | ¹³ C-PFHpA | | :3 FTCA | 440.9/336.89 | 12 | 14 | 440.9/316.93 | 12 | 20 | ¹³ C-PFNA | | :2 FTUCA | 456.9/392.84 | 10 | 18 | 456.9/392.84 | 10 | 38 | ¹³ C-PFNA | | 0:2 FTUCA | 556.84/492.82 | 8 | 16 | 556.84/242.94 | 8 | 38 | ¹³ C-PFUnDA | | BSA | 297.9/77.92 | 20 | 20 | 297.9/118.94 | 20 | 15 | ¹³ C-PFHxA | | /leFBSA | 311.97/111.93 | 14 | 20 | 397.9/168.94 | 14 | 16 | ¹³ C-PFOA | | FHxSA | 397.9/77.92 | 30 | 26 | 411.97/318.96 | 30 | 28 | ¹³ C-PFOS | | 1 HXSA
1eFHxSA | 411.97/168.93 | 24 | 24 | 411.97/318.96 | 24 | 20 | ¹³ C-PFOA | | OSA | 497.9/78 | 82 | 30 | 497.9/168.96 | 82 | 29 | ¹³ C-PFOA | | OSAA | 157.5776 | 02 | 50 | 555.8/418.85 | 02 | 2) | ² H -Et-FOSA | | 1eFOSAA | | | | 569.78/482.76 | | | ² H -Et-FOSA | | EtFOSAA | | | | 583.84/482.8 | | | ² H -Et-FOSA | | :2 FTSA | 327/307 | 20 | 20 | 327/81 | 20 | 28 | ¹³ C-PFHxA | | :2 FTSA | 427/407 | 20 | 20 | 427/81 | 20 | 28 | ¹³ C-PFOA | | .2 FTSA | 527/507 | 20 | 20 | 527/80 | 20 | 28 | ¹³ C-PFDA | | 0:2 FTSA | 627/607 | 20 | 20 | 627/80 | 20 | 28 | ¹³ C-PFUnDA | | :2 Cl-PFESA | 530.9/351 | 58 | 24 | 530.9/83.0 | 58 | 24 | ¹³ C-PFOS | | :2 CI-FFESA | 630.9/451 | 58 | 24 | 630.9/83.0 | 58 | 24 | ¹³ C-PFOS | | FECHS | 460.84/380.9 | 2 | 24 | 460.84/98.88 | 2 | 26 | ¹³ C-PFOA | | :2 mPAP | 442.9/96.95 | 4 | ∠ 1 | 442.9/78.92 | 4 | 20 | ¹³ C-6:2mPAP | | .2 mPAP | 542.9/97 | | | 542,9/78.92 | | | ¹³ C-8:2 mPAP | | 0:2 mPAP | 642.968/97.005 | | | 642.968/78.98 | | | ¹³ C-8:2 mPAP | | :2 diPAP | 788.9/97 | 64 | 28 | 788.9/442.91 | 64 | 18 | ¹³ C-6:2 diPAP | | 6:2/8:2 diPAP | 888.78/96.94 | 66 | 34 | 888.78/442.81,
888.78/542.81 | 66 | 26 | ¹³ C-6:2 diPAP | |----------------|-----------------|----|----|---------------------------------|----|----|---------------------------| | 8:2 diPAP | 988.78/96.94 | 68 | 34 | 988.78/542.81 | 68 | 26 | ¹³ C-8:2 diPAP | | 10:2 diPAP | 1188.78/96.94 | 68 | 34 | 1188.78/642.81 | 68 | 26 | ¹³ C-8:2 diPAP | | SAmPAP | 649.78/525.835 | | | 649.78/96.87 | | | ¹³ C-8:2 mPAP | | diSAmPAP | 1202.649/525.84 | | | 1202.649/168.902 | | | ¹³ C-8:2 diPAP | | PFHxPA | 398.97/79 | 62 | 26 | | | | ¹³ C-PFOA | | PFOPA | 499/79 | 62 | 30 | | | | ¹³ C-PFOA | | PFDPA | 599.03/79 | 62 | 30 | | | | ¹³ C-PFNA | | C6/C6 PFPiA | 701/401 | 62 | 28 | | | | ¹³ C-PFUnDA | | C6/C8 PFPiA | 801/401 | 24 | 28 | 801/501 | 24 | 28 | ¹³ C-PFUnDA | | C8/C8 PFPiA | 901/501 | 24 | 28 | | | | ¹³ C-PFUnDA | | HFPO-DA (GenX) | 284.92/168.72 | 20 | 7 | 328.95/284.86 | 20 | 17 | ¹³ C-HFPO-DA | | ADONA | 376.97/250.8 | 30 | 37 | 376.97/84.69 | 15 | 29 | ¹³ C-HFPO-DA | Table S3. List of analytes and their minimum and maximum LODs, it was estimated for each sample preparation batch separately. | Analyte | LOD min (pg/mL) | LOD max (pg/mL) | |--------------------|-----------------|-----------------| | PFBA | 52 | 222 | | PFPeA | 23 | 38 | | PFHxA | 52 | 78 | | PFHpA | 38 | 65 | | PFOA | 22 | 297 | | PFNA | 11 | 21 | | PFDA | 65 | 162 | | PFUnDA | 22 | 26 | | PFDoDA | 13 | 56 | | PFTrDA | 11 | 18 | | PFTeDA | 11 | 33 | | PFHxDA | 22 | 23 | | PFOcDA | 9834 | 9834 | | PFBS | 10 | 19 | | PFPeS | 10 | 10 | | PFHxS | 26 | 80 | | PFHpS | 10 | 10 | | PFOS | 139 | 661 | | PFNS | 21 | 21 | | PFDS | 10 | 10 | | PFDoDS | 21 | 21 | | PFECHS | 10 | 10 | | FBSA | 15 | 29 | | MeFBSA | 210 | 210 | | FHxSA | 22 | 22 | | MeFHxSA | 51 | 69 | | FOSA | 11 | 11 | | FPrPA (3:3 FTCA) | 52 | 52 | | FPePA (5:3 FTCA) | 22 | 22 | | FHpPA (7:3 FTCA) | 22 | 22 | | FHUEA (6:2 FTUCA) | 22 | 22 | | FOUEA (8:2 FTUCA) | 11 | 11 | | FDUEA (10:2 FTUCA) | 11 | 19 | | 4:2 FTSA | 5 | 5 | | 6:2 FTSA | 5 | 23 | | 8:2 FTSA | 11 | 11 | | 10:2 FTSA | 212 | 212 | |----------------------------|------|------| | PFHxPA | 52 | 52 | | PFOPA | 212 | 212 | | PFDPA | 11 | 11 | | 6:6 PFPiA | 50 | 50 | | 6:8 PFPiA | 3945 | 3945 | | 8:8 PFPiA | 9598 | 9598 | | 11ClPF3OUdS (8:2 Cl-PFESA) | 10 | 10 | | 9ClPF3ONS (6:2 Cl-PFESA) | 10 | 10 | | FOSAA | 273 | 273 | | MeFOSAA | 50 | 50 | | EtFOSAA | 204 | 204 | | SAmPAP | 255 | 255 | | diSAmPAP | 268 | 268 | | 6:2 mPAP | 587 | 766 | | 8:2 mPAP | 504 | 504 | | 10:2 mPAP | 547 | 547 | | 6:2 diPAP | 182 | 241 | | 8:2 diPAP | 70 | 100 | | 6:2/8:2 diPAP | 390 | 518 | | 10:2 diPAP | 988 | 988 | | ADONA | 7 | 20 | | HFPO-DA | 22 | 22 | ### 6. Results of PFAS Analysis Figure S4. Organofluorine mass balance analysis as determined by EOF and target PFAS analysis in whole blood samples. The mass balance is made of unidentified organofluorine (UOF) and target PFAS. The values given are EOF concentrations (ng/mL F). \sum_{60} PFAS – all measured PFAS with the exception of PFOA, PFHxS and PFOS (linear + branched). Table S4. Mean concentrations of PFCAs (ng/mL) and detection frequencies in whole blood samples. | | Group 1 (18-44 years)
Females (n = 33) | | Group 1 (18-44 years)
Males (n = 21) | | | Group 2 (45-70 years)
Females (n = 24) | | | | 2 (45-70
ales (n = 2 | • | | 3 (71-97)
nales (n = | , , | Group 3 (71-97 years)
Males (n = 21) | | | | |--------|---|-------|---|---|-------|--|---|-------|-----------|---|-------|-----------|---|-------|--|---|-------|-----------| | | C (pg/mL) | n>L0Q | TOQ>n <do< th=""><th>C (pg/mL)</th><th>n>L0Q</th><th>TOQ>n<do< th=""><th>C (pg/mL)</th><th>0>T0Q</th><th>TOO-u-LOD</th><th>C (pg/mL)</th><th>0>LOQ</th><th>TOO-n>LOD</th><th>C (pg/mL)</th><th>)>L0Q</th><th>TOQ>n<dod< th=""><th>C (pg/mL)</th><th>0>T0Q</th><th>LOQ>n>LOD</th></dod<></th></do<></th></do<> | C (pg/mL) | n>L0Q | TOQ>n <do< th=""><th>C (pg/mL)</th><th>0>T0Q</th><th>TOO-u-LOD</th><th>C (pg/mL)</th><th>0>LOQ</th><th>TOO-n>LOD</th><th>C (pg/mL)</th><th>)>L0Q</th><th>TOQ>n<dod< th=""><th>C (pg/mL)</th><th>0>T0Q</th><th>LOQ>n>LOD</th></dod<></th></do<> | C (pg/mL) | 0>T0Q | TOO-u-LOD | C (pg/mL) | 0>LOQ | TOO-n>LOD | C (pg/mL) |)>L0Q | TOQ>n <dod< th=""><th>C (pg/mL)</th><th>0>T0Q</th><th>LOQ>n>LOD</th></dod<> | C (pg/mL) | 0>T0Q | LOQ>n>LOD | | TFA | | 79% | 0% | | 67% | 0% | | 54% | 4% | | 72% | 0% | | 40% | 0% | | 48% | 0% | | PFPrA | | 45% | 0% | | 43% | 5% | | 13% | 4% | | 3% | 14% | | 15% | 15% | | 10% | 10% | | PFBA | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td>17</td><td>10%</td><td>0%</td><td>17</td><td>10%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td>17</td><td>10%</td><td>0%</td><td>17</td><td>10%</td><td>0%</td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td>17</td><td>10%</td><td>0%</td><td>17</td><td>10%</td><td>0%</td></loq<></td></loq<> | 0% | 0% | <loq<
td=""><td>0%</td><td>0%</td><td>17</td><td>10%</td><td>0%</td><td>17</td><td>10%</td><td>0%</td></loq<> | 0% | 0% | 17 | 10% | 0% | 17 | 10% | 0% | | PFPeA | <loq< td=""><td>0%</td><td>21%</td><td><loq< td=""><td>0%</td><td>24%</td><td>12</td><td>4%</td><td>21%</td><td><loq< td=""><td>0%</td><td>31%</td><td>2.6</td><td>5%</td><td>50%</td><td>4.5</td><td>5%</td><td>29%</td></loq<></td></loq<></td></loq<> | 0% | 21% | <loq< td=""><td>0%</td><td>24%</td><td>12</td><td>4%</td><td>21%</td><td><loq< td=""><td>0%</td><td>31%</td><td>2.6</td><td>5%</td><td>50%</td><td>4.5</td><td>5%</td><td>29%</td></loq<></td></loq<> | 0% | 24% | 12 | 4% | 21% | <loq< td=""><td>0%</td><td>31%</td><td>2.6</td><td>5%</td><td>50%</td><td>4.5</td><td>5%</td><td>29%</td></loq<> | 0% | 31% | 2.6 | 5% | 50% | 4.5 | 5% | 29% | | PFHxA | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td></loq<> | 0% | 0% | | PFHpA | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td>3.6</td><td>5%</td><td>0%</td><td>2.7</td><td>5%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td>3.6</td><td>5%</td><td>0%</td><td>2.7</td><td>5%</td><td>0%</td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td>3.6</td><td>5%</td><td>0%</td><td>2.7</td><td>5%</td><td>0%</td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td>3.6</td><td>5%</td><td>0%</td><td>2.7</td><td>5%</td><td>0%</td></loq<> | 0% | 0% | 3.6 | 5% | 0% | 2.7 | 5% | 0% | | PFOA | 500 | 100% | 27% | 500 | 100% | 19% | 550 | 100% | 29% | 540 | 97% | 31% | 640 | 100% | 5% | 650 | 100% | 14% | | PFNA | 200 | 100% | 0% | 230 | 100% | 0% | 290 | 100% | 0% | 290 | 93% | 0% | 340 | 100% | 0% | 310 | 100% | 0% | | PFDA | 130 | 64% | 3% | 120 | 76% | 0% | 140 | 63% | 13% | 110 | 59% | 0% | 150 | 80% | 5% | 120 | 57% | 10% | | PFUnDA | 100 | 52% | 0% | 90 | 52% | 0% | 88 | 54% | 0% | 43 | 24% | 0% | 88 | 50% | 0% | 47 | 43% | 0% | | PFDoDA | 44 | 21% | 0% | 45 | 24% | 0% | 1.7 | 8% | 0% | 3.3 | 10% | 0% | <loq< td=""><td>5%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<> | 5% | 0% | <loq< td=""><td>0%</td><td>0%</td></loq<> | 0% | 0% | | PFTrDA | 6.6 | 21% | 0% | 10 | 24% | 0% | 4.2 | 13% | 0% | 1.8 | 7% | 0% | <loq< td=""><td>5%</td><td>0%</td><td>1.4</td><td>14%</td><td>0%</td></loq<> | 5% | 0% | 1.4 | 14% | 0% | | PFTDA | 28 | 15% | 0% | 4.8 | 5% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>3%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>3%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<> | 3% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td></loq<> | 0% | 0% | | PFHxDA | 2.4 | 3% | 0% | 15 | 10% | 0% | <loq< td=""><td>4%</td><td>0%</td><td>5.1</td><td>7%</td><td>0%</td><td>14</td><td>5%</td><td>0%</td><td>3.4</td><td>29%</td><td>0%</td></loq<> | 4% | 0% | 5.1 | 7% | 0% | 14 | 5% | 0% | 3.4 | 29% | 0% | | PFOcDA | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td></loq<> | 0% | 0% | Table S5. Mean concentrations of PFSAs and detection frequencies in whole blood samples. | | Group 1 (18-44 years)
Females (n = 33) | | | Group 1 (18-44 years)
Males (n = 21) | | | Group 2 (45-70 years)
Females (n = 24) | | | Group 2 (45-70 years)
Males (n = 29) | | | | 3 (71-97 yeales (n = 2 | , | Group 3 (71-97 years)
Males (n = 21) | | | |-----------------------|--|-------|--|--|-------|------------|---|-------|--|---|-------|------------|--|------------------------|--|--|-------|-----------| | | C (pg/mL) |)>L0Q | TOQ>n <tod< th=""><th>C (pg/mL)</th><th>0>T0Q</th><th>TOO\~u<\DO</th><th>C (pg/mL)</th><th>0>L0Q</th><th>TOQ>n<do< th=""><th>C (pg/mL)</th><th>0>T0Q</th><th>TOO\>u<\OD</th><th>C (pg/mL)</th><th>0>1.0Q</th><th>TOQ>n<do< th=""><th>C (pg/mL)</th><th>n>L0Q</th><th>TOQ>n>LOD</th></do<></th></do<></th></tod<> | C (pg/mL) | 0>T0Q | TOO\~u<\DO | C (pg/mL) | 0>L0Q | TOQ>n <do< th=""><th>C (pg/mL)</th><th>0>T0Q</th><th>TOO\>u<\OD</th><th>C (pg/mL)</th><th>0>1.0Q</th><th>TOQ>n<do< th=""><th>C (pg/mL)</th><th>n>L0Q</th><th>TOQ>n>LOD</th></do<></th></do<> | C (pg/mL) | 0>T0Q | TOO\>u<\OD | C (pg/mL) | 0>1.0Q | TOQ>n <do< th=""><th>C (pg/mL)</th><th>n>L0Q</th><th>TOQ>n>LOD</th></do<> | C (pg/mL) | n>L0Q | TOQ>n>LOD | | PFEtS | 5.1 | 30% | 0% | 11 | 62% | 0% | 8.8 | 50% | 0% | 7.9 | 38% | 0% | 18 | 75% | 0% | 12 | 52% | 0% | | PFPrS | 2.7 | 3% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td></loq<> | 0% | 0% | | PFBS | 4.8 | 18% | 0% | 4.1 | 38% | 0% | 2.3 | 29% | 0% | 2.7 | 17% | 0% | 5.1 | 35% | 0% | 4.5 | 33% | 0% | | PFPeS | 9.8 | 61% | 0% | 167 | 57% | 0% | 9.1 | 33% | 0% | 18 | 59% | 0% | 8.1 | 50% | 0% | 2.9 | 24% | 0% | | PFHxS | 320 | 100% | 0% | 880 | 100% | 0% | 600 | 100% | 0% | 730 | 100% | 0% | 440 | 100% | 0% | 680 | 100% | 0% | | PFHpS | 250 | 97% | 0% | 280 | 100% | 0% | 200 | 96% | 0% | 300 | 100% | 0% | 230 | 100% | 0% | 370 | 100% | 0% | | Dimethyl-PFOS | 41 | 24% | 0% | 41 | 38% | 0% | 210 | 29% | 0% | 140 | 31% | 0% | 120 | 35% | 0% | 140 | 33% | 0% | | 3/4/5- <i>m</i> -PFOS | 1200 | 100% | 0% | 1600 | 100% | 0% | 990 |
96% | 0% | 1500 | 100% | 0% | 900 | 100% | 0% | 2050 | 100% | 0% | | 6/2-m-PFOS | 350 | 100% | 0% | 430 | 100% | 0% | 350 | 96% | 0% | 420 | 100% | 0% | 350 | 100% | 0% | 600 | 100% | 0% | | 1-m-PFOS | 74 | 39% | 0% | 120 | 67% | 0% | 56 | 33% | 0% | 93 | 52% | 0% | 95 | 60% | 0% | 140 | 67% | 0% | | L-PFOS | 1200 | 97% | 0% | 1500 | 100% | 0% | 1600 | 100% | 0% | 1800 | 100% | 0% | 1700 | 100% | 0% | 1900 | 100% | 0% | | PFNS | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td></loq<> | 0% | 0% | | PFDS | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td></loq<> | 0% | 0% | | PFDoDS | <loq< td=""><td>0%</td><td>6%</td><td><loq< td=""><td>0%</td><td>10%</td><td><loq< td=""><td>0%</td><td>4%</td><td><loq< td=""><td>0%</td><td>17%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>10%</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 6% | <loq< td=""><td>0%</td><td>10%</td><td><loq< td=""><td>0%</td><td>4%</td><td><loq< td=""><td>0%</td><td>17%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>10%</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 10% | <loq< td=""><td>0%</td><td>4%</td><td><loq< td=""><td>0%</td><td>17%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>10%</td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 4% | <loq< td=""><td>0%</td><td>17%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>10%</td></loq<></td></loq<></td></loq<> | 0% | 17% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>10%</td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>10%</td></loq<> | 0% | 10% | Table S6. Mean concentrations of PFSA precursors and detection frequencies in whole blood samples. | | Group 1 (18-44 years)
Females (n = 33) | | Group 1 (18-44 years)
Males (n = 21) | | | Group 2 (45-70 years)
Females (<i>n</i> = 24) | | | Group 2 (45-70 years)
Males (n = 29) | | | | 3 (71-97)
nales (n = | , , | Group 3 (71-97 years)
Males (n = 21) | | | | |----------|---|--------|---|---|-------|---|---|--------|---|---|-------|-----------|---|--------|---|---|--------|-----------| | | C (pg/mL) | 0>1.00 | TOO | C (pg/mL) | n>LOQ | T00/>u>00 | C (pg/mL) | 0>1.0Q | T00/>u>00 | C (pg/mL) | n>LOQ | T00/>u>00 | C (pg/mL) | 0>1.0Q | T00/ <u< <="" th=""><th>C (pg/mL)</th><th>0>1.00</th><th>LOQ>n>LOD</th></u<> | C (pg/mL) | 0>1.00 | LOQ>n>LOD | | FBSA | <loq< td=""><td>3%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td>1.0</td><td>4%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td>2.4</td><td>5%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<> | 3% | 0% | <loq< td=""><td>0%</td><td>0%</td><td>1.0</td><td>4%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td>2.4</td><td>5%</td><td>0%</td></loq<></td></loq<></td></loq<> | 0% | 0% | 1.0 | 4% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td>2.4</td><td>5%</td><td>0%</td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td>2.4</td><td>5%</td><td>0%</td></loq<> | 0% | 0% | 2.4 | 5% | 0% | | MeFBSA | <loq< td=""><td>0%</td><td>3%</td><td><loq< td=""><td>0%</td><td>0%</td><td>2.1</td><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>3%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 3% | <loq< td=""><td>0%</td><td>0%</td><td>2.1</td><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>3%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | 2.1 | 0% | 0% | <loq< td=""><td>0%</td><td>3%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<> | 0% | 3% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td></loq<> | 0% | 0% | | FHxSA | 3.8 | 3% | 0% | <loq< td=""><td>0%</td><td>0%</td><td>6.4</td><td>13%</td><td>0%</td><td>3.0</td><td>14%</td><td>0%</td><td>1.6</td><td>5%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<> | 0% | 0% | 6.4 | 13% | 0% | 3.0 | 14% | 0% | 1.6 | 5% | 0% | <loq< td=""><td>0%</td><td>0%</td></loq<> | 0% | 0% | | MeFHxSA | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td></loq<> | 0% | 0% | | FOSA | <loq< td=""><td>3%</td><td>0%</td><td><loq< td=""><td>10%</td><td>0%</td><td><loq< td=""><td>4%</td><td>0%</td><td>1.1</td><td>7%</td><td>0%</td><td><loq< td=""><td>5%</td><td>0%</td><td><loq< td=""><td>5%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | 3% | 0% | <loq< td=""><td>10%</td><td>0%</td><td><loq< td=""><td>4%</td><td>0%</td><td>1.1</td><td>7%</td><td>0%</td><td><loq< td=""><td>5%</td><td>0%</td><td><loq< td=""><td>5%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<> | 10% | 0% | <loq< td=""><td>4%</td><td>0%</td><td>1.1</td><td>7%</td><td>0%</td><td><loq< td=""><td>5%</td><td>0%</td><td><loq< td=""><td>5%</td><td>0%</td></loq<></td></loq<></td></loq<> | 4% | 0% | 1.1 | 7% | 0% | <loq< td=""><td>5%</td><td>0%</td><td><loq< td=""><td>5%</td><td>0%</td></loq<></td></loq<> | 5% | 0% | <loq< td=""><td>5%</td><td>0%</td></loq<> | 5% | 0% | | FOSAA | 18 | 3% | 0% | 11 | 5% | 0% | 19 | 8% | 0% | 6.2 | 3% | 0% | 15 | 5% | 0% | <loq< td=""><td>0%</td><td>0%</td></loq<> | 0% | 0% | | MeFOSAA | 5.4 | 15% | 0% | 1.8 | 5% | 0% | 12 | 29% | 0% | 6.5 | 17% | 0% | 6.8 | 15% | 0% | 3.8 | 10% | 0% | | EtFOSAA | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq<
td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td></loq<> | 0% | 0% | | SAmPAP | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>5%</td><td><loq< td=""><td>0%</td><td>5%</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>5%</td><td><loq< td=""><td>0%</td><td>5%</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>5%</td><td><loq< td=""><td>0%</td><td>5%</td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>5%</td><td><loq< td=""><td>0%</td><td>5%</td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>5%</td><td><loq< td=""><td>0%</td><td>5%</td></loq<></td></loq<> | 0% | 5% | <loq< td=""><td>0%</td><td>5%</td></loq<> | 0% | 5% | | diSAmPAP | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td></loq<> | 0% | 0% | Table S7. Mean concentrations of PFCA precursors and detection frequencies in whole blood samples. | | Group 1 (18-44 years)
Females (n = 33) | | | Group 1 (18-44 years)
Males (n = 21) | | | | 2 (45-70 g | , | | 2 (45-70 gales (n = 2 | , | | 3 (71-97
nales (n = | . , | Group 3 (71-97 years)
Males (n = 21) | | | |---------------|---|-------|---|---|-------|-----------|---|------------|--|---|-----------------------|-----------|---|------------------------|-----------|--|-------|-----------| | | C (pg/mL) | 0>T0Q | T007 <u<\007< th=""><th>C (pg/mL)</th><th>0>T0Q</th><th>TOO-u-COD</th><th>C (pg/mL)</th><th>0>T0Q</th><th>TOQ>n<tod< th=""><th>C (pg/mL)</th><th>0>T0Q</th><th>TOO-u>TOD</th><th>C (pg/mL)</th><th>0>TOQ</th><th>TOO-u>TOD</th><th>C (pg/mL)</th><th>n>LOQ</th><th>LOQ>n>LOD</th></tod<></th></u<\007<> | C (pg/mL) | 0>T0Q | TOO-u-COD | C (pg/mL) | 0>T0Q | TOQ>n <tod< th=""><th>C (pg/mL)</th><th>0>T0Q</th><th>TOO-u>TOD</th><th>C (pg/mL)</th><th>0>TOQ</th><th>TOO-u>TOD</th><th>C (pg/mL)</th><th>n>LOQ</th><th>LOQ>n>LOD</th></tod<> | C (pg/mL) | 0>T0Q | TOO-u>TOD | C (pg/mL) | 0>TOQ | TOO-u>TOD | C (pg/mL) | n>LOQ | LOQ>n>LOD | | 3:3 FTCA | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td></loq<> | 0% | 0% | | 5:3 FTCA | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td></loq<> | 0% | 0% | | 7:3 FTCA | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>5%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>5%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>5%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>5%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>5%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<> | 0% | 5% | <loq< td=""><td>0%</td><td>0%</td></loq<> | 0% | 0% | | 6:2 FTUCA | <loq< td=""><td>0%</td><td>3%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 3% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq<
td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td></loq<> | 0% | 0% | | 8:2 FTUCA | <loq< td=""><td>3%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | 3% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td></loq<> | 0% | 0% | | 10:2 FTUCA | <loq< td=""><td>3%</td><td>3%</td><td><loq< td=""><td>0%</td><td>5%</td><td><loq< td=""><td>4%</td><td>8%</td><td>5.3</td><td>3%</td><td>7%</td><td><loq< td=""><td>5%</td><td>5%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | 3% | 3% | <loq< td=""><td>0%</td><td>5%</td><td><loq< td=""><td>4%</td><td>8%</td><td>5.3</td><td>3%</td><td>7%</td><td><loq< td=""><td>5%</td><td>5%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 5% | <loq< td=""><td>4%</td><td>8%</td><td>5.3</td><td>3%</td><td>7%</td><td><loq< td=""><td>5%</td><td>5%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<> | 4% | 8% | 5.3 | 3% | 7% | <loq< td=""><td>5%</td><td>5%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<> | 5% | 5% | <loq< td=""><td>0%</td><td>0%</td></loq<> | 0% | 0% | | 4:2 FTSA | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td></loq<> | 0% | 0% | | 6:2 FTSA | 2.1 | 15% | 0% | 2.2 | 10% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>7%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>7%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<> | 7% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td></loq<> | 0% | 0% | | 8:2 FTSA | 7.1 | 42% | 0% | 2.9 | 29% | 0% | 3.4 | 25% | 0% | 2.0 | 21% | 0% | <loq< td=""><td>5%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<> | 5% | 0% | <loq< td=""><td>0%</td><td>0%</td></loq<> | 0% | 0% | | 10:2 FTSA | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td></loq<> | 0% | 0% | | 6:2 mPAP | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td></loq<> | 0% | 0% | | 8:2 mPAP | <loq< td=""><td>0%</td><td>6%</td><td><loq< td=""><td>0%</td><td>5%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 6% | <loq< td=""><td>0%</td><td>5%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 5% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td></loq<> | 0% | 0% | | 10:2 mPAP | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td></loq<> | 0% | 0% | | 6:2 diPAP | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>4%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>5%</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>4%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>5%</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>4%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>5%</td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 4% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>5%</td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>5%</td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>5%</td></loq<> | 0% | 5% | | 8:2 diPAP | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq<
td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td></loq<> | 0% | 0% | | 6:2/8:2 diPAP | <loq< td=""><td>0%</td><td>3%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>8%</td><td><loq< td=""><td>0%</td><td>7%</td><td><loq< td=""><td>0%</td><td>10%</td><td><loq< td=""><td>0%</td><td>19%</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 3% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>8%</td><td><loq< td=""><td>0%</td><td>7%</td><td><loq< td=""><td>0%</td><td>10%</td><td><loq< td=""><td>0%</td><td>19%</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>8%</td><td><loq< td=""><td>0%</td><td>7%</td><td><loq< td=""><td>0%</td><td>10%</td><td><loq< td=""><td>0%</td><td>19%</td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 8% | <loq< td=""><td>0%</td><td>7%</td><td><loq< td=""><td>0%</td><td>10%</td><td><loq< td=""><td>0%</td><td>19%</td></loq<></td></loq<></td></loq<> | 0% | 7% | <loq< td=""><td>0%</td><td>10%</td><td><loq< td=""><td>0%</td><td>19%</td></loq<></td></loq<> | 0% | 10% | <loq< td=""><td>0%</td><td>19%</td></loq<> | 0% | 19% | | 10:2 diPAP | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td></loq<> | 0% | 0% | Table S8. Mean concentrations of PFPAs, PFPiAs, PFECHS, perfluoro ether acids and their detection frequencies in whole blood samples. | | | Group 1 (18-44 years)
Females (n = 33) | | | Group 1 (18-44 years)
Males (n = 21) | | | Group 2 (45-70 years)
Females (n = 24) | | | 2 (45-70) ales $(n = 2)$ | , | | 3 (71-97)
nales (n = | , | Group 3 (71-97 years)
Males (n = 21) | | | |--------------|---|---|-----------|---|---|-----------|---|---|-----------|---|--------------------------|-----------|---|-------------------------|-----------|--|-------|-----------| | | C (pg/mL) | n>LOQ | LOQ>n>LOD | C (pg/mL) | n>LOQ | TOQ>n>LOD | C (pg/mL) | n>L0Q | TOQ>n>LOD | C (pg/mL) | n>LOQ | TOQ>n>LOD | C (pg/mL) | n>LOQ | TOQ>n>LOD | C (pg/mL) | n>L0Q | LOQ>n>LOD | | PFHxPA | 2.8 | 3% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td>1.1</td><td>3%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td>1.1</td><td>3%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<> | 0% | 0% | 1.1 | 3% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td></loq<> | 0% | 0% | | PFOPA | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td></loq<> | 0% | 0% | | PFDPA | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td></loq<> | 0% | 0% | | 6:6 PFPiA | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td></loq<> | 0% | 0% | | 6:8 PFPiA | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td></loq<> | 0% | 0% | | 8:8 PFPiA | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq<
td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td></loq<> | 0% | 0% | | 8:2 Cl-PFESA | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td></loq<> | 0% | 0% | | 6:2 Cl-PFESA | <loq< td=""><td>6%</td><td>0%</td><td><loq< td=""><td>5%</td><td>0%</td><td><loq< td=""><td>13%</td><td>0%</td><td>1.1</td><td>10%</td><td>0%</td><td><loq< td=""><td>15%</td><td>0%</td><td>1.8</td><td>24%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<> | 6% | 0% | <loq< td=""><td>5%</td><td>0%</td><td><loq< td=""><td>13%</td><td>0%</td><td>1.1</td><td>10%</td><td>0%</td><td><loq< td=""><td>15%</td><td>0%</td><td>1.8</td><td>24%</td><td>0%</td></loq<></td></loq<></td></loq<> | 5% | 0% | <loq< td=""><td>13%</td><td>0%</td><td>1.1</td><td>10%</td><td>0%</td><td><loq< td=""><td>15%</td><td>0%</td><td>1.8</td><td>24%</td><td>0%</td></loq<></td></loq<> | 13% | 0% | 1.1 | 10% | 0% | <loq< td=""><td>15%</td><td>0%</td><td>1.8</td><td>24%</td><td>0%</td></loq<> | 15% | 0% | 1.8 | 24% | 0% | | ADONA | 1.8 | 6% | 3% | 4.6 | 19% | 0% | 2.2 | 8% | 8% | 1.5 | 7% | 7% | 1.1 | 5% | 10% | <loq< td=""><td>5%</td><td>19%</td></loq<> | 5% | 19% | | HFPO-DA | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td><td><loq< td=""><td>0%</td><td>0%</td></loq<></td></loq<> | 0% | 0% | <loq< td=""><td>0%</td><td>0%</td></loq<> | 0% | 0% | | PFECHS | 10 | 58% | 0% | 18 | 81% | 0% | 20 | 88% | 0% | 24 | 83% | 0% | 20 | 90% | 0% | 20 | 95% | 0% | ### 7. Ratio of PFOS Isomers Table S9. Ratio of branched and linear PFOS isomers in different demographic groups. | | C (ng/mL) | | | | | | | |---------------------------|--------------------------|----------------|--------------------------|----------------|--------------------------|----------------|--| | | Group 1 (18-44 years) | | Group 2 (45-70 years) | | Group 3 (71-97 years) | | | | | Females (<i>n</i> = 33) | Males (n = 21) | Females (<i>n</i> = 24) | Males (n = 29) | Females (<i>n</i> = 20) | Males (n = 21) | | | Dimethyl-
PFOS | 0.04 | 0.29 | 0.21 | 0.14 | 0.12 | 0.14 | | | 3/4/5- <i>m</i> -
PFOS | 1.22 | 2.50 | 0.99 | 1.48 | 0.90 | 2.05 | | | 6/2- <i>m</i> -PFOS | 0.35 | 1.45 | 0.35 | 0.42 | 0.35 | 0.60 | | | 1-m-PFOS | 0.07 | 0.52 | 0.06 | 0.09 | 0.10 | 0.14 | | | L-PFOS | 1.19 | 2.33 | 1.57 | 1.80 | 1.73 | 1.89 | | | Sum PFOS | 2.87 | 7.09 | 3.18 | 3.93 | 3.2 | 4.82 | | | %Br-PFOS | 59% | 67% | 51% | 54% | 46% | 61% | | | %L-PFOS | 41% | 33% | 49% | 46% | 54% | 39% | | ### 8. Results from NIST SRM1957 Table S10. Results from QC sample analysis. | Compound | This stud | y (n = 19) | From CoA | | | |----------|-----------------|----------------------------|---------------|--------------------------------|--| | Compound | Average (ng/mL) | CI^b (k^c =2) (ng/mL) | Conc. (ng/mL) | Cl^{b} (k^{c} =2) (ng/mL) | | | PFHpA | 0.256 | 0.085 | 0.305 | 0.051 | | | PFOA | 4.67 | 1.4 | 5.00 | 0.44 | | | PFNA | 0.843 | 0.26 | 0.878 | 0.077 | | | PFDA | 0.249 | 0.15 | 0.39 | 0.12 | | | PFUnDA | 0.109 | 0.089 | 0.172 | 0.036 | | | PFHxS | 4.07 | 1.9 | 4.00 | 0.83 | | | ∑PFOSª | 18.0 | 3.9 | 21.1 | 1.3 | | ^aSum of linear and branched PFOS isomers. ^bConfidence interval. ^cCoverage factor. ### 9. Bibliography (1) Yeung, L. W. Y.; Robinson, S. J.; Koschorreck, J.; Mabury, S. A. Part I. A Temporal Study of PFCAs and Their Precursors in Human Plasma from Two German Cities 1982–2009. *Environ. Sci. Technol.* **2013**, *47* (8), 3865–3874. https://doi.org/10.1021/es303716k.