Supporting Information for:

Macrocyclic Peptides as Allosteric Inhibitors of Nicotinamide N-Methyltransferase (NNMT)

Matthijs J. van Haren,^{a,†} Yurui Zhang,^{a,†} Vito Thijssen,^b Ned Buijs,^a Yongzhi Gao,^a Lukasz Mateuszuk,^c Filip A. Fedak,^c Agnieszka Kij,^c Roberto Campagna,^d Davide Sartini,^d Monica Emanuelli,^d Stefan Chlopicki,^{c,e} Seino A. K. Jongkees,^{b,f,*} Nathaniel I. Martin,^{a,*}

- *a.* Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands.
- b. Chemical Biology & Drug Discovery Group, Utrecht Institute for Pharmaceutical Sciences, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
- *c.* Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348 Krakow, Poland
- *d.* Department of Clinical Sciences, Universitá Politecnica delle Marche, Via Ranieri 65, 60131 Ancona, Italy.
- e. Jagiellonian University Medical College, Chair of Pharmacology, Grzegorzecka 16, 31-531 Krakow, Poland.
- *f.* Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands.

[†] Denotes equal contribution

*E-mail: s.a.k.jongkees@vu.nl, n.i.martin@biology.leidenuniv.nl

Table of Contents

Reprogrammed mRNA display protocol	S2
Synthesis and characterization of peptides	S4
IC ₅₀ curves	S21
IC ₅₀ curves substrate competition	S24
Kinetic analysis mode of inhibition	S26

Reprogrammed mRNA display protocol

Figure S1. Library enrichment by binding to NNMT plotted across all selection rounds (log scale on Y-axis), showing binding against both immobilised NNMT ('positive', blue/light blue plus symbol) and against the immobilisation medium alone ('negative', orange/red cross symbol) for both the L- and D-tyrosine initiated libraries (respectively).

Figure S2. Sequence alignment of the L-tyrosine library (left) and D-tyrosine library (right). Colors indicate the properties of the respective amino acids. In both libraries hydrophobic (green) and positively charged (blue) amino acids are enriched.

Peptide 1: Rink Amide AM resin (146 mg, 100 μ mol, 0.684 mmol/g) was used for Fmoc solid phase peptide synthesis (Fmoc SPPS) according to general procedure **A**. After checking the crude peptide by LC-MS, a portion (25 μ mol) of the peptide was capped with chloroacetyl chloride following general procedure **B**. The peptide was deprotected and cleaved from the resin according to general procedure **C**. Subsequently, the peptide was cyclized following general procedure **D** and purified

by preparative HPLC (0-100%, buffer B) affording cyclic peptide **1** as a white solid (1.6 mg, 2.9%). HRMS (m/z): $[M+2H]^{2+}$ calculated for C₁₀₃H₁₇₃N₂₉O₂₁S²⁺, 1101.1468, found 1101.1462. LC-MS R_t 6.07 min (0 to 100 % B over 12 min, 0.1% FA, λ = 214 nm).

S4

Peptide 2: Rink Amide AM resin (146 mg, 100 μ mol, 0.684 mmol/g) was used for Fmoc solid phase peptide synthesis (Fmoc SPPS) according to general procedure **A**. After checking the crude peptide by LC-MS, a portion (25 μ mol) of the peptide was capped with chloroacetyl chloride following general procedure **B**. The peptide was deprotected and cleaved from the resin according to

general procedure **C**. Subsequently, the peptide was cyclized following general procedure **D** and purified by preparative HPLC (0-100%, buffer B) affording cyclic peptide **2** as a white solid (3.5 mg, 6.5%). HRMS (m/z): $[M+2H]^{2+}$ calculated for C₁₀₁H₁₇₁N₃₁O₂₂S²⁺,1092.1541, found 1092,1534. LC-MS R_t 5.57 min (0 to 100 % B over 12 min, 0.1% FA, $\lambda = 214$ nm).

Peptide 3: Rink Amide AM resin (146 mg, 100 μmol, 0.684 mmol/g) was used for Fmoc solid phase peptide synthesis (Fmoc SPPS) according to general procedure **A**. After checking the crude peptide by LC-MS, a portion (25 μmol) of the peptide was capped with chloroacetyl chloride following general procedure **B**. The peptide was deprotected and cleaved from the resin according to

general procedure **C**. Subsequently, the peptide was cyclized following general procedure **D** and purified by preparative HPLC (0-100%, buffer B) affording cyclic peptide **3** as a white solid (4.2 mg, 7.8%). HRMS (m/z): $[M+2H]^{2+}$ calculated for C₁₀₅H₁₄₉N₂₃O₂₆S²⁺, 1090.0382, found 1090.0371. LC-MS R_t 7.01 min (0 to 100 % B over 12 min, 0.1% FA, $\lambda = 214$ nm).

Peptide 4: Rink Amide AM resin (146 mg, 100 μ mol, 0.684 mmol/g) was used for Fmoc solid phase peptide synthesis (Fmoc SPPS) according to general procedure **A**. After checking the crude peptide by LC-MS, a portion (25 μ mol) of the peptide was capped with chloroacetyl chloride following general procedure **B**. The peptide was deprotected and cleaved from the resin according

to general procedure **C**. Subsequently, the peptide was cyclized following general procedure **D** and purified by preparative HPLC (0-100%, buffer B) affording cyclic peptide **4** as a white solid (3.6 mg, 6.7%). HRMS (m/z): $[M+2H]^{2+}$ calculated for C₁₀₇H₁₆₇N₂₇O₂₁S²⁺, 1069.1275, found 1069.1274. LC-MS R_t 7.01 min (0 to 100 % B over 12 min, 0.1% FA, $\lambda = 214$ nm).

Peptide 5: Rink Amide AM resin (146 mg, 100 μ mol, 0.684 mmol/g) was used for Fmoc solid phase peptide synthesis (Fmoc SPPS) according to general procedure **A**. After checking the crude peptide by LC-MS, a portion (25 μ mol) of the peptide was capped with chloroacetyl chloride following general procedure **B**. The peptide was deprotected and cleaved from the resin according to

general procedure **C**. Subsequently, the peptide was cyclized following general procedure **D** and purified by preparative HPLC (0-100%, buffer B) affording cyclic peptide **5** as a white solid (5.1 mg, 9.1%). HRMS (m/z): $[M+2H]^{2+}$ calculated for C₁₀₉H₁₆₅N₂₇O₂₃S²⁺,1126.1146, found 1126.1140. LC-MS R_t 6.54 min (0 to 100 % B over 12 min, 0.1% FA, $\lambda = 214$ nm).

Peptide 6: Rink Amide AM resin (146 mg, 100 μ mol, 0.684 mmol/g) was used for Fmoc solid phase peptide synthesis (Fmoc SPPS) according to general procedure **A**. After checking the crude peptide by LC-MS, a portion (25 μ mol) of the peptide was capped with chloroacetyl chloride following general procedure **B**. The peptide was deprotected and cleaved from the resin according to general procedure **C**. Subsequently, the peptide

was cyclized following general procedure **D** and purified by preparative HPLC (0-100%, buffer B) affording cyclic peptide **6** as a white solid (4.7 mg, 7.8%). HRMS (m/z): $[M+2H]^{2+}$ calculated for $C_{117}H_{167}N_{31}O_{24}S^{2+}$,1211.1260, found 1211.1253. LC-MS Rt 6.35 min (0 to 100 % B over 12 min, 0.1% FA, $\lambda = 214$ nm).

Peptide 7: Rink Amide AM resin (146 mg, 100 μ mol, 0.684 mmol/g) was used for Fmoc solid phase peptide synthesis (Fmoc SPPS) according to general procedure **A**. After checking the crude peptide by LC-MS, a portion (25 μ mol) of the peptide was capped with chloroacetyl chloride following general procedure **B**. The peptide was deprotected and cleaved from the resin according to general procedure **C**. Subsequently, the peptide was

cyclized following general procedure **D** and purified by preparative HPLC (0-100%, buffer B) affording cyclic peptide **7** as a white solid (6.5 mg, 12.2%). HRMS (m/z): $[M+2H]^{2+}$ calculated for C₁₀₄H₁₅₄N₂₄O₂₃S²⁺, 1069.5670, found 1069.5665. LC-MS R_t 5,90 min (0 to 100 % B over 12 min, 0.1% FA, λ = 214 nm).

Peptide 8: Rink Amide AM resin (146 mg, 100 μmol, 0.684 mmol/g) was used for Fmoc solid phase peptide synthesis (Fmoc SPPS) according to general procedure **A**. After checking the crude peptide by LC-MS, a portion (25 μmol) of the peptide was capped with chloroacetyl chloride following general procedure **B**. The peptide was deprotected and cleaved from the resin according to general procedure **C**. Subsequently,

the peptide was cyclized following general procedure **D** and purified by preparative HPLC (0-100%, buffer B) affording cyclic peptide **8** as a white solid (5.7 mg, 10.4%). HRMS (m/z): $[M+2H]^{2+}$ calculated for C₁₀₅H₁₅₈N₂₆O₂₅S²⁺, 1107.5806, found 1107.5807. LC-MS R_t 5,91 min (0 to 100 % B over 12 min, 0.1% FA, $\lambda = 214$ nm).

Peptide 9: Rink Amide AM resin (146 mg, 100 μmol, 0.684 mmol/g) was used for Fmoc solid phase peptide synthesis (Fmoc SPPS) according to general procedure **A**. After checking the crude peptide by LC-MS, a portion (25 μmol) of the peptide was capped with chloroacetyl chloride following general

procedure **B**. The peptide was deprotected and cleaved from the resin according to general procedure **C**. Subsequently, the peptide was cyclized following general procedure **D** and purified by preparative HPLC (0-100%, buffer B) affording cyclic peptide **9** as a white solid (4.9 mg, 9.1%). HRMS (m/z): $[M+2H]^{2+}$ calculated for C₁₀₅H₁₆₁N₂₇O₂₂S²⁺, 1092.1015, found 1092.1008. LC-MS R_t 6.07 min (0 to 100 % B over 12 min, 0.1% FA, $\lambda = 214$ nm).

Rink Amide AM resin (146 mg, 100 µmol, 0.684 mmol/g) was used for Fmoc solid phase peptide synthesis (Fmoc SPPS) according to general procedure **A**. After checking the crude peptide by LC-MS, a portion (25 µmol) of the peptide was capped with chloroacetyl chloride following general procedure **B**. The peptide was deprotected and cleaved from the resin according to general procedure **C**. Subsequently, the peptide was cyclized following general procedure **D** and purified by preparative HPLC (0-100%, buffer B) affording cyclic peptide **10** as a white solid (5.4 mg, 10.2%). HRMS (m/z): $[M+2H]^{2+}$ calculated for C₁₀₅H₁₆₁N₂₇O₂₂S²⁺, 1092.1015, found 1092.1006. LC-MS R_t 6.18 min (0 to 100 % B over 12 min, 0.1% FA, λ = 214 nm).

Peptide 11: Rink Amide AM resin (146 mg, 100 μmol, 0.684 mmol/g) was used for Fmoc solid phase peptide synthesis (Fmoc SPPS) according to general procedure **A**. After checking the crude peptide by LC-MS, a portion (25 μmol) of the peptide was capped with chloroacetyl chloride following general procedure **B**. The peptide was deprotected and cleaved from the resin according to

general procedure **C**. Subsequently, the peptide was cyclized following general procedure **D** and purified by preparative HPLC (0-100%, buffer B) affording cyclic peptide **11** as a white solid (6.1 mg, 10.8%). HRMS (m/z): $[M+2H]^{2+}$ calculated for C₁₁₀H₁₆₃N₂₅O₂₄S²⁺, 1125,1012, found 1125.1005. LC-MS R_t 6.67 min (0 to 100 % B over 12 min, 0.1% FA, $\lambda = 214$ nm).

Peptide 12: Rink Amide AM resin (146 mg, 100 μmol, 0.684 mmol/g) was used for Fmoc solid phase peptide synthesis (Fmoc SPPS) according to general procedure **A**. After checking the crude peptide by LC-MS, a portion (25 μmol) of the peptide was capped with chloroacetyl chloride following general procedure **B**. The peptide was

deprotected and cleaved from the resin according to general procedure **C**. Subsequently, the peptide was cyclized following general procedure **D** and purified by preparative HPLC (0-100%, buffer B) affording cyclic peptide **12** as a white solid (4.4 mg, 8.5%). HRMS (m/z): $[M+2H]^{2+}$ calculated for C₉₇H₁₅₄N₂₆O₂₃S²⁺, 1041.5700, found 1041.5696. LC-MS R_t 6.59 min (0 to 100 % B over 12 min, 0.1% FA, $\lambda = 214$ nm).

Peptide 13: Rink Amide AM resin (146 mg, 100 μ mol, 0.684 mmol/g) was used for Fmoc solid phase peptide synthesis (Fmoc SPPS) according to general procedure **A**. After checking the crude peptide by LC-MS, a portion (25 μ mol) of the peptide was capped with chloroacetyl chloride following general procedure **B**. The peptide was deprotected and cleaved from the resin according to general procedure **C**. Subsequently, the peptide was cyclized following general procedure **D** and purified

by preparative HPLC (0-100%, buffer B) affording cyclic peptide **13** as a white solid (5.2 mg, 10.0%). HRMS (m/z): $[M+2H]^{2+}$ calculated for C₉₈H₁₇₃N₂₇O₂₂S²⁺, 1056.1485, found 1056.1474. LC-MS Rt 6.21 min (0 to 100 % B over 12 min, 0.1% FA, λ = 214 nm).

Peptide 14: Rink Amide AM resin (146 mg, 100 μmol, 0.684 mmol/g) was used for Fmoc solid phase peptide synthesis (Fmoc SPPS) according to general procedure **A**. After checking the crude peptide by LC-MS, a portion (25 μmol) of the peptide was capped with chloroacetyl chloride following general procedure **B**. The peptide was

deprotected and cleaved from the resin according to general procedure **C**. Subsequently, the peptide was cyclized following general procedure **D** and purified by preparative HPLC (0-100%, buffer B) affording cyclic peptide **14** as a white solid (4.7 mg, 8.7%). HRMS (m/z): $[M+2H]^{2+}$ calculated for $C_{104}H_{163}N_{27}O_{22}S^{2+}$, 1087.1093, found 1087.1088. LC-MS Rt 5.64 min (0 to 100 % B over 12 min, 0.1% FA, $\lambda = 214$ nm).

Peptide 15: Rink Amide AM resin (146 mg, 100 μmol, 0.684 mmol/g) was used for Fmoc solid phase peptide synthesis (Fmoc SPPS) according to general procedure **A**. After checking the crude peptide by LC-MS, a portion (25 μmol) of the peptide was capped with chloroacetyl chloride following general procedure **B**. The peptide was deprotected and cleaved from the resin according to

general procedure **C**. Subsequently, the peptide was cyclized following general procedure **D** and purified by preparative HPLC (0-100%, buffer B) affording cyclic peptide **15** as a white solid (5.9 mg, 10.6%). HRMS (m/z): $[M+2H]^{2+}$ calculated for C₁₀₄H₁₆₅N₂₇O₂₅S²⁺, 1112.1095, found 1112.1095. LC-MS R_t 6.87 min (0 to 100 % B over 12 min, 0.1% FA, $\lambda = 214$ nm).

Peptide 16: Rink Amide AM resin (146 mg, 100 μ mol, 0.684 mmol/g) was used for Fmoc solid phase peptide synthesis (Fmoc SPPS) according to general procedure **A**. After checking the crude peptide by LC-MS, a portion (25 μ mol) of the peptide was capped with chloroacetyl chloride following general procedure **B**. The peptide was deprotected and cleaved from the resin according to general procedure **C**. Subsequently, the peptide

was cyclized following general procedure **D** and purified by preparative HPLC (0-100%, buffer B) affording cyclic peptide **16** as a white solid (4.7 mg, 9.0%). HRMS (m/z): $[M+2H]^{2+}$ calculated for $C_{101}H_{150}N_{26}O_{21}S^{2+}$, 1047.5595, found 1047.5594. LC-MS Rt 6.10 min (0 to 100 % B over 12 min, 0.1% FA, $\lambda = 214$ nm).

Peptide 17: Rink Amide AM resin (146 mg, 100 µmol, 0.684 mmol/g) was used for Fmoc solid phase peptide synthesis (Fmoc SPPS) according to general procedure A. After checking the crude peptide by LC-MS, a portion (25 $\mu mol)$ of the peptide capped with was chloroacetyl chloride following

general procedure **B**. The peptide was deprotected and cleaved from the resin according to general procedure **C**. Subsequently, the peptide was cyclized following general procedure **D** and purified by preparative HPLC (0-100%, buffer B) affording cyclic peptide **17** as a white solid (5.6 mg, 10.9%). HRMS (m/z): $[M+2H]^{2+}$ calculated for C₉₃H₁₅₆N₂₈O₂₃S²⁺, 1032.5809, found 1032.5797. LC-MS Rt 6.01 min (0 to 100 % B over 12 min, 0.1% FA, $\lambda = 214$ nm).

Figure S3. IC₅₀ curves for peptides **1-6** against hNNMT. Data is based on triplicate data of at least 10 different concentrations

Figure S4. IC₅₀ curves for peptides **7-12** against hNNMT. Data is based on triplicate data of at least 10 different concentrations

Figure S5. IC₅₀ curves for peptides **13-17** against hNNMT. Data is based on triplicate data of at least 10 different concentrations

IC₅₀ curves substrate competition

Figure S6. IC_{50} curves for compounds **X** and **Y** and peptides **2-6** and **11** against hNNMT. Compounds were tested using normal conditions (substrates at their K_M value), or in the presence of 10-fold higher concentration of either nicotinamide (NA) or S-adenosyl-L-methionine (SAM). Data is based on duplicate data of at 8 different concentrations.

Figure S7. IC_{50} curves for peptides **12-13** and **15-17** against hNNMT. Peptides were tested using normal conditions (substrates at their K_M value), or in the presence of 10-fold higher concentration of either nicotinamide (NA) or S-adenosyl-L-methionine (SAM). Data is based on duplicate data of at 8 different concentrations.

Kinetic analysis mode of inhibition

Figure S8. V_{max} and K_M values for NNMT and SAM respectively after treatment of varying concentrations of compound **Y**, **4** or **13**. The change in K_M observed for SAM after treatment with compound **Y** supports competitive inhibition. The unchanged K_M and changing V_{max} observed for compounds **4** and **13** supports the non-competitive or allosteric mode of inhibition for the cyclic peptides.