# THE LANCET Neurology

# Supplementary appendix

This appendix formed part of the original submission and has been peer reviewed. We post it as supplied by the authors.

Supplement to: Fagan AM, Henson RL, Li Y, et al. Comparison of CSF biomarkers in Down syndrome and autosomal dominant Alzheimer's disease: a cross-sectional study. *Lancet Oncol* 2021; **22:** 615–26.

## Appendix

| METHODS: Clinical and cognitive evaluation in adults with DS enrolled in the ABC-DS study                             | Page 2                           |
|-----------------------------------------------------------------------------------------------------------------------|----------------------------------|
| RESULTS: Demographics                                                                                                 | Page 2                           |
| RESULTS: CSF biomarker profiles in APP DIAN-MC compared to PSEN1/2 DIAN-MC                                            | Page 2                           |
| SUPPLEMENTAL TABLE 1: Pairwise comparisons of biomarkers among DS, DIAN-MC and DIAN-NC groups                         | Page 3                           |
| SUPPLEMENTAL TABLE 2: Distribution of specific genetic mutations in the DIAN cohort                                   | Page 4                           |
| SUPPLEMENTAL TABLE 3: Prespecified subgroup comparisons of biomarkers among DS, DIAN PSEN1/2 MC, I and DIAN-NC groups | DIAN APP MC<br>Page 5            |
| SUPPLEMENTAL TABLE 4: Prespecified subgroup comparisons of biomarkers among DS, DIAN-NC and DIAN-                     | MC groups<br>Page 6-7            |
| SUPPLEMENTAL TABLE 5: Pairwise comparisons of annual change in biomarkers by age among DS, DIAN-NC groups             | and DIAN-MC<br>Page 8            |
| SUPPLEMENTAL FIGURE 1: CSF biomarkers in adults with Down syndrome as a function of dementia status and               | <i>l karyotype</i><br>Page 9     |
| SUPPLEMENTAL FIGURE 2: CSF biomarkers in adults with Down syndrome as a function of age (increasing age and karyotype | left to right)<br>Page 10        |
| SUPPLEMENTAL FIGURE 3: CSF biomarkers in adults with Down syndrome as a function of age (increasing age and karyotype | <i>left to right)</i><br>Page 11 |
| REFERENCES                                                                                                            | Page 11                          |
| Alzheimer's Biomarkers Consortium-Down Syndrome (ABC-DS) Investigators                                                | Page 12                          |
| Dominantly Inherited Alzheimer Network (DIAN) Investigators                                                           | Page 12                          |

#### METHODS

#### Clinical and cognitive evaluation in adults with DS enrolled in the ABC-DS study

Diagnoses were made using information from core neuropsychological and informant measures (Down Syndrome Mental Status Examination, Extended & Block Design, Verbal Fluency, Berry-Buktenica Test of Visual Motor Integration, Vineland Adaptive Behavior Scale – Third Edition, Dementia Questionnaire for People with Learning Disabilities, Reiss Screen for Maladaptive Behavior), neurological exam, medical history and record review, generally consistent with the recommendations of the AAMR-IASSID Working Group for the Establishment of Criteria for the Diagnosis of Dementia in Individuals with Developmental Disability (Aylward 1997; Burt 2000). Diagnoses were made using a consensus-based procedure. A consensus conference includes at least three individuals with clinical training and expertise in evaluating dementia in adults with DS (e.g., psychologist, physician), each of whom had participated in the clinical assessment of a given participant.

#### RESULTS

#### **Demographics**

Four DS individuals with missing karyotype data were 53, 54, 55 and 56 years old. To approximate the degree of mosaicism in these individuals, we examined their copy number variation data from their GWAS as implemented in the GenomeStudio software, and found that these four individuals were most likely to be trisomic rather than disomic in chromosome 21. We further note that GWAS does not fully distinguish between full trisomy vs. mosaicism. The oldest participant (age 61) had a confirmed full trisomy 21.

#### CSF biomarker profiles in APP DIAN-MC compared to PSEN1/2 DIAN-MC

Since development of AD in DS is most likely to be due to triplication of *APP*, in exploratory analyses we evaluated the biomarker profiles of *APP* DIAN-MC as a separate group (n=29, 15% of the DIAN-MC cohort) and compared them to the DS and combined *PSEN1/2* DIAN-MC groups (**Supplemental Table 3**). *APP* DIAN-MC (mean±SD age, 42.4±9.6 years; EYO, -4.0±10.6 years) exhibited patterns similar to the combined *PSEN1/2* DIAN-MC (41.1±8.0 years; EYO, -4.9±9.5 years) group in comparison to DS for most biomarkers, including lower levels of CSF Aβ40, Aβ42, NfL and YKL-40, and similar levels of VILIP-1 and SNAP-25. In contrast to *PSEN1/2* DIAN-MC, *APP* DIAN-MC had lower levels of tTau and pTau181 and higher Aβ42/Aβ40 ratios compared to the DS group. Adjustment for age, *APOE*  $\varepsilon$ 4 status and sex influenced some but not all results. When restricting this exploratory comparable to DS), the ranges of values for Aβ40 and Aβ42 were in the high range (Aβ40: 11,785-16,556 pg/mL; Aβ42: 547-1024 pg/mL), more like the DS (as opposed to the *PSEN1/2* DIAN-MC) group. Missing data prevented comparison of the emerging biomarkers in the full (n=4) *APP* dup group.

#### Supplemental Table 1. Pairwise comparisons of biomarkers among DS, DIAN-MC and DIAN-NC groups

|           | DS vs.     | . DIAN-N | мс      | DS vs      | . DIAN-l | NC      | DIAN-MC vs. DIAN-NC |       |         |  |
|-----------|------------|----------|---------|------------|----------|---------|---------------------|-------|---------|--|
| Biomarker | Difference | SE       | p value | Difference | SE       | p value | Difference          | SE    | p value |  |
| Αβ40      | 4914       | 510.9    | <.0001  | 4484       | 544.7    | <.0001  | -430                | 357.2 | 0.23    |  |
| Αβ42      | 342        | 49.2     | <.0001  | 59.7       | 52.4     | 0.26    | -283                | 34.4  | <.0001  |  |
| Αβ42/Αβ40 | 0.002      | 0.004    | 0.71    | -0.02      | 0.005    | <.0001  | -0.03               | 0.003 | <.0001  |  |
| tTau      | 90         | 54.1     | 0.1     | 382        | 57.5     | <.0001  | 292                 | 37.1  | <.0001  |  |
| pTau181   | 3.5        | 10.3     | 0.74    | 63.7       | 11       | <.0001  | 60.2                | 7.2   | <.0001  |  |
| tTau/Aβ42 | -0.6       | 0.17     | 0.0008  | 0.49       | 0.18     | 0.008   | 1.1                 | 0.12  | <.0001  |  |
| pTau/Aβ42 | -0.11      | 0.03     | 0.001   | 0.1        | 0.03     | 0.006   | 0.21                | 0.02  | <.0001  |  |
| SNAP25    | -0.33      | 0.33     | 0.31    | 0.7        | 0.35     | 0.07    | 1                   | 0.25  | 0.0002  |  |
| VILIP1    | 18.4       | 13.6     | 0.18    | 63.3       | 14.7     | <.0001  | 44.9                | 10.6  | <.0001  |  |
| YKL40     | 64.1       | 15.8     | 0.0001  | 100        | 17.1     | <.0001  | 36.3                | 12    | 0.003   |  |
| logNfL    | 0.21       | 0.05     | <.0001  | 0.41       | 0.06     | <.0001  | 0.2                 | 0.04  | <.0001  |  |

Comparisons of CSF biomarker levels in the three groups (DS, DIAN-MC and DIAN-NC) in unadjusted models. Linear regressions were used for the comparisons. All p-values were corrected by the Benjamini-Hochberg method (Benjamini and Hochberg 1995). Significant (p<0.05) p values are bolded. <u>Abbreviations</u>:  $A\beta$ =amyloid- $\beta$ ; ADAD=autosomal dominant Alzheimer disease; DIAN=Dominantly Inherited Alzheimer Network; DS=Down syndrome; DIAN-MC=ADAD mutation carriers; DIAN-NC=ADAD mutation non-carriers; NfL=neurofilament light chain; pTau=pTau181; SE=standard error; SNAP25=synaptosomal-associated protein 25; tTau=total tau; VILIP1=visinin-like protein 1; YKL40=chitinase-3-like protein 1.

### Supplemental Table 2. Distribution of specific genetic mutations in the DIAN cohort

| PSEN1     | n  | PSEN1     | Ν  | PSEN2     | n  | APP                                           | n  |
|-----------|----|-----------|----|-----------|----|-----------------------------------------------|----|
| Ala246Glu | 1  | Leu226Arg | 4  | Arg62His  | 1  | Asp678His                                     | 2  |
| Ala260Gly | 15 | Leu235Val | 3  | Arg71Trp  | 2  |                                               |    |
| Ala260Val | 2  | Leu271Val | 6  | Asn141Ile | 30 | Duplication of the entire APP gene            | 6  |
| Ala426Pro | 8  | Leu286Val | 2  | Leu238Phe | 1  | Ile716Met                                     | 1  |
| Ala431Glu | 6  | Met139Ile | 4  | Thr122Pro | 1  | Ile716Phe                                     | 2  |
| Ala79Val  | 16 | Met139Val | 1  |           | •  | Ile716Val                                     | 4  |
| Arg269His | 5  | Met146Ile | 4  | -         |    | Leu723Arg                                     | 2  |
| Arg278Ile | 1  | Met146Leu | 5  |           |    | Lys670Asn & Met671Leu                         | 4  |
| Asn135Ser | 4  | Met146Val | 2  |           |    | Val715Ala                                     | 1  |
| Asn135Tyr | 1  | Met233Leu | 2  |           |    | Val717Ile                                     | 23 |
| Cys410Tyr | 4  | Met84Val  | 1  | -         |    | Val717Leu                                     | 1  |
| Cys92Ser  | 1  | Phe105Leu | 2  |           |    | Val717Phe                                     | 1  |
| Gln222His | 1  | Phe105Ser | 3  | -         |    |                                               | 1  |
| Glu184Asp | 4  | Phe176Val | 2  |           |    | duplication exons 1,2,4,6,12,14, and 16-18-18 | 1  |
| Glu280Ala | 1  | Phe176del | 2  |           |    |                                               |    |
| Glu280Gly | 5  | Phe283Leu | 3  |           |    |                                               |    |
| Gly206Ala | 20 | Phe386Ser | 1  |           |    |                                               |    |
| Gly209Glu | 2  | Pro264Leu | 4  |           |    |                                               |    |
| Gly209Val | 1  | Pro267Leu | 1  |           |    |                                               |    |
| Gly217Arg | 3  | Ser169Leu | 2  | -         |    |                                               |    |
| Gly378Glu | 1  | Ser170Phe | 1  |           |    |                                               |    |
| His163Arg | 12 | Ser178Pro | 3  |           |    |                                               |    |
| Ile143Thr | 2  | Ser212Tyr | 3  |           |    |                                               |    |
| Ile168del | 1  | Ser230Asn | 2  |           |    |                                               |    |
| Ile202Phe | 1  | Ser290Cys | 12 |           |    |                                               |    |
| Ile213Leu | 1  | Thr245Pro | 1  |           |    |                                               |    |

Ile229Phe

Ile238Met

Ile439Val

Leu174Arg

Leu219Pro

Intron 4: IVS4+7A>G (het.)

2

2

2

2

2

2

Tyr115His

Tyr288His

Val261Ile

Val261Phe

deletion exon 9

2

2

1

1

4

Mutation is based on the DIAN family mutation type. Numbers include both mutation carriers (DIAN-MC) and non-carriers (DIAN-NC).

# Supplemental Table 3. Prespecified subgroup comparisons of biomarkers among DS, DIAN *PSEN1/2* MC, DIAN *APP* MC and DIAN-NC groups

|           | <i>PSEN1/2</i><br>DIAN-MC | APP<br>DIAN-MC   | DS               |                             | Unadjusted<br>model | Model adjusted for age, <i>APOE</i> ε4 and sex |
|-----------|---------------------------|------------------|------------------|-----------------------------|---------------------|------------------------------------------------|
| Biomarker | mean (SD), n              | mean (SD), n     | mean (SD), n     | <b>Comparison</b> s         | p value             | p value                                        |
| Αβ40      | 8766 (2,712), 163         | 8318 (3,339), 29 | 13612 (3892), 41 | APP DIAN-MC vs DIAN-NC      | 0.29                | 0.16                                           |
|           |                           |                  |                  | APP DIAN-MC vs PSEN DIAN-MC | 0.45                | 0.29                                           |
|           |                           |                  |                  | APP DIAN-MC vs DS           | <0.0001             | <0.0001                                        |
| Αβ42      | 514 (265), 163            | 649 (369), 29    | 877 (287), 41    | APP DIAN-MC vs DIAN-NC      | 0.007               | 0.004                                          |
|           |                           |                  |                  | APP DIAN-MC vs PSEN DIAN-MC | 0.019               | 0.010                                          |
|           |                           |                  |                  | APP DIAN-MC vs DS           | 0.0031              | <0.0001                                        |
| Αβ42/Αβ40 | 0.06 (0.03), 163          | 0.09 (0.05), 29  | 0.07 (0.02), 41  | APP DIAN-MC vs DIAN-NC      | 0.56                | 0.74                                           |
|           |                           |                  |                  | APP DIAN-MC vs PSEN DIAN-MC | <0.0001             | <0.0001                                        |
|           |                           |                  |                  | APP DIAN-MC vs DS           | 0.0007              | 0.41                                           |
| tTau      | 567 (360), 161            | 476 (370), 27    | 644 (382), 39    | APP DIAN-MC vs DIAN-NC      | 0.004               | 0.008                                          |
|           |                           |                  |                  | APP DIAN-MC vs PSEN DIAN-MC | 0.16                | 0.05                                           |
|           |                           |                  |                  | APP DIAN-MC vs DS           | 0.04                | 0.28                                           |
| pTau      | 94 (73), 161              | 64 (48), 28      | 93 (77), 41      | APP DIAN-MC vs DIAN-NC      | 0.02                | 0.01                                           |
|           |                           |                  |                  | APP DIAN-MC vs PSEN DIAN-MC | 0.02                | 0.006                                          |
|           |                           |                  |                  | APP DIAN-MC vs DS           | 0.04                | 0.66                                           |
| tTau/Aβ42 | 1.5 (1.3), 161            | 1.1 (1.1), 27    | 0.84 (0.62), 39  | APP DIAN-MC vs DIAN-NC      | 0.002               | 0.004                                          |
|           |                           |                  |                  | APP DIAN-MC vs PSEN DIAN-MC | 0.04                | 0.004                                          |
|           |                           |                  |                  | APP DIAN-MC vs DS           | 0.36                | 0.03                                           |
| pTau/Aβ42 | 0.26 (0.25), 161          | 0.15 (0.16), 28  | 0.13 (0.14), 41  | APP DIAN-MC vs DIAN-NC      | 0.007               | 0.006                                          |
|           |                           |                  |                  | APP DIAN-MC vs PSEN DIAN-MC | 0.007               | 0.002                                          |
|           |                           |                  |                  | APP DIAN-MC vs DS           | 0.7                 | 0.08                                           |
| SNAP25    | 4.9 (1.9), 123            | 4.8 (2.6), 22    | 4.6 (1.8), 41    | APP DIAN-MC vs DIAN-NC      | 0.09                | 0.006                                          |
|           |                           |                  |                  | APP DIAN-MC vs PSEN DIAN-MC | 0.85                | 0.76                                           |
|           |                           |                  |                  | APP DIAN-MC vs DS           | 0.85                | 0.01                                           |
| VILIP1    | 183 (80), 124             | 187 (97), 22     | 202 (92), 41     | APP DIAN-MC vs DIAN-NC      | 0.03                | 0.01                                           |
|           |                           |                  |                  | APP DIAN-MC vs PSEN DIAN-MC | 0.8                 | 0.68                                           |
|           |                           |                  |                  | APP DIAN-MC vs DS           | 0.71                | 0.68                                           |
| YKL40     | 185 (79), 124             | 196 (101), 22    | 251 (127), 38    | APP DIAN-MC vs DIAN-NC      | 0.04                | 0.003                                          |
|           |                           |                  |                  | APP DIAN-MC vs PSEN DIAN-MC | 0.58                | 0.41                                           |
|           |                           |                  |                  | APP DIAN-MC vs DS           | 0.04                | 0.55                                           |
| logNfL    | 3.0 (0.3). 92             | 2.9 (0.3). 17    | 3.24 (0.27). 41  | APP DIAN-MC vs DIAN-NC      | 0.15                | 0.09                                           |
|           |                           |                  |                  | APP DIAN-MC vs PSEN DIAN-MC | 0.15                | 0.14                                           |

Comparison of CSF biomarker levels in DS versus *PSEN1/2* and *APP* groups in unadjusted and adjusted models. Linear regressions were used for the comparisons. The adjusted models included age, *APOE*  $\epsilon$ 4 status, sex and the interaction between age and group as covariates For the comparisons from the adjusted model, the mean differences were tested at their corresponding mean ages (age 41.8 for *APP* DIAN-MC vs DIAN-NC; age 41.3 for *APP* DIAN-MC vs *PSEN1/2* DIAN-MC; age 46.1 for *APP* DIAN-MC vs DS). All p-values were corrected by the Benjamini-Hochberg method (Benjamini and Hochberg 1995). Significant (p<0.05) p values are bolded. <u>Abbreviations</u>: A $\beta$ =amyloid- $\beta$ ; *APP*=amyloid precursor protein gene; DS=Down syndrome; DIAN-MC=ADAD mutation carriers; DIAN-NC=ADAD mutation non-carriers; NfL=neurofilament light chain; *PSEN*=presenilin gene; pTau=pTau181; SD=standard deviation; SNAP25=synaptosomal-associated protein 25; tTau=total tau; VILIP1=visinin-like protein 1; YKL40=chitinase-3-like protein 1.

## Supplemental Table 4. Prespecified subgroup comparisons of biomarkers among DS, DIAN-NC and DIAN-MC groups

|                        |                    | Unadjust    | ed mode      | 4              |                  |           | Model controlled for age, APOE £4 status and sex |            |       |        |         |  |
|------------------------|--------------------|-------------|--------------|----------------|------------------|-----------|--------------------------------------------------|------------|-------|--------|---------|--|
| Biomarker              | Comparison         | Difference  | SE           | tValue         | p value          | Biomarker | Comparison                                       | difference | SE    | tValue | p value |  |
| Αβ40                   | aDS-aMC            | 5379        | 633          | 8.5            | <.0001           | Αβ40      | aDS-aMC at age 39.7                              | 4869       | 796   | 6.12   | <.0001  |  |
| Αβ40                   | sDS-sMC            | 3849        | 852          | 4.52           | <.0001           | Αβ40      | sDS-sMC at age 46.8                              | 4923       | 1389  | 3.54   | 0.0009  |  |
| Αβ40                   | aDS-NC             | 5236        | 634          | 8.26           | <.0001           | Αβ40      | aDS-NC at age 42.6                               | 4873       | 678   | 7.18   | <.0001  |  |
| Αβ40                   | aMC-NC             | -143        | 399          | -0.36          | 0.72             | Αβ40      | aMC-NC at age 39.8                               | 190        | 397   | 0.48   | 0.63    |  |
| AP40<br>A 840          | aDS-SDS            | 2203<br>672 | 970<br>430   | 2.27           | 0.04             |           |                                                  |            |       |        |         |  |
| AB40                   | aDS-aMC            | 341         | 58           | 5.92           | < 0001           | AB42      | aDS-aMC at age 39.7                              | 435        | 73    | 5.95   | < 0001  |  |
| A642                   | sDS-sMC            | 285         | 77           | 3.68           | 0.0004           | AB42      | sDS-sMC at age 46.8                              | 391        | 128   | 3.06   | 0.004   |  |
| Αβ42                   | aDS-NC             | 161         | 58           | 2.78           | 0.006            | Αβ42      | aDS-NC at age 42.6                               | 201        | 62    | 3.22   | 0.003   |  |
| Αβ42                   | aMC-NC             | -180        | 36           | -4.96          | <.0001           | Αβ42      | aMC-NC at age 39.8                               | -175       | 36    | -4.81  | <.0001  |  |
| Αβ42                   | aDS-sDS            | 295         | 88           | 3.35           | 0.001            |           |                                                  |            |       |        |         |  |
| Αβ42                   | aMC-sMC            | 240         | 39           | 6.14           | <.0001           |           |                                                  |            |       |        |         |  |
| Αβ42/Αβ40              | aDS-aMC            | -0.005      | 0.005        | -0.96          | 0.34             | Αβ42/Αβ40 | aDS-aMC at age 39.7                              | 0.006      | 0.006 | 0.86   | 0.47    |  |
| Αβ42/Αβ40              | sDS-sMC            | 0.008       | 0.007        | 1.14           | 0.31             | Αβ42/Αβ40 | sDS-sMC at age 46.8                              | 0.013      | 0.011 | 1.14   | 0.38    |  |
| Αβ42/Αβ40              | aDS-NC             | -0.020      | 0.005        | -3.84          | 0.0003           | Αβ42/Αβ40 | aDS-NC at age 42.6                               | -0.015     | 0.005 | -2.67  | 0.02    |  |
| AB42/AB40              | aMC-NC             | -0.015      | 0.003        | -4.5/          | <.0001           | Аβ42/Аβ40 | aMC-NC at age 39.8                               | -0.017     | 0.003 | -5.42  | <.0001  |  |
| Ap42/Ap40<br>AB42/AB40 | aDS-SDS<br>aMC-sMC | 0.015       | 0.008        | 7 44           | < 0001           |           |                                                  |            |       |        |         |  |
| tTau                   | aDS-aMC            | 195         | 61           | 3.21           | 0.002            | tTau      | aDS-aMC at age 39.7                              | 118        | 79    | 1.5    | 0.2     |  |
| tTau                   | sDS-sMC            | -26         | 83           | -0.31          | 0.76             | tTau      | sDS-sMC at age 46.8                              | 88         | 134   | 0.66   | 0.51    |  |
| tTau                   | aDS-NC             | 336         | 61           | 5.55           | <.0001           | tTau      | aDS-NC at age 42.6                               | 302        | 67    | 4.51   | <.0001  |  |
| tTau                   | aMC-NC             | 141         | 38           | 3.76           | 0.0004           | tTau      | aMC-NC at age 39.8                               | 156        | 38    | 4.1    | 0.0002  |  |
| tTau                   | aDS-sDS            | -137        | 94           | -1.46          | 0.17             |           |                                                  |            |       |        |         |  |
| tTau                   | aMC-sMC            | -358        | 41           | -8.73          | <.0001           |           |                                                  |            |       |        |         |  |
| pTau181                | aDS-aMC            | 14.08       | 11.13        | 1.26           | 0.25             | pTau181   | aDS-aMC at age 39.7                              | -16.37     | 14.18 | -1.15  | 0.37    |  |
| pTau181                | sDS-sMC            | 1.09        | 15.00        | 0.07           | 0.94             | pTau181   | sDS-sMC at age 46.8                              | 6.13       | 24.74 | 0.25   | 0.8     |  |
| pTau181                | aDS-NC             | 42.37       | 11.16        | 3.8            | 0.0003           | pTau181   | aDS-NC at age 42.6                               | 26.57      | 12.09 | 2.2    | 0.09    |  |
| pTau181                | aMC-NC             | 28.29       | /.06         | 4.01           | 0.0002           | pTau181   | aMC-NC at age 39.8                               | 31.09      | /.11  | 4.37   | <.0001  |  |
| p1au181                | aDS-SDS            | -02.48      | 7.62         | -3.00          | 0.0004<br>< 0001 |           |                                                  |            |       |        |         |  |
| fTau/AB/2              | aDS-9MC            | -73.47      | 0.18         | -9.9           | 0.42             | tTau/AB42 | aDS-aMC at age 39.7                              | -0.34      | 0.23  | -1.46  | 0.22    |  |
| tTau/AB42              | sDS-sMC            | -1.14       | 0.24         | -4.66          | <.0001           | tTau/AB42 | sDS-sMC at age 46.8                              | -1.14      | 0.39  | -2.9   | 0.01    |  |
| tTau/AB42              | aDS-NC             | 0.33        | 0.18         | 1.87           | 0.09             | tTau/AB42 | aDS-NC at age 42.6                               | 0.26       | 0.20  | 1.3    | 0.23    |  |
| tTau/Aβ42              | aMC-NC             | 0.48        | 0.11         | 4.3            | <.0001           | tTau/Aβ42 | aMC-NC at age 39.8                               | 0.51       | 0.11  | 4.57   | <.0001  |  |
| tTau/Aβ42              | aDS-sDS            | -0.47       | 0.28         | -1.7           | 0.11             | -         | _                                                |            |       |        |         |  |
| tTau/Aβ42              | aMC-sMC            | -1.46       | 0.12         | -12.16         | <.0001           |           |                                                  |            |       |        |         |  |
| pTau/Aβ42              | aDS-aMC            | -0.04       | 0.03         | -1.07          | 0.28             | pTau/Aβ42 | aDS-aMC at age 39.7                              | -0.09      | 0.04  | -2.04  | 0.09    |  |
| pTau/Aβ42              | sDS-sMC            | -0.19       | 0.05         | -4.11          | 0.0001           | pTau/Aβ42 | sDS-sMC at age 46.8                              | -0.22      | 0.08  | -2.88  | 0.01    |  |
| pTau/Aβ42              | aDS-NC             | 0.05        | 0.03         | 1.49           | 0.16             | pTau/Aβ42 | aDS-NC at age 42.6                               | 0.03       | 0.04  | 0.71   | 0.57    |  |
| $pTau/A\beta 42$       | aMC-NC             | 0.09        | 0.02         | 4.05           | 0.0001           | pTau/AB42 | aMC-NC at age 39.8                               | 0.09       | 0.02  | 4.26   | 0.0002  |  |
| pTau/Ap42              | aDS-SDS            | -0.13       | 0.05         | -2.03          | 0.01<br>< 0001   |           |                                                  |            |       |        |         |  |
| SNAP25                 | aDS-aMC            | -0.28       | 0.02         | -12.4          | 1                | SNAP25    | aDS-aMC at age 39.7                              | -0.84      | 0.45  | -1.86  | 0.15    |  |
| SNAP25                 | sDS-sMC            | -0.62       | 0.52         | -1.19          | 0.35             | SNAP25    | sDS-sMC at age 46.8                              | -0.28      | 0.78  | -0.35  | 0.87    |  |
| SNAP25                 | aDS-NC             | 0.39        | 0.39         | 1.01           | 0.38             | SNAP25    | aDS-NC at age 42.6                               | -0.04      | 0.39  | -0.09  | 0.93    |  |
| SNAP25                 | aMC-NC             | 0.39        | 0.27         | 1.45           | 0.3              | SNAP25    | aMC-NC at age 39.8                               | 0.63       | 0.26  | 2.46   | 0.09    |  |
| SNAP25                 | aDS-sDS            | -0.91       | 0.58         | -1.58          | 0.3              |           | _                                                |            |       |        |         |  |
| SNAP25                 | aMC-sMC            | -1.53       | 0.30         | -5.18          | <.0001           |           |                                                  |            |       |        |         |  |
| VILIP1                 | aDS-aMC            | 22.6        | 16.3         | 1.38           | 0.2              | VILIP1    | aDS-aMC at age 39.7                              | -8.6       | 21    | -0.42  | 0.68    |  |
| VILIP1                 | sDS-sMC            | 22.5        | 21.9         | 1.03           | 0.31             | VILIP1    | sDS-sMC at age 46.8                              | 34.3       | 36    | 0.96   | 0.5     |  |
| VILIPI                 | aDS-NC             | 44.9        | 16.4         | 2.74           | 0.02             | VILIPI    | aDS-NC at age 42.6                               | 28.4       | 18    | 1.61   | 0.3     |  |
| VILIPI<br>VII ID1      | aNIC-INC           | -53.0       | 11.4<br>24.2 | 1.96           | 0.08             | VILIPI    | awic-inc at age 39.8                             | 27.6       | 12    | 2.37   | 0.11    |  |
| VILIP1                 | aDS-SDS<br>aMC-sMC | -53.9       | 24.3<br>124  | -2.22<br>-4 36 | 0.00             |           |                                                  |            |       |        |         |  |
| YKL40                  | aDS-aMC            | 71.8        | 18.6         | 3.85           | 0.0003           | YKL40     | aDS-aMC at age 39.7                              | 1.6        | 20.1  | 0.08   | 0.94    |  |
| YKL40                  | sDS-sMC            | 62.2        | 23.9         | 2.6            | 0.01             | YKL40     | sDS-sMC at age 46.8                              | 13.1       | 34.3  | 0.38   | 0.84    |  |
| YKL40                  | aDS-NC             | 73.2        | 18.7         | 3.92           | 0.0003           | YKL40     | aDS-NC at age 42.6                               | 38.0       | 17.5  | 2.18   | 0.18    |  |
| YKL40                  | aMC-NC             | 1.5         | 12.5         | 0.12           | 0.91             | YKL40     | aMC-NC at age 39.8                               | 21.2       | 11.2  | 1.89   | 0.18    |  |
| YKL40                  | aDS-sDS            | -73.7       | 27.1         | -2.72          | 0.01             |           |                                                  |            |       |        |         |  |
| YKL40                  | aMC-sMC            | -83.3       | 13.5         | -6.16          | <.0001           |           |                                                  |            |       |        |         |  |
| logNfL                 | aDS-aMC            | 0.28        | 0.05         | 5.11           | <.0001           | logNfL    | aDS-aMC at age 39.7                              | 0.11       | 0.06  | 1.79   | 0.15    |  |
| logNfL                 | sDS-sMC            | 0.16        | 0.07         | 2.24           | 0.03             | logNfL    | sDS-sMC at age 46.8                              | 0.11       | 0.10  | 1.11   | 0.32    |  |

| logNfL | aDS-NC  | 0.32  | 0.05 | 5.91  | <.0001 | logNfL | aDS-NC at age 42.6 | 0.23 | 0.05 | 4.44 | <.0001 |
|--------|---------|-------|------|-------|--------|--------|--------------------|------|------|------|--------|
| logNfL | aMC-NC  | 0.04  | 0.04 | 1.03  | 0.31   | logNfL | aMC-NC at age 39.8 | 0.10 | 0.04 | 2.68 | 0.02   |
| logNfL | aDS-sDS | -0.26 | 0.08 | -3.35 | 0.001  |        |                    |      |      |      |        |
| logNfL | aMC-sMC | -0.38 | 0.05 | -8.22 | <.0001 |        |                    |      |      |      |        |

Prespecified subgroup comparisons of CSF biomarker levels in the five subgroups (aDS, sDS, DIAN-NC, DIAN-aMC, DIAN-sMC) in unadjusted and adjusted models. Linear regressions were used to estimate the difference between groups. Age, *APOE*  $\epsilon$ 4 status, sex and the interaction between age and group were included in the final adjusted model as covariates. Comparisons for aDS versus sDS and DIAN-aMC versus DIAN-sMC were only performed for the unadjusted model since adjustment for covariates was not needed for those comparisons. For the comparisons from the adjusted model, the mean differences were tested at their corresponding mean age (e.g., 39.7 is the mean age of the aDS and DIAN-aMC groups). All p values were corrected by the Benjamini-Hochberg method (Benjamini and Hochberg 1995). Significant (p<0.05) p values are bolded. <u>Abbreviations</u>: Aβ=amyloid-β; ADAD; autosomal dominant Alzheimer disease; aDS=asymptomatic DS; CSF=cerebrospinal fluid; DIAN-aMC=asymptomatic DIAN-MC; DIAN-MC; DIAN-MC; MC=ADAD mutation carriers; DIAN-NC=ADAD mutation non-carriers; DIAN-sMC=symptomatic DIAN-MC; DS=Down syndrome; NfL= neurofilament light chain; sDS=symptomatic DS; SNAP-25=synaptosomal-associated protein 25; tTau=total tau; VILIP1=visinin-like protein 1; YKL40=chitinase-3-like protein 1.

|           | DS vs DI            |        | DIAN-MC vs | 5 DIAN-N            | С      | DS vs DIAN-MC |                     |        |         |
|-----------|---------------------|--------|------------|---------------------|--------|---------------|---------------------|--------|---------|
| Biomarker | Difference in slope | SE     | p value    | Difference in slope | SE     | p value       | Difference in slope | SE     | p value |
| Αβ40      | -172.6              | 71     | 0.05       | -77.7               | 40.7   | 0.09          | -94.9               | 68     | 0.16    |
| Αβ42      | -26.9               | 6.7    | 0.0001     | -15.5               | 3.8    | 0.0001        | -11.4               | 6.4    | 0.08    |
| Αβ42/Αβ40 | -0.001              | 0.0006 | 0.12       | -0.001              | 0.0003 | 0.003         | 0.00009             | 0.0006 | 0.88    |
| tTau      | 7.3                 | 7.3    | 0.32       | 15.6                | 4.1    | 0.0006        | -8.3                | 7      | 0.32    |
| pTau181   | 4.3                 | 1.4    | 0.003      | 2.7                 | 0.79   | 0.002         | 1.6                 | 1.3    | 0.23    |
| tTau/Aβ42 | 0.03                | 0.02   | 0.2        | 0.06                | 0.01   | <.0001        | -0.03               | 0.02   | 0.2     |
| pTau/Aβ42 | 0.009               | 0.004  | 0.05       | 0.01                | 0.002  | <.0001        | -0.002              | 0.004  | 0.72    |
| SNAP25    | 0.04                | 0.04   | 0.48       | 0.07                | 0.03   | 0.03          | -0.03               | 0.04   | 0.51    |
| VILIP1    | 3.1                 | 1.9    | 0.17       | 1.9                 | 1.2    | 0.17          | 1.2                 | 1.8    | 0.51    |
| YKL40     | 4.8                 | 1.8    | 0.02       | 0.7                 | 1.1    | 0.54          | 4.1                 | 1.7    | 0.03    |
| logNfL    | 0.008               | 0.006  | 0.28       | 0.005               | 0.004  | 0.28          | 0.002               | 0.006  | 0.67    |

Supplemental Table 5. Pairwise comparisons of annual change in biomarkers by age among DS, DIAN-NC and DIAN-MC groups

Pairwise comparisons of annual change in biomarker by age among DS, DIAN-NC and DIAN-MC. Linear regressions (biomarker ~ group + age + *APOE*  $\epsilon$ 4 status + sex + group\*age) were used to compare the differences in the annual change in biomarker levels by age among the three groups. All p-values were corrected by the Benjamini-Hochberg method (Benjamini and Hochberg 1995). Significant (p<0.05) p values are bolded. <u>Abbreviations</u>: Aβ=amyloid-β; ADAD=autosomal dominant Alzheimer disease; CSF=cerebrospinal fluid; DS=Down syndrome; DIAN-MC=ADAD mutation carriers; DIAN-NC=ADAD mutation non-carriers; NfL=neurofilament light chain; pTau=pTau181; SE=standard error; SNAP25=synaptosomal-associated protein 25; tTau=total tau; VILIP1=visinin-like protein 1; YKL40=chitinase-3-like protein 1.



**Supplemental Figure 1.** CSF biomarkers in adults with Down syndrome as a function of dementia status and karyotype. Biomarkers include: **A**) A $\beta$ 40, **B**) A $\beta$ 42, **C**) A $\beta$ 42/A $\beta$ 40 ratio, **D**) tTau, **E**) pTau181, **F**) YKL-40, **G**) tTau/A $\beta$ 42 ratio, **H**) pTau181/A $\beta$ 42 ratio, **I**) log transformed NfL, **J**) VILIP-1, and **K**) SNAP-25. The horizontal bar shows the mean concentration, and the vertical lines show the standard deviation. Open circles, trisomy 21 (n=33); Blue, translocation (n=2); Green, mosaicism (n=2); Red, karyotype not available (n=4). Abbreviations: A $\beta$ =amyloid- $\beta$ ; aDS=asymptomatic DS; DS=Down syndrome; NfL, neurofilament light chain; pTau=pTau181; sDS=symptomatic DS; SNAP-25=synaptosomal-associated protein 25; tTau=total tau; VILIP-1=visinin-like protein 1; YKL40=chitinase-3-like protein 1.



**Supplemental Figure 2.** CSF biomarkers in adults with Down syndrome as a function of age (increasing age left to right) and karyotype. Biomarkers include: **A**) A $\beta$ 40, **B**) A $\beta$ 42, **C**) A $\beta$ 42/A $\beta$ 40 ratio, **D**) tTau, **E**) pTau181, and **F**) YKL-40. Actual age is not shown on the X axis in order to maintain blinding. Regression line and 95% confidence intervals (dashed lines) are shown. Open circles, trisomy 21 (n=33); Blue, translocation (n=2); Green, mosaicism (n=2); Red, karyotype not available (n=4). <u>Abbreviations</u>: A $\beta$ =amyloid- $\beta$ ; pTau=pTau181; tTau=total tau; YKL-40=chitinase-3-like protein 1.



**Supplemental Figure 3.** CSF biomarkers in adults with Down syndrome as a function of age (increasing age left to right) and karyotype. Biomarkers include: A) tTau/A $\beta$ 42 ratio, B) pTau/A $\beta$ 42 ratio, C) log transformed NfL, D) VILIP-1, and E) SNAP-25. Actual age is not shown on the X axis in order to maintain blinding. Regression line and 95% confidence intervals (dashed lines) are shown. Open circles, trisomy 21 (n=33); Blue, translocation (n=2); Green, mosaicism (n=2); Red, karyotype not available (n=4). <u>Abbreviations</u>: A $\beta$ =amyloid- $\beta$ ; NfL, neurofilament light chain; pTau=pTau181; SNAP-25=synaptosomal-associated protein 25; tTau=total tau; VILIP-1=visinin-like protein 1.

#### REFERENCES

Aylward, EH, Burt DB, Thorpe LU, Lai F, Dalton A. Diagnosis of dementia in individuals with intellectual disability. J. Intellect. Disabil. Res. 1997 41:152–164.

Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing (PDF). J. Royal Stat Society, Series B. 1995 57:289–300.

Burt, DB, Aylward, EH. Test battery for the diagnosis of dementia in individuals with intellectual disability. Working Group for the Establishment of Criteria for the Diagnosis of Dementia in Individuals with Intellectual Disability. J. Intellect. Disabil. Res. JIDR 2000 44 (Pt 2):175–180.

Alzheimer's Biomarkers Consortium-Down Syndrome (ABC-DS) Investigators: Howard J. Aizenstein, MD, PhD; Beau M. Ances, MD, PhD; Howard F. Andrews, PhD; Karen Bell, MD; Rasmus M. Birn, PhD; Adam M. Brickman, PhD; Peter Bulova, MD; Amrita Cheema, PhD; Kewei Chen, PhD; Bradley T. Christian, PhD; Isabel Clare, PhD; Lorraine Clark, PhD; Ann D. Cohen, PhD; John N. Constantino, MD; Eric W. Doran, MS; Anne M. Fagan, PhD; Eleanor Feingold, PhD; Tatiana M. Foroud, PhD; Benjamin L. Handen, PhD; Sigan L. Hartley, PhD; Elizabeth Head, PhD; Rachel L. Henson, MS; Christy Hom, PhD; Lawrence Honig, MD; Milos D. Ikonomovic, MD; Sterling C. Johnson, PhD; Courtney Jordan, RN; M. Ilyas Kamboh, PhD; David Keator, PhD; William E. Klunk MD, PhD; Julia K. Kofler, MD; William Charles Kreisl, MD; Sharon J. Krinsky- McHale, PhD; Florence Lai, MD; Patrick Lao, PhD; Charles Laymon, PhD; Joseph Hyungwoo Lee, DrPH; Ira T. Lott, MD; Victoria Lupson, PhD; Mark Mapstone, PhD; Chester A. Mathis, PhD; Davneet Singh Minhas, PhD; Neelesh Nadkarni, MD; Sid O'Bryant, PhD; Deborah Pang, MPH; Melissa Petersen, PhD; Julie C. Price, PhD; Margaret Pulsifer, PhD; Michael S. Rafii, MD, PhD; Eric Reiman, MD; Batool Rizvi, MS; Herminia Diana Rosas, MD; Marwan N. Sabbagh, MD; Nicole Schupf, PhD; Wayne P. Silverman, PhD; Dana L. Tudorascu, PhD; Rameshwari Tumuluru, MD; Benjamin Tycko, MD, PhD; Badri Varadarajan, PhD; Desiree A. White, PhD; Michael A. Yassa, PhD; Shahid Zaman, MD, PhD; Fan Zhang, PhD.

Dominantly Inherited Alzheimer Network (DIAN) Investigators: Sarah Adams, MS; Ricardo Allegri, PhD; Aki Araki; Nicolas Barthelemy, PhD; Randall Bateman, MD; Jacob Bechara, BS; Tammie Benzinger, MD, PhD; Sarah Berman, MD, PhD; Courtney Bodge, PhD; Susan Brandon, BS; William Brooks, MBBS, MPH; Jared Brosch, MD, PhD; Jill Buck, BSN; Virginia Buckles, PhD; Kathleen Carter, PhD; Lisa Cash, BFA; Charlie Chen, BA; Jasmeer Chhatwal, MD, PhD; Patricio Chrem Mendez, MD; Jasmin Chua, BS; Helena Chui, MD; Laura Courtney, BS; Carlos Cruchaga, PhD; Gregory Day, MD; Chrismary DeLaCruz, BA; Darcy Denner, PhD; Anna Diffenbacher, MS; Aylin Dincer, BS; Tamara Donahue, MS; Jane Douglas, MPh; Duc Duong, BS; Noelia Egido, BS; Bianca Esposito, BS; Anne Fagan, PhD; Marty Farlow, MD; Becca Feldman, BS, BA; Colleen Fitzpatrick, MS; Shaney Flores, BS; Nick Fox, MD; Erin Franklin, MS; Nelly Joseph-Mathurin, PhD; Hisako Fujii, PhD; Samantha Gardener, PhD; Bernardino Ghetti, MD; Alison Goate, DPhil; Sarah Goldberg, MS, LPC, NCC; Jill Goldman, MS, MPhil, CGC; Alyssa Gonzalez, BS; Brian Gordon, PhD; Susanne Gräber-Sultan, PhD; Neill Graff-Radford, MD; Morgan Graham, BA; Julia Gray, BS; Emily Gremminger, BA; Miguel Grilo, MD; Alex Groves; Christian Haass, PhD; Lisa Häsler, MSc; Jason Hassenstab, PhD; Cortaiga Hellm, BA; Elizabeth Herries, BA; Laura Hoechst-Swisher, MS; Anna Hofmann, MD; David Holtzman, MD; Russ Hornbeck, MSCS, MPM; Yakushev Igor, MD; Ryoko Ihara, MD; Takeshi Ikeuchi, MD; Snezana Ikonomovic, MD; Kenji Ishii, MD; Clifford Jack, MD; Gina Jerome, MS; Erik Johnson, MD, PhD; Mathias Jucker, PhD; Celeste Karch, PhD; Stephan Käser, PhD; Kensaku Kasuga, MD; Sarah Keefe, BS; William Klunk, MD, PhD; Robert Koeppe, PhD; Deb Koudelis, MHS, RN; Elke Kuder-Buletta, RN; Christoph Laske, PhD; Allan Levey, MD, PhD; Johannes Levin, MD; Yan Li, PhD; Oscar Lopez MD, MD; Jacob Marsh, BA; Ralph Martins, PhD; Neal Scott Mason, PhD; Colin Masters, MD; Kwasi Mawuenyega, PhD; Austin McCullough, BS; Eric McDade, DO; Arlene Mejia, MD; Estrella Morenas-Rodriguez, MD, PhD: John Morris, MD: James Mountz, MD: Catherine Mummery, PhD: Neelesh Nadkarni, MD, PhD: Akemi Nagamatsu, RN; Katie Neimeyer, MS; Yoshiki Niimi, MD; James Noble, MD; Joanne Norton, MSN, RN, PMHCNS-BC; Brigitte Nuscher; Ulricke Obermüller; Antoinette O'Connor, MRCPI; Riddhi Patira, MD; Richard Perrin, MD, PhD; Lingyan Ping, PhD; Oliver Preische, MD: Alan Renton, PhD: John Ringman, MD: Stephen Salloway, MD: Peter Schofield, PhD: Michio Senda, MD. PhD; Nicholas T Seyfried, PhD; Kristine Shady, BA, BS; Hiroyuki Shimada, MD, PhD; Wendy Sigurdson, RN; Jennifer Smith, PhD; Lori Smith, PA-C; Beth Snitz, PhD; Hamid Sohrabi, PhD; Sochenda Stephens, BS, CCRP; Kevin Taddei, BS; Sarah Thompson, PA-C; Jonathan Vöglein, MD; Peter Wang, PhD; Qing Wang, PhD; Elise Weamer, MPH; Chengjie Xiong, PhD; Jinbin Xu, PhD; Xiong Xu, MS.