Evolution of the Electronic Structure in Open-Shell Donor-Acceptor Organic Semiconductors

Zhongxin Chen,^{1#} Wenqiang Li,^{1#} Md Abdus Sabuj,^{2#} Yuan Li,^{1*} Weiya Zhu,¹ Miao Zeng,¹ Chandra S. Sarap,² Md Masrul Huda,² Xianfeng Qiao,¹ Xiaobin Peng,¹ Dongge Ma,¹ Yuguang Ma,¹ Neeraj Rai,^{2*} and Fei Huang^{1*}

Affiliations

¹ Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China

²Dave C. Swalm School of Chemical Engineering and Center for Advanced Vehicular Systems, Mississippi State University, Mississippi State, MS 39762, United States.

E-mail: celiy@scut.edu.cn, neerajrai@che.msstate.edu, msfhuang@scut.edu.cn

Table of contents

1. Molecular structures and synthetic details	S3
1.1. Molecular structures	S3
1.2. Materials and methods	S4
2. Results	S15
2.1. HPLC, UV-vis-NIR absorption, PL emission and CV spectra	S15
2.2. Theoretical calculations	S18
2.3. Electron spin resonance spectra	S30
2.4. X-ray crystallography and packing motifs of the single crystals	S36
2.5. X-ray crystallographic data for TPAOMe-TDPP	S39
2.6. X-ray crystallographic data for Py-TDPP	S50
2.7. X-ray crystallographic data for An-TDPP	S61
2.8. X-ray crystallographic data for Flu-TDPP	S67
2.9. X-ray crystallographic data for TPAOMe-TDPP-C4	S85
2.10. X-ray crystallographic data for Flu-TDPP-C8	S93
2.11. ¹ H, ¹³ C NMR and mass spectra	S116
2.12 Optimized coordinates	\$143
Reference	S167

1. Molecular structures and synthetic details

Supplementary Figure 1. The molecular structures of open-shell species in previous work including *para*-quinodimethane analogues,¹⁻² quinoidal oligothiophenes and derivatives,³⁻⁸ indenofluorenes based materials,⁹⁻¹¹ and quinoidal polycyclic aromatic hydrocarbons.¹²⁻¹⁵

Supplementary Figure 2. The molecular structures considered in this work including DPP-based and NT-based small molecules, BT, and BBT analogues.

1.2. Materials and methods

General remarks. All manipulations of air/and or moisture-sensitive compounds were performed under an inert atmosphere in a nitrogen-filled glovebox, or using standard Schlenk techniques. Reagents, unless otherwise specified, were purchased from Sigma-Aldrich and SunaTech Inc. and used without further purification. Chloroform (CHCl₃), dichloromethane, hexanes, and acetonitrile were degassed and dried over 4 Å molecular sieves prior to use. Deuterated solvents (chloroform-d, dichloromethane- d_2) were purchased from Aldrich and used as received. Tetrakis(triphenylphosphine)palladium (0) was purchased from TCI Shanghai and used as received. 4H-cyclopenta[2,1-b:3,4-b]dithiophene (CPDT),¹⁶ 4,4-didodecvl-4Hcyclopenta[2,1-b:3,4-b']dithiophene (C₁₂-CPDT),¹⁷ tributyl(4,4-didodecyl-4H-cyclopenta[2,1-(C₁₂-CPDT-Sn),¹⁶ *b*:3.4-*b* dithiophen-2-vl)stannane 5.10-dibromonaphtho[1.2-c:5.6-5,10-bis(4-hexylthiophen-2-yl)napht-ho[1,2-c:5,6*c*]bis([1,2,5]thiadiazole) (NT-Br₂), c]bis([1,2,5]thiadiazole) (NTT) and the dibromosubstituted precursor 5,10-bis(5-bromo-4hexylthiophen-2-yl)naphtho[1,2-c:5,6-c']bis([1,2,5]thiadiazole) (NTT-Br₂)¹⁸ were prepared literature procedures. 2,5-bis(2-ethylhexyl)-3,6-di(thiophen-2-yl)-2,5according to dihydropyrrolo[3,4-c]pyrrole-1,4-dione (TDPP) was commercially available. 2,5-bis(2ethylhexyl)-3.6-bis(5-phenylthiophen-2-yl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione (Ph-TDPP), 2,5-bis(2-ethylhexyl)-3,6-bis(5-(naphthalen-1-yl)thiophen-2-yl)-2,5-dihydropyrrolo[3,4-*c*]pyrole-1,4-dione (1N-TDPP), 2,5-bis(2-ethylhexyl)-3,6-bis(5-(naphthalen-2yl)thiophen-2-yl)-2,5-dihydropyrrolo[3,4-*c*]pyrrole-1,4-dione (2N-TDPP), 2,5-bis(2ethylhexyl)-3,6-bis(5-(pyren-4-yl)thiophen-2-yl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione (Py-TDPP), 3,6-bis(5-(4-(bis(4-methoxyphenyl)amino)phenyl)thiophen-2-yl)-2,5-bis(2ethylhexyl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione (TPAOMe-TDPP) and 3,6-di([2,2'bithiophen]-5-yl)-2,5-bis(2-ethylhexyl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione (Th-4,4'-(5,5'-(benzo[c][1,2,5]thiadiazole-4,7-diyl)bis(3-hexylthiophene-5,2-diyl))bis TDPP). (N,N-bis(4-methoxy-phenyl)aniline) (TPAOMe-BTT) were synthesized according to previously published procedures.¹⁹¹H and ¹³C NMR spectra were collected on a Bruker Avance III 400 MHz spectrometer and chemical shifts, δ (ppm), were referenced to the residual solvent impurity peak of the given solvent. Solutions tested in ¹³C NMR are saturated. Data reported as: s = singlet, d = doublet, t = triplet, m = multiplet, br = broad; coupling constant(s), J are given in Hz. Flash chromatography was performed on a Teledyne Isco CombiFlash Purification System using RediSep Rf prepacked columns. The melting point of each material was estimated by differential scanning calorimetry DSC (Netzsch DSC 200F3) at a heating rate of 10 °C min⁻ ¹ under nitrogen. Element composition (C, H, S, N) was collected on a Elementar Vario EL cube. The composition of O element was calculated by subtracting the composition of C, H, S, N elements.

HPLC analysis was conducted using Cosmosil 5C₁₈-MS-II column with the chromatographic conditions as follow. (1) For NTT, 2N-NTT, Flu-NTT, NTC, 2N-NTC, Flu-NTC, Ph-TDPP, 2N-TDPP, flow rate = 0.3 ml min⁻¹, eluent = $CH_2Cl_2/isopropanol = 1:1$, column temperature = 25 °C. (2) For 1N-TDPP, Py-TDPP, Flu-TDPP, Flu-TDPP-C8, TPAOMe-TDPP, TPAOMe-TDPP-C4, TPAOMe-TTDPP, flow rate = 0.3 ml min⁻¹, eluent = $CH_2Cl_2/isopropanol = 4:1$, column temperature = 25 °C. (3) For An-TDPP, Th-TDPP, TPAOMe-BBTT, flow rate = 0.3 ml min⁻¹, eluent = $CH_2Cl_2/isopropanol = 4:1$, column temperature = 25 °C. (3) For An-TDPP, Th-TDPP, TPAOMe-BBTT, flow rate = 0.3 ml min⁻¹, eluent = $CH_2Cl_2/isopropanol = 19:1$, column temperature = 25 °C.

2,5-bis(2-ethylhexyl)-3,6-bis(5-phenylthiophen-2-yl)-2,5-dihydropyrrolo[3,4-*c*]pyrrole-1,4-dione (Ph-TDPP)

Ph-TDPP was synthesized according to previously published procedures.¹⁹ Melting point (Mp): 213 °C; ¹H NMR (400 MHz, chloroform-*d*) δ 8.96 (s, 2H), 7.68 (d, J = 6.2 Hz, 4H), 7.50 – 7.29 (m, 8H), 4.14 – 4.02 (m, 4H), 1.94 (d, J = 5.9 Hz, 2H), 1.45 – 1.23 (m, 16H), 0.92 (t, J = 7.4 Hz, 6H), 0.87 (t, J = 7.0 Hz, 6H). UV/Vis: λ_{max} 578 nm; MOLDI-TOF-MS (m/z): Calcd. for C₄₂H₄₈N₂O₂S₂: *m/z*: 676.3157. Found: 676.3426; analysis (calcd., found for C₄₂H₄₈N₂O₂S₂): C(74.52, 74.82), H(7.15, 7.12), S(9.47, 9.31), N(4.14, 4.20), O(4.73, 4.55).

2,5-bis(2-ethylhexyl)-3,6-bis(5-(naphthalen-1-yl)thiophen-2-yl)-2,5-dihydropyrrolo[3,4c]pyrrole-1,4-dione (1N-TDPP)

1N-TDPP was synthesized according to previously published procedures.¹⁹ Melting point (Mp): 183 °C; ¹H NMR (400 MHz, chloroform-*d*) δ 9.07 (s, 2H), 8.31 – 8.25 (m, 2H), 8.00 – 7.88 (m, 4H), 7.69 – 7.43 (m, 10H), 4.11 (p, J = 7.4 Hz, 4H), 2.00 (d, J = 5.4 Hz, 2H), 1.49 – 1.24 (m, 16H), 0.93 (t, J = 7.4 Hz, 6H), 0.85 (t, J = 7.0 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 161.88, 147.77, 140.17, 136.10, 133.95, 131.41, 131.08, 129.86, 129.45, 128.93, 128.58, 128.37, 126.98, 126.38, 125.38, 125.29, 108.13, 46.08, 39.32, 30.33, 28.51, 23.65, 23.14, 14.08, 10.59. UV/Vis: λ_{max} 600 nm; MOLDI-TOF-MS (m/z): Calcd. for C₅₀H₅₂N₂O₂S₂: *m/z*: 776.3470. Found: 776.3426; analysis (calcd., found for C₅₀H₅₂N₂O₂S₂): C(77.28, 77.21), H(6.75, 6.31), S(8.25, 8.11), N(3.60, 3.55), O(4.12, 4.82).

2,5-bis(2-ethylhexyl)-3,6-bis(5-(naphthalen-2-yl)thiophen-2-yl)-2,5-dihydropyrrolo[3,4c]pyrrole-1,4-dione (2N-TDPP)

2N-TDPP was synthesized according to previously published procedures.¹⁹ Melting point (Mp): 227 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 9.00 (s, 2H), 8.13 (s, 2H), 7.91 – 7.79 (m, 8H), 7.60 (dd, *J* = 4.1, 2.7 Hz, 2H), 7.53 (d, *J* = 6.6 Hz, 2H), 4.13 (t, *J* = 6.7 Hz, 4H), 1.98 (d, *J* = 7.0 Hz, 2H), 1.45 – 1.30 (m, 16H), 0.95 (d, *J* = 7.3 Hz, 6H), 0.91 (d, *J* = 6.8 Hz, 6H). UV/Vis: λ_{max} 650 nm; MOLDI-TOF-MS (m/z): Calcd for C₅₀H₅₂N₂O₂S₂: *m/z*: 776.3470. Found: 776.3467; analysis (calcd., found for C₅₀H₅₂N₂O₂S₂): C(77.28, 77.32), H(6.75, 6.33), S(8.25, 8.10), N(3.60, 3.50), O(4.12, 4.75).

3,6-bis(5-(anthracen-9-yl)thiophen-2-yl)-2,5-bis(2-ethylhexyl)-2,5-dihydropyrrolo[3,4c]pyrrole-1,4-dione (An-TDPP)

3,6-bis(5-bromothiophen-2-yl)-2,5-bis(2-ethylhexyl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4dione (Br₂-TDPP) (200 mg, 0.29 mmol) was dissolved in a mixture of toluene (20 ml) and ethanol (8 ml). Anthracen-9-ylboronic acid (193.2 mg, 0.87 mmol), Na₂CO₃ (3 mL, 2M), Pd (PPh₃)₄ (16.8 mg, 0.0145 mmol) were added to the mixture. The reaction mixture was cooled to room temperature, extracted with 60 ml dichloromethane, and washed with saturated brine water $(3 \times 100 \text{ ml})$ three times, dried over anhydrous MgSO₄, and volatiles were removed in vacuo. The crude product was purified by column chromatography on silica gel using dichloromethane and petroleum ether and recrystallization resulting in a deep-brown solid An-TDPP (171 mg, 67%). Melting point (Mp): 209 °C; ¹H NMR (400 MHz, chloroform-d) δ 9.23 (s, 2H), 8.59 (s, 2H), 8.07 (d, J = 8.2 Hz, 4H), 7.92 (d, J = 8.6 Hz, 4H), 7.59 - 7.35 (m, 10H), 4.18 – 4.04 (m, 4H), 2.03 (d, J = 5.8 Hz, 2H), 1.46 – 1.21 (m, 16H), 0.97 – 0.86 (m, 6H), 0.85 -0.72 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 161.93, 145.14, 140.28, 136.14, 131.58, 131.17, 128.84, 128.49, 126.74, 126.45, 126.14, 125.46, 108.18, 46.11, 39.31, 30.22, 28.41, 23.50, 23.06, 14.00, 10.50. UV/Vis: λ_{max} 582 nm; MOLDI-TOF-MS (m/z): calcd. for C₅₈H₅₆N₂O₂S₂, 899.3783; found: 899.3773; analysis (calcd., found for C₅₈H₅₆N₂O₂S₂): C(79.41, 79.11), H(6.43, 6.41), S(7.31, 7.37), N(3.19, 3.15), O(3.65, 3.97).

2,5-bis(2-ethylhexyl)-3,6-bis(5-(pyren-1-yl)thiophen-2-yl)-2,5-dihydropyrrolo[3,4c]pyrrole-1,4-dione (Py-TDPP)

Py-TDPP was synthesized according to previously published procedures.¹⁹ Melting point (Mp): 217 °C; ¹H NMR (500 MHz, Chloroform-*d*) δ 9.14 (s, 2H), 8.57 (d, *J* = 9.2 Hz, 2H), 8.35 – 7.79 (m, 16H), 7.60 (d, *J* = 3.6 Hz, 2H), 4.15 (q, *J* = 15.2, 11.7 Hz, 4H), 2.07 (s, 2H), 1.53 – 1.23 (m, 16H), 0.97 (t, *J* = 7.3 Hz, 6H), 0.88 (t, *J* = 7.0 Hz, 6H). UV/Vis: λ_{max} 585 nm; MOLDI-TOF-MS (m/z): Calcd. for C₆₂H₅₆N₂O₂S₂: *m/z*: 924.3873. Found: 924.3883; analysis (calcd., found for C₆₂H₅₆N₂O₂S₂): C(80.48, 80.15), H(6.10, 6.12), S(6.93, 7.06), N(3.03, 2.95), O(3.46, 3.73).

3,6-di([2,2'-bithiophen]-5-yl)-2,5-bis(2-ethylhexyl)-2,5-dihydropyrrolo[3,4-*c*]pyrrole-1,4-dione (Th-TDPP)

Th-TDPP was synthesized according to previously published procedures.¹⁹ Melting point (Mp): 186 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.92 (s, 2H), 7.32 (d, *J* = 4.1 Hz, 6H), 7.11 – 7.05 (m, 2H), 4.05 (p, *J* = 7.2 Hz, 4H), 1.92 (d, *J* = 5.8 Hz, 2H), 1.44 – 1.21 (m, 16H), 0.89 (dt, *J* = 16.8, 7.3 Hz, 12H). UV/Vis: λ_{max} 580 nm; analysis (calcd., found for C₃₈H₄₄N₂O₂S₄): C(66.24, 65.70), H(6.44, 6.22), S(18.61, 18.99), N(4.07, 3.95), O(4.64, 5.14).

3,6-bis(5-(9,9-dimethyl-9*H*-fluoren-2-yl)thiophen-2-yl)-2,5-bis(2-ethylhexyl)-2,5-dihydropyrrolo[3,4-*c*]pyrrole-1,4-dione (Flu-TDPP)

Flu-TDPP was synthesized from Br₂-TDPP (200 mg, 0.29 mmol) and (9,9-dimethyl-9*H*-fluoren-2-yl)boronic acid (174 mg, 0.73 mmol) using an analogous procedure similar to that for An-TDPP resulting in a brown solid (210 mg, 79 %). Melting point (Mp): 216 °C; ¹H NMR (400 MHz, chloroform-*d*) δ 9.00 (s, 2H), 7.85 – 7.58 (m, 8H), 7.52 (d, *J* = 4.1 Hz, 2H), 7.68–7.46 (m, 2H), 7.39 – 7.35 (m, 4H), 4.18 – 4.07 (t, *J* = 7.9 Hz, 4H), 1.97 (m, 2H), 1.45 – 1.25 (m, 16H), 0.96 – 0.88 (m, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 153.98, 127.81, 127.18, 122.69, 120.31, 77.35, 47.04, 46.01, 39.33, 30.50, 28.65, 27.16, 23.77, 23.18, 14.14, 10.67. UV/Vis: λ_{max} 616 nm; MOLDI-TOF-MS (m/z): calcd. for C₆₀H₆₄N₂O₂S₂): C(79.25, 79.31), H(7.09, 7.13), S(7.05, 7.07), N(3.08, 3.10), O(3.52, 3.40).

3,6-bis(5-(9,9-dimethyl-9*H*-fluoren-2-yl)thiophen-2-yl)-2,5-dioctyl-2,5-dihydropyrrolo-[3,4-*c*]pyrrole-1,4-dione (DPPT-Flu-C8)

Flu-TDPP-C8 was synthesized from Br₂-TDPP (200 mg, 0.29 mmol) and (9,9-dimethyl-9*H*-fluoren-2-yl)boronic acid (174 mg, 0.73 mmol) in a procedure similar to that for Flu-TDPP resulting in a brown solid (200 mg, 75%). ¹H NMR (400 MHz, chloroform-*d*) δ 9.00 (s, 2H), 7.85 – 7.58 (m, 8H), 7.54 (d, *J* = 4.1 Hz, 2H), 7.49 – 7.44 (m, 2H), 7.40 – 7.32 (m, 4H), 4.17 (t, *J* = 7.9 Hz, 4H), 1.83 (p, *J* = 7.6 Hz, 4H), 1.54 – 1.23 (m, 20H), 0.91 – 0.84 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 154.59, 153.98, 140.21, 139.36, 138.36, 136.79, 132.09, 128.56, 127.83, 127.20, 125.49, 124.56, 122.70, 120.63, 120.30, 47.05, 42.34, 31.84, 30.06, 29.72, 29.29, 27.17, 22.67, 14.12. MOLDI-TOF-MS (m/z): calcd. for C₆₀H₆₄N₂O₂S₂, 908.4409; found: 908.4469.

3,6-bis(5-(4-(bis(4-methoxyphenyl)amino)phenyl)thiophen-2-yl)-2,5-bis(2-ethylhexyl)-2,5-dihydropyrrolo[3,4-*c*]pyrrole-1,4-dione (TPAOMe-TDPP)

TPAOMe-TDPP was synthesized according to previously published procedures.¹⁹ Melting point (Mp): 207 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.97 (s, 2H), 7.44 (s, 6H), 7.08 (s, 8H), 6.86 (d, *J* = 8.5 Hz, 12H), 4.02 (d, *J* = 25.2 Hz, 4H), 3.81 (s, 12H), 1.95 (s, 2H), 1.44 – 1.18 (m, 16H), 0.94 – 0.79 (m, 12H). UV/Vis: λ_{max} 610 nm; MOLDI-TOF-MS (m/z): Calcd for C₇₀H₇₄N₄O₆S₂: *m/z*: 1130.5050. Found: 1130.5164; analysis (calcd., found for C₇₀H₇₄N₄O₆S₂): C(74.31, 73.95), H(6.59, 6.41), S(5.67, 5.71), N(4.95, 4.82), O(8.48, 9.11).

3,6-bis(5-(4-(bis(4-methoxyphenyl)amino)phenyl)thiophen-2-yl)-2,5-dibutyl-2,5dihydropyrrolo[3,4-*c*]pyrrole-1,4-dione (TPAOMe-TDPP-C4)

TPAOMe-TDPP-C4 was prepared from 3,6-bis(5-bromothiophen-2-yl)-2,5-dibutyl-2,5-dibutyl-2,5-dibutyl-2,5-dibutyl-2,5-dibutyl-2,5-dibutyl-2,5-dibutyl-2,5-dibutyl-2,5-dibutyl-2,5-dibutyl-0.7-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)aniline (378.1 mg, 0.88 mmol) using a procedure similar to that for TPAOMe-TDPP resulting in a dark-brown solid (278.3 mg, 75%). ¹H NMR (400 MHz, Chloroform-*d*) δ 9.01 (s, 2H), 7.39 (d, *J* = 56.7 Hz, 6H), 7.09 (d, *J* = 8.4 Hz, 8H), 6.95 - 6.81 (m, 12H), 4.10 (d, *J* = 8.0 Hz, 4H), 3.81 (s, 12H), 1.83 - 1.71 (m, 4H), 1.47 (h, *J* = 7.4 Hz, 4H), 0.98 (t, *J* = 7.4 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 156.40, 127.26, 114.96, 114.80, 55.52, 42.05, 20.26, 13.83. MOLDI-TOF-MS (m/z): calcd. for C₆₂H₅₈N₄O₆S₂, 1018.3798; found: 1018.3806.

3,6-bis(5'-(4-(bis(4-methoxyphenyl)amino)phenyl)-[2,2'-bithiophen]-5-yl)-2,5-bis(2ethylhexyl)-2,5-dihydropyrrolo[3,4-*c*]pyrrole-1,4-dione (TPAOMe-TTDPP)

3,6-bis(5'-bromo-[2,2'-bithiophen]-5-yl)-2,5-bis(2-ethylhexyl)pyrrolo[3,4-*c***]pyrrole-1,4(2***H***,5***H***)-dione (Br₂-TTDPP): Th-TDPP (150 mg, 0.218 mmol) was dissolved in 30 mL of chloroform in a 50 mL flask under nitrogen. The reaction mixture was stirred and allowed to cool to 0 °C, where it was stirred for an additional 10 min.** *N***-bromosuccinimide (NBS) (81 mg, 0.458 mmol) was added over a period of 50 min. After stirring for another 10 min, the reaction was warmed to room temperature and stirred overnight. The reaction mixture was poured into a separatory funnel and washed with saturated brine water (3×100 ml) three times, dried over anhydrous MgSO₄, and volatiles were removed** *in vacuo***. The residue was purified by column chromatography on silica gel resulting in Br₂-TTDPP (138 mg, yield 75%). ¹H NMR (400 MHz, Chloroform-***d***) \delta 8.88 (t,** *J* **= 4.8 Hz, 2H), 7.24 (d,** *J* **= 4.1 Hz, 2H), 7.05 (dd,** *J* **= 10.9, 3.9 Hz, 4H), 4.10 – 3.93 (m, 4H), 1.90 (s, 2H), 1.47 – 1.16 (m, 16H), 0.99 – 0.74 (m, 12H).**

TPAOMe-TTDPP: Br₂-TTDPP (130 mg, 0.154 mmol) and 4-methoxy-*N*-(4-methoxyphenyl)-*N*-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)aniline (198.6 mg, 0.61 mmol), Pd(PPh₃)₄ (7.4 mg, 0.0064 mmol) were dissolve in a mixture of toluene (20 mL), ethanol (5 mL) and 3 mL K₂CO₃ (2M) in a 50 mL two-necked round bottomed flask under an atmosphere of nitrogen. The mixture was heated to 110 °C and stirred at this temperature for 24 h under nitrogen. The reaction mixture was cooled to room temperature, extracted with 150 ml dichloromethane and washed with saturated brine water three times (3×200 ml), dried over anhydrous MgSO₄, and volatiles were removed *in vacuo*. The residue was purified by silica gel column chromatography and recrystallization resulting in a dark brown solid TPAOMe-TTDPP (115 mg, yield 58%). Melting point (Mp): 240 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.87 (s, 2H), 7.37 (s, 6H), 6.93 (t, *J* = 36.3 Hz, 24H), 4.03 (s, 4H), 3.82 (s, 12H), 1.94 (s, 2H), 1.44 – 1.23 (m, 17H), 0.96 – 0.81 (m, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 156.20, 148.79, 140.29, 126.89, 126.35, 120.07, 114.76, 55.50, 45.99, 39.27, 30.38, 28.57, 23.70, 23.14, 14.12, 10.60. UV/Vis λ_{max} 664 nm; MOLDI-TOF-MS (m/z): calcd. for C₇₈H₇₈N₄O₆S₄, 1294.4804; found: 1294.4776; analysis (calcd., found for C₇₈H₇₈N₄O₆S₄): C(72.30, 72.45), H(6.07, 6.17), S(9.90, 9.65), N(4.32, 4.26), O(7.41, 7.48).

5,10-bis(4-hexyl-5-(naphthalen-2-yl)thiophen-2-yl)naphtho[1,2-*c*:5,6*c*']bis([1,2,5]thiadiazole) (2N-NTT)

Under a nitrogen atmosphere, Br₂-NTT (300 mg, 0.41 mmol) was dissolved in a mixture of toluene and N, N-dimethylformamide. Naphthalen-2-ylboronic acid (351 mg, 2.04 mmol), Na₂CO₃ (1.6 ml, 2M), Pd (PPh₃)₄ (23.1 mg, 0.02 mmol) were added to the mixture. The resulting solution was heated to 120 °C for 15 hours. The reaction mixture was cooled to room temperature, extracted with 100 ml dichloromethane, and washed with saturated brine water three times (3×150 ml), dried over anhydrous MgSO₄, and volatiles were removed in vacuo. The residue was purified by column chromatography on silica gel using dichloromethane and petroleum ether and recrystallization resulting in a red solid 2N-NTT (200 mg, 59%). Melting point (Mp): 186 °C; ¹H NMR (400 MHz, Chloroform-d) δ 8.92 (s, 2H), 8.16 (s, 2H), 8.00 (d, J = 1.7 Hz, 2H), 7.93 – 7.84 (m, 6H), 7.67 (dd, J = 8.4, 1.8 Hz, 2H), 7.56 – 7.49 (m, 4H), 2.89 – 2.74 (m, 4H), 1.82 – 1.71 (m, 4H), 1.46 – 1.25 (m, 12H), 0.92 – 0.81 (m, 6H). ¹³C NMR (126 MHz, CDCl₃) § 153.44, 152.37, 140.49, 140.28, 137.13, 133.39, 132.63, 131.87, 131.14, 128.17, 128.05, 127.72, 127.26, 126.48, 126.28, 124.65, 121.82, 31.67, 31.06, 29.35, 29.14, 22.68, 14.10. UV/Vis λ_{max} 342 nm; MOLDI-TOF-MS (m/z): calcd. for C₅₀H₄₄N₄S₄, 828.2449; found: 828.2546; analysis (calcd., found for C₅₀H₄₄N₄S₄): C(72.43, 72.67), H(5.35, 5.29), S(15.47, 15.28), N(6.76, 6.67).

5,10-bis(5-(9,9-dimethyl-9*H*-fluoren-2-yl)-4-hexylthiophen-2-yl)naphtho[1,2-*c*:5,6-*c'*]bis([1,2,5]thiadiazole) (Flu-NTT)

Flu-NTT was prepared from Br₂-NTT (200 mg, 0.27 mmol) and (9,9-dimethyl-9*H*-fluoren-2yl)boronic acid (324 mg, 1.36 mmol) in a procedure similar to that for 2N-NTT resulting in a purple solid (184 mg, 71%). Melting point (Mp): 217 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 9.00 (s, 2H), 8.20 (s, 2H), 7.81 – 7.75 (m, 4H), 7.64 (d, J = 1.6 Hz, 2H), 7.55 (dd, J = 7.8, 1.7 Hz, 2H), 7.50 – 7.46 (m, 2H), 7.37 (ddd, J = 7.3, 5.1, 1.5 Hz, 4H), 2.83 (dd, J = 9.2, 6.7 Hz, 4H), 1.79 (d, J = 7.6 Hz, 4H), 1.33 (tt, J = 5.9, 2.6 Hz, 8H), 0.92 – 0.85 (m, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 154.05, 153.91, 153.59, 152.52, 141.21, 139.98, 138.85, 138.77, 136.72, 133.30, 131.32, 128.18, 127.49, 127.12, 126.46, 124.76, 123.49, 122.69, 121.96, 120.18, 120.09, 47.01, 31.71, 31.16, 29.39, 29.22, 27.22, 22.70, 14.12. UV/Vis λ_{max} 345 nm; MOLDI- TOF-MS (m/z): calcd. for C₆₀H₅₆N₄S₄, 960.3388; found: 960.3397; analysis (calcd., found for C₆₀H₅₆N₄S₄): C(74.96, 75.01), H(5.87, 5.92), S(13.34, 13.12), N(5.83, 5.81).

4,4'-(naphtho[1,2-*c*:5,6-*c'*]bis([1,2,5]thiadiazole)-5,10-diylbis(3-hexylthiophene-5,2-diyl))bis(*N*,*N*-bis(4-methoxyphenyl)aniline) (TPAOMe-NTT)

TPAOMe-NTT was prepared from Br₂-NTT (300 mg, 0.41 mmol) and 4-methoxy-*N*-(4-methoxyphenyl)-*N*-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)aniline (881mg, 2.04 mmol) in a procedure similar to that for 2N-NTT resulting in a dark-blue solid (150 mg, 31%). Melting point (M_p): 216 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.82 (s, 2H), 8.08 (s, 2H), 7.36 – 7.32 (m, 4H), 7.16 – 7.08 (m, 8H), 6.98 (d, *J* = 8.1 Hz, 4H), 6.91 – 6.84 (m, 8H), 3.82 (s, 12H), 2.74 (s, 4H), 1.80 – 1.69 (m, 4H), 1.47 – 1.19 (m, 12H), 0.95 – 0.84 (m, 6H). UV/Vis λ_{max} 360 nm; analysis (calcd., found for C₇₀H₆₆N₆O₄S₄): C(71.04, 71.35), H(5.62, 5.55), S(10.83, 10.76), N(7.10, 7.01), O(5.41, 5.34).

5,10-bis(4,4-didodecyl-4*H*-cyclopenta[2,1-*b*:3,4-*b'*]dithiophen-2-yl)naphtho[1,2-*c*:5,6-*c'*]bis([1,2,5]thiadiazole) (NTC)

Under a nitrogen atmosphere, Br₂-NT (250 mg, 0.62 mmol), CPDT-C12-Sn (1.5 g, 1.86 mmol) and Pd(PPh₃)₄ (190 mg, 0.16 mmol) were dissolved in 60 ml DMF. Then the solution was heated to 120 °C and stirred for 10 hours. The reaction mixture was cooled to room temperature, extracted with 100 ml dichloromethane and washed with saturated brine water three times (3×150 ml), dried over anhydrous MgSO₄, and volatiles were removed *in vacuo*. The residue was purified by column chromatography on silica gel using dichloromethane and petroleum ether and recrystallization resulting in a dark-blue solid NTC (310mg, 39%). Melting point (Mp): 128 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.97 (s, 2H), 8.19 (s, 2H), 7.28 (d, *J* = 4.8 Hz, 2H), 7.01 (d, *J* = 4.8 Hz, 2H), 1.98 (ddd, *J* = 9.4, 5.7, 2.5 Hz, 8H), 1.17 (s, 80H), 0.83 (t, *J* = 7.0 Hz, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 159.18, 158.98, 153.54, 152.35, 139.90, 138.98, 136.62, 132.15, 128.56, 126.98, 126.20, 124.37, 122.57, 121.77, 120.73, 53.92, 37.96, 31.89, 30.08, 29.64, 29.63, 29.62, 29.42, 29.32, 24.64, 22.66, 14.10. UV/Vis λ_{max} 603 nm; MOLDI-TOF-MS (m/z): calcd. for C₇₆H₁₀₈N₄S₆, 1268.6898; found: 1268.6955; analysis (calcd., found for C₇₆H₁₀₈N₄S₆): C(71.87, 72.15), H(8.57, 8.41), S(15.15, 15.01), N(4.41, 4.67).

5,10-bis(4,4-didodecyl-6-(naphthalen-2-yl)-4*H*-cyclopenta[2,1-*b*:3,4-*b'*]dithiophen-2-yl)naphtho[1,2-*c*:5,6-*c'*]bis([1,2,5]thiadiazole) (2N-NTC)

5,10-bis(6-bromo-4,4-didodecyl-4*H***-cyclopenta[2,1-***b***:3,4-***b***']dithiophen-2-yl)naphtho[1,2***c***:5,6-***c***']bis([1,2,5]thiadiazole) (Br₂-NTC): NTC (300mg, 0.24 mmol) was dissolved in 50 ml chloroform and cooled to -30 °C. NBS (107 mg, 0.60 mmol) was added to the solution in several times in dark. The solution was stirred in dark for 2 hours. After finishing the reaction, water was added to the solution and the aqueous layer extracted with dichloromethane. The organic layer was washed with brine, dried over anhydrous MgSO₄ and then concentrated under reduced pressure. The reaction mixture was warmed to room temperature and washed with saturated brine water three times (3×150 ml), dried over anhydrous MgSO₄, and volatiles were removed** *in vacuo***. The residue was purified by column chromatography on silica gel using dichloromethane and petroleum ether resulting in a dark-blue solid Br₂-NTC (330 mg, 98%). ¹H NMR (400 MHz, Chloroform-***d***) \delta 8.95 (s, 2H), 8.15 (s, 2H), 7.02 (s, 2H), 1.95 (td,** *J* **= 9.2, 6.1 Hz, 8H), 1.36 – 1.13 (m, 80H), 0.83 (t,** *J* **= 7.0 Hz, 12H).**

2N-NTC was prepared from Br₂-NTC (150mg, 0.11 mmol) and naphthalen-2-ylboronic acid (90.3 mg, 0.53 mmol) in a procedure similar to that for 2N-NTT resulting in a dark-blue solid (120 mg, 75%). Melting point (Mp): 174 °C;¹H NMR (400 MHz, dichloromethane-*d2*) δ 8.83 (d, J = 56.7 Hz, 2H), 8.26 (d, J = 15.2 Hz, 2H), 7.86 – 7.61 (m, 8H), 7.59 – 7.32 (m, 6H), 2.13 (d, J = 9.4 Hz, 8H), 1.38 – 1.11 (m, 80H), 0.82 (t, J = 6.9 Hz, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 37.03, 30.85, 29.12, 28.64, 28.62, 28.60, 28.44, 28.29, 23.71, 21.63, 13.06. UV/Vis λ_{max} 639 nm; MOLDI-TOF-MS (m/z): calcd. for C₉₆H₁₂₀N₄S₆, 1521.7871; found: 1521.7827; analysis (calcd., found for C₉₆H₁₂₀N₄S₆): C(75.74, 76.11), H(7.95, 7.87), S(12.64, 12.26), N(3.68, 3.70).

5,10-bis(6-(9,9-dimethyl-9*H*-fluoren-2-yl)-4,4-didodecyl-4*H*-cyclopenta[2,1-*b*:3,4*b'*]dithiophen-2-yl)naphtho[1,2-*c*:5,6-*c'*]bis([1,2,5]thiadiazole) (Flu-NTC)

Flu-NTC was prepared from Br₂-NTC (150 mg, 0.11 mmol) and (9,9-dimethyl-9*H*-fluoren-2yl)boronic acid (125 mg, 0.55 mmol) in a procedure similar to that for 2N-NTT resulting in a dark-green solid (85.9 mg, 59.3%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.93 (s, 2H), 8.20 (s, 2H), 7.73 – 7.66 (m, 6H), 7.63 (dd, *J* = 7.8, 1.6 Hz, 2H), 7.47 – 7.43 (m, 2H), 7.37 – 7.30 (m, 6H), 2.05 (q, *J* = 6.5 Hz, 9H), 1.57 (s, 12H), 1.27 – 1.10 (m, 80H), 0.81 (t, *J* = 6.9 Hz, 12H).

¹³C NMR (126 MHz, CDCl₃) δ 153.80, 152.30, 127.35, 127.09, 124.27, 122.60, 120.02, 46.96, 38.15, 31.87, 30.18, 29.70, 29.66, 29.64, 29.62, 29.48, 29.32, 27.24, 24.71, 22.65, 14.08. UV/Vis λ_{max} 431 nm; MOLDI-TOF-MS (m/z): calcd. for C₁₀₆H₁₃₂N₄S₆, 1653.8810; found: 1653.8831; analysis (calcd., found for C₁₀₆H₁₃₂N₄S₆): C(76.95, 77.10), H(8.04, 8.08), S(11.63, 11.29), N(3.39, 3.47).

4,4'-(benzo[1,2-*c*:4,5-*c*]bis([1,2,5]thiadiazole)-4,7-diylbis(3-(2-ethylhexyl)thiophene-5,2-diyl))bis(*N*,*N*-bis(4-methoxyphenyl)ani-line) (TPAOMe-BBTT)

TPAOMe-BBTT was prepared from 4,7-dibromobenzo[1,2-*c*:4,5-*c*]bis([1,2,5]thiadiazole (120 mg, 0.16 mmol) and 4-methoxy-*N*-(4-methoxyphenyl)-*N*-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)aniline (209.6 mg, 0.49 mmol). The synthesis procedures are similar to that of An-TDPP resulting in a green dark solid product (59.9 mg, 31.5%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.83 (s, 2H), 7.40 (dd, *J* = 8.5, 3.4 Hz, 4H), 7.12 (dt, *J* = 9.8, 2.2 Hz, 8H), 6.98 (d, *J* = 8.1 Hz, 4H), 6.86 (dt, *J* = 9.5, 2.2 Hz, 8H), 3.81 (t, *J* = 2.2 Hz, 12H), 2.77 (d, *J* = 7.0 Hz, 4H), 1.40 – 1.17 (m, 26H), 0.85 (q, *J* = 7.3, 6.8 Hz, 12H). MOLDI-TOF-MS (m/z): calcd. for C₇₀H₇₂N₆O₄S₄, 1188.4498; found: 1188.4316.

2. Results 2.1. HPLC, UV-vis-NIR absorption, PL emission and CV spectra

Supplementary Figure 3. HPLC analysis for (a, b) DPP, (c) NT, (d) TPA-based molecules with Cosmosil 5C₁₈-MS-II column.

Supplementary Figure 4. The UV-vis-NIR absorption spectra of (a) DPP-based small molecules with fused-phenyl groups, (b) TDPP, Th-TDPP, Flu-TDPP, TPAOMe-TDPP and TPAOMe-TTDPP, (c) NT-based small molecules, and (d) BT-based small molecules in solution. The photoluminescence spectra of (e) DPP-based small molecules with fused-phenyl groups, (f) TDPP, Th-TDPP, Flu-TDPP, TPAOMe-TDPP and TPAOMe-TTDPP, (g) NT-based small molecules, and (h) TPAOMe-based small molecules in film.

Matariala	$\lambda^{abs}_{max}[a]$	$\lambda^{abs}_{max}[b]$	$\lambda^{\mathrm{pl}}_{\mathrm{max}}^{[c]}$	$\lambda_{inter}^{[d]}$	$E_g^{\text{opt}[e]}$	HOMO ^f	LUMO ^g
Materials	[nm]	[nm]	[nm]	[nm]	[eV]	[eV]	[eV]
Ph-TDPP	595	633	712	662	1.87	-5.38	-3.51
1N-TDPP	577	600	671	634	1.96	-5.44	-3.48
2N-TDPP	608	650	704	676	1.84	-5.23	-3.39
An-TDPP	570	582	642	614	2.02	-5.31	-3.29
Py-TDPP	587	630	698	668	1.86	-5.14	-3.28
TDPP	548	565	679	592	2.09	-5.36	-3.27
Th-TDPP	612	639	700	666	1.86	-5.14	-3.28
Flu-TDPP	617	639	740	670	1.85	-5.25	-3.40
TPAOMe- TDPP	644	660	730	694	1.79	-4.94	-3.15
TPAOMe- TTDPP	663	693	978	784	1.58	-4.94	-3.36
NTT	508	543	623	603	2.06	-5.80	-3.74
2N-NTT	524	562	692	626	1.98	-5.50	-3.52
Flu-NTT	530	554	690	610	2.03	-5.52	-3.49
NTC	602	623	735	685	1.81	-5.26	-3.45
2N-NTC	640	652	817	738	1.68	-5.28	-3.60
Flu-NTC	633	672	909	778	1.59	-5.35	-3.76
TPAOMe- BTT	523	541	655	591	2.10	-5.07	-2.97
TPAOMe- NTT	560	574	725	646	1.92	-4.98	-3.06
TPAOMe- BBTT	854	879	/	1133 ^h	1.09	-4.67	-3.58

Supplementary Table 1. Optical properties of the materials.

^{*a*}Wavelength of maximum absorption in chloroform solutions, ^{*b*}wavelength of maximum absorption in thin films, ^{*c*}wavelength of maximum emission in thin films, ^{*d*}calculated from the intersection of absorption and emission curves of pristine thin films, ^{*e*}E_g^{opt}=1240/ λ_{inter} . ^{*f*}E_{HOMO}=-e(E_{ox} + 4.67). ^{*g*}E_{LUMO}= $E_{HOMO} + E_g$. ^{*b*}The absorption wavelength of TPAOMe-BBTT was determined as the onset of the absorption curve because of the weak fluorescence.

Supplementary Figure 5. Cyclic voltammetry curves of (a, b) DPP, (c) NT, (d) TPA-based molecules in thin films using n-Bu₄NPF₆ as electrolytes.

2.2. Theoretical calculations

The diradical index of organic materials is sensitive to computational methods utilized.²⁰ We have analyzed the open-shell character of the materials with several methods to confirm their diradical and polyradical characters. Using the spin-projected unrestricted Hartree-Fock (PUHF) method we find that all the materials possess variable open-shell character (Supplementary Table 2), which correlates with their bandgap. As the PUHF method prone to a large spin contamination, we have tested the widely accepted broken symmetry²¹ (BS) approach with different density functionals. However, unlike the other open-shell small materials²²⁻²⁴ or polymers²⁵⁻²⁶, the conventional BS approach did not predict open-shell character in the current set of molecules, except for the TPAOMe-BBTT with very small diradical character ($y_0 = 0.03$, using Yamaguchi formula). For example, Rudebusch *et al.* predicted diradical character ($y_0 =$ 0.088 to 0.273) for benzothiophene-based acenes using tuned LC-RBLYP CASCI(2,2) (Complete Active Space Configuration Interaction).²² With the same approach, 2N-NTC and TPAOMe-TTDPP molecules provide a negligible diradical character ($y_0 = 0.003$ and 0.008, respectively) indicating diradical character is not as pronounced in the current set of molecules than the ones reported by Haley and coworkers.²² We believe this to be due to the presence of numerous heteroatoms in the current set of molecules.

Another simple but elegant method to estimate the open-shell character is proposed by Grimme *et al.*, which is the fractional occupation number weighted electron density (N_{FOD}) .²⁷ Fractional

orbital density (FOD) is an extremely simple and cost-effective method based on smearing the electrons over the molecular orbitals using finite temperature DFT (FT-DFT). N_{FOD} accurately quantifies the static electron correlation and molecules with a delocalized FOD and a large N_{FOD} have multireference character. Supplementary Table 3 shows the N_{FOD} values of the molecules studied in this work. A large N_{FOD} values reveal that the electrons are strongly correlated, and different materials provide different N_{FOD} values. Interestingly, the trends are qualitatively consistent with diradical index computed from PUHF (see Supplementary Table 2), showing good linear correlation between N_{FOD} and y_0 .

To better understand the radical nature for these molecules, we explore their open-shell characters (y_i) using fractional orbital occupancy. Supplementary Table 4 shows the y_0 , y_1 , y_2 and y_3 values for all the molecules computed using the FT-DFT at B3LYP/6-31G(d,p) level of theory and basis set. Our result reveals polyradical character in all the molecules.

The spatial distribution of unpaired electrons in these molecules are evaluated using FOD plots (see Fig. S14-S16). FOD plots show partially delocalized/localized electron density distribution along the molecular backbones, disclosing strongly correlated electrons.

We have also computed the vertical singlet-triplet energy gap (ΔE_{ST}) using FT-DFT with B3LYP/6-31G(d,p) and the results are presented in Supplementary Table 3. It was shown that the ΔE_{ST} gap computed using FT-DFT is comparable to that of CASPT2 (complete active space perturbation theory) method.²⁸ The computed ΔE_{ST} gap for 2N-NTC (11.03 kcal/mol) and TPAOMe-TTDPP (10.65 kcal/mol) is overestimated compared to the experimental gap, 4.76 and 5.52 kcal/mol, respectively. We believe this is due to the medium effects that we are not able to capture in the isolated molecule calculations. However, we find a good correlation between y_0 (and N_{FOD}) and ΔE_{ST} gap using FT-DFT method, a larger N_{FOD} value indicates a smaller ΔE_{ST} gap.

Supplementary Figure 6. Intramolecular twist angles calculated at RB3LYP/6-31G(d,p) level of theory and basis set of DPP molecules indicated by the outer and inner ortho-hydrogens (blue and red circles,

respectively).

	PU	PUHF ^a		FT-DFT ^b		m d	Contribution ^e	HOMO ^f	LUMO ^g	$E_{\rm g}{}^{\rm h}$
Materials	<i>y</i> 0	<i>y</i> 1	<i>y</i> 0	<i>y</i> 1	(nm)	Transition	(%)	(eV)	(eV)	(eV)
Ph-TDPP	0.295	0.048	0.481	0.118	556.85	$\mathrm{H} \rightarrow \mathrm{L}$	97.5	-4.81	-2.58	2.23
1N-TDPP	0.283	0.072	0.476	0.136	546.88	$\mathrm{H} \rightarrow \mathrm{L}$	96.8	-4.82	-2.55	2.27
2N-TDPP	0.313	0.078	0.581	0.163	567.68	$\mathrm{H} \rightarrow \mathrm{L}$	96.6	-4.78	-2.60	2.18
An-TDPP	0.237	0.156	0.443	0.218	514.57	$\mathrm{H} \rightarrow \mathrm{L}$	97.7	-4.91	-2.48	2.43
Py-TDPP	0.310	0.142	0.495	0.205	563.49	$\mathrm{H} \rightarrow \mathrm{L}$	92.6	-4.78	-2.59	2.19
TDPP	0.223	0.019	0.431	0.070	502.31	$\mathrm{H} \rightarrow \mathrm{L}$	99.0	-4.97	-2.52	2.45
Th-TDPP	0.335	0.067	0.519	0.150	589.68	$\mathrm{H} \rightarrow \mathrm{L}$	96.7	-4.78	-2.68	2.10
Flu-TDPP	0.317	0.073	0.511	0.155	576.86	$\mathrm{H} \rightarrow \mathrm{L}$	95.9	-4.71	-2.56	2.15
TPAOMe-	0.200	0.056	0 529	0.149	502.20	II I	<u>20</u> 1	1 25	2 20	2.06
TDPP	0.309	0.030	0.338	0.148	393.29	$H \rightarrow L$	89.1	-4.55	-2.29	2.00
TPAOMe-	0 270	0.112	0.520	0 192	620 62	II VI	945	4.40	2 50	1.00
TTDPP	0.379	0.112	0.339	0.182	039.03	$H \rightarrow L$	84.5	-4.40	-2.30	1.90
NTT	0.269	0.054	0.391	0.116	500.04	$\mathrm{H} \rightarrow \mathrm{L}$	96.9	-5.36	-2.88	2.48
2N-NTT	0.306	0.084	0.434	0.132	539.84	$\mathrm{H} \rightarrow \mathrm{L}$	93.0	-5.12	-2.87	2.25
Flu-NTT	0.306	0.080	0.443	0.136	546.80	$\mathrm{H} \rightarrow \mathrm{L}$	91.3	-5.04	-2.83	2.21
NTC	0.357	0.105	0.466	0.145	616.24	$\mathrm{H} \rightarrow \mathrm{L}$	94.3	-4.80	-2.83	1.97
2N-NTC	0.396	0.160	0.493	0.189	651.90	$\mathrm{H} \rightarrow \mathrm{L}$	91.1	-4.70	-2.86	1.84
Flu-NTC	0.396	0.159	0.500	0.194	658.24	$\mathrm{H} \rightarrow \mathrm{L}$	90.2	-4.64	-2.83	1.81
TPAOMe-	0.264	0.047	0 445	0.102	526.90	II VI	757	4 47	2 27	2 10
BTT	0.264	0.047	0.445	0.102	550.80	$H \rightarrow L$	/5./	-4.47	-2.37	2.10
TPAOMe-	0.204	0.071	0.490	0.145	570.24	II I	71.2	1 55	2 69	1 07
NTT	0.304	0.071	0.480	0.145	570.54	$H \rightarrow L$	/1.5	-4.33	-2.08	1.8/
TPAOMe-	0 665	0.047	0.827	0.004	720.64	II VI	12.1	1 24	2.04	1.20
BBTT	0.005	0.047	0.827	0.094	129.04	$H \rightarrow L$	43.4	-4.34	-3.04	1.50

Supplementary Table 2. Calculated electronic and optical properties of the molecules.

^{*a*}Diradical character index (y_0) and tetraradical character index (y_1) calculated with PUHF/6-31G(d,p). ^{*b*}Diradical character index (y_0) and tetraradical character index (y_1) calculated with FT-DFT/B3LYP/6-31G(d,p). ^{*c*}Wavelength of the excitation from the ground to the first excited state. ^{*d*}Orbitals involved in the transition. ^{*c*}Contribution of individual orbitals in the transition. ^{*f*}The highest occupied molecular orbital (HOMO) and the ^{*g*}lowest unoccupied molecular orbital (LUMO) energies calculated at (U)B3LYP/6-31G(d,p) level theory and basis set. ^{*h*}The calculated energy gap (E_g) between the HOMO and LUMO. The excited state calculations are performed on the ground state geometry with PCM(chloroform)/TDDFT/BHandHLYP/6-31G(d,p) level of theory and basis set. All energies are in eV, λ is in nm and y_0 and y_1 are dimensionless quantity. H = HOMO, L = LUMO.

Materials	$N_{ m FOD}$	Vertical ∆E _{ST} gap (kcal/mol)
TDPP	1.104	23.02
1N-TDPP	1.801	15.47
2N-TDPP	2.081	13.64
An-TDPP	2.261	12.21
Th-TDPP	1.653	16.82
Flu-TDPP	1.946	14.75
Ph-TDPP	1.517	18.13
Py-TDPP	2.362	12.14
TPAOMe-TDPP	2.470	11.92
TPAOMe-TTDPP	2.816	10.65
NTT	1.311	20.72
2N-NTT	2.016	14.40
Flu-NTT	2.093	14.07
NTC	1.909	14.95
2N-NTC	2.689	11.03
Flu-NTC	2.769	10.84
TPAOMe-BTT	2.277	13.08
TPAOMe-NTT	2.636	11.40
TPAOMe-BBTT	3.017	10.06

Supplementary Table 3. N_{FOD} and vertical singlet-triplet energy gap for the molecules computed using FT-DFT at B3LYP/6-31G(d,p) level.

Materials	Fractional Orbital Occupancy				
	уо	<i>y</i> 1	<i>y</i> 2	<i>y</i> 3	
TDPP	0.431	0.070	0.018	0.009	
1N-TDPP	0.476	0.136	0.095	0.055	
2N-TDPP	0.581	0.163	0.094	0.070	
An-TDPP	0.443	0.218	0.218	0.074	
Th-TDPP	0.519	0.150	0.063	0.026	
Flu-TDPP	0.511	0.155	0.084	0.043	
Ph-TDPP	0.481	0.118	0.047	0.026	
Py-TDPP	0.495	0.205	0.161	0.072	
TPAOMe-TDPP	0.538	0.148	0.069	0.069	
TPAOMe-TTDPP	0.539	0.182	0.108	0.069	
NTT	0.391	0.116	0.066	0.028	
2N-NTT	0.434	0.133	0.112	0.095	
Flu-NTT	0.443	0.136	0.115	0.094	
NTC	0.466	0.145	0.121	0.088	
2N-NTC	0.493	0.189	0.170	0.121	
Flu-NTC	0.500	0.194	0.174	0.123	
TPAOMe-BTT	0.445	0.102	0.089	0.068	
TPAOMe-NTT	0.480	0.145	0.112	0.083	
TPAOMe-BBTT	0.827	0.094	0.075	0.065	

Supplementary Table 4	. Computed radical indices	s (y _i) using FT-DFT	at B3LYP/6-31G(d,p)
level.			

Supplementary Figure 7. Optimized geometric parameters and $NICS_{iso}(1)$ (ppm) values of the DPPbased molecules calculated at RB3LYP/6-31G(d,p) level of theory and basis set. Bond lengths are provided in Å.

Supplementary Figure 8. Optimized geometric parameters and NICS_{iso}(1) (ppm) values of the NT-based molecules calculated at RB3LYP/6-31G(d,p) level of theory and basis set. Bond lengths are provided in Å.

Supplementary Figure 9. Optimized geometric parameters and NICS_{iso}(1) (ppm) values of the BT, NT, and BBT analogues calculated at (U)B3LYP/6-31G(d,p) level of theory and basis set. Bond lengths are provided in Å.

Supplementary Figure 10. The numerical trend of NICS_{*iso*}(1) values (singlet and triplet) of (a) An-TDPP, (b) Flu-TDPP, (c) Py-TDPP, (d) TPAOMe-TDPP calculated at RB3LYP/6-31G(*d*,*p*) level of theory and basis set. All of these molecules show an increase of aromaticity from singlet to triplet state.

Supplementary Figure 11. The optimized ground-state geometry and molecular orbital (MO) diagrams of the DPP-based molecules calculated at RB3LYP/6-31G(d,p) level of theory and basis set. The green and red surfaces are drawn at isovalue = |0.02| au, which represents the positive and negative contributions on the wavefunctions, respectively. Color code for the atoms: grey for C, blue for N, red for O, and yellow for S.

Supplementary Figure 12. The optimized ground-state geometry and molecular orbital (MO) diagrams of the NT-based molecules calculated at RB3LYP/6-31G(d,p) level of theory and basis set. The green and red surfaces are drawn at isovalue = |0.02| au, which represents the positive and negative contributions on the wavefunctions, respectively. Color code for the atoms: grey for C, blue for N, red for O, and yellow for S.

Supplementary Figure 13. The optimized ground-state geometry and molecular orbital (MO) diagrams of the BT, NT, and BBT analogues calculated at (U)B3LYP/6-31G(d,p) level of theory and basis set. The green and red surfaces are drawn at isovalue = |0.02| au, which represents the positive and negative contributions on the wavefunctions, respectively. Color code for the atoms: grey for C, blue for N, red for O, and yellow for S. In the case of the TPAOMe-BBTT, α -SOMO and α -LUMO is provided.

Supplementary Figure 14. FOD plots ($\sigma = 0.002 \text{ e/Bohr}^3$) for DPP-based materials obtained from the FT-DFT at B3LYP/6-31G(*d*,*p*) level.

Supplementary Figure 15. FOD plots ($\sigma = 0.002 \text{ e/Bohr}^3$) for NT-based materials obtained from the FT-DFT at B3LYP/6-31G(d,p) level.

Supplementary Figure 16. FOD plots ($\sigma = 0.002 \text{ e/Bohr}^3$) for BT, NT, and BBT analogues obtained from the FT-DFT at B3LYP/6-31G(d,p) level.

Supplementary Figure 17. Density difference ($\Delta \rho = S_1$ - S_0) between the first singlet exited state (S_1) to the ground state (S_0) of the DPP-based molecules calculated at PCM/RBHandHLYP/6-31G(d,p) level of theory and basis set. The purple and blue-green surfaces represent the positive (density accumulation) and negative (density depletion) region, respectively. Isosurface value = 0.0001 au.

Supplementary Figure 18. Density difference ($\Delta \rho = S_1 - S_0$) between the first singlet exited state (S_1) to the ground state (S_0) of the NT-based molecules calculated at PCM/RBHandHLYP/6-31G(d,p) level of theory and basis set. The purple and blue-green surfaces represent the positive (density accumulation) and negative (density depletion) region, respectively. Isosurface value = 0.0001 au.

Supplementary Figure 19. Density difference ($\Delta \rho = S_1$ - S_0) between the first singlet exited state (S_1) to the ground state (S_0) of the BT, NT, and BBT analogues calculated at PCM/(U)BHandHLYP/6-31G(d,p) level of theory and basis set. The purplish and blue-green surfaces represent the positive (density accumulation) and negative (density depletion) region, respectively. Isosurface value = 0.00001 au.

2.3. Electron spin resonance spectra

Supplementary Figure 20. ESR spectra measured at room temperature of DPP-based small molecules. The measurements were conducted under the same conditions and using the same molar quantity of each material at 0.02 mmol.

Supplementary Figure 21. (a) Resonance structures of TPAOMe-BTT, TPAOMe-NTT, and TPAOMe-BBTT. (b) ESR spectra of the small molecules. (c) Resonance structure of Chichibabin's analogue CN-TDPP and TPAOMe-TTDPP in this work. (d) ESR spectra of the two small molecules. The measurements were conducted under the same conditions and using the same molar quantity of each material at 0.02 mmol.

Supplementary Figure 22. ESR spectra of (a) TPAOMe-TDPP, (b)TPAOMe-TTDPP, (c) NTC, (d) 2N-NTC in toluene solutions and in powders. The EPR spectra in powders and saturated solutions were conducted under the same test conditions in EPR sample tube.

Supplementary Figure 23. (a) Resonance structures of 2N-TDPP and 2N-NTT. (b, c) ESR spectra of the small molecules before and after sublimation in an isolated N_2 environment, respectively. The measurements were conducted under the same conditions and using the same molar quantity of each material at 0.02 mmol.

Supplementary Figure 24. (a) Resonance structures of Flu-TDPP with *n*-butyl (C8) and 2-ethylhexyl (EH) alkyl chains and TPAOMe-TDPP with *n*-octyl (C4) and EH alkyl chains. (b) ESR spectra of Flu-TDPP and Flu-TDPP-C8. (c) ESR spectra of TPAOMe-TDPP and TPAOMe-TDPP-C4. The measurements were conducted under the same conditions and using the same molar quantity of each material at 0.02 mmol. The DPP molecules with EH side chains show stronger ESR response compared to derivatives with different alkyl chains (C8), (C4).

Supplementary Figure 25. (a)The resonance structures of 1N-TDPP and Py-TDPP. (b) ¹H NMR spectra and (c) their enlarged spectra in aromatic areas (7.2 to 9.7 ppm) of the DPP molecules in Chloroform-d at room temperature.

Supplementary Figure 26. (a) The resonance structures of TDPP and TPAOMe-TTDPP. (b) The ¹H NMR spectra and (c) their enlarged spectra in aromatic areas (6.0-10.0) of the DPP molecules in Chloroform-d at room temperature.

Supplementary Figure 27. (a) The resonance structures of 2N-NTT and 2N-NTC. (b) The ¹H NMR spectra and (c) their enlarged spectra in aromatic areas (6.6-9.8 ppm) of the NT molecules in Chloroform-d at room temperature.

2.4. X-ray crystallography and packing motifs of the single crystals

Supplementary Figure 28. (a) The ORTEP images of An-TDPP. (b) The top view and (c) side view of two crystal packing structure. (d) The solid-state molecular packing graphs. Hydrogens are omitted for clarity.

Supplementary Figure 29. (a) The ORTEP images of Py-TDPP. (b) The top view and (c) side view of two crystal packing structure. (d) The solid-state molecular packing graphs. Hydrogens are omitted for clarity.

Supplementary Figure 30. (a) The ORTEP images of Flu-TDPP. (b) The top view and (c) side view of two crystal packing structure. (d) The solid-state molecular packing graphs. Hydrogens are omitted for clarity.

Supplementary Figure 31. (a) The ORTEP images of TPAOMe-TDPP. Two conformations were obtained: (A) dimer conformation (B) monomer conformation. (b) The top view and side view of two crystal packing structure. (c), (d) The solid-state molecular packing graphs. Hydrogens are omitted for clarity.

Supplementary Figure 32. (a) The ORTEP images of Flu-TDPP-C8. (b) The top view and (c) side view of two crystal packing structure. (d) The solid-state molecular packing graphs. Hydrogens are omitted for clarity.

Supplementary Figure 33. (a) The ORTEP images of TPAOMe-TDPP-C4. (b) The top view and (c) side view of two crystal packing structure. (d) The solid-state molecular packing graphs. Hydrogens are omitted for clarity.

Conformation	a (Å)	<i>b</i> (Å)	c (Å)	<i>d</i> (Å)	e (Å)	$f(\text{\AA})$	g (Å)	$\varPhi_{lpha}\left(^{\circ} ight)$	$arPhi_eta(^\circ)$
А	1.461	1.367	1.397	1.376	1.437	1.404	1.406	5.17	14.44
В	1.458	1.374	1.398	1.365	1.446	1.394	1.422	6.50	10.20

Supplementary Table 5. The two conformations of TPAOMe-TDPP

$\left(Ar \right) \frac{\phi_{\alpha}}{a} S$		i φ _γ N	$\frac{1}{\phi_{\delta}}$	Ar		C. J.	Ð	- 5		<u>}</u>
	ő				An-TDPP	Flu-TDPP	Py-TDP	P TPÀ	OMe-T	DPP
<u>DPP</u>		<u>DFT</u>					<u>XRD</u>			
D (Å) / φ (°)	TPAOMe	Flu	An	Ру	TPAOMe	TPAOMe-C4	Flu	Flu-C8	An	Ру
$arPsi_{lpha}$	22.00	24.00	90.00	46.00	40.70	23.44	16.60	20.54	86.60	40.70
а	1.459	1.463	1.484	1.469	1.461	1.465	1.464	1.472	1.475	1.469
b	1.385	1.384	1.376	1.383	1.367	1.374	1.369	1.392	1.356	1.380
С	1.407	1.407	1.414	1.409	1.397	1.400	1.400	1.385	1.403	1.396
d	1.391	1.391	1.388	1.390	1.376	1.380	1.372	1.381	1.371	1.385
е	1.435	1.436	1.440	1.437	1.437	1.440	1.443	1.418	1.442	1.432
$arPsi_eta$	0.00	0.00	0.00	0.77	5.17	7.62	11.40	16.26	13.88	5.71
f	1.398	1.397	1.395	1.397	1.404	1.394	1.384	1.380	1.388	1.387
g	1.421	1.420	1.422	1.421	1.406	1.406	1.408	1.422	1.408	1.412
h	1.398	1.397	1.395	1.397	1.404	1.394	1.386	1.377	1.388	1.403
$arPsi_{\gamma}$	0.00	0.00	0.00	0.00	5.17	7.62	11.40	18.09	13.88	5.71
i	1.435	1.436	1.440	1.438	1.437	1.440	1.443	1.439	1.442	1.431
j	1.391	1.391	1.388	1.389	1.376	1.380	1.383	1.376	1.371	1.379
k	1.407	1.407	1.414	1.409	1.397	1.400	1.400	1.418	1.403	1.409
l	1.385	1.384	1.376	1.382	1.367	1.374	1.373	1.381	1.356	1.379
т	1.460	1.463	1.484	1.472	1.461	1.465	1.469	1.444	1.475	1.468
$arPhi_\delta$	19.91	24.00	90.00	43.95	40.70	23.44	16.60	20.51	86.60	40.70

Supplementary Table 6. The critical crystal data of DPP derivatives.

^aThe data of in the table is one of the two crystal conformations of TPAOMe-TDPP.

2.5. X-ray crystallographic data for TPAOMe-TDPP

Supplementary Table 7. Crystal data and structure refinement for TPAOMe-TDPP

Identification code	TPAOMe-TDPP
Empirical formula	C ₇₀ H ₇₄ N ₄ O ₆ S ₂
Formula weight	1131.45
Temperature/K	149.99(10)
Crystal system	monoclinic
Space group	P21/c
a/Å	9.94498(12)
b/Å	25.2472(3)
c/Å	26.5652(3)
α'°	90

β/°	99.3209(10)
γ/°	90
Volume/Å ³	6582.00(13)
Z	4
pcalcg/cm ³	1.142
µ/mm ⁻¹	1.142
F(000)	2408.0
Crystal size/mm ³	$0.15\times0.05\times0.03$
Radiation	$CuK\alpha (\lambda = 1.54184)$
2Θ range for data collection/°	4.86 to 134.158
Index ranges	$-11 \le h \le 9, -30 \le k \le 20, -28 \le l \le 31$
Reflections collected	33582
Independent reflections	11475 [Rint= 0.0307, Rsigma= 0.0370]
Data/restraints/parameters	11475/38/747
Goodness-of-fit on F ²	1.044
Final R indexes [I>= 2σ (I)]	R1= 0.0672, wR2= 0.1879
Final R indexes [all data]	R1= 0.0738, wR2= 0.1935
Largest diff. peak/hole / e Å ⁻³	1.54/-0.52

Supplementary Table 8. Fractional Atomic Coordinates $(\times 10^4)$ and Equivalent Isotropic Displacement Parameters (Å²×10³) for TPAOMe-TDPP. Useq is defined as 1/3 of of the trace of the orthogonalised UIJtensor.

Atom	Х	у	Z	U(eq)
S01	10554.4(6)	5591.6(2)	4701.8(2)	38.32(1)
S02	5795.6(6)	5640.0(3)	205.2(3)	44.77(1)
O003	14735.7(18)	4444.5(7)	4011.8(7)	43.9(4)
O004	10499(2)	4526.9(8)	1031.6(8)	49.9(5)
O005	-3473(2)	7700.9(10)	-1990.6(8)	63.9(6)
N006	4731(2)	6830.9(9)	5088.7(8)	39.7(5)
O007	1804(2)	7319.2(10)	3171.8(8)	62.7(6)
N008	13264(2)	4945.2(8)	4414.1(8)	36.3(5)
N009	-320(2)	6852.1(9)	-248.7(9)	43.5(5)
000A	-1346(2)	7439.5(11)	1673.0(8)	70.5(7)
N00B	8727(2)	5015.5(9)	573.8(9)	43.1(5)
O00C	3494(3)	7987.7(10)	6745.9(9)	66.7(6)

C00D	8632(2)	6130.3(9)	5168.3(10)	36.4(5)
C00E	14538(3)	4707.6(10)	4382.6(10)	37.6(5)
C00F	-608(3)	6999.3(10)	240.9(10)	40.2(6)
C00G	14601(2)	5151.1(9)	5147.0(10)	36.6(5)
C00H	2766(3)	6029.1(10)	87.9(11)	39.9(6)
C00I	10002(3)	5911.7(10)	5205.5(10)	37.9(5)
C00J	7588(3)	6026.6(10)	4756.7(10)	38.0(5)
C00K	4390(2)	7114.4(10)	5516.4(10)	36.5(5)
C00L	13285(2)	5204.2(9)	4876.0(10)	36.4(5)
C00M	3954(3)	6949.3(10)	4597.1(10)	38.3(5)
C00N	3478(3)	6129.1(10)	-313.3(11)	41.2(6)
C000	10024(3)	4762.6(10)	637.5(12)	44.0(6)
C00P	918(3)	6599.4(10)	-284.7(11)	40.2(6)
C00Q	8306(3)	6455.4(10)	5556.6(10)	40.4(6)
C00R	-1129(3)	7082.9(10)	-687.6(10)	39.8(6)
COOS	9499(3)	5141.9(10)	-163.1(11)	42.0(6)
C00T	6010(2)	6588.5(9)	5117.3(10)	35.6(5)
C00U	349(3)	7276.4(11)	583.1(11)	44.5(6)
C00V	2597(3)	6814.1(10)	4486.6(10)	41.1(6)
C00W	6305(3)	6249.5(10)	4734.5(10)	38.7(5)
C00X	12227(3)	5674.5(11)	5530.3(11)	44.9(6)
C00Y	1596(3)	6685.2(11)	-694.7(11)	43.2(6)
C00Z	1506(3)	6255.5(10)	103.3(11)	41.3(6)
C010	2449(3)	7186.6(12)	3651.7(10)	47.6(7)
C011	2847(3)	6457.6(11)	-707.8(11)	44.9(6)
C012	8388(3)	5232.9(10)	90.9(11)	42.5(6)
C013	11030(3)	5921.9(11)	5618.8(11)	45.0(6)
C014	4254(3)	7665.2(10)	5497.7(10)	40.8(6)
C015	-1482(3)	7615.6(11)	-693.9(11)	43.0(6)
C016	7039(3)	6675.6(10)	5536.6(11)	40.7(6)
C017	4833(3)	5913.2(10)	-330.3(11)	44.1(6)
C018	3951(3)	7937.3(11)	5914.2(11)	47.6(7)

C019	-1851(3)	6874.8(11)	379.1(11)	44.8(6)
C01A	1829(3)	6933.8(11)	4014.7(11)	44.3(6)
C01B	4199(3)	6854.6(11)	5955.5(11)	43.3(6)
C01C	12110(3)	4858.0(11)	4004.8(11)	42.2(6)
C01D	12158(3)	5469.9(10)	5051.2(10)	38.0(5)
C01E	-1567(3)	6775.5(12)	-1117.7(11)	48.7(7)
C01F	4556(3)	7216.7(11)	4233.2(10)	43.0(6)
C01G	72(3)	7411.1(12)	1055.9(11)	49.7(7)
C01H	3890(3)	7126.9(12)	6374.8(11)	47.6(6)
C01I	-2274(3)	7833.2(12)	-1122.9(11)	48.0(7)
C01J	-1175(3)	7281.9(12)	1193.2(11)	50.3(7)
C01K	3806(3)	7329.1(12)	3759.1(11)	48.5(7)
C01L	-2696(3)	7525.1(13)	-1547.1(11)	48.7(7)
C01M	-2142(3)	7015.6(11)	854.1(12)	48.0(7)
C01N	7130(3)	5489.1(10)	-116.4(12)	44.4(6)
C01O	3771(3)	7675.1(12)	6355.0(11)	47.1(6)
C01P	7900(3)	4983.9(11)	979.7(12)	47.7(6)
C01Q	-2344(3)	6988.9(13)	-1542.9(12)	51.2(7)
C01R	6812(3)	5656.1(13)	-614.5(13)	56.1(8)
C01S	5531(3)	5894.0(13)	-733.1(13)	56.6(8)
C01T	11930(4)	5291(2)	3590.9(14)	80.2(12)
C01U	8009(4)	5469.7(15)	1330.6(14)	65.2(9)
C01V	426(3)	7149.3(19)	3021.2(13)	74.8(11)
C01W	3193(4)	7736.6(18)	7189.7(13)	76.9(11)
C01X	-3711(4)	8256.1(17)	-2032.6(15)	78.3(11)
C01Y	13043(4)	5930.7(15)	3062.2(15)	72.0(10)
C01Z	-2637(4)	7311(2)	1824.3(15)	82.1(12)
C020	9459(4)	5564.6(16)	1597.2(16)	76.8(11)
C021	13149(4)	5431.8(17)	3375.4(16)	75.7(10)
C022	10701(4)	5129(2)	3184.7(16)	98.5(16)
C023	7010(5)	5411(2)	1707.1(18)	90.3(13)
C024	9698(5)	6080.9(16)	1893.1(17)	86.4(12)

C025	5567(5)	5469(2)	1506(2)	102.6(16)
C026	9340(4)	5182(3)	3345(2)	121(2)
C028	4622(6)	5397(3)	1895(2)	128(2)
C02A	3118(6)	5482(3)	1674(3)	145(3)
C1	6862(6)	5280(3)	3286(3)	150(3)
COAA	8090(6)	5092(4)	3045(3)	167(3)

Supplementary Table 9. Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for TPAOMe-TDPP. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U11+2hka^{*b}*U12+...]$.

	r].
Atom U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
S01 31.5(3)	36.3(3)	48.6(4)	5.0(3)	10.9(3)	5.9(2)
S02 31.1(3)	41.7(4)	62.9(4)	-6.5(3)	11.7(3)	7.3(2)
O003 37.5(10)	42.3(10)	52.5(11)	-1.7(8)	9.0(8)	5.1(8)
O004 41.6(11)	45.3(11)	64.6(13)	-0.1(9)	13.6(9)	11.4(8)
O005 57.1(13)	81.3(16)	54.2(12)	13.8(11)	12.0(10)	22.5(11)
N006 33.4(11)	42.0(12)	44.7(12)	2.4(9)	9.2(9)	9.6(9)
O007 47.1(12)	94.5(18)	45.9(11)	9.2(11)	5.5(9)	11.1(11)
N008 27.4(10)	34.5(11)	47.8(12)	4.3(9)	8.5(8)	2.7(8)
N009 33.2(12)	46.7(13)	51.5(13)	-2.1(10)	9.1(9)	13.4(9)
O00A 57.5(14)	105.4(19)	51.8(12)	0.1(12)	19.1(10)	26.7(13)
N00B 30.8(11)	37.9(11)	62.9(14)	-5.2(10)	14.2(10)	5.3(9)
O00C 77.7(16)	69.1(15)	54.8(13)	-16.0(11)	15.2(11)	10.7(12)
C00D 31.1(13)	30.0(12)	49.9(14)	5.2(10)	12.0(10)	-0.4(9)
C00E 33.5(13)	31.3(12)	49.3(14)	6.4(11)	11.0(11)	2.9(10)
C00F 32.5(13)	38.0(13)	51.4(15)	1.7(11)	11.0(11)	10.0(10)
C00G 32.5(13)	31.6(12)	47.6(14)	5.8(10)	12.1(10)	3.9(10)
C00H 34.4(13)	31.5(12)	54.2(15)	-3.2(11)	7.9(11)	2.8(10)
C00I 32.4(13)	31.9(12)	51.2(14)	5.5(11)	12.0(11)	1.9(10)
C00J 36.4(14)	32.6(12)	47.2(14)	0.8(10)	13.6(11)	1.3(10)
C00K 26.8(12)	37.3(13)	46.3(14)	-0.1(11)	8.7(10)	2.8(10)
C00L 32.1(13)	29.1(12)	49.4(14)	7.5(10)	11.1(10)	0.3(9)
C00M 34.5(13)	35.6(13)	45.4(14)	2.7(11)	8.4(10)	9.0(10)
C00N 31.6(13)	32.4(13)	60.7(16)	-6.6(11)	10.8(11)	3.1(10)
C00O 32.3(14)	33.8(13)	66.9(18)	-7.6(12)	11.0(12)	5.5(10)
C00P 31.0(13)	35.0(13)	55.1(15)	-4.9(11)	8.3(11)	4.5(10)
C00Q 32.8(13)	36.5(13)	51.5(15)	-3.0(11)	5.8(11)	-0.5(10)
C00R 27.8(13)	42.5(14)	50.2(15)	-2.1(11)	9.8(10)	6.3(10)
C00S 29.8(13)	34.2(13)	63.6(17)	-4.8(12)	12.2(11)	6.0(10)
C00T 29.5(12)	31.0(12)	48.4(14)	3.7(10)	12.2(10)	1.3(9)

Supplementary Information

C00U 33.4(14)	46.2(15)	55.1(16)	1.2(12)	11.3(11)	6.7(11)
C00V 37.1(14)	38.5(14)	49.9(15)	2.2(11)	13.8(11)	3.2(11)
C00W 34.1(13)	37.5(13)	45.0(14)	1.5(11)	7.3(10)	1.1(10)
C00X 33.0(14)	45.5(15)	55.8(16)	2.7(12)	6.0(11)	6.3(11)
C00Y 35.9(14)	40.1(14)	54.4(16)	2.2(12)	9.9(11)	5.7(11)
C00Z 33.4(13)	38.4(14)	53.1(15)	-1.7(11)	10.3(11)	2.8(10)
C010 45.5(16)	55.3(17)	42.4(14)	2.1(12)	8.5(12)	14.2(13)
C011 37.4(14)	42.5(14)	56.7(16)	-2.2(12)	13.6(12)	4.1(11)
C012 31.2(13)	31.2(13)	66.7(18)	-8.6(12)	13.0(12)	0.8(10)
C013 34.5(14)	49.3(16)	51.9(15)	-3.2(12)	9.1(11)	6.9(11)
C014 35.4(14)	38.6(14)	48.4(14)	3.3(11)	6.2(11)	3.1(10)
C015 36.8(14)	44.1(15)	50.6(15)	-4.5(12)	14.3(11)	7.1(11)
C016 35.4(14)	36.1(13)	51.5(15)	-4.6(11)	9.7(11)	0.6(10)
C017 32.3(14)	35.5(13)	65.1(17)	-6.2(12)	9.9(12)	4.2(10)
C018 45.8(16)	39.0(14)	56.1(16)	-3.8(12)	2.2(12)	7.0(11)
C019 33.9(14)	40.5(14)	60.5(17)	4.8(12)	9.4(12)	4.6(11)
C01A 30.9(13)	50.3(15)	52.5(15)	-0.9(12)	8.6(11)	4.6(11)
C01B 40.1(15)	37.9(14)	52.7(15)	3.0(12)	9.9(11)	1.4(11)
C01C 31.3(13)	42.3(14)	53.2(15)	-1.8(12)	7.6(11)	-1.5(11)
C01D 36.8(14)	29.6(12)	49.3(14)	5.9(10)	12.2(11)	2.4(10)
C01E 44.5(16)	42.1(15)	60.2(17)	-3.7(13)	11.1(13)	4.0(12)
C01F 33.2(14)	46.4(15)	51.5(15)	2.3(12)	13.4(11)	3.5(11)
C01G 40.9(16)	54.3(17)	53.4(16)	-4.3(13)	5.7(12)	9.6(12)
C01H 43.1(15)	56.2(17)	45.0(15)	3.3(13)	12.1(12)	-2.9(12)
C01I 45.6(16)	47.7(15)	54.9(16)	5.3(13)	20.8(13)	16.5(12)
C01J 47.6(17)	58.1(18)	48.3(15)	7.6(13)	16.7(13)	20.3(13)
C01K 44.5(16)	53.4(17)	50.2(16)	9.1(13)	15.8(12)	8.4(12)
C01L 35.5(15)	63.3(18)	50.0(16)	7.2(13)	14.8(12)	11.3(12)
C01M 36.6(15)	49.1(16)	61.3(17)	11.8(13)	16.9(12)	10.5(12)
C01N 33.3(14)	33.6(13)	68.2(18)	-8.7(12)	13.7(12)	3.5(10)
C01O 40.5(15)	51.5(16)	48.7(15)	-10.4(13)	5.4(12)	6.3(12)
C01P 38.3(15)	44.8(15)	62.6(17)	-5.0(13)	16.4(12)	5.0(11)
C01Q 41.5(16)	57.9(18)	54.3(17)	-6.7(14)	8.1(12)	2.6(13)
C01R 44.7(17)	59.1(19)	69(2)	0.5(15)	21.5(14)	13.5(13)
C01S 43.2(17)	65(2)	64.6(19)	4.7(15)	16.8(14)	18.1(14)
C01T 51(2)	120(3)	65(2)	35(2)	-5.3(16)	-25(2)
C01U 62(2)	64(2)	73(2)	-13.1(17)	22.2(17)	5.5(16)
C01V 48(2)	120(3)	54.4(19)	4(2)	2.8(15)	19(2)
C01W 88(3)	93(3)	52.8(19)	-13.7(19)	18.4(18)	7(2)
C01X 81(3)	88(3)	69(2)	24(2)	21.4(19)	38(2)

n		тс	
Sunn	amontary	Intorm	ation
Subb			auon
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	j		

C01Y	83(3)	63(2)	71(2)	13.8(18)	15.8(19)	-5.3(18)
C01Z	68(2)	119(3)	68(2)	15(2)	36.9(19)	30(2)
C020	78(3)	69(2)	80(2)	-16.3(19)	3(2)	11.5(19)
C021	68(2)	82(3)	78(2)	15(2)	15.1(19)	-0.4(19)
C022	62(2)	147(4)	78(3)	41(3)	-12.0(19)	-26(2)
C023	88(3)	99(3)	95(3)	-20(3)	47(2)	6(2)
C024	106(3)	63(2)	83(3)	-9(2)	-6(2)	2(2)
C025	88(3)	104(4)	129(4)	-29(3)	58(3)	-9(3)
C026	68(3)	162(5)	128(4)	79(4)	1(2)	-5(3)
C028	103(4)	149(5)	151(5)	-30(4)	75(4)	-1(4)
C02A	93(4)	186(7)	172(6)	-72(5)	68(4)	-25(4)
C1	75(3)	192(7)	188(6)	108(5)	34(4)	25(4)
C0AA	.96(3)	254(8)	143(5)	11(5)	-8(3)	-27(4)

S	upp	lement	arv T	able	10.	Bond	Lengths	for	TPAOM	le-TDPP.
			•							

tom	Atom	Length/Å	Atom Atom	Length/Å
S01	C00I	1.728(3)	C00P C00Y	1.388(4)
S01	C01D	1.738(3)	C00P C00Z	1.401(4)
S02	C017	1.725(3)	C00Q C016	1.370(4)
S02	C01N	1.733(3)	C00R C015	1.390(4)
O003	C00E	1.230(3)	C00R C01E	1.392(4)
O004	C000	1.230(4)	C00S C00S2	1.406(5)
O005	C01L	1.374(3)	C00S C012	1.404(4)
O005	C01X	1.423(5)	C00T C00W	1.396(4)
N006	C00K	1.429(3)	C00T C016	1.402(4)
N006	C00M	1.437(3)	C00U C01G	1.372(4)
N006	C00T	1.403(3)	C00V C01A	1.392(4)
O007	C010	1.372(3)	C00X C013	1.398(4)
O007	C01V	1.430(4)	C00X C01D	1.365(4)
N008	C00E	1.417(3)	C00Y C011	1.376(4)
N008	C00L	1.388(3)	C010 C01A	1.382(4)
N008	C01C	1.464(3)	C010 C01K	1.382(4)
N009	C00F	1.426(3)	C012 C01N	1.436(4)
N009	C00P	1.403(3)	C014 C018	1.377(4)
N009	COOR	1.429(3)	C015 C01I	1.389(4)
000A	C01J	1.372(4)	C017 C01S	1.368(4)
000A	C01Z	1.443(4)	C018 C01O	1.382(4)
N00B	C000	1.425(3)	C019 C01M	1.386(4)
N00B	C012	1.386(4)	C01B C01H	1.385(4)
N00B	C01P	1.460(4)	C01C C01T	1.540(5)

O00C C01O	1.368(3)	C01E C01Q	1.371(4)
O00C C01W	1.413(4)	C01F C01K	1.385(4)
C00D C00I	1.458(3)	C01G C01J	1.386(4)
C00D C00J	1.405(4)	C01HC01O	1.389(4)
C00D C00Q	1.397(4)	C011 C01L	1.378(4)
C00E C00G1	1.441(4)	C01J C01M	1.381(4)
C00F C00U	1.394(4)	C01L C01Q	1.398(4)
C00F C019	1.381(4)	C01N C01R	1.376(4)
C00G C00G1	1.422(5)	C01P C01U	1.534(4)
C00G C00L	1.394(4)	C01R C01S	1.397(4)
C00H C00N	1.395(4)	C01T C021	1.466(5)
C00H C00Z	1.384(4)	C01T C022	1.549(5)
C00I C013	1.374(4)	C01UC020	1.519(5)
C00J C00W	1.388(4)	C01UC023	1.527(5)
C00K C014	1.397(4)	C01YC021	1.504(5)
C00K C01B	1.378(4)	C020 C024	1.521(5)
COOL CO1D	1.446(3)	C022 C026	1.491(6)
C00M C00V	1.376(4)	C023 C025	1.456(7)
C00M C01F	1.392(4)	C025 C028	1.516(6)
C00N C011	1.403(4)	C026 C0AA	1.382(7)
C00N C017	1.461(4)	C028 C02A	1.531(8)
C000 C00S2	1.437(4)	C1 C0AA	1.542(8)

# Supplementary Table 11. Bond Angles for TPAOMe-TDPP.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom Angle/°
C00I	S01	C01D	92.78(12)	C00M	C00V	C01A 121.0(3)
C017	S02	C01N	92.79(14)	C00J	C00W	C00T 121.2(2)
C01L	O005	C01X	116.7(3)	C01D	C00X	C013 114.3(3)
C00K	N006	C00M	117.15(19)	C011	C00Y	C00P 120.7(3)
C00T	N006	C00K	120.3(2)	C00H	C00Z	C00P 120.4(3)
C00T	N006	C00M	119.3(2)	O007	C010	C01A 124.5(3)
C010	O007	C01V	118.0(3)	O007	C010	C01K 115.0(3)
C00E	N008	C01C	119.6(2)	C01K	C010	C01A 120.5(3)
COOL	N008	C00E	111.5(2)	C00Y	C011	C00N 121.7(3)
COOL	N008	C01C	128.7(2)	N00B	C012	C00S 106.7(2)
C00F	N009	COOR	117.9(2)	N00B	C012	C01N 126.8(2)
C00P	N009	C00F	119.3(2)	COOS	C012	C01N 126.4(3)
COOP	N009	COOR	120.9(2)	C00I	C013	C00X 113.6(3)
C01J	000A	C01Z	116.3(3)	C018	C014	C00K 120.0(3)
C00O	N00B	C01P	119.7(2)	C01I	C015	C00R 120.1(3)

_____

C012	N00B	C000	111.5(2)	C00Q	C016	C00T	121.0(2)
C012	N00B	C01P	128.6(2)	C00N	C017	S02	121.0(2)
C01O	O00C	C01W	118.1(3)	C01S	C017	S02	110.3(2)
C00J	C00D	C00I	123.1(2)	C01S	C017	C00N	128.7(3)
C00Q	C00D	C00I	119.9(2)	C014	C018	C010	121.1(3)
C00Q	C00D	C00J	117.0(2)	C00F	C019	C01M	120.8(3)
O003	C00E	N008	122.5(2)	C010	C01A	C00V	119.1(3)
O003	C00E	C00G1	132.7(2)	C00K	C01B	C01H	121.6(3)
N008	C00E	C00G1	104.8(2)	N008	C01C	C01T	114.2(2)
C00U	C00F	N009	120.6(2)	C00L	C01D	S01	127.0(2)
C019	C00F	N009	120.3(3)	C00X	C01D	S01	109.51(19)
C019	C00F	C00U	119.1(3)	C00X	C01D	C00L	123.5(2)
C00G1	C00G	C00E1	107.6(3)	C01Q	C01E	C00R	121.1(3)
COOL	C00G	C00E1	143.2(2)	C01K	C01F	C00M	120.1(3)
C00L	C00G	C00G1	109.2(3)	C00U	C01G	C01J	120.2(3)
C00Z	C00H	C00N	121.5(3)	C01B	C01H	C010	119.5(3)
C00D	COOI	S01	122.4(2)	C01L	C01I	C015	120.3(3)
C013	COOI	S01	109.82(19)	000A	C01J	C01G	115.3(3)
C013	COOI	C00D	127.8(2)	000A	C01J	C01M	124.7(3)
C00W	C00J	C00D	121.1(2)	C01M	C01J	C01G	120.0(3)
C014	C00K	N006	120.3(2)	C010	C01K	C01F	119.9(3)
C01B	C00K	N006	121.2(2)	O005	C01L	C01I	125.0(3)
C01B	C00K	C014	118.5(2)	O005	C01L	C01Q	115.2(3)
N008	COOL	C00G	106.8(2)	C01I	C01L	C01Q	119.8(3)
N008	COOL	C01D	127.0(2)	C01J	C01M	C019	119.5(3)
C00G	C00L	C01D	126.2(2)	C012	C01N	S02	126.8(2)
C00V	C00M	N006	120.4(2)	C01R	C01N	S02	109.3(2)
C00V	C00M	C01F	119.3(2)	C01R	C01N	C012	123.9(3)
C01F	C00M	N006	120.2(2)	O00C	C01O	C018	115.9(3)
СООН	COON	C011	117.2(2)	O00C	C01O	C01H	124.9(3)
С00Н	COON	C017	122.8(3)	C018	C01O	C01H	119.2(3)
C011	C00N	C017	120.1(3)	N00B	C01P	C01U	114.4(2)
O004	C00O	N00B	122.3(3)	C01E	C01Q	C01L	119.6(3)
O004	C00O	C00S2	133.8(2)	C01N	C01R	C01S	114.1(3)
N00B	C000	C00S2	104.0(2)	C017	C01S	C01R	113.5(3)

Supplementary Information							
C00Y	C00P	N009	121.7(2)	C01C	C01T	C022	107.3(3)
C00Y	C00P	C00Z	118.4(2)	C021	C01T	C01C	116.3(3)
C00Z	C00P	N009	119.9(2)	C021	C01T	C022	113.7(3)
C016	C00Q	C00D	122.1(2)	C020	C01U	C01P	112.2(3)
C015	COOR	N009	120.8(2)	C020	C01U	C023	112.3(4)
C015	COOR	C01E	119.0(3)	C023	C01U	C01P	109.3(3)
C01E	COOR	N009	120.2(2)	C01U	C020	C024	115.7(3)
C00S2	COOS	C00O2	108.9(3)	C01T	C021	C01Y	115.5(4)
C012	COOS	C00O2	142.3(3)	C026	C022	C01T	115.3(4)
C012	COOS	C00S2	108.7(3)	C025	C023	C01U	117.2(4)
C00W	C00T	N006	121.6(2)	C023	C025	C028	114.9(5)
C00W	C00T	C016	117.6(2)	COAA	C026	C022	126.4(6)
C016	C00T	N006	120.9(2)	C025	C028	C02A	113.4(5)
C01G	C00U	C00F	120.3(3)	C026	COAA	C1	114.1(6)

Supplementary Table 12. Hydrogen Atom Coordinates ( $Å \times 10^4$ ) and Isotropic Displacement Parameters ( $Å^2 \times 10^3$ ) for TPAOMe-TDPP.

Atom x	у	Z	U(eq)	
H00H 3146.32	5805.22	350.82	48	
H00J 7760.68	5804.89	4494.86	46	
H00Q 8970.03	6524.62	5837.73	48	
H00U 1179.82	7370.34	490.59	53	
H00V 2188.44	6640.3	4730.94	49	
H00W 5628.34	6171.7	4459.61	46	
H00X 13003.31	5651.29	5776.68	54	
H00Y 1199.83	6898.85	-963.57	52	
H00Z 1046.94	6178.87	372.96	50	
H011 3284.89	6523.35	-985.35	54	
H013 10937.46	6078.5	5928.27	54	
H014 4368.19	7848.13	5203.63	49	
H015 -1188.52	7826.76	-410.58	52	
H016 6858.39	6885.96	5805.15	49	
H018 3865.97	8304.04	5898.69	57	
H019 -2499.71	6694.51	150.77	54	
H01A 910.12	6844.79	3944.54	53	
H01B 4278.9	6487.77	5970.7	52	
H01C 11282.34	4837.16	4153.25	51	
H01D 12229.79	4519.61	3844.93	51	

H01Q -1328.36	6419.28	-1116.79	58
H01F 5464.32	7320.12	4308.49	52
H01R 721.78	7589.75	1285.12	60
H01H 3763.8	6944.18	6667.44	57
H01S -2520.75	8188.61	-1123.65	58
H01K 4216	7500.2	3513.36	58
H01U -2981.79	6931.29	943.85	58
H01V 8173.14	4672.65	1185.15	57
H01W 6954.09	4937.44	826.35	57
H01X -2634.41	6778.18	-1826.82	61
H01Y 7397.03	5614.22	-851.33	67
H01Z 5187.09	6026.54	-1054.84	68
H01T 11653.68	5612.35	3753.91	96
H01 7729.3	5779.96	1117.52	78
H01E 107.72	7259.01	2676.55	112
H01G -136.65	7304.41	3243.31	112
H01I 382.15	6770.27	3042.78	112
H01J 2470.58	7485.62	7097.07	115
H01L 2915.32	7997.52	7414.85	115
H01M 3989.85	7556.12	7358.77	115
H1AA -4235.19	8334.61	-2360.23	118
Н -2854.45	8439.18	-1996.88	118
HA -4202.67	8369.19	-1769.18	118
H01N 12194.68	5932.53	2831.16	108
H01O 13784.6	5945.48	2871.72	108
H01P 13083.66	6232.52	3283.95	108
H2AA -3357.03	7486.91	1602.24	123
HB -2634.65	7425.01	2169.08	123
HC -2778	6934.78	1802.1	123
H02G 10056.63	5556.84	1342.79	92
H02H 9720.13	5273.57	1830.92	92
H02A 13362.74	5140.78	3163.33	91
H02B 13906.46	5469.25	3653.28	91
H02C 10709.77	5344.25	2882.87	118

H02D 10821.95	4763.05	3089.48	118
H02I 7145	5063.34	1863.27	108
H02J 7247.68	5670.52	1975.69	108
H02K 9510.78	6374.23	1662.5	130
H02L 10629.46	6097.27	2059.22	130
H02M 9106.03	6097.01	2144.39	130
H02N 5323.1	5213.54	1234.24	123
H02O 5419.12	5819.8	1357.37	123
H02E 9365.01	4951.91	3639.47	145
H02F 9302	5541	3471.83	145
H02P 4880.5	5643.82	2173.09	154
H02Q 4736.91	5041.19	2033.87	154
H02R 2894.24	5284.49	1362.43	218
H02S 2955.85	5851.73	1605.13	218
H02T 2561.15	5362.87	1914.56	218
H1A 6053.09	5270.27	3034.24	226
H1B 7018.71	5635.6	3409.72	226
H1C 6750.05	5050.67	3564.75	226
H0AA 7995.11	4716.02	2975.39	201
H0AB 8071.68	5272.73	2721.8	201

# 2.6. X-ray crystallographic data for Py-TDPP

# Supplementary Table 13. Crystal data and structure refinement for Py-TDPP.

Identification code	Py-TDPP
Empirical formula	C ₆₃ H ₅₈ Cl ₂ N ₂ O ₂ S ₂
Formula weight	1010.13
Temperature/K	99.99(10)
Crystal system	triclinic
Space group	P-1
a/Å	10.3358(6)

b/Å	13.2950(9)
c/Å	18.9731(13)
α/°	80.781(6)
β/°	80.217(5)
γ/°	85.950(5)
Volume/Å ³	2533.6(3)
Z	2
pealeg/em ³	1.324
µ/mm ⁻¹	2.295
F(000)	1064.0
Crystal size/mm ³	$0.12\times0.11\times0.1$
Radiation	$CuK\alpha (\lambda = 1.54178)$
20 range for data collection/°	7.656 to 150.006
Index ranges	$-12 \le h \le 12,  -8 \le k \le 16,  -23 \le l \le 23$
Reflections collected	15267
Independent reflections	9842 [Rint = 0.0571, Rsigma = 0.0982]
Data/restraints/parameters	9842/22/654
Goodness-of-fit on F ²	0.999
Final R indexes [I>= $2\sigma$ (I)]	R1 = 0.0778, $wR2 = 0.2030$
Final R indexes [all data]	R1 = 0.1124, wR2 = 0.2359
Largest diff. peak/hole / e Å ³	0.57/-0.78

**Supplementary Table 14.** Fractional Atomic Coordinates ( $\times 10^4$ ) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **Py-TDPP**. Useq defined as 1/3 of of the trace of the orthogonalised UIJtensor.

Atom	X	у	Z	U(eq)
Cl1	1956(5)	6250(4)	9492(2)	178(2)
Cl2	4714(3)	6395(3)	9587.6(18)	135.0(15)
C63	3281(10)	7033(8)	9391(6)	104(3)
S1	10333.8(8)	9496.9(7)	6410.4(5)	27.4(2)
S2	6490.0(8)	6345.7(7)	3419.7(5)	29.3(2)
01	11093(2)	7620(2)	4075.0(15)	31.1(6)
O2	5760(2)	8586(2)	5557.8(15)	32.8(6)
N1	8992(3)	7238(2)	3949.3(16)	26.2(6)
N2	7864(3)	8840(2)	5748.9(16)	26.1(6)
C1	9899(3)	7681(3)	4280.7(19)	26.7(7)
C2	9093(3)	8148(3)	4847.1(19)	24.5(7)
C3	9154(3)	8668(2)	5417.6(19)	24.9(7)
C4	6953(3)	8459(3)	5389(2)	27.3(7)

C5	7765(3)	7980(3)	4831(2)	26.8(7)
C6	7702(3)	7395(3)	4285.3(19)	26.4(7)
C7	9440(3)	6738(3)	3316.5(19)	26.5(7)
C8	9203(3)	7404(3)	2605(2)	28.4(7)
C9	9263(4)	6717(3)	2025(2)	34.0(8)
C10	8743(5)	7239(4)	1345(3)	45.4(10)
C11	8592(8)	6443(6)	852(4)	85(2)
C12	7988(9)	6906(6)	193(4)	91(2)
C13	10127(4)	8303(3)	2384(2)	31.6(8)
C14	11573(4)	8007(3)	2170(3)	42.6(10)
C15	10313(3)	8964(3)	5637.1(19)	25.1(7)
C16	11590(3)	8815(3)	5293.9(19)	26.2(7)
C17	12541(3)	9108(3)	5653.0(19)	25.8(7)
C18	12024(3)	9478(3)	6286.3(19)	26.4(7)
C19	12735(3)	9872(2)	6785(2)	25.6(7)
C20	12389(3)	9692(3)	7546(2)	26.8(7)
C21	11359(4)	9033(3)	7931(2)	32.8(8)
C22	11039(4)	8900(3)	8663(2)	37.7(9)
C23	11732(4)	9377(3)	9100(2)	38.1(9)
C24	11427(5)	9235(4)	9860(2)	47.8(11)
C25	12155(5)	9681(4)	10264(3)	49.8(11)
C26	13199(5)	10266(4)	9929(2)	44.1(10)
C27	13540(4)	10438(3)	9173(2)	35.9(8)
C28	14603(4)	11065(3)	8804(2)	37.7(9)
C29	14907(4)	11216(3)	8083(2)	35.6(8)
C30	14193(3)	10753(3)	7637(2)	30.2(7)
C31	14528(3)	10893(3)	6891(2)	31.0(8)
C32	13820(3)	10456(3)	6467(2)	28.9(7)
C33	13117(4)	10142(3)	7979(2)	28.6(7)
C34	12798(4)	9983(3)	8746(2)	32.6(8)
C35	7397(3)	9254(3)	6418.0(19)	26.8(7)
C36	7520(3)	8465(3)	7096(2)	29.3(7)
C37	6599(4)	7588(3)	7184(2)	31.4(8)
C38	5129(4)	7865(3)	7354(3)	39.5(9)
C39	4298(5)	6949(4)	7390(4)	60.9(15)
C40	4375(5)	6580(4)	6663(4)	67.0(17)
C41	7359(4)	9015(3)	7759(2)	35.8(8)
C42	7578(5)	8303(3)	8452(2)	43.7(10)
C43	6541(3)	7006(3)	4131(2)	27.9(7)
C44	5287(3)	7154(3)	4496(2)	29.9(7)

Supplementary Information

C45	4307(4)	6780(3)	4186(2)	31.6(8)
C46	4791(3)	6322(3)	3586(2)	29.0(7)
C47	4140(3)	5917(3)	3068(2)	28.7(7)
C48	2986(3)	5349(3)	3294(2)	26.5(7)
C49	2435(4)	5036(3)	4035(2)	31.5(8)
C50	1325(4)	4495(3)	4218(2)	33.1(8)
C51	683(4)	4206(3)	3683(2)	33.2(8)
C52	-467(4)	3646(3)	3867(3)	40.8(10)
C53	-1039(4)	3350(3)	3320(3)	46.9(11)
C54	-520(4)	3600(3)	2610(3)	44.7(11)
C55	622(4)	4154(3)	2392(3)	36.0(9)
C56	1203(5)	4412(3)	1657(3)	42.6(10)
C57	2313(4)	4920(3)	1462(2)	39.0(9)
C58	2935(4)	5253(3)	2000(2)	32.7(8)
C59	4105(4)	5791(3)	1810(2)	34.9(8)
C60	4674(4)	6108(3)	2337(2)	31.4(8)
C61	1218(4)	4469(3)	2950(2)	30.8(8)
C62	2392(3)	5031(3)	2743(2)	29.1(7)
Cl2A	4304(14)	7297(14)	9864(8)	135.0(15)
C63A	2850(30)	6760(16)	9853(17)	104(3)
Cl1A	3290(20)	5752(15)	9324(11)	178(2)

**Supplementary Table 15.** Anisotropic Displacement Parameters (Å²×10³) for **Py-TDPP**. The Anisotropic displacement factor exponent takes the form:  $-2\pi^2[h^2a^{*2}U11+2hka^{*b}*U12+...]$ .

	*	-		-		
Atom	U11	U22	U33	U23	U13	U12
Cl1	187(4)	167(4)	181(4)	88(3)	-104(4)	-88(3)
Cl2	82.3(17)	173(3)	116(2)	39(2)	8.5(14)	30.7(18)
C63	93(7)	96(7)	100(7)	25(6)	1(5)	21(5)
<b>S</b> 1	19.1(4)	29.3(4)	35.8(5)	-8.5(3)	-5.8(3)	-2.5(3)
S2	19.7(4)	30.3(4)	39.8(5)	-10.3(3)	-3.9(3)	-5.0(3)
01	18.1(11)	37.1(14)	40.0(14)	-11.2(11)	-4.2(10)	-3.4(10)
O2	18.8(12)	41.5(15)	40.3(14)	-12.7(11)	-5.1(10)	0.1(10)
N1	20.3(13)	27.9(14)	31.4(15)	-6.9(11)	-3.5(11)	-3.8(11)
N2	18.9(13)	30.1(15)	30.2(15)	-6.5(11)	-3.8(11)	-2.2(11)
C1	20.5(16)	27.3(17)	32.7(17)	-4.0(13)	-3.4(13)	-6.1(13)
C2	16.6(15)	23.6(15)	33.4(17)	-2.1(13)	-5.5(12)	-4.4(12)
C3	20.8(15)	20.0(15)	33.0(17)	0.0(13)	-5.0(13)	-2.0(12)
C4	19.1(15)	28.2(17)	34.6(18)	-3.3(14)	-5.0(13)	-1.7(13)
C5	16.5(15)	28.0(17)	35.4(18)	-3.9(14)	-3.3(12)	-1.8(12)
C6	19.4(15)	24.5(16)	34.2(18)	0.0(13)	-4.8(13)	-2.6(12)

C722.6(15)24.2(16)33.6(18)-6.5(13)C823.0(16)25.1(16)37.8(19)-6.7(14)C930.2(18)33.6(19)40(2)-8.5(15)C1047(2)48(2)45(2)-10.4(19)C11105(5)97(5)63(4)-39(3)C12128(7)85(5)67(4)-22(4)C1329.9(18)26.2(17)37.9(19)-2.7(14)C1428.8(19)37(2)59(3)-0.7(19)C1522.8(16)21.6(15)31.8(17)-5.8(12)C1622.3(16)23.8(16)32.2(17)-2.5(13)C1720.8(15)22.5(16)34.4(18)-2.9(13)C1823.3(16)22.1(15)33.5(18)0.5(13)C1920.4(15)20.4(15)38.0(18)-4.1(13)C2022.7(16)20.0(15)39.1(19)-4.3(13)C2130.5(18)33.0(19)35.9(19)-3.3(15)C2235(2)37(2)40(2)-2.3(16)C2335(2)38(2)40(2)-2.3(16)C2448(3)55(3)39(2)-4.4(19)C2557(3)56(3)36(2)-4.5(19)C2448(3)55(3)39(2)-15.7(19)C2557(3)56(3)36(2)-15.7(19)C2647(2)36(18)57(2)-15.7(19)C2736(2)35.9(19)57(3)-16.2(17)C3829.9(19)32.8(19)57(3)-16.2(17)C		
CS23.0(16)25.1(16)37.8(19)-6.7(14)C930.2(18)33.6(19)40(2)-8.5(15)C1047(2)48(2)45(2)-10.4(19)C11105(5)9.7(5)63(4)-39(3)C12128(7)85(5)67(4)-22(4)C1329.9(18)26.2(17)37.9(19)-2.7(14)C1428.8(19)37(2)59(3)-0.7(19)C152.8.1(6)21.6(15)31.8(17)-5.8(12)C162.3.3(16)2.5.1(6)34.4(18)-2.9(13)C1720.8(15)22.5(16)34.4(18)-2.9(13)C1823.3(16)2.1.(15)33.5(18)0.5(13)C1920.4(15)20.4(15)38.0(18)-4.1(13)C202.7.1(6)20.4(15)39.1(19)-3.3(15)C1330.5(18)30.1(19)35.9(19)-3.3(15)C2448(3)55(3)39(2)-4.4(19)C2557(3)56(3)36(2)-5.5(19)C2647(2)55(3)36(2)-12.6(16)C2736(2)34.1(19)47(2)-12.6(16)C2829.9(19)32.8(19)57(3)-16.2(17)C2926.7(18)29.0(17)37.(19)-7.0(14)C3020.3(16)25.9(16)32.2(18)-6.6(13)C3121.9(16)23.4(16)38.3(19)-6.6(13)C3426.5(17)28.4(18)40(2)-3.3(14)C3325.3(16)25.4(16)32.2(18) <td>-4.4(13)</td> <td>-3.0(13)</td>	-4.4(13)	-3.0(13)
C930.2(18)33.6(19)40(2)-8.5(15)C1047(2)48(2)45(2)-10.4(19)C11105(5)97(5)63(4)-39(3)C12128(7)85(5)67(4)-22(4)C1329.9(18)62.2(17)37.9(19)-2.7(14)C1428.8(19)37(2)59(3)-0.7(19)C152.2.8(16)21.6(15)31.8(17)-5.8(12)C162.3.3(16)2.5.(16)34.4(18)-2.9(13)C1720.8(15)2.5.(16)34.4(18)-2.9(13)C182.3.3(16)2.1.(15)33.5(18)0.5(13)C1920.4(15)20.4(15)38.0(18)-4.1(13)C202.7.(16)20.4(15)39.1(19)-3.3(15)C133.5(18)3.0(19)35.9(19)-3.3(15)C2130.5(18)33.0(19)35.9(19)-3.3(15)C2235(2)37(2)40(2)-2.3(16)C2335(2)38(2)402)-12.6(16)C2448(3)55(3)36(2)-12.6(16)C2557(3)56(3)36(2)-12.6(16)C2647(2)28.4(18)40(2)-12.6(16)C2736(2)23.4(16)38.3(19)-6.6(13)C3023.3(16)23.4(16)38.3(19)-6.6(13)C3121.9(16)23.4(16)38.3(19)-6.6(13)C3223.3(16)25.9(17)33.4(18)-6.6(13)C3325.3(16)25.4(16)32.2(18)	-4.4(13)	-1.8(13)
C1047(2)48(2)45(2)-10.4(19)C11105(5)97(5)63(4)-39(3)C12128(7)85(5)67(4)-22(4)C1329.9(18)26.2(17)37.9(19)-7.7(14)C1428.8(19)37(2)59(3)-0.7(19)C1522.8(16)21.6(15)31.8(17)-5.8(12)C1623.3(16)22.5(16)34.4(18)-2.9(13)C1720.8(15)22.6(16)33.5(18)0.5(13)C1823.3(16)22.1(15)33.5(18)0.5(13)C2022.7(16)20.0(15)39.1(19)4.3(13)C2130.5(18)33.0(19)35.9(19)-3.3(15)C2235(2)37(2)40(2)1.6(16)C2335(2)38(2)40(2)-2.3(16)C2448(3)55(3)392(2)-4.4(19)C2557(3)56(3)362)-5.5(19)C2448(3)55(3)362)-15.7(19)C2557(3)56(3)362)-12.6(16)C2429.9(19)32.8(19)57(3)-16.2(17)C2526.7(18)28.0(18)57(2)-12.5(16)C3020.3(16)25.9(17)47(2)-8.7(15)C3121.9(16)23.4(16)38.3(19)-6.6(13)C3425.3(16)25.1(16)32.2(18)-6.6(13)C3523.3(16)25.1(16)32.2(18)-6.5(13)C3523.3(16)25.1(16)32.2(18)-6.5(13)<	-8.3(15)	0.8(15)
C11105(5)97(5)63(4)-39(3)C12128(7)85(5)67(4)-22(4)C13299(18)262(17)37.9(19)-2.7(14)C1428.8(19)37(2)59(3)-0.7(19)C1522.8(16)21.6(15)31.8(17)-5.8(12)C1622.3(16)23.8(16)32.2(17)-2.5(13)C1720.8(15)22.5(16)34.4(18)-2.9(13)C1823.3(16)22.1(15)33.5(18)-4.1(13)C2022.7(16)20.4(15)39.0(18)-4.3(13)C2130.5(18)33.0(19)35.9(19)-3.3(15)C2235(2)37(2)40(2)-2.3(16)C2335(2)38(2)40(2)-2.3(16)C2448(3)55(3)39(2)-4.4(19)C2557(3)56(3)36(2)-6.5(19)C2448(3)55(3)39(2)-4.5(15)C2448(3)55(3)39(2)-15.7(19)C2557(3)56(3)36(2)-15.7(19)C2647(2)58(15)32.6(16)-12.5(16)C3020.3(16)25.9(17)47(2)-8.7(15)C3121.9(16)25.9(17)37.7(19)-7.0(14)C3325.3(16)25.1(16)32.2(18)-6.6(13)C3425.1(15)32.4(16)38.3(19)-6.6(13)C3523.3(16)25.1(16)32.2(18)-6.5(13)C3523.3(16)25.1(16)32.2(18)-5.6(13) <td>-18.9(19)</td> <td>6.9(19)</td>	-18.9(19)	6.9(19)
C12128(7)85(5)67(4)-22(4)C13299(18)262(17)37.9(19)-2.7(14)C1428.8(19)37(2)59(3)-0.7(19)C1522.8(16)21.6(15)31.8(17)-5.8(12)C1622.3(16)23.8(16)32.2(17)-2.5(13)C1720.8(15)22.5(16)34.4(18)-2.9(13)C1823.3(16)22.1(15)33.5(18)0.5(13)C1920.4(15)20.4(15)38.0(18)4.1(13)C2022.7(16)20.0(15)39.1(19)4.3(13)C2130.5(18)33.0(19)35.9(19)-3.3(15)C2235(2)37(2)40(2)-2.3(16)C2335(2)38(2)40(2)-2.3(16)C2448(3)55(3)39(2)-4.4(19)C2557(3)56(3)36(2)-6.5(19)C2647(2)50(2)42(2)-15.7(19)C2736(2)34.1(19)42(2)-12.6(16)C2829.9(19)32.8(19)57(3)-16.2(17)C2926.7(18)28.0(18)57(2)-12.5(16)C3020.3(16)25.9(17)47(2)-8.7(15)C3121.9(16)23.4(16)38.3(19)-6.6(13)C3221.6(16)23.4(16)38.3(19)-6.6(13)C3426.5(17)23.4(16)32.2(18)-5.6(13)C3523.3(16)25.5(16)32.2(18)-5.6(13)C3523.3(16)25.9(17)33.4(18)<	-41(4)	45(4)
C1329.9(18)26.2(17)37.9(19)-2.7(14)C1428.8(19)37(2)59(3)0.7(19)C1522.8(16)21.6(15)31.8(17)-5.8(12)C1622.3(16)23.8(16)32.2(17)-2.5(13)C1720.8(15)22.5(16)34.4(18)-2.9(13)C1823.3(16)22.1(15)33.5(18)0.5(13)C1920.4(15)20.4(15)38.0(18)4.1(13)C2022.7(16)20.0(15)39.1(19)4.3(13)C2130.5(18)33.0(19)35.9(19)-3.3(15)C2235(2)37(2)40(2)-2.3(16)C2335(2)38(2)40(2)-2.3(16)C2448(3)55(3)39(2)4.4(19)C2557(3)56(3)36(2)-6.5(19)C2647(2)50(2)42(2)-15.7(19)C2736(2)34.1(19)42(2)-12.6(16)C2829.9(19)32.8(19)57(3)-16.2(17)C2926.7(18)28.0(18)57(2)-12.5(16)C3020.3(16)25.9(17)47(2)-8.7(15)C3121.9(16)23.4(16)38.3(19)-6.6(13)C3426.5(17)23.4(16)38.3(19)-6.6(13)C3523.3(16)25.5(16)32.2(18)-6.5(14)C3523.3(16)25.5(16)32.2(18)-6.5(13)C3426.5(17)28.4(18)40(2)-3.3(14)C3523.3(16)29.3(17)33.4(18	-36(4)	17(5)
C1428.8(19)37(2)59(3)-0.7(19)C1522.8(16)21.6(15)31.8(17)-5.8(12)C1622.3(16)23.8(16)32.2(17)-2.5(13)C1720.8(15)22.5(16)34.4(18)-2.9(13)C1823.3(16)22.1(15)33.5(18)0.5(13)C1920.4(15)20.4(15)38.0(18)-4.1(13)C2022.7(16)20.0(15)39.1(19)-4.3(13)C2130.5(18)33.0(19)35.9(19)-3.3(15)C2235(2)37(2)40(2)1.6(16)C2335(2)38(2)40(2)-2.3(16)C2448(3)55(3)39(2)-4.4(19)C2557(3)56(3)36(2)-6.5(19)C2647(2)50(2)42(2)-15.7(19)C2736(2)34.1(19)42(2)-12.6(16)C2829.9(19)32.8(19)57(3)-16.2(17)C2926.7(18)28.0(18)57(2)-12.5(16)C3020.3(16)25.9(17)47(2)-8.7(15)C3121.9(16)23.6(16)38.3(19)-6.6(13)C3426.5(17)29.3(18)43(2)-6.4(15)C3523.3(16)25.5(16)32.2(18)-5.6(13)C3426.5(17)28.4(18)40(2)-3.3(14)C3523.3(16)25.5(16)32.2(18)-5.6(13)C3426.5(17)28.4(18)40(2)-12.3)C3523.3(16)29.8(19)54(2) <t< td=""><td>-5.2(14)</td><td>-1.9(14)</td></t<>	-5.2(14)	-1.9(14)
C15         22.8(16)         21.6(15)         31.8(17)         -5.8(12)           C16         22.3(16)         23.8(16)         32.2(17)         -2.5(13)           C17         20.8(15)         22.5(16)         34.4(18)         -2.9(13)           C18         23.3(16)         22.1(15)         33.5(18)         0.5(13)           C19         20.4(15)         20.4(15)         38.0(18)         -4.1(13)           C20         22.7(16)         20.0(15)         39.1(19)         -4.3(13)           C21         30.5(18)         33.0(19)         35.9(19)         -3.3(15)           C22         35(2)         37(2)         40(2)         -6.16(6)           C23         35(2)         38(2)         40(2)         -2.3(16)           C24         48(3)         55(3)         39(2)         -4.4(19)           C25         57(3)         56(3)         36(2)         -6.5(19)           C26         47(2)         50(2)         42(2)         -12.6(16)           C28         29.9(19)         32.8(19)         57(3)         -16.2(17)           C29         26.7(18)         28.0(18)         57(2)         -8.7(15)           C31         21.9(16)         23.6(16) </td <td>-4.2(18)</td> <td>-2.8(16)</td>	-4.2(18)	-2.8(16)
C16         22.3(16)         23.8(16)         32.2(17)         -2.5(13)           C17         20.8(15)         22.5(16)         34.4(18)         -2.9(13)           C18         23.3(16)         22.1(15)         33.5(18)         0.5(13)           C19         20.4(15)         20.4(15)         38.0(18)         -4.1(13)           C20         22.7(16)         20.0(15)         39.1(19)         -4.3(13)           C21         30.5(18)         33.0(19)         35.9(19)         -3.3(15)           C22         35(2)         37(2)         40(2)         -2.3(16)           C23         35(2)         38(2)         40(2)         -2.3(16)           C24         48(3)         55(3)         39(2)         -4.4(19)           C25         57(3)         56(3)         36(2)         -5.1(19)           C26         47(2)         50(2)         42(2)         -12.6(16)           C28         29.9(19)         32.8(19)         57(3)         -16.2(17)           C30         20.3(16)         25.9(17)         47(2)         -8.7(15)           C31         21.9(16)         23.6(16)         49(2)         -5.8(15)           C32         21.6(16)         29.0(17)	-5.6(13)	-0.2(12)
C17         20.8(15)         22.5(16)         34.4(18)         -2.9(13)           C18         23.3(16)         22.1(15)         33.5(18)         0.5(13)           C19         20.4(15)         20.4(15)         38.0(18)         -4.1(13)           C20         22.7(16)         20.0(15)         39.1(19)         -4.3(13)           C21         30.5(18)         33.0(19)         35.9(19)         -3.3(15)           C22         35(2)         37(2)         40(2)         -2.3(16)           C23         35(2)         38(2)         40(2)         -2.3(16)           C24         48(3)         55(3)         39(2)         -4.4(19)           C25         57(3)         56(3)         36(2)         -6.5(19)           C26         47(2)         50(2)         42(2)         -12.6(16)           C28         29.9(19)         32.8(19)         57(3)         -16.2(17)           C30         20.3(16)         25.9(17)         47(2)         -8.7(15)           C31         21.9(16)         23.6(16)         38.3(19)         -6.6(13)           C32         21.6(16)         29.0(17)         37.7(19)         7.0(14)           C33         25.3(16)         23.2(18) <td>-4.0(13)</td> <td>-4.8(12)</td>	-4.0(13)	-4.8(12)
C18         23.3(16)         22.1(15)         33.5(18)         0.5(13)           C19         20.4(15)         20.4(15)         38.0(18)         -4.1(13)           C20         22.7(16)         20.0(15)         39.1(19)         -4.3(13)           C21         30.5(18)         33.0(19)         35.9(19)         -3.3(15)           C22         35(2)         37(2)         40(2)         -2.3(16)           C24         48(3)         55(3)         39(2)         -4.4(19)           C25         57(3)         56(3)         36(2)         -6.5(19)           C26         47(2)         50(2)         42(2)         -12.6(16)           C28         29.9(19)         32.8(19)         57(3)         -16.2(17)           C29         26.7(18)         28.0(18)         57(2)         -12.5(16)           C30         20.3(16)         25.9(17)         47(2)         -8.7(15)           C31         21.9(16)         23.6(16)         49(2)         -5.8(15)           C32         21.6(16)         29.0(17)         37.7(19)         -7.0(14)           C33         25.3(16)         23.4(16)         38.3(19)         -6.6(13)           C34         26.5(17)         29.3(1	-5.3(13)	-3.4(12)
C1920.4(15)20.4(15)38.0(18)-4.1(13)C2022.7(16)20.0(15)39.1(19)-4.3(13)C2130.5(18)33.0(19)35.9(19)-3.3(15)C2235(2)37(2)40(2)-2.3(16)C2335(2)38(2)40(2)-2.3(16)C2448(3)55(3)39(2)-4.4(19)C2557(3)56(3)36(2)-6.5(19)C2647(2)50(2)42(2)-15.7(19)C2736(2)34.1(19)42(2)-12.6(16)C2829.9(19)32.8(19)57(3)-16.2(17)C2926.7(18)28.0(18)57(2)-12.5(16)C3020.3(16)25.9(17)47(2)-8.7(15)C3121.9(16)23.6(16)49(2)-5.8(15)C3221.6(16)29.0(17)37.7(19)-7.0(14)C3325.3(16)23.4(16)38.3(19)-6.6(13)C3426.5(17)29.3(18)43(2)-6.4(15)C3523.3(16)25.5(16)32.2(18)-5.6(13)C3625.2(16)29.3(17)33.4(18)-6.5(14)C3724.5(17)28.4(18)40(2)-3.3(14)C3827.6(19)29.8(19)54(2)3.9(17)C3931(2)47(3)100(4)12(3)C4142(2)28.5(18)36(2)-8.7(15)C4254(3)42(2)35(2)-6.5(17)C4324.0(17)23.1(16)38.2(19)-6.0(14) </td <td>-7.0(13)</td> <td>-3.3(12)</td>	-7.0(13)	-3.3(12)
C20         22.7(16)         20.0(15)         39.1(19)         -4.3(13)           C21         30.5(18)         33.0(19)         35.9(19)         -3.3(15)           C22         35(2)         37(2)         40(2)         -2.3(16)           C23         35(2)         38(2)         40(2)         -2.3(16)           C24         48(3)         55(3)         39(2)         -4.4(19)           C25         57(3)         56(3)         36(2)         -6.5(19)           C26         47(2)         50(2)         42(2)         -15.7(19)           C27         36(2)         34.1(19)         42(2)         -12.6(16)           C28         29.9(19)         32.8(19)         57(3)         -16.2(17)           C29         26.7(18)         28.0(18)         57(2)         -12.5(16)           C31         21.9(16)         23.6(16)         49(2)         -5.8(15)           C32         21.6(16)         29.0(17)         37.7(19)         -7.0(14)           C33         25.3(16)         23.4(16)         38.3(19)         -6.6(13)           C34         26.5(17)         29.3(17)         33.4(18)         -6.5(14)           C35         23.3(16)         25.5(16)	-11.3(13)	0.1(12)
C21       30.5(18)       33.0(19)       35.9(19)       -3.3(15)         C22       35(2)       37(2)       40(2)       1.6(16)         C23       35(2)       38(2)       40(2)       -2.3(16)         C24       48(3)       55(3)       39(2)       -4.4(19)         C25       57(3)       56(3)       36(2)       -6.5(19)         C26       47(2)       50(2)       42(2)       -15.7(19)         C27       36(2)       34.1(19)       42(2)       -12.6(16)         C28       29.9(19)       32.8(19)       57(3)       -16.2(17)         C29       26.7(18)       28.0(18)       57(2)       -12.5(16)         C30       20.3(16)       25.9(17)       47(2)       -8.7(15)         C31       21.9(16)       23.6(16)       49(2)       -5.8(15)         C32       21.6(16)       29.0(17)       37.7(19)       -7.0(14)         C33       25.3(16)       23.4(16)       38.3(19)       -6.6(13)         C34       26.5(17)       29.3(17)       33.4(18)       -5.6(13)         C35       23.3(16)       25.5(16)       32.2(18)       -5.6(13)         C36       25.2(16)       29.3(17) <t< td=""><td>-9.4(14)</td><td>0.7(12)</td></t<>	-9.4(14)	0.7(12)
C22         35(2)         37(2)         40(2)         1.6(16)           C23         35(2)         38(2)         40(2)         -2.3(16)           C24         48(3)         55(3)         39(2)         -4.4(19)           C25         57(3)         56(3)         36(2)         -6.5(19)           C26         47(2)         50(2)         42(2)         -15.7(19)           C27         36(2)         34.1(19)         42(2)         -12.6(16)           C28         29.9(19)         32.8(19)         57(3)         -16.2(17)           C29         26.7(18)         28.0(18)         57(2)         -12.5(16)           C30         20.3(16)         25.9(17)         47(2)         -8.7(15)           C31         21.9(16)         23.6(16)         49(2)         -5.8(15)           C32         21.6(16)         29.0(17)         37.7(19)         -7.0(14)           C33         25.3(16)         23.4(16)         38.3(19)         -6.6(13)           C34         26.5(17)         29.3(18)         43(2)         -6.4(15)           C35         23.3(16)         25.5(16)         32.2(18)         -5.6(13)           C36         25.2(16)         29.3(17)         <	-7.5(15)	-8.0(15)
C23         35(2)         38(2)         40(2)         -2.3(16)           C24         48(3)         55(3)         39(2)         -4.4(19)           C25         57(3)         56(3)         36(2)         -6.5(19)           C26         47(2)         50(2)         42(2)         -15.7(19)           C27         36(2)         34.1(19)         42(2)         -12.6(16)           C28         29.9(19)         32.8(19)         57(3)         -16.2(17)           C29         26.7(18)         28.0(18)         57(2)         -12.5(16)           C30         20.3(16)         25.9(17)         47(2)         -8.7(15)           C31         21.9(16)         23.6(16)         49(2)         -5.8(15)           C32         21.6(16)         29.0(17)         37.7(19)         -7.0(14)           C33         25.3(16)         23.4(16)         38.3(19)         -6.6(13)           C34         26.5(17)         29.3(18)         43(2)         -6.4(15)           C35         23.3(16)         25.5(16)         32.2(18)         -5.6(13)           C36         25.2(16)         29.3(17)         33.4(18)         -6.5(14)           C37         24.5(17)         28.4(18)	-6.9(16)	-7.2(16)
C24       48(3)       55(3)       39(2)       -4.4(19)         C25       57(3)       56(3)       36(2)       -6.5(19)         C26       47(2)       50(2)       42(2)       -15.7(19)         C27       36(2)       34.1(19)       42(2)       -12.6(16)         C28       29.9(19)       32.8(19)       57(3)       -16.2(17)         C29       26.7(18)       28.0(18)       57(2)       -12.5(16)         C30       20.3(16)       25.9(17)       47(2)       -8.7(15)         C31       21.9(16)       23.6(16)       49(2)       -5.8(15)         C32       21.6(16)       29.0(17)       37.7(19)       -7.0(14)         C33       25.3(16)       23.4(16)       38.3(19)       -6.6(13)         C34       26.5(17)       29.3(18)       43(2)       -6.4(15)         C35       23.3(16)       25.5(16)       32.2(18)       -6.5(14)         C37       24.5(17)       28.4(18)       40(2)       -3.3(14)         C38       27.6(19)       29.8(19)       54(2)       3.9(17)         C39       31(2)       47(3)       100(4)       12(3)         C40       35(2)       40(3)       129(6)	-5.4(16)	-2.6(16)
C25         57(3)         56(3)         36(2)         -6.5(19)           C26         47(2)         50(2)         42(2)         -15.7(19)           C27         36(2)         34.1(19)         42(2)         -12.6(16)           C28         29.9(19)         32.8(19)         57(3)         -16.2(17)           C29         26.7(18)         28.0(18)         57(2)         -12.5(16)           C30         20.3(16)         25.9(17)         47(2)         -8.7(15)           C31         21.9(16)         23.6(16)         49(2)         -5.8(15)           C32         21.6(16)         29.0(17)         37.7(19)         -7.0(14)           C33         25.3(16)         23.4(16)         38.3(19)         -6.6(13)           C34         26.5(17)         29.3(18)         43(2)         -6.4(15)           C35         23.3(16)         25.5(16)         32.2(18)         -5.6(13)           C36         25.2(16)         29.3(17)         33.4(18)         -6.5(14)           C37         24.5(17)         28.4(18)         40(2)         -3.3(14)           C38         27.6(19)         29.8(19)         54(2)         3.9(17)           C39         31(2)         47(3)	-3.3(19)	-9(2)
C26         47(2)         50(2)         42(2)         -15.7(19)           C27         36(2)         34.1(19)         42(2)         -12.6(16)           C28         29.9(19)         32.8(19)         57(3)         -16.2(17)           C29         26.7(18)         28.0(18)         57(2)         -12.5(16)           C30         20.3(16)         25.9(17)         47(2)         -8.7(15)           C31         21.9(16)         23.6(16)         49(2)         -5.8(15)           C32         21.6(16)         29.0(17)         37.7(19)         -7.0(14)           C33         25.3(16)         23.4(16)         38.3(19)         -6.6(13)           C34         26.5(17)         29.3(18)         43(2)         -6.4(15)           C35         23.3(16)         25.5(16)         32.2(18)         -6.5(13)           C36         25.2(16)         29.3(17)         33.4(18)         -6.5(14)           C37         24.5(17)         28.4(18)         40(2)         -3.3(14)           C38         27.6(19)         29.8(19)         54(2)         3.9(17)           C39         31(2)         47(3)         100(4)         12(3)           C40         35(2)         40(3) </td <td>-9.6(19)</td> <td>4(2)</td>	-9.6(19)	4(2)
C2736(2)34.1(19)42(2)-12.6(16)C2829.9(19)32.8(19)57(3)-16.2(17)C2926.7(18)28.0(18)57(2)-12.5(16)C3020.3(16)25.9(17)47(2)-8.7(15)C3121.9(16)23.6(16)49(2)-5.8(15)C3221.6(16)29.0(17)37.7(19)-7.0(14)C3325.3(16)23.4(16)38.3(19)-6.6(13)C3426.5(17)29.3(18)43(2)-6.4(15)C3523.3(16)25.5(16)32.2(18)-5.6(13)C3625.2(16)29.3(17)33.4(18)-6.5(14)C3724.5(17)28.4(18)40(2)-3.3(14)C3827.6(19)29.8(19)54(2)3.9(17)C3931(2)47(3)100(4)12(3)C4035(2)40(3)129(6)-12(3)C4142(2)28.5(18)36(2)-8.7(15)C4254(3)42(2)35(2)-6.5(17)C4324.0(17)23.1(16)38.2(19)-6.0(14)C4420.9(16)30.3(18)37.9(19)-3.7(14)	-17.6(18)	5.5(19)
C28 $29.9(19)$ $32.8(19)$ $57(3)$ $-16.2(17)$ $C29$ $26.7(18)$ $28.0(18)$ $57(2)$ $-12.5(16)$ $C30$ $20.3(16)$ $25.9(17)$ $47(2)$ $-8.7(15)$ $C31$ $21.9(16)$ $23.6(16)$ $49(2)$ $-5.8(15)$ $C32$ $21.6(16)$ $29.0(17)$ $37.7(19)$ $-7.0(14)$ $C33$ $25.3(16)$ $23.4(16)$ $38.3(19)$ $-6.6(13)$ $C34$ $26.5(17)$ $29.3(18)$ $43(2)$ $-6.4(15)$ $C35$ $23.3(16)$ $25.5(16)$ $32.2(18)$ $-5.6(13)$ $C36$ $25.2(16)$ $29.3(17)$ $33.4(18)$ $-6.5(14)$ $C37$ $24.5(17)$ $28.4(18)$ $40(2)$ $-3.3(14)$ $C38$ $27.6(19)$ $29.8(19)$ $54(2)$ $3.9(17)$ $C39$ $31(2)$ $47(3)$ $100(4)$ $12(3)$ $C40$ $35(2)$ $40(3)$ $129(6)$ $-12(3)$ $C41$ $42(2)$ $28.5(18)$ $36(2)$ $-8.7(15)$ $C42$ $54(3)$ $42(2)$ $35(2)$ $-6.5(17)$ $C43$ $24.0(17)$ $23.1(16)$ $38.2(19)$ $-6.0(14)$	-15.3(16)	4.6(16)
C2926.7(18)28.0(18)57(2)-12.5(16)C3020.3(16)25.9(17)47(2)-8.7(15)C3121.9(16)23.6(16)49(2)-5.8(15)C3221.6(16)29.0(17)37.7(19)-7.0(14)C3325.3(16)23.4(16)38.3(19)-6.6(13)C3426.5(17)29.3(18)43(2)-6.4(15)C3523.3(16)25.5(16)32.2(18)-5.6(13)C3625.2(16)29.3(17)33.4(18)-6.5(14)C3724.5(17)28.4(18)40(2)-3.3(14)C3827.6(19)29.8(19)54(2)3.9(17)C3931(2)47(3)100(4)12(3)C4035(2)40(3)129(6)-12(3)C4142(2)28.5(18)36(2)-8.7(15)C4254(3)42(2)35(2)-6.5(17)C4324.0(17)23.1(16)38.2(19)-6.0(14)C4420.9(16)30.3(18)37.9(19)-3.7(14)	-18.6(17)	0.5(15)
C30 $20.3(16)$ $25.9(17)$ $47(2)$ $-8.7(15)$ C31 $21.9(16)$ $23.6(16)$ $49(2)$ $-5.8(15)$ C32 $21.6(16)$ $29.0(17)$ $37.7(19)$ $-7.0(14)$ C33 $25.3(16)$ $23.4(16)$ $38.3(19)$ $-6.6(13)$ C34 $26.5(17)$ $29.3(18)$ $43(2)$ $-6.4(15)$ C35 $23.3(16)$ $25.5(16)$ $32.2(18)$ $-5.6(13)$ C36 $25.2(16)$ $29.3(17)$ $33.4(18)$ $-6.5(14)$ C37 $24.5(17)$ $28.4(18)$ $40(2)$ $-3.3(14)$ C38 $27.6(19)$ $29.8(19)$ $54(2)$ $3.9(17)$ C39 $31(2)$ $47(3)$ $100(4)$ $12(3)$ C40 $35(2)$ $40(3)$ $129(6)$ $-12(3)$ C41 $42(2)$ $28.5(18)$ $36(2)$ $-8.7(15)$ C42 $54(3)$ $42(2)$ $35(2)$ $-6.5(17)$ C43 $24.0(17)$ $23.1(16)$ $38.2(19)$ $-6.0(14)$	-15.5(16)	0.7(14)
C3121.9(16)23.6(16)49(2)-5.8(15)C3221.6(16)29.0(17)37.7(19)-7.0(14)C3325.3(16)23.4(16)38.3(19)-6.6(13)C3426.5(17)29.3(18)43(2)-6.4(15)C3523.3(16)25.5(16)32.2(18)-5.6(13)C3625.2(16)29.3(17)33.4(18)-6.5(14)C3724.5(17)28.4(18)40(2)-3.3(14)C3827.6(19)29.8(19)54(2)3.9(17)C3931(2)47(3)100(4)12(3)C4035(2)40(3)129(6)-12(3)C4142(2)28.5(18)36(2)-8.7(15)C4254(3)42(2)35(2)-6.5(17)C4324.0(17)23.1(16)38.2(19)-6.0(14)C4420.9(16)30.3(18)37.9(19)-3.7(14)	-9.8(14)	2.4(13)
C32 $21.6(16)$ $29.0(17)$ $37.7(19)$ $-7.0(14)$ C33 $25.3(16)$ $23.4(16)$ $38.3(19)$ $-6.6(13)$ C34 $26.5(17)$ $29.3(18)$ $43(2)$ $-6.4(15)$ C35 $23.3(16)$ $25.5(16)$ $32.2(18)$ $-5.6(13)$ C36 $25.2(16)$ $29.3(17)$ $33.4(18)$ $-6.5(14)$ C37 $24.5(17)$ $28.4(18)$ $40(2)$ $-3.3(14)$ C38 $27.6(19)$ $29.8(19)$ $54(2)$ $3.9(17)$ C39 $31(2)$ $47(3)$ $100(4)$ $12(3)$ C40 $35(2)$ $40(3)$ $129(6)$ $-12(3)$ C41 $42(2)$ $28.5(18)$ $36(2)$ $-8.7(15)$ C42 $54(3)$ $42(2)$ $35(2)$ $-6.5(17)$ C43 $24.0(17)$ $23.1(16)$ $38.2(19)$ $-6.0(14)$	-9.8(14)	-0.3(13)
C3325.3(16)23.4(16) $38.3(19)$ $-6.6(13)$ C34 $26.5(17)$ $29.3(18)$ $43(2)$ $-6.4(15)$ C35 $23.3(16)$ $25.5(16)$ $32.2(18)$ $-5.6(13)$ C36 $25.2(16)$ $29.3(17)$ $33.4(18)$ $-6.5(14)$ C37 $24.5(17)$ $28.4(18)$ $40(2)$ $-3.3(14)$ C38 $27.6(19)$ $29.8(19)$ $54(2)$ $3.9(17)$ C39 $31(2)$ $47(3)$ $100(4)$ $12(3)$ C40 $35(2)$ $40(3)$ $129(6)$ $-12(3)$ C41 $42(2)$ $28.5(18)$ $36(2)$ $-8.7(15)$ C42 $54(3)$ $42(2)$ $35(2)$ $-6.5(17)$ C43 $24.0(17)$ $23.1(16)$ $38.2(19)$ $-6.0(14)$ C44 $20.9(16)$ $30.3(18)$ $37.9(19)$ $-3.7(14)$	-6.9(13)	-1.8(13)
C34 $26.5(17)$ $29.3(18)$ $43(2)$ $-6.4(15)$ C35 $23.3(16)$ $25.5(16)$ $32.2(18)$ $-5.6(13)$ C36 $25.2(16)$ $29.3(17)$ $33.4(18)$ $-6.5(14)$ C37 $24.5(17)$ $28.4(18)$ $40(2)$ $-3.3(14)$ C38 $27.6(19)$ $29.8(19)$ $54(2)$ $3.9(17)$ C39 $31(2)$ $47(3)$ $100(4)$ $12(3)$ C40 $35(2)$ $40(3)$ $129(6)$ $-12(3)$ C41 $42(2)$ $28.5(18)$ $36(2)$ $-8.7(15)$ C42 $54(3)$ $42(2)$ $35(2)$ $-6.5(17)$ C43 $24.0(17)$ $23.1(16)$ $38.2(19)$ $-6.0(14)$	-8.2(14)	2.7(13)
C35 $23.3(16)$ $25.5(16)$ $32.2(18)$ $-5.6(13)$ C36 $25.2(16)$ $29.3(17)$ $33.4(18)$ $-6.5(14)$ C37 $24.5(17)$ $28.4(18)$ $40(2)$ $-3.3(14)$ C38 $27.6(19)$ $29.8(19)$ $54(2)$ $3.9(17)$ C39 $31(2)$ $47(3)$ $100(4)$ $12(3)$ C40 $35(2)$ $40(3)$ $129(6)$ $-12(3)$ C41 $42(2)$ $28.5(18)$ $36(2)$ $-8.7(15)$ C42 $54(3)$ $42(2)$ $35(2)$ $-6.5(17)$ C43 $24.0(17)$ $23.1(16)$ $38.2(19)$ $-6.0(14)$ C44 $20.9(16)$ $30.3(18)$ $37.9(19)$ $-3.7(14)$	-10.0(15)	2.4(14)
C36 $25.2(16)$ $29.3(17)$ $33.4(18)$ $-6.5(14)$ C37 $24.5(17)$ $28.4(18)$ $40(2)$ $-3.3(14)$ C38 $27.6(19)$ $29.8(19)$ $54(2)$ $3.9(17)$ C39 $31(2)$ $47(3)$ $100(4)$ $12(3)$ C40 $35(2)$ $40(3)$ $129(6)$ $-12(3)$ C41 $42(2)$ $28.5(18)$ $36(2)$ $-8.7(15)$ C42 $54(3)$ $42(2)$ $35(2)$ $-6.5(17)$ C43 $24.0(17)$ $23.1(16)$ $38.2(19)$ $-6.0(14)$	-5.1(13)	-1.0(13)
C37 $24.5(17)$ $28.4(18)$ $40(2)$ $-3.3(14)$ C38 $27.6(19)$ $29.8(19)$ $54(2)$ $3.9(17)$ C39 $31(2)$ $47(3)$ $100(4)$ $12(3)$ C40 $35(2)$ $40(3)$ $129(6)$ $-12(3)$ C41 $42(2)$ $28.5(18)$ $36(2)$ $-8.7(15)$ C42 $54(3)$ $42(2)$ $35(2)$ $-6.5(17)$ C43 $24.0(17)$ $23.1(16)$ $38.2(19)$ $-6.0(14)$ C44 $20.9(16)$ $30.3(18)$ $37.9(19)$ $-3.7(14)$	-3.8(13)	0.8(14)
C38 $27.6(19)$ $29.8(19)$ $54(2)$ $3.9(17)$ C39 $31(2)$ $47(3)$ $100(4)$ $12(3)$ C40 $35(2)$ $40(3)$ $129(6)$ $-12(3)$ C41 $42(2)$ $28.5(18)$ $36(2)$ $-8.7(15)$ C42 $54(3)$ $42(2)$ $35(2)$ $-6.5(17)$ C43 $24.0(17)$ $23.1(16)$ $38.2(19)$ $-6.0(14)$ C44 $20.9(16)$ $30.3(18)$ $37.9(19)$ $-3.7(14)$	-5.1(14)	0.5(14)
C3931(2)47(3)100(4)12(3)C4035(2)40(3)129(6)-12(3)C4142(2)28.5(18)36(2)-8.7(15)C4254(3)42(2)35(2)-6.5(17)C4324.0(17)23.1(16)38.2(19)-6.0(14)C4420.9(16)30.3(18)37.9(19)-3.7(14)	3.4(16)	-3.8(15)
C40       35(2)       40(3)       129(6)       -12(3)         C41       42(2)       28.5(18)       36(2)       -8.7(15)         C42       54(3)       42(2)       35(2)       -6.5(17)         C43       24.0(17)       23.1(16)       38.2(19)       -6.0(14)         C44       20.9(16)       30.3(18)       37.9(19)       -3.7(14)	-13(2)	-10(2)
C41       42(2)       28.5(18)       36(2)       -8.7(15)         C42       54(3)       42(2)       35(2)       -6.5(17)         C43       24.0(17)       23.1(16)       38.2(19)       -6.0(14)         C44       20.9(16)       30.3(18)       37.9(19)       -3.7(14)	-22(3)	-2(2)
C42 $54(3)$ $42(2)$ $35(2)$ $-6.5(17)$ C43 $24.0(17)$ $23.1(16)$ $38.2(19)$ $-6.0(14)$ C44 $20.9(16)$ $30.3(18)$ $37.9(19)$ $-3.7(14)$	-1.0(16)	1.3(15)
C43       24.0(17)       23.1(16) $38.2(19)$ $-6.0(14)$ C44       20.9(16)       30.3(18) $37.9(19)$ $-3.7(14)$	-5.2(18)	-5.0(19)
C44 = 20.9(16) = 30.3(18) = 37.9(10) = -3.7(14)	-7.3(14)	-2.2(13)
20.9(10) 30.3(10) 37.9(17) -5.7(14)	-2.0(13)	-6.2(13)
C45 24.4(17) 34.0(19) 36.2(19) -4.0(15)	-4.3(14)	-4.6(14)
C46 21.9(16) 25.5(16) 38.6(19) -1.5(14)	-3.4(13)	-6.1(13)

S54

Supplementary Information

C47	21.2(16)	25.6(17)	39.5(19)	-2.7(14)	-5.6(14)	-5.1(13)
C48	20.3(15)	22.6(16)	36.7(18)	-4.8(13)	-3.5(13)	-2.5(12)
C49	28.6(18)	24.2(17)	42(2)	-3.4(14)	-7.6(15)	-5.5(14)
C50	27.0(17)	26.8(17)	43(2)	-0.7(15)	-1.4(15)	-3.2(14)
C51	24.5(17)	20.2(16)	55(2)	-0.5(15)	-9.8(15)	-3.4(13)
C52	28.4(19)	30.5(19)	62(3)	4.8(18)	-10.6(17)	-8.4(15)
C53	27.3(19)	28.6(19)	85(3)	4(2)	-18(2)	-11.2(16)
C54	36(2)	28.3(19)	75(3)	-1.5(19)	-26(2)	-7.7(16)
C55	28.2(18)	23.3(17)	61(3)	-8.6(16)	-17.3(17)	-0.2(14)
C56	45(2)	32(2)	60(3)	-14.5(18)	-27(2)	2.9(17)
C57	40(2)	37(2)	45(2)	-14.5(17)	-16.1(17)	5.1(17)
C58	30.3(18)	27.3(17)	43(2)	-10.1(15)	-10.4(15)	1.6(14)
C59	33.3(19)	36(2)	36.1(19)	-9.5(15)	-2.9(15)	-1.4(15)
C60	24.6(16)	29.5(18)	39(2)	-4.8(14)	-1.6(14)	-5.8(14)
C61	24.7(17)	16.7(15)	53(2)	-4.0(14)	-11.3(15)	-2.0(12)
C62	23.5(16)	21.9(16)	44(2)	-9.0(14)	-7.4(14)	0.2(13)
Cl2A	82.3(17)	173(3)	116(2)	39(2)	8.5(14)	30.7(18)
C63A	93(7)	96(7)	100(7)	25(6)	1(5)	21(5)
Cl1A	187(4)	167(4)	181(4)	88(3)	-104(4)	-88(3)

Supplementary Table 16. Bond Lengths for Py-TDPP.

tom	Atom	Length/Å	Atom	Atom	Length/Å
Cl1	C63	1.745(11)	C26	C27	1.402(6)
Cl2	C63	1.721(10)	C27	C28	1.439(6)
<b>S</b> 1	C15	1.732(4)	C27	C34	1.430(5)
<b>S</b> 1	C18	1.722(4)	C28	C29	1.335(6)
S2	C43	1.734(4)	C29	C30	1.444(5)
S2	C46	1.732(4)	C30	C31	1.385(6)
01	C1	1.231(4)	C30	C33	1.425(5)
O2	C4	1.227(4)	C31	C32	1.389(5)
N1	C1	1.420(4)	C33	C34	1.421(6)
N1	C6	1.394(4)	C35	C36	1.541(5)
N1	C7	1.457(5)	C36	C37	1.528(5)
N2	C3	1.394(4)	C36	C41	1.534(5)
N2	C4	1.417(5)	C37	C38	1.529(5)
N2	C35	1.458(5)	C38	C39	1.525(6)
C1	C2	1.438(5)	C39	C40	1.524(9)
C2	C3	1.387(5)	C41	C42	1.532(6)
C2	C5	1.413(4)	C43	C44	1.379(5)
C3	C15	1.432(5)	C44	C45	1.410(5)
C4	C5	1.439(5)	C45	C46	1.378(6)

C5	C6	1.402(5)	C46	C47	1.468(5)
C6	C43	1.431(5)	C47	C48	1.424(5)
C7	C8	1.539(5)	C47	C60	1.393(5)
C8	C9	1.528(5)	C48	C49	1.430(5)
C8	C13	1.543(5)	C48	C62	1.431(5)
C9	C10	1.528(6)	C49	C50	1.362(5)
C10	C11	1.550(8)	C50	C51	1.416(6)
C11	C12	1.516(9)	C51	C52	1.410(5)
C13	C14	1.522(5)	C51	C61	1.405(6)
C15	C16	1.385(5)	C52	C53	1.397(7)
C16	C17	1.395(5)	C53	C54	1.361(7)
C17	C18	1.380(5)	C54	C55	1.402(6)
C18	C19	1.469(5)	C55	C56	1.419(7)
C19	C20	1.414(5)	C55	C61	1.442(6)
C19	C32	1.402(5)	C56	C57	1.340(6)
C20	C21	1.448(5)	C57	C58	1.435(6)
C20	C33	1.425(5)	C58	C59	1.412(5)
C21	C22	1.358(6)	C58	C62	1.418(6)
C22	C23	1.426(6)	C59	C60	1.376(6)
C23	C24	1.408(6)	C61	C62	1.434(5)
C23	C34	1.420(5)	Cl2A	C63A	1.71(2)
C24	C25	1.382(7)	C63A	Cl1A	1.79(2)
C25	C26	1.378(7)			

#### Supplementary Table 17. Bond Angles for Py-TDPP.

~~ppr	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		• 20110 - 111g - 00 - 101 - 1 j - 1 2				
Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C12	C63	Cl1	114.1(6)	C29	C28	C27	121.6(4)
C18	<b>S</b> 1	C15	93.16(17)	C28	C29	C30	121.6(4)
C46	S2	C43	93.15(18)	C31	C30	C29	121.5(3)
C1	N1	C7	120.8(3)	C31	C30	C33	119.8(3)
C6	N1	C1	111.5(3)	C33	C30	C29	118.7(4)
C6	N1	C7	127.6(3)	C30	C31	C32	121.0(3)
C3	N2	C4	111.4(3)	C31	C32	C19	120.7(4)
C3	N2	C35	128.7(3)	C30	C33	C20	119.4(3)
C4	N2	C35	119.6(3)	C34	C33	C20	121.2(3)
01	C1	N1	122.3(3)	C34	C33	C30	119.4(3)
01	C1	C2	133.1(3)	C23	C34	C27	119.0(4)
N1	C1	C2	104.6(3)	C23	C34	C33	120.5(4)
C3	C2	C1	142.7(3)	C33	C34	C27	120.5(4)
C3	C2	C5	109.0(3)	N2	C35	C36	112.4(3)
C5	C2	C1	108.2(3)	C37	C36	C35	112.6(3)

S56

N2	C3	C15	126.0(3)	C37	C36	C41	113.7(3)
C2	C3	N2	106.9(3)	C41	C36	C35	109.2(3)
C2	C3	C15	127.1(3)	C36	C37	C38	116.1(3)
O2	C4	N2	122.6(3)	C39	C38	C37	111.8(4)
O2	C4	C5	133.2(3)	C40	C39	C38	113.4(4)
N2	C4	C5	104.1(3)	C42	C41	C36	113.1(3)
C2	C5	C4	108.5(3)	C6	C43	S2	124.9(3)
C6	C5	C2	109.3(3)	C44	C43	S2	109.8(3)
C6	C5	C4	142.3(3)	C44	C43	C6	125.2(4)
N1	C6	C5	106.3(3)	C43	C44	C45	113.5(4)
N1	C6	C43	127.3(3)	C46	C45	C44	113.8(3)
C5	C6	C43	126.3(3)	C45	C46	S2	109.7(3)
N1	C7	C8	113.0(3)	C45	C46	C47	132.2(3)
C7	C8	C13	112.5(3)	C47	C46	S2	118.0(3)
C9	C8	C7	108.7(3)	C48	C47	C46	121.8(3)
C9	C8	C13	114.1(3)	C60	C47	C46	118.3(3)
C10	C9	C8	113.8(3)	C60	C47	C48	119.9(3)
C9	C10	C11	110.3(4)	C47	C48	C49	123.9(3)
C12	C11	C10	112.7(6)	C47	C48	C62	117.3(3)
C14	C13	C8	115 3(3)	C49	C48	C62	118 6(3)
014	010	00	115.5(5)	C+7	0.0	002	110.0(3)
C3	C15	S1	124.8(3)	C50	C49	C48	121.2(4)
C3 C16	C15 C15	S1 S1	124.8(3) 109.3(3)	C50 C49	C49 C50	C48 C51	121.2(4) 121.4(4)
C3 C16 C16	C15 C15 C15	S1 S1 C3	124.8(3) 109.3(3) 125.7(3)	C50 C49 C52	C49 C50 C51	C48 C51 C50	121.2(4) 121.4(4) 121.9(4)
C3 C16 C16 C15	C15 C15 C15 C15 C16	S1 S1 C3 C17	124.8(3) 109.3(3) 125.7(3) 113.8(3)	C50 C49 C52 C61	C49 C50 C51 C51	C48 C51 C50 C50	121.2(4) 121.4(4) 121.9(4) 119.1(3)
C3 C16 C16 C15 C18	C15 C15 C15 C15 C16 C17	S1 S1 C3 C17 C16	1124.8(3) 109.3(3) 125.7(3) 113.8(3) 113.6(3)	C50 C49 C52 C61 C61	C49 C50 C51 C51 C51	C48 C51 C50 C50 C52	121.2(4) 121.4(4) 121.9(4) 119.1(3) 119.0(4)
C3 C16 C16 C15 C18 C17	C15 C15 C15 C16 C17 C18	S1 S1 C3 C17 C16 S1	124.8(3) 109.3(3) 125.7(3) 113.8(3) 113.6(3) 110.0(3)	C50 C49 C52 C61 C61 C53	C49 C50 C51 C51 C51 C51 C52	C48 C51 C50 C50 C52 C51	121.2(4) 121.4(4) 121.9(4) 119.1(3) 119.0(4) 119.7(4)
C3 C16 C16 C15 C18 C17 C17	C15 C15 C15 C16 C17 C18 C18	S1 S1 C3 C17 C16 S1 C19	124.8(3) 109.3(3) 125.7(3) 113.8(3) 113.6(3) 110.0(3) 127.9(3)	C50 C49 C52 C61 C61 C53 C54	C49 C50 C51 C51 C51 C52 C53	C48 C51 C50 C50 C52 C51 C52	121.2(4) 121.4(4) 121.9(4) 119.1(3) 119.0(4) 119.7(4) 121.4(4)
C3 C16 C16 C15 C18 C17 C17 C19	C15 C15 C15 C16 C17 C18 C18 C18	S1 S1 C3 C17 C16 S1 C19 S1	124.8(3) 109.3(3) 125.7(3) 113.8(3) 113.6(3) 110.0(3) 127.9(3) 122.0(3)	C50 C49 C52 C61 C61 C53 C54 C53	C49 C50 C51 C51 C51 C52 C52 C53 C54	C48 C51 C50 C50 C52 C51 C52 C55	121.2(4) 121.4(4) 121.9(4) 119.1(3) 119.0(4) 119.7(4) 121.4(4) 121.7(4)
C3 C16 C16 C15 C18 C17 C17 C17 C19 C20	C15 C15 C15 C16 C17 C18 C18 C18 C18 C19	S1 S1 C3 C17 C16 S1 C19 S1 C18	124.8(3) 109.3(3) 125.7(3) 113.8(3) 113.6(3) 110.0(3) 127.9(3) 122.0(3) 123.9(3)	C50 C49 C52 C61 C53 C54 C53 C54	C49 C50 C51 C51 C51 C52 C53 C54 C55	C48 C51 C50 C50 C52 C51 C52 C55 C56	121.2(4) 121.4(4) 121.9(4) 119.1(3) 119.0(4) 119.7(4) 121.4(4) 121.7(4) 123.1(4)
C3 C16 C16 C15 C18 C17 C17 C17 C19 C20 C32	C15 C15 C15 C16 C17 C18 C18 C18 C18 C19 C19	S1 S1 C3 C17 C16 S1 C19 S1 C18 C18	124.8(3) 109.3(3) 125.7(3) 113.8(3) 113.6(3) 110.0(3) 127.9(3) 122.0(3) 123.9(3) 116.4(3)	C50 C49 C52 C61 C61 C53 C54 C53 C54 C54 C54	C49 C50 C51 C51 C51 C52 C53 C54 C55 C55	C48 C51 C50 C50 C52 C51 C52 C55 C56 C61	121.2(4) 121.4(4) 121.9(4) 119.1(3) 119.0(4) 119.7(4) 121.4(4) 121.7(4) 123.1(4) 117.4(4)
C3 C16 C16 C15 C18 C17 C17 C19 C20 C32 C32	C15 C15 C15 C16 C17 C18 C18 C18 C18 C18 C19 C19 C19	S1 S1 C3 C17 C16 S1 C19 S1 C18 C18 C20	124.8(3) 109.3(3) 125.7(3) 113.8(3) 113.6(3) 110.0(3) 127.9(3) 122.0(3) 123.9(3) 116.4(3) 119.7(3)	C50 C49 C52 C61 C61 C53 C54 C53 C54 C54 C54 C56	C49 C50 C51 C51 C51 C52 C53 C54 C55 C55 C55	C48 C51 C50 C50 C52 C51 C52 C55 C56 C61 C61	110.3(3) 121.2(4) 121.9(4) 119.1(3) 119.0(4) 119.7(4) 121.4(4) 121.7(4) 123.1(4) 117.4(4) 119.4(4)
C3 C16 C16 C15 C18 C17 C17 C17 C19 C20 C32 C32 C19	C15 C15 C15 C16 C17 C18 C18 C18 C18 C18 C19 C19 C19 C20	S1 S1 C3 C17 C16 S1 C19 S1 C18 C18 C20 C21	124.8(3) 109.3(3) 125.7(3) 113.8(3) 113.6(3) 110.0(3) 127.9(3) 122.0(3) 123.9(3) 116.4(3) 119.7(3) 124.2(3)	C50 C49 C52 C61 C53 C54 C53 C54 C54 C54 C54 C56 C57	C49 C50 C51 C51 C51 C52 C53 C54 C55 C55 C55 C56	C48 C51 C50 C50 C52 C51 C52 C55 C56 C61 C61 C55	110.3(3) 121.2(4) 121.9(4) 121.9(4) 119.1(3) 119.0(4) 119.7(4) 121.4(4) 121.7(4) 123.1(4) 117.4(4) 119.4(4) 122.1(4)
C3 C16 C16 C15 C18 C17 C17 C17 C17 C19 C20 C32 C32 C32 C19 C19	C15 C15 C15 C16 C17 C18 C18 C18 C18 C18 C19 C19 C19 C19 C19 C20 C20	S1 S1 C3 C17 C16 S1 C19 S1 C18 C18 C20 C21 C33	1124.8(3) 109.3(3) 125.7(3) 113.8(3) 113.6(3) 110.0(3) 127.9(3) 122.0(3) 123.9(3) 116.4(3) 119.7(3) 124.2(3) 119.4(3)	C50 C49 C52 C61 C61 C53 C54 C54 C54 C54 C54 C56 C57 C56	C49 C50 C51 C51 C51 C52 C53 C54 C55 C55 C55 C55 C56 C57	C48 C51 C50 C50 C52 C51 C52 C55 C56 C61 C55 C58	110.3(3) 121.2(4) 121.4(4) 121.9(4) 119.1(3) 119.0(4) 119.7(4) 121.4(4) 121.7(4) 123.1(4) 117.4(4) 119.4(4) 122.1(4) 120.3(4)
C3 C16 C16 C15 C18 C17 C17 C19 C20 C32 C32 C32 C19 C19 C33	C15 C15 C15 C16 C17 C18 C18 C18 C18 C18 C19 C19 C19 C19 C19 C20 C20 C20	S1 S1 C3 C17 C16 S1 C19 S1 C18 C18 C20 C21 C33 C21	124.8(3) 124.8(3) 125.7(3) 113.8(3) 113.6(3) 110.0(3) 127.9(3) 122.0(3) 123.9(3) 116.4(3) 119.7(3) 119.4(3) 116.4(3)	C50 C49 C52 C61 C61 C53 C54 C53 C54 C54 C54 C56 C57 C56 C59	C49 C50 C51 C51 C51 C52 C53 C54 C55 C55 C55 C55 C56 C57 C58	C48 C51 C50 C50 C52 C51 C52 C55 C56 C61 C61 C55 C58 C57	121.3(3) 121.2(4) 121.4(4) 121.9(4) 119.1(3) 119.0(4) 119.7(4) 121.4(4) 121.7(4) 123.1(4) 117.4(4) 119.4(4) 122.1(4) 120.3(4) 121.5(4)
C3 C16 C16 C15 C18 C17 C17 C17 C19 C20 C32 C32 C19 C19 C19 C19 C33 C22	C15 C15 C15 C16 C17 C18 C18 C18 C18 C18 C19 C19 C19 C19 C20 C20 C20 C21	S1 S1 C3 C17 C16 S1 C19 S1 C18 C18 C20 C21 C23 C21 C20	124.8(3) 109.3(3) 125.7(3) 113.8(3) 113.6(3) 110.0(3) 127.9(3) 122.0(3) 123.9(3) 116.4(3) 119.7(3) 124.2(3) 119.4(3) 116.4(3) 122.2(4)	C50 C49 C52 C61 C53 C54 C53 C54 C54 C54 C54 C54 C56 C57 C56 C59 C59 C59	C49 C50 C51 C51 C51 C52 C53 C54 C55 C55 C55 C55 C56 C57 C58 C58	C48 C51 C50 C50 C52 C51 C52 C55 C56 C61 C55 C58 C57 C62	110.3(3) 121.2(4) 121.4(4) 121.9(4) 119.1(3) 119.0(4) 119.7(4) 121.4(4) 121.7(4) 123.1(4) 117.4(4) 119.4(4) 122.1(4) 120.3(4) 121.5(4) 118.3(4)
C14 C3 C16 C15 C18 C17 C17 C17 C19 C20 C32 C32 C32 C19 C19 C19 C19 C33 C22 C21	C15 C15 C15 C16 C17 C18 C18 C18 C18 C18 C19 C19 C19 C19 C19 C20 C20 C20 C20 C21 C22	S1 S1 C3 C17 C16 S1 C19 S1 C18 C18 C20 C21 C33 C21 C20 C23	1124.8(3) 124.8(3) 109.3(3) 125.7(3) 113.8(3) 113.6(3) 110.0(3) 127.9(3) 122.0(3) 123.9(3) 116.4(3) 119.7(3) 124.2(3) 119.4(3) 116.4(3) 122.2(4) 121.7(4)	C50 C49 C52 C61 C61 C53 C54 C53 C54 C53 C54 C54 C56 C57 C56 C59 C59 C62	C49 C50 C51 C51 C51 C52 C53 C54 C55 C55 C55 C55 C55 C56 C57 C58 C58 C58 C58	C48 C51 C50 C50 C52 C51 C52 C55 C56 C61 C55 C58 C57 C62 C57	110.3(3) 121.2(4) 121.4(4) 121.9(4) 119.1(3) 119.0(4) 119.7(4) 121.4(4) 121.7(4) 123.1(4) 117.4(4) 119.4(4) 122.1(4) 120.3(4) 121.5(4) 118.3(4) 120.2(4)
C3 C16 C16 C15 C18 C17 C17 C19 C20 C32 C32 C32 C19 C19 C33 C22 C21 C24	C15 C15 C15 C16 C17 C18 C18 C18 C18 C18 C19 C19 C19 C19 C19 C20 C20 C20 C20 C20 C21 C22 C23	S1 S1 C3 C17 C16 S1 C19 S1 C18 C18 C20 C21 C33 C21 C20 C23 C22	124.8(3) $124.8(3)$ $125.7(3)$ $113.8(3)$ $113.6(3)$ $110.0(3)$ $127.9(3)$ $122.0(3)$ $123.9(3)$ $116.4(3)$ $119.7(3)$ $124.2(3)$ $119.4(3)$ $116.4(3)$ $122.2(4)$ $122.2(4)$ $122.7(4)$ $122.5(4)$	C50 C49 C52 C61 C53 C54 C53 C54 C54 C54 C54 C56 C57 C56 C59 C59 C59 C62 C60	C49 C50 C51 C51 C51 C52 C53 C54 C55 C55 C55 C55 C56 C57 C58 C58 C58 C58 C58 C59	C48 C51 C50 C50 C52 C51 C52 C55 C56 C61 C61 C55 C58 C57 C62 C57 C58	110.3(3) 121.2(4) 121.4(4) 121.9(4) 119.1(3) 119.0(4) 119.7(4) 121.4(4) 121.7(4) 123.1(4) 117.4(4) 119.4(4) 122.1(4) 120.3(4) 121.5(4) 118.3(4) 120.2(4)
C3 C16 C16 C15 C18 C17 C17 C19 C20 C32 C32 C19 C19 C19 C19 C19 C33 C22 C21 C24 C24	C15 C15 C15 C16 C17 C18 C18 C18 C18 C18 C19 C19 C19 C19 C19 C20 C20 C20 C20 C20 C21 C22 C22 C23 C23	S1 S1 C3 C17 C16 S1 C19 S1 C18 C18 C18 C20 C21 C33 C21 C20 C21 C20 C23 C22 C22 C34	124.8(3) $124.8(3)$ $125.7(3)$ $113.8(3)$ $113.6(3)$ $110.0(3)$ $127.9(3)$ $122.0(3)$ $123.9(3)$ $116.4(3)$ $119.7(3)$ $124.2(3)$ $119.4(3)$ $116.4(3)$ $122.2(4)$ $121.7(4)$ $122.5(4)$ $119.6(4)$	C50 C49 C52 C61 C53 C54 C53 C54 C54 C54 C54 C54 C56 C57 C56 C57 C56 C59 C59 C59 C62 C60 C59	C49 C50 C51 C51 C51 C52 C53 C54 C55 C55 C55 C55 C56 C57 C58 C58 C58 C58 C58 C59 C60	C48 C51 C50 C50 C52 C51 C52 C55 C56 C61 C61 C55 C58 C57 C62 C57 C58 C57 C58 C47	110.3(3) 121.2(4) 121.4(4) 121.9(4) 119.1(3) 119.0(4) 119.7(4) 121.4(4) 121.7(4) 123.1(4) 117.4(4) 119.4(4) 122.1(4) 120.3(4) 121.5(4) 118.3(4) 120.2(4) 120.2(4) 122.4(3)
C3 C16 C16 C15 C18 C17 C17 C19 C20 C32 C32 C32 C32 C19 C19 C19 C33 C22 C21 C24 C24 C24 C34	C15 C15 C15 C16 C17 C18 C18 C18 C18 C18 C18 C19 C19 C19 C19 C19 C20 C20 C20 C20 C20 C20 C20 C21 C22 C23 C23 C23 C23	S1 S1 C3 C17 C16 S1 C19 S1 C18 C18 C20 C21 C33 C21 C20 C23 C22 C22 C34 C22	124.8(3) $124.8(3)$ $109.3(3)$ $125.7(3)$ $113.8(3)$ $113.6(3)$ $110.0(3)$ $127.9(3)$ $122.0(3)$ $123.9(3)$ $116.4(3)$ $119.7(3)$ $124.2(3)$ $119.4(3)$ $116.4(3)$ $122.2(4)$ $121.7(4)$ $122.5(4)$ $119.6(4)$ $117.9(4)$	C50 C49 C52 C61 C61 C53 C54 C53 C54 C54 C54 C56 C57 C56 C59 C59 C62 C60 C59 C51	C49 C50 C51 C51 C51 C52 C53 C54 C55 C55 C55 C55 C55 C55 C55 C55 C55	C48 C51 C50 C50 C52 C51 C52 C55 C56 C61 C61 C55 C58 C57 C62 C57 C58 C47 C55	110.3(3)         121.2(4)         121.4(4)         121.9(4)         119.1(3)         119.0(4)         119.7(4)         121.4(4)         121.7(4)         121.7(4)         123.1(4)         117.4(4)         119.4(4)         122.1(4)         120.3(4)         121.5(4)         120.2(4)         120.2(4)         120.2(4)         120.7(3)

C26	C25	C24	120.5(4)	C62	C61	C55	118.6(4)
C25	C26	C27	121.4(4)	C48	C62	C61	118.9(3)
C26	C27	C28	122.9(4)	C58	C62	C48	121.8(3)
C26	C27	C34	119.0(4)	C58	C62	C61	119.3(4)
C34	C27	C28	118.1(4)	Cl2A	C63A	Cl1A	104.9(17)

#### Supplementary Table 18. Torsion Angles for Py-TDPP.

А	В	С	D	Angle/°	А	В	С	D	Angle/°
<b>S</b> 1	C15	C16	C17	0.9(4)	C24	C23	C34	C33	-179.6(4)
<b>S</b> 1	C18	C19	C20	42.6(4)	C24	C25	C26	C27	0.9(8)
<b>S</b> 1	C18	C19	C32	-137.7(3)	C25	C26	C27	C28	178.5(4)
S2	C43	C44	C45	-2.5(4)	C25	C26	C27	C34	-0.9(7)
S2	C46	C47	C48	144.6(3)	C26	C27	C28	C29	180.0(4)
S2	C46	C47	C60	-35.9(4)	C26	C27	C34	C23	0.5(6)
01	C1	C2	C3	-3.7(8)	C26	C27	C34	C33	180.0(4)
01	C1	C2	C5	179.7(4)	C27	C28	C29	C30	-0.5(6)
02	C4	C5	C2	174.4(4)	C28	C27	C34	C23	-178.9(4)
02	C4	C5	C6	-6.8(8)	C28	C27	C34	C33	0.6(6)
N1	C1	C2	C3	176.1(4)	C28	C29	C30	C31	-178.6(4)
N1	C1	C2	C5	-0.5(4)	C28	C29	C30	C33	1.7(6)
N1	C6	C43	<b>S</b> 2	-6.8(5)	C29	C30	C31	C32	-179.0(3)
N1	C6	C43	C44	177.7(3)	C29	C30	C33	C20	179.1(3)
N1	C7	C8	C9	-161.2(3)	C29	C30	C33	C34	-1.7(5)
N1	C7	C8	C13	71.5(4)	C30	C31	C32	C19	0.8(5)
N2	C3	C15	<b>S</b> 1	6.1(5)	C30	C33	C34	C23	-179.9(3)
N2	C3	C15	C16	-178.1(3)	C30	C33	C34	C27	0.6(5)
N2	C4	C5	C2	-3.8(4)	C31	C30	C33	C20	-0.7(5)
N2	C4	C5	C6	175.0(5)	C31	C30	C33	C34	178.6(3)
N2	C35	C36	C37	-67.3(4)	C32	C19	C20	C21	-174.7(3)
N2	C35	C36	C41	165.4(3)	C32	C19	C20	C33	2.6(5)
C1	N1	C6	C5	1.9(4)	C33	C20	C21	C22	4.3(6)
C1	N1	C6	C43	-175.6(3)	C33	C30	C31	C32	0.8(5)
C1	N1	C7	C8	-101.7(4)	C34	C23	C24	C25	0.0(7)
C1	C2	C3	N2	-177.6(4)	C34	C27	C28	C29	-0.7(6)
C1	C2	C3	C15	1.6(7)	C35	N2	C3	C2	172.5(3)
C1	C2	C5	C4	-179.1(3)	C35	N2	C3	C15	-6.8(6)
C1	C2	C5	C6	1.7(4)	C35	N2	C4	O2	10.3(5)
C2	C3	C15	<b>S</b> 1	-173.0(3)	C35	N2	C4	C5	-171.3(3)
C2	C3	C15	C16	2.8(6)	C35	C36	C37	C38	-67.4(4)
C2	C5	C6	N1	-2.2(4)	C35	C36	C41	C42	-175.3(3)

C2	C5	C6	C43	175.3(3)	C36	C37	C38	C39	176.9(4)
C3	N2	C4	02	-175.2(3)	C37	C36	C41	C42	58.0(5)
C3	N2	C4	C5	3.3(4)	C37	C38	C39	C40	-66.9(5)
C3	N2	C35	C36	-77.0(4)	C41	C36	C37	C38	57.5(5)
C3	C2	C5	C4	3.1(4)	C43	S2	C46	C45	-2.0(3)
C3	C2	C5	C6	-176.1(3)	C43	<b>S</b> 2	C46	C47	173.6(3)
C3	C15	C16	C17	-175.4(3)	C43	C44	C45	C46	1.1(5)
C4	N2	C3	C2	-1.5(4)	C44	C45	C46	<b>S</b> 2	0.9(4)
C4	N2	C3	C15	179.3(3)	C44	C45	C46	C47	-173.9(4)
C4	N2	C35	C36	96.6(4)	C45	C46	C47	C48	-41.0(6)
C4	C5	C6	N1	179.0(5)	C45	C46	C47	C60	138.5(4)
C4	C5	C6	C43	-3.4(7)	C46	S2	C43	C6	-173.6(3)
C5	C2	C3	N2	-1.0(4)	C46	S2	C43	C44	2.6(3)
C5	C2	C3	C15	178.2(3)	C46	C47	C48	C49	-6.4(6)
C5	C6	C43	S2	176.2(3)	C46	C47	C48	C62	177.1(3)
C5	C6	C43	C44	0.6(6)	C46	C47	C60	C59	-177.6(4)
C6	N1	C1	01	179.0(3)	C47	C48	C49	C50	179.8(4)
C6	N1	C1	C2	-0.8(4)	C47	C48	C62	C58	1.0(5)
C6	N1	C7	C8	75.2(4)	C47	C48	C62	C61	-179.1(3)
C6	C43	C44	C45	173.6(3)	C48	C47	C60	C59	2.0(6)
C7	N1	C1	01	-3.7(5)	C48	C49	C50	C51	1.0(6)
C7	N1	C1	C2	176.5(3)	C49	C48	C62	C58	-175.7(3)
C7	N1	C6	C5	-175.2(3)	C49	C48	C62	C61	4.1(5)
C7	N1	C6	C43	7.3(6)	C49	C50	C51	C52	180.0(4)
C7	C8	C9	C10	167.0(3)	C49	C50	C51	C61	1.2(6)
C7	C8	C13	C14	67.5(4)	C50	C51	C52	C53	-177.9(4)
C8	C9	C10	C11	-169.3(5)	C50	C51	C61	C55	177.6(3)
C9	C8	C13	C14	-56.8(5)	C50	C51	C61	C62	-0.6(5)
C9	C10	C11	C12	175.9(6)	C51	C52	C53	C54	-0.7(7)
C13	C8	C9	C10	-66.6(4)	C51	C61	C62	C48	-2.0(5)
C15	<b>S</b> 1	C18	C17	2.2(3)	C51	C61	C62	C58	177.8(3)
C15	<b>S</b> 1	C18	C19	178.8(3)	C52	C51	C61	C55	-1.3(5)
C15	C16	C17	C18	0.8(4)	C52	C51	C61	C62	-179.5(4)
C16	C17	C18	<b>S</b> 1	-2.1(4)	C52	C53	C54	C55	0.8(7)
C16	C17	C18	C19	-178.4(3)	C53	C54	C55	C56	178.9(4)
C17	C18	C19	C20	-141.5(4)	C53	C54	C55	C61	-1.2(6)
C17	C18	C19	C32	38.2(5)	C54	C55	C56	C57	-178.3(4)
C18		C15	C3	174 6(3)	C54	C55	C61	C51	14(5)
	<b>S</b> 1	CIS	CJ	174.0(3)	0.54	000	001		1.4(3)
C18	S1 S1	C15	C16	-1.8(3)	C54	C55	C61	C62	179.6(4)

C18	C19	C20	C33	-177.7(3)	C55	C61	C62	C48	179.8(3)
C18	C19	C32	C31	177.7(3)	C55	C61	C62	C58	-0.4(5)
C19	C20	C21	C22	-178.4(4)	C56	C55	C61	C51	-178.6(4)
C19	C20	C33	C30	-1.0(5)	C56	C55	C61	C62	-0.4(5)
C19	C20	C33	C34	179.8(3)	C56	C57	C58	C59	-179.9(4)
C20	C19	C32	C31	-2.5(5)	C56	C57	C58	C62	1.1(6)
C20	C21	C22	C23	-2.2(6)	C57	C58	C59	C60	179.5(4)
C20	C33	C34	C23	-0.7(6)	C57	C58	C62	C48	179.9(3)
C20	C33	C34	C27	179.8(3)	C57	C58	C62	C61	0.1(5)
C21	C20	C33	C30	176.5(3)	C58	C59	C60	C47	0.1(6)
C21	C20	C33	C34	-2.8(5)	C59	C58	C62	C48	1.0(5)
C21	C22	C23	C24	-179.0(4)	C59	C58	C62	C61	-178.9(3)
C21	C22	C23	C34	-1.4(6)	C60	C47	C48	C49	174.1(3)
C22	C23	C24	C25	177.5(4)	C60	C47	C48	C62	-2.5(5)
C22	C23	C34	C27	-177.7(4)	C61	C51	C52	C53	0.9(6)
C22	C23	C34	C33	2.8(6)	C61	C55	C56	C57	1.7(6)
C23	C24	C25	C26	-0.5(8)	C62	C48	C49	C50	-3.7(5)
C24	C23	C34	C27	0.0(6)	C62	C58	C59	C60	-1.5(6)

**Supplementary Table 19.** Hydrogen Atom Coordinates ( $Å \times 10^4$ ) and Isotropic Displacement Parameters ( $Å^2 \times 10^3$ ) for **Py-TDPP**.

_

(11 ~10	) 101 1 9 1211.			
Atom	Х	У	Z	U(eq)
H63A	3440.02	7387.83	8886.43	124
H63B	3043.78	7559.39	9711.55	124
H7A	8975.99	6095.71	3373.95	32
H7B	10391.16	6558.1	3289.01	32
H8	8284.65	7703.24	2688.29	34
H9A	10186.28	6476.74	1887.95	41
H9B	8745.19	6110.06	2234.21	41
H10A	9357.86	7758.46	1076.72	54
H10B	7880.3	7587.94	1482.56	54
H11A	9468.02	6129.12	691.98	102
H11B	8034.13	5896.5	1136.53	102
H12A	8002.2	6391.43	-124.98	136
H12B	8494	7486	-68.19	136
H12C	7078.2	7139.07	346.58	136
H13A	9829.54	8762.75	1972.13	38
H13B	10039.22	8694.08	2793.34	38
H14A	11686.53	7673.18	1737.48	64
H14B	11876.64	7536.53	2567.67	64

H14C	12087.6	8620.09	2066.86	64
H16	11800.07	8539.5	4854.37	31
H17	13456.86	9057.24	5478.18	31
H21	10892.5	8681.13	7662.67	39
H22	10335.04	8478.52	8890.74	45
H24	10713.62	8829.04	10097.3	57
H25	11935.33	9582.87	10776.49	60
H26	13696.36	10558.28	10215.18	53
H28	15099.42	11378.73	9079.47	45
H29	15611.12	11639.13	7858.82	43
H31	15252.92	11293.4	6665.24	37
H32	14073.28	10554.39	5956.12	35
H35A	6464.88	9490.23	6429.12	32
H35B	7910	9851.97	6427	32
H36	8438.4	8161.77	7029.26	35
H37A	6831.54	7057.42	7577.75	38
H37B	6762.74	7282.31	6732.91	38
H38A	4939.15	8125.49	7822.61	47
H38B	4887.89	8414.71	6975.16	47
H39A	4592.55	6382.21	7741.23	73
H39B	3370.3	7134.54	7571.16	73
H40A	4002.28	7113.51	6325.5	101
H40B	3876.46	5962.8	6728.24	101
H40C	5295.25	6427.96	6467.65	101
H41A	7991.7	9564.81	7663.86	43
H41B	6462.17	9336.58	7834.01	43
H42A	8367.02	7862.69	8349.12	66
H42B	6815.52	7880.94	8626.69	66
H42C	7692.75	8709.79	8822.45	66
H44	5100.51	7477.77	4916.05	36
H45	3396.34	6837.75	4372.5	38
H49	2850.62	5208.66	4406.19	38
H50	973.9	4307.5	4714.02	40
H52	-850.25	3470.38	4359.32	49
H53	-1807.99	2966.63	3447.18	56
H54	-942.02	3394.52	2251.98	54
H56	791.14	4218	1290.82	51
H57	2689.54	5060.88	966.14	47
H59	4499.39	5935.09	1316.81	42
H60	5460.25	6469.04	2197.28	38

Supplementary Information							
H63C	2234.69	7268.06	9629.19	124			
H63D	2432.41	6489.46	10349.65	124			

# 2.7 X-ray crystallographic data for An-TDPP

Supple	mentary	Table	20.0	Crystal	data	and	structure	refinement	for	An-T	DPP.
--------	---------	-------	------	---------	------	-----	-----------	------------	-----	------	------

Identification code	An-TDPP
Empirical formula	C58H56N2O2S2
Formula weight	877.16
Temperature/K	150.00(10)
Crystal system	monoclinic
Space group	C2/c
a/Å	27.4422(14)
b/Å	9.1811(3)
c/Å	20.1727(9)
α/°	90
β/°	116.452(4)
$\gamma/^{\circ}$	90
Volume/Å ³	4550.4(4)
Z	4
pcalcg/cm ³	1.280
μ/mm ⁻¹	1.419
F(000)	1864.0
Crystal size/mm ³	$0.13 \times 0.11 \times 0.1$
Radiation	$CuK\alpha$ ( $\lambda = 1.54178$ )
$2\Theta$ range for data collection/°	7.196 to 134.122
Index ranges	$-29 \le h \le 32, -10 \le k \le 9, -23 \le l \le 24$
Reflections collected	8591
Independent reflections	4059 [Rint = 0.0625, Rsigma = 0.0656]
Data/restraints/parameters	4059/0/291
Goodness-of-fit on F ²	1.113
Final R indexes [I>= $2\sigma$ (I)]	R1 = 0.0963, wR2 = 0.2655
Final R indexes [all data]	R1 = 0.1059, wR2 = 0.2785
Largest diff. peak/hole / e Å ⁻³	0.85/-0.47

**Supplementary Table 21.** Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ( $Å^2 \times 10^3$ ) for **An-TDPP**. Useq is defined as 1/3 of the trace of the orthogonalised UIJtensor.

Atom	х	У	Z	U(eq)

S1	4293.0(3)	3029.1(11)	6167.2(5)	34.4(4)
01	6134.1(11)	626(3)	6069.3(15)	39.4(7)
N1	5293.7(12)	1521(3)	5895.6(16)	28.9(7)
C1	3606.1(15)	3396(4)	5692.0(19)	28.3(8)
C2	3392.0(15)	2729(4)	5022(2)	33.2(9)
C3	3770.7(16)	1929(4)	4879(2)	32.9(8)
C4	4288.9(15)	1985(4)	5444.3(18)	25.7(7)
C5	3312.2(14)	4348(4)	5981.9(18)	29.0(8)
C6	3285.8(16)	5849(4)	5844(2)	34.2(9)
C7	3591(2)	6551(5)	5516(2)	42.5(10)
C8	3544(3)	8003(5)	5379(3)	53.4(13)
C9	3199(2)	8873(5)	5562(3)	54.7(13)
C10	2897(2)	8271(5)	5869(2)	48.8(12)
C11	2926.4(18)	6746(5)	6021(2)	37.5(9)
C12	2614.9(17)	6099(5)	6324(2)	38.8(10)
C13	2655.7(14)	4636(5)	6493.6(18)	32.5(9)
C14	2337.9(16)	3967(5)	6809(2)	38.3(10)
C15	2391.7(18)	2534(6)	6990(2)	42.9(10)
C16	2765.0(18)	1656(5)	6859(2)	40.2(10)
C17	3063.9(17)	2244(5)	6541(2)	34.4(8)
C18	3018.0(14)	3726(4)	6335.6(18)	29.0(8)
C19	4749.1(14)	1264(4)	5424.8(19)	25.6(7)
C20	5636.3(15)	617(4)	5715.8(19)	29.3(8)
C21	5266.6(14)	-220(4)	5082(2)	27.8(8)
C22	5523.9(14)	2556(4)	6505.4(19)	29.9(8)
C23	5489.5(16)	4153(4)	6241(2)	35.7(9)
C24	5628.4(19)	5129(5)	6921(2)	43.6(10)
C25	5585(2)	6766(5)	6791(3)	52.6(12)
C26	5706(2)	7619(6)	7491(3)	59.2(13)
C27	5654(3)	9203(6)	7377(4)	73.1(17)
C28	5842.4(18)	4413(5)	5844(2)	41.5(10)
C29	6457(2)	4281(6)	6322(3)	54.6(12)

**Supplementary Table 22.** Anisotropic Displacement Parameters ( $Å^2 \times 10^3$ ) for **An-TDPP**. The Anisotropic displacement factor exponent takes the form:  $-2\pi^2[h^2a^{*2}U11+2hka^*b^*U12+...]$ .

anop									
Ato	m U11	U22	U33	U23	U13	U12			
<b>S</b> 1	31.4(5)	40.6(6)	27.2(5)	-12.7(4)	9.6(4)	4.9(4)			
01	29.5(14)	41.7(17)	39.1(15)	-18.8(12)	8.1(11)	1.1(11)			
N1	29.2(15)	25.1(16)	28.0(15)	-7.1(12)	8.6(12)	2.0(12)			
C1	34.0(18)	23.3(18)	26.6(17)	1.9(14)	12.8(14)	4.2(14)			

Supp	lementary	Inform	ation
Dupp.	ionionical j	mom	auon

C2	32.1(18)	32(2)	28.5(18)	-3.4(15)	7.2(15)	9.3(15)
C3	39(2)	27(2)	27.4(18)	-8.0(14)	10.5(15)	4.8(15)
C4	34.9(18)	17.6(17)	22.8(16)	-5.1(12)	11.2(14)	0.5(13)
C5	33.9(17)	29.1(19)	21.1(16)	-3.5(14)	9.6(14)	4.8(14)
C6	47(2)	30(2)	24.2(17)	-5.1(14)	15.0(15)	3.2(16)
C7	61(3)	36(2)	35(2)	-0.4(17)	25.7(19)	2.4(19)
C8	88(4)	31(2)	45(3)	-2.0(18)	34(3)	-6(2)
C9	93(4)	24(2)	43(2)	0.9(18)	27(2)	6(2)
C10	74(3)	31(2)	37(2)	-2.9(18)	21(2)	18(2)
C11	54(2)	30(2)	27.4(19)	-3.3(15)	17.2(17)	11.6(17)
C12	48(2)	44(2)	25.0(17)	-2.9(16)	16.1(16)	17.1(18)
C13	30.5(17)	43(2)	18.7(16)	-6.2(15)	6.2(13)	6.1(15)
C14	33.8(18)	58(3)	22.2(17)	-8.9(17)	11.9(14)	0.1(18)
C15	47(2)	60(3)	22.8(18)	-3.9(18)	15.9(16)	-11(2)
C16	51(2)	39(2)	26.4(18)	1.4(16)	14.0(17)	-4.7(18)
C17	44(2)	34(2)	22.8(17)	-2.8(15)	12.5(15)	1.8(16)
C18	31.5(17)	32(2)	18.6(15)	-3.7(14)	6.3(13)	4.9(15)
C19	28.9(17)	20.1(17)	25.5(16)	-2.1(13)	10.2(13)	0.8(13)
C20	32.7(18)	25.3(18)	27.2(17)	-6.3(14)	10.9(14)	2.2(14)
C21	29.6(17)	22.5(17)	29.3(17)	-4.7(14)	11.5(13)	3.6(13)
C22	33.2(18)	26.1(19)	26.8(17)	-8.1(14)	10.2(14)	0.0(14)
C23	37.8(19)	29(2)	34(2)	-5.7(16)	11.1(16)	2.3(15)
C24	51(2)	31(2)	44(2)	-9.8(18)	16.5(19)	-3.1(18)
C25	73(3)	31(2)	49(3)	-0.1(19)	22(2)	5(2)
C26	69(3)	54(3)	45(3)	-4(2)	16(2)	3(3)
C27	104(5)	45(3)	65(3)	-8(3)	33(3)	-7(3)
C28	51(2)	38(2)	34(2)	-0.7(17)	16.8(18)	-1.1(18)
C29	48(3)	63(3)	48(3)	-8(2)	16(2)	-2(2)

Supplementary	Table 23.	Bond Lengths	for An-TDPP
		<u> </u>	

Supplementary Table 23. Bond Lengths for An-TDPP.							
Atom	Atom	Length/Å	Atom	Atom	Length/Å		
<b>S</b> 1	C1	1.725(4)	C11	C12	1.387(7)		
<b>S</b> 1	C4	1.741(3)	C12	C13	1.378(6)		
01	C20	1.228(5)	C13	C14	1.427(6)		
N1	C19	1.388(4)	C13	C18	1.439(5)		
N1	C20	1.417(5)	C14	C15	1.356(7)		
N1	C22	1.458(5)	C15	C16	1.417(7)		
C1	C2	1.356(5)	C16	C17	1.359(6)		
C1	C5	1.476(5)	C17	C18	1.411(6)		
C2	C3	1.404(5)	C19	C211	1.388(5)		

C3	C4	1.371(5)	C20	C21	1.449(5)
C4	C19	1.442(5)	C21	C211	1.408(7)
C5	C6	1.401(6)	C22	C23	1.548(6)
C5	C18	1.414(5)	C23	C24	1.537(6)
C6	C7	1.431(6)	C23	C28	1.526(6)
C6	C11	1.446(6)	C24	C25	1.521(6)
C7	C8	1.356(6)	C25	C26	1.516(7)
C8	C9	1.407(8)	C26	C27	1.469(8)
C9	C10	1.353(8)	C28	C29	1.530(6)
C10	C11	1.428(6)			

# Supplementary Table 24. Bond Angles for An-TDPP.

Aton	n Aton	n Aton	n Angle/°	Atom Ato	om Ator	m Angle/°
C1	<b>S</b> 1	C4	92.54(17)	C12 C13	C18	119.9(4)
C19	N1	C20	111.1(3)	C14 C13	C18	118.0(4)
C19	N1	C22	128.2(3)	C15 C14	C13	121.5(4)
C20	N1	C22	120.7(3)	C14 C15	C16	120.2(4)
C2	C1	<b>S</b> 1	110.3(3)	C17 C16	C15	120.0(4)
C2	C1	C5	126.3(3)	C16 C17	C18	121.8(4)
C5	C1	<b>S</b> 1	123.4(3)	C5 C18	C13	118.9(4)
C1	C2	C3	114.2(3)	C17 C18	C5	122.7(3)
C4	C3	C2	113.4(3)	C17 C18	C13	118.4(4)
C3	C4	<b>S</b> 1	109.5(3)	N1 C19	C4	126.3(3)
C3	C4	C19	123.8(3)	N1 C19	C211	107.0(3)
C19	C4	<b>S</b> 1	126.6(3)	C211 C19	C4	126.6(3)
C6	C5	C1	119.5(3)	O1 C20	N1	122.8(3)
C6	C5	C18	120.4(3)	O1 C20	C21	132.6(3)
C18	C5	C1	119.8(3)	N1 C20	C21	104.6(3)
C5	C6	C7	123.0(4)	C191 C21	C20	142.8(3)
C5	C6	C11	119.5(4)	C191 C21	C211	109.7(4)
C7	C6	C11	117.5(4)	C211 C21	C20	107.5(4)
C8	C7	C6	121.0(4)	N1 C22	C23	113.0(3)
C7	C8	C9	121.3(5)	C24 C23	C22	107.0(3)
C10	C9	C8	120.5(4)	C28 C23	C22	112.0(3)
C9	C10	C11	120.8(4)	C28 C23	C24	114.4(4)
C10	C11	C6	119.0(4)	C25 C24	C23	117.0(4)
C12	C11	C6	119.1(4)	C26 C25	C24	112.5(4)
C12	C11	C10	121.9(4)	C27 C26	C25	113.6(5)
C13	C12	C11	121.9(4)	C23 C28	C29	115.9(4)
C12	C13	C14	122.1(4)			

Supplementary Table 25. Torsion Angles for An-TDPP.

~	PP-0			4010 201 1010101		5.00			
A	В	С	D	Angle/°	A	В	С	D	Angle/°
<b>S</b> 1	C1	C2	C3	-0.3(5)	C8	C9	C10	C11	0.7(7)
<b>S</b> 1	C1	C5	C6	88.3(4)	C9	C10	C11	C6	0.2(7)
<b>S</b> 1	C1	C5	C18	-97.6(4)	C9	C10	C11	C12	-179.0(4)
<b>S</b> 1	C4	C19	N1	-15.3(5)	C10	C11	C12	C13	-177.9(4)
<b>S</b> 1	C4	C19	C211	167.1(3)	C11	C6	C7	C8	0.1(6)
01	C20	C21	C191	-2.8(9)	C11	C12	C13	C14	179.7(4)
01	C20	C21	C211	179.2(5)	C11	C12	C13	C18	-1.8(6)
N1	C20	C21	C191	178.1(5)	C12	C13	C14	C15	-178.3(4)
N1	C20	C21	C211	0.1(5)	C12	C13	C18	C5	-2.3(5)
N1	C22	C23	C24	168.0(3)	C12	C13	C18	C17	177.8(3)
N1	C22	C23	C28	-65.9(4)	C13	C14	C15	C16	-0.7(6)
C1	<b>S</b> 1	C4	C3	-1.1(3)	C14	C13	C18	C5	176.2(3)
C1	<b>S</b> 1	C4	C19	179.4(3)	C14	C13	C18	C17	-3.7(5)
C1	C2	C3	C4	-0.6(5)	C14	C15	C16	C17	-1.1(6)
C1	C5	C6	C7	-8.5(6)	C15	C16	C17	C18	0.5(6)
C1	C5	C6	C11	170.0(3)	C16	C17	C18	C5	-177.9(4)
C1	C5	C18	C13	-168.8(3)	C16	C17	C18	C13	2.0(5)
C1	C5	C18	C17	11.1(5)	C18	C5	C6	C7	177.4(3)
C2	C1	C5	C6	-89.5(5)	C18	C5	C6	C11	-4.2(5)
C2	C1	C5	C18	84.7(5)	C18	C13	C14	C15	3.2(5)
C2	C3	C4	<b>S</b> 1	1.1(4)	C19	N1	C20	01	-178.1(4)
C2	C3	C4	C19	-179.4(4)	C19	N1	C20	C21	1.1(4)
C3	C4	C19	N1	165.3(4)	C19	N1	C22	C23	-74.1(5)
C3	C4	C19	C211	-12.3(6)	C20	N1	C19	C4	-179.9(3)
C4	<b>S</b> 1	C1	C2	0.8(3)	C20	N1	C19	C211	-1.9(4)
C4	<b>S</b> 1	C1	C5	-177.3(3)	C20	N1	C22	C23	105.6(4)
C5	C1	C2	C3	177.7(4)	C22	N1	C19	C4	-0.1(6)
C5	C6	C7	C8	178.6(4)	C22	N1	C19	C211	177.9(4)
C5	C6	C11	C10	-179.1(4)	C22	N1	C20	01	2.2(6)
C5	C6	C11	C12	0.0(6)	C22	N1	C20	C21	-178.7(3)
C6	C5	C18	C13	5.3(5)	C22	C23	C24	C25	-176.0(4)
C6	C5	C18	C17	-174.8(3)	C22	C23	C28	C29	-66.2(5)
C6	C7	C8	C9	0.8(8)	C23	C24	C25	C26	177.4(4)
C6	C11	C12	C13	3.0(6)	C24	C23	C28	C29	55.7(5)
C7	C6	C11	C10	-0.6(6)	C24	C25	C26	C27	-178.7(5)
C7	C6	C11	C12	178.6(4)	C28	C23	C24	C25	59.4(5)
C7	C8	C9	C10	-1.2(8)					

Atom	x	V	7.	U(eq)
H2	3018 17	2797 55	4679 62	40
нз	3677.09	1399.69	4434 19	39
H7	3830.25	5990.92	5392.85	51
H8	3747.62	8441 45	5155.84	64
Н9	3178.07	9891 18	5469.65	66
H10	2663.14	8870.24	5984 42	59
H12	2366.21	6680.73	6418 37	47
H14	2082.8	4539.09	6893.91	46
H15	2178 39	2116.77	7204.2	51
H16	2806.46	656.76	6995.01	48
н17	2300.40	1640.3	6453 31	48
	5010.07	2204.24	6810.46	41
HZZA	5227.05	2304.24	6812.75	30
H22B	5327.95	2470.07	0813.75 5880.22	30
H25	5103.03	4550.42	5880.52	43
H24A	5384.93	4857.33	/144.18	52
H24B	6005.34	4904.99	7289.31	52
H25A	5843.41	7065.32	6596.78	63
H25B	5212.9	7005.45	6411.76	63
H26A	5452.91	7297.01	7690.7	71
H26B	6080.37	7390.67	7865.21	71
H27A	5284.77	9439.34	7005.38	110
H27B	5917.29	9539.69	7204.87	110
H27C	5726.72	9685.73	7845.07	110
H28A	5763.6	5401.93	5625.24	50
H28B	5732.94	3709.26	5430.78	50
H29A	6647.62	4581.71	6032.48	82
H29B	6549.71	3267.58	6480.51	82
H29C	6568.48	4909.09	6757.74	82

Supplementary Table 26. Hydroge	n Atom Coordinates (	$(Å \times 10^4)$ and Isotropic	Displacement Parameters
(Å ² ×10 ³ ) for <b>An-TDPP</b> .			

2.8. X-ray crystallographic data for Flu-TDPP

Supplementary Table 27. Crystal data and structure refinement for Flu-TDPP.

Identification code	Flu-TDPP
Empirical formula	$C_{60}H_{64}N_2O_2S_2$
Formula weight	909.25
Temperature/K	149.99(10)

Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	11.97270(10)
b/Å	14.9060(2)
c/Å	27.9247(3)
α/°	90
β/°	98.8940(10)
γ/°	90
Volume/Å ³	4923.66(10)
Z	4
$\rho_{calc}g/cm^3$	1.227
µ/mm ⁻¹	1.327
F(000)	1944.0
Crystal size/mm ³	$0.1\times0.05\times0.02$
Radiation	CuKa ( $\lambda = 1.54184$ )
$2\Theta$ range for data collection/°	6.408 to 147.462
Index ranges	$-14 \le h \le 7, -18 \le k \le 18, -34 \le 1 \le 34$
Reflections collected	52024
Independent reflections	9658 [ $R_{int} = 0.0384$ , $R_{sigma} = 0.0284$ ]
Data/restraints/parameters	9658/262/660
Goodness-of-fit on F ²	1.036
Final R indexes [I>= $2\sigma$ (I)]	$R_1=0.0729,wR_2=0.2080$
Final R indexes [all data]	$R_1 = 0.0872, wR_2 = 0.2213$
Largest diff. peak/hole / e Å ⁻³	1.29/-0.66

**Supplementary Table 28.** Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **Flu-TDPP**. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{II} tensor.

Atom	1 <i>x</i>	у	Ζ	U(eq)
<b>S</b> 1	4601.9(6)	6053.6(5)	3863.1(3)	47.6(2)
S2	10361.3(6)	3764.1(5)	6071.5(3)	45.9(2)
01	8790.9(18)	6611.2(15)	5030.1(9)	55.1(6)
02	6220.1(17)	3216.0(14)	4900.2(8)	47.0(5)
N1	7048(2)	6160.1(17)	4612.1(10)	46.4(6)
N2	7964.4(19)	3667.8(16)	5315.3(8)	40.2(5)
C1	6381(2)	5387(2)	4565.9(10)	41.7(6)
C01E	3 6596(3)	7902(2)	5157.5(12)	55.3(8)
C2	6988(2)	4733.4(19)	4846.7(10)	38.8(6)
C3	6930(2)	3809(2)	4996.5(10)	40.1(6)
C4	8613(2)	4449.1(19)	5370.7(10)	38.2(6)
C5	8017(2)	5095(2)	5078.9(10)	39.7(6)
C6	8078(2)	6020(2)	4930.8(11)	46.8(7)
C7	6795(3)	7039(2)	4388.2(11)	46.0(7)
C8	6022(3)	7608(2)	4651.7(12)	49.4(7)
C9	5556(3)	8396(2)	4332.0(12)	50.8(7)
C10	4697(3)	8966(2)	4529.5(13)	57.2(8)
C11	4184(3)	9718(3)	4185.5(13)	64.9(10)
C12	3542(4)	9378(3)	3711.3(14)	73.5(11)
C13	7558(3)	8594(3)	5159.5(14)	65.5(10)
C14	5264(2)	5298(2)	4289.3(10)	41.8(6)
C15	4570(2)	4575(2)	4321.8(11)	44.2(6)
C16	3533(2)	4627(2)	4013.0(11)	45.1(7)
C17	3406(2)	5389.1(19)	3736.5(10)	41.4(6)
C18	2454(2)	5652.3(19)	3369.5(10)	40.0(6)
C19	1504(2)	5093(2)	3271.8(11)	45.1(7)

C20	599(2)	5307(2)	2916.2(11)	45.1(7)
C21	635(2)	6088.4(19)	2649.8(10)	39.3(6)
C22	1571(2)	6659.0(19)	2742.8(11)	40.7(6)
C23	2472(2)	6447(2)	3100.4(11)	43.1(6)
C24	-147(2)	6461(2)	2242.3(10)	40.3(6)
C25	327(2)	7245(2)	2086.8(11)	41.9(6)
C26	1458(2)	7450(2)	2398.8(11)	45.3(7)
C27	-1190(3)	6155(2)	2007.6(11)	48.6(7)
C28	-1728(3)	6628(2)	1608.2(12)	53.8(8)
C29	-1234(3)	7392(2)	1445.9(12)	52.8(8)
C30	-215(3)	7711(2)	1686.0(11)	47.6(7)
C31	1421(3)	8340(2)	2667.0(15)	67.6(11)
C32	2413(3)	7455(3)	2092.1(14)	63.6(10)
C33	8180(3)	2808(2)	5559.9(12)	46.7(7)
C34	8968(3)	2170(2)	5352.8(15)	67.9(10)
C35	9199(15)	1232(7)	5581(4)	101(2)
C35A	A 9198(8)	1439(6)	5762(4)	99.0(19)
C36	9780(11)	1362(7)	6101(5)	98(2)
C36A	A 10388(6)	1048(5)	5850(3)	89(2)
C37	9888(12)	429(9)	6343(5)	127(3)
C37 <i>A</i>	A 10669(8)	290(7)	6202(5)	119(2)
C38	11086(14)	44(12)	6364(9)	146(4)
C38A	A 11912(7)	-85(7)	6193(5)	141(3)
C39	8159(10)	1899(10)	4866(3)	104(3)
C39A	A 8564(5)	1856(6)	4840(3)	84.4(18)
C40	8696(7)	2334(5)	4499(3)	56(2)
C40A	A 9278(7)	1584(8)	4463(4)	122(3)

C41	9678(2)	4568(2)	5685.1(10)	40.7(6)
C42	10279(2)	5364(2)	5730.1(11)	43.9(6)
C43	11267(2)	5314(2)	6070.4(11)	44.3(6)
C44	11435(2)	4493(2)	6292.5(11)	44.2(6)
C45	12318(2)	4208(2)	6688.1(11)	45.4(7)
C46	12982(3)	4846(2)	6963.7(12)	52.8(8)
C47	13739(3)	4601(2)	7368.6(13)	56.3(8)
C48	13849(2)	3706(2)	7498.0(11)	48.3(7)
C49	13230(2)	3051(2)	7213.7(11)	45.9(7)
C50	12462(2)	3300(2)	6814.5(11)	44.3(6)
C51	14504(3)	3258(3)	7918.3(12)	53.9(8)
C52	14304(3)	2335(3)	7875.9(12)	54.1(8)
C53	13508(3)	2116(2)	7408.9(12)	51.2(8)
C54	15199(3)	3609(3)	8320.9(13)	64.1(10)
C55	15673(3)	3020(4)	8682.3(14)	74.5(12)
C56	15479(3)	2109(4)	8638.4(14)	77.4(13)
C57	14803(3)	1758(3)	8237.8(13)	66.1(10)
C58	12468(3)	1593(3)	7497.8(14)	60.1(9)
C59	14138(3)	1598(3)	7055.5(13)	68.6(11)

**Supplementary Table 29.** Anisotropic Displacement Parameters ( $\mathring{A}^2 \times 10^3$ ) for **Flu-TDPP**. The Anisotropic displacement factor exponent takes the form:  $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$ .

Ator	n U11	U22	U33	U23	U ₁₃	U12
<b>S</b> 1	36.2(4)	46.0(4)	55.2(4)	7.0(3)	-9.9(3)	-1.6(3)
S2	37.2(4)	45.9(4)	50.1(4)	-0.6(3)	-7.2(3)	4.1(3)
01	41.8(12)	52.5(13)	67.2(14)	7.7(11)	-3.8(10)	-4.0(10)
02	37.3(11)	48.2(12)	52.6(12)	4.2(9)	-2.3(9)	-2.7(9)
N1	38.3(13)	45.1(14)	52.5(14)	6.6(11)	-4.2(11)	-0.4(10)

Supplementary Information										
N2	34.4(12)	42.5(13)	41.5(12)	2.9(10)	-0.9(9)	1.6(9)				
C1	32.8(14)	47.4(16)	42.9(14)	1.1(12)	-0.8(11)	-0.2(11)				
C01B 55(2)		63(2)	46.9(17)	1.2(15)	5.4(14)	6.1(15)				
C2	31.9(14)	45.4(15)	37.9(13)	0.5(11)	2.0(10)	-0.3(11)				
C3	33.9(14)	45.6(15)	39.8(14)	0.1(11)	3.0(11)	1.3(11)				
C4	33.0(14)	44.9(15)	36.3(13)	-0.1(11)	4.4(10)	1.8(11)				
C5	30.7(14)	46.9(15)	40.3(14)	2.6(12)	1.7(11)	-0.7(11)				
C6	36.4(15)	49.7(17)	50.1(17)	2.6(13)	-6.0(12)	-0.6(12)				
C7	40.3(16)	50.3(17)	46.8(16)	5.0(13)	4.6(12)	1.0(12)				
C8	39.2(16)	53.1(18)	55.0(18)	-6.1(14)	4.3(13)	1.5(13)				
C9	47.3(17)	52.5(18)	48.9(17)	-0.8(14)	-4.4(13)	-1.9(14)				
C10	56(2)	58(2)	54.5(19)	-8.6(15)	0.1(15)	3.5(15)				
C11	69(2)	59(2)	61(2)	-10.6(17)	-4.3(17)	16.3(18)				
C12	75(3)	78(3)	61(2)	-3.3(19)	-11.8(19)	26(2)				
C13	59(2)	70(2)	63(2)	-15.2(18)	-6.7(17)	1.2(18)				
C14	33.8(14)	46.7(15)	42.4(15)	0.2(12)	-1.6(11)	3.8(11)				
C15	38.2(15)	46.4(16)	45.5(15)	2.7(12)	-1.2(12)	0.7(12)				
C16	38.6(15)	47.2(16)	47.1(16)	0.1(13)	-0.9(12)	-2.8(12)				
C17	36.6(15)	42.1(15)	44.0(15)	-3.0(12)	0.9(11)	3.1(11)				
C18	31.8(14)	43.1(15)	43.3(14)	-4.1(12)	0.2(11)	1.9(11)				
C19	40.0(16)	45.7(16)	47.2(16)	1.7(13)	-0.5(12)	-3.5(12)				
C20	36.0(15)	48.2(16)	48.9(16)	-0.9(13)	0.2(12)	-7.1(12)				
C21	30.1(13)	46.7(15)	40.1(14)	-4.7(12)	1.8(10)	-0.3(11)				
C22	32.1(14)	41.6(15)	46.0(15)	-2.2(12)	-1.0(11)	1.5(11)				
C23	30.4(14)	42.8(15)	52.7(16)	-0.7(13)	-4.1(12)	-1.9(11)				
C24	31.2(14)	48.4(16)	40.1(14)	-4.8(12)	1.4(11)	0.0(11)				
C25	31.4(14)	48.1(16)	44.8(15)	-3.9(12)	1.2(11)	4.0(11)				
	Supplementary Information									
----------	---------------------------	----------	----------	----------	-----------	----------	--	--	--	--
C26 33.	.1(15)	45.0(16)	53.7(17)	4.0(13)	-6.4(12)	-1.5(11)				
C27 37.	2(16)	56.8(18)	48.5(16)	-3.0(14)	-3.3(12)	-6.1(13)				
C28 38.	2(16)	65(2)	53.5(18)	-7.9(15)	-8.6(13)	-2.2(14)				
C29 45.	.8(18)	61(2)	47.7(17)	-1.2(14)	-6.4(13)	5.9(14)				
C30 38.	.4(16)	51.4(17)	50.6(17)	3.7(13)	-0.6(12)	2.6(13)				
C31 68(	(2)	45.5(18)	77(2)	-4.3(17)	-27.1(19)	1.8(16)				
C32 35.	2(17)	79(2)	75(2)	23.4(19)	4.1(15)	-3.1(15)				
C33 39.	.5(16)	44.4(16)	54.2(17)	6.1(13)	0.3(13)	-0.1(12)				
C34 46.	.5(19)	48.8(19)	108(3)	-6.3(19)	11.7(19)	1.0(15)				
C35 73(	(4)	69(4)	165(5)	-2(4)	28(4)	14(4)				
C35A 74(	(3)	70(3)	161(5)	16(3)	44(4)	17(3)				
C36 63(	(4)	77(4)	158(5)	4(4)	26(4)	10(4)				
C36A 105	5(5)	77(5)	83(5)	14(4)	3(4)	-7(4)				
C37 98(	(5)	101(5)	181(6)	20(5)	22(5)	12(5)				
C37A 94(	(4)	93(4)	175(5)	33(4)	35(4)	27(4)				
C38 111	1(7)	124(8)	199(9)	22(7)	14(8)	18(7)				
C38A 70(	(5)	117(6)	229(9)	69(6)	1(6)	-7(4)				
C39 72(	(5)	92(5)	150(5)	-23(4)	25(4)	6(5)				
C39A 28(	(3)	85(4)	144(4)	-61(3)	25(3)	-9(3)				
C40 40(	(4)	40(4)	76(5)	-18(4)	-27(4)	-2(3)				
C40A 72(	(5)	155(7)	139(6)	-75(6)	13(4)	12(5)				
C41 33.	.4(14)	47.0(15)	40.3(14)	-0.7(12)	1.6(11)	3.3(11)				
C42 36.	2(15)	49.4(16)	44.6(15)	1.4(13)	1.1(11)	2.9(12)				
C43 34.	1(14)	50.8(17)	46.1(15)	-0.3(13)	0.6(11)	0.7(12)				
C44 36.	7(15)	48.3(16)	45.6(15)	-4.5(13)	-0.3(12)	5.0(12)				
C45 35.	7(15)	51.1(17)	46.6(16)	-1.5(13)	-2.2(12)	4.6(12)				
C46 42.	2(17)	50.0(17)	61.1(19)	0.7(15)	-8.0(14)	-0.2(13)				

		Sı	upplementary	Information		
C47	39.5(17)	64(2)	59.6(19)	-0.8(16)	-9.8(14)	-4.8(14)
C48	30.4(15)	66(2)	46.8(16)	3.2(14)	-1.3(12)	3.1(13)
C49	33.8(15)	56.7(18)	47.4(16)	4.8(14)	7.2(12)	6.9(12)
C50	35.1(15)	49.5(16)	46.8(15)	-1.0(13)	0.9(12)	5.1(12)
C51	34.6(16)	80(2)	47.0(17)	8.4(16)	4.8(12)	5.5(15)
C52	37.7(16)	78(2)	48.2(17)	13.8(16)	10.6(13)	9.0(15)
C53	43.2(17)	61.3(19)	49.5(17)	9.5(15)	8.6(13)	11.5(14)
C54	39.3(18)	95(3)	54.9(19)	5.1(19)	-1.6(14)	1.2(17)
C55	45(2)	125(4)	51(2)	15(2)	-1.1(15)	0(2)
C56	54(2)	119(4)	57(2)	35(2)	4.5(17)	8(2)
C57	50(2)	90(3)	58(2)	25(2)	9.9(16)	7.2(18)
C58	58(2)	60(2)	62(2)	3.3(17)	11.6(16)	-0.5(16)
C59	72(2)	79(3)	58(2)	13.3(18)	18.0(18)	35(2)

### Supplementary Table 30. Bond Lengths for Flu-TDPP.

Ator	n Aton	n Length/Å	Atom	Atom Atom Length/Å				
<b>S</b> 1	C14	1.738(3)	C25	C30	1.390(4)			
<b>S</b> 1	C17	1.732(3)	C26	C31	1.527(5)			
<b>S</b> 2	C41	1.731(3)	C26	C32	1.531(5)			
<b>S</b> 2	C44	1.723(3)	C27	C28	1.391(4)			
01	C6	1.229(4)	C28	C29	1.391(5)			
02	C3	1.227(3)	C29	C30	1.382(4)			
N1	C1	1.397(4)	C33	C34	1.515(5)			
N1	C6	1.420(4)	C34	C35	1.543(8)			
N1	C7	1.463(4)	C34	C35A	A 1.573(7)			
N2	C3	1.424(3)	C34	C39	1.594(9)			
N2	C4	1.395(4)	C34	C39A	A 1.514(7)			

N2	C33	1.457(4)	C35	C36	1.522(9)
C1	C2	1.384(4)	C35A	A C36A	1.523(8)
C1	C14	1.444(4)	C36	C37	1.543(9)
C01E	3 C8	1.536(4)	C36A	AC37A	1.501(8)
C01E	8 C13	1.544(5)	C37	C38	1.537(9)
C2	C3	1.445(4)	C37 <i>A</i>	A C38A	1.593(8)
C2	C5	1.408(4)	C39	C40	1.445(9)
C4	C5	1.386(4)	C39A	AC40A	1.511(7)
C4	C41	1.443(4)	C41	C42	1.383(4)
C5	C6	1.444(4)	C42	C43	1.401(4)
C7	C8	1.526(4)	C43	C44	1.372(4)
C8	C9	1.527(4)	C44	C45	1.469(4)
C9	C10	1.503(5)	C45	C46	1.393(4)
C10	C11	1.540(5)	C45	C50	1.402(4)
C11	C12	1.512(5)	C46	C47	1.385(4)
C14	C15	1.373(4)	C47	C48	1.382(5)
C15	C16	1.400(4)	C48	C49	1.397(4)
C16	C17	1.369(4)	C48	C51	1.468(4)
C17	C18	1.463(4)	C49	C50	1.382(4)
C18	C19	1.403(4)	C49	C53	1.514(4)
C18	C23	1.405(4)	C51	C52	1.398(5)
C19	C20	1.389(4)	C51	C54	1.393(5)
C20	C21	1.386(4)	C52	C53	1.527(5)
C21	C22	1.399(4)	C52	C57	1.389(5)
C21	C24	1.467(4)	C53	C58	1.522(5)
C22	C23	1.388(4)	C53	C59	1.540(5)
C22	C26	1.514(4)	C54	C55	1.390(6)

- C24 C25 1.397(4) C55 C56 1.380(7)
- C24 C27 1.394(4) C56 C57 1.379(6)
- C25 C26 1.524(4)

#### Supplementary Table 31. Bond Angles for Flu-TDPP.

Atom Atom Angle/°					Atom Atom Angle/°				
C17	<b>S</b> 1	C14	92.54(14)	C22	C26	C31	111.8(3)		
C44	<b>S</b> 2	C41	92.37(14)	C22	C26	C32	110.9(3)		
C1	N1	C6	111.4(2)	C25	C26	C31	111.4(3)		
C1	N1	C7	128.4(2)	C25	C26	C32	110.8(3)		
C6	N1	C7	120.2(2)	C31	C26	C32	110.6(3)		
C3	N2	C33	119.8(2)	C28	C27	C24	118.8(3)		
C4	N2	C3	111.2(2)	C27	C28	C29	120.6(3)		
C4	N2	C33	128.9(2)	C30	C29	C28	120.8(3)		
N1	C1	C14	126.4(3)	C29	C30	C25	119.1(3)		
C2	C1	N1	106.6(2)	N2	C33	C34	116.7(3)		
C2	C1	C14	126.9(3)	C33	C34	C35	119.5(7)		
C8	C011	B C13	114.9(3)	C33	C34	C35A	101.9(4)		
C1	C2	C3	142.2(3)	C33	C34	C39	98.8(6)		
C1	C2	C5	109.7(3)	C35	C34	C39	99.7(6)		
C5	C2	C3	108.0(2)	C39A	A C34	C33	115.3(4)		
02	C3	N2	122.5(3)	C39A	A C34	C35A	117.9(6)		
02	C3	C2	133.3(3)	C36	C35	C34	107.8(8)		
N2	C3	C2	104.2(2)	C36A	A C35A	AC34	115.9(6)		
N2	C4	C41	126.5(3)	C35	C36	C37	107.4(8)		
C5	C4	N2	106.7(2)	C37A	A C36A	A C35A	A 120.2(7)		
C5	C4	C41	126.7(3)	C38	C37	C36	111.5(9)		

C2	C5	C6	108.2(3)	C36A	A C37 <i>A</i>	A C38A	111.6(7)
C4	C5	C2	109.8(3)	C40	C39	C34	102.3(8)
C4	C5	C6	142.0(3)	C40A	A C39A	A C34	127.6(6)
01	C6	N1	122.8(3)	C4	C41	S2	125.6(2)
01	C6	C5	133.2(3)	C42	C41	S2	110.4(2)
N1	C6	C5	104.1(2)	C42	C41	C4	124.0(3)
N1	C7	C8	113.1(3)	C41	C42	C43	112.9(3)
C7	C8	C01E	3 1 1 2 . 5 ( 3 )	C44	C43	C42	113.8(3)
C7	C8	C9	109.8(3)	C43	C44	S2	110.6(2)
C9	C8	C01E	3112.9(3)	C43	C44	C45	129.5(3)
C10	C9	C8	115.4(3)	C45	C44	S2	119.8(2)
C9	C10	C11	114.3(3)	C46	C45	C44	120.1(3)
C12	C11	C10	113.7(3)	C46	C45	C50	118.9(3)
C1	C14	<b>S</b> 1	126.4(2)	C50	C45	C44	120.9(3)
C15	C14	<b>S</b> 1	109.7(2)	C47	C46	C45	121.1(3)
C15	C14	C1	123.8(3)	C48	C47	C46	119.5(3)
C14	C15	C16	113.8(3)	C47	C48	C49	120.3(3)
C17	C16	C15	113.8(3)	C47	C48	C51	131.7(3)
C16	C17	<b>S</b> 1	110.1(2)	C49	C48	C51	107.9(3)
C16	C17	C18	128.6(3)	C48	C49	C53	111.8(3)
C18	C17	<b>S</b> 1	121.3(2)	C50	C49	C48	119.9(3)
C19	C18	C17	119.8(3)	C50	C49	C53	128.3(3)
C19	C18	C23	118.4(3)	C49	C50	C45	120.2(3)
C23	C18	C17	121.8(3)	C52	C51	C48	108.5(3)
C20	C19	C18	121.4(3)	C54	C51	C48	130.8(4)
C21	C20	C19	119.4(3)	C54	C51	C52	120.7(3)
C20	C21	C22	120.1(3)	C51	C52	C53	111.0(3)

C20	C21	C24	131.7(3)	C57	C52	C51	119.9(4)
C22	C21	C24	108.1(3)	C57	C52	C53	129.1(4)
C21	C22	C26	111.4(2)	C49	C53	C52	100.6(3)
C23	C22	C21	120.4(3)	C49	C53	C58	113.0(3)
C23	C22	C26	128.1(3)	C49	C53	C59	109.5(3)
C22	C23	C18	120.2(3)	C52	C53	C59	110.6(3)
C25	C24	C21	108.4(2)	C58	C53	C52	112.9(3)
C27	C24	C21	131.2(3)	C58	C53	C59	110.0(3)
C27	C24	C25	120.3(3)	C55	C54	C51	118.4(4)
C24	C25	C26	111.0(2)	C56	C55	C54	120.8(4)
C30	C25	C24	120.4(3)	C57	C56	C55	121.0(4)
C30	C25	C26	128.5(3)	C56	C57	C52	119.2(4)
C22	C26	C25	101.0(2)				

### Supplementary Table 32. Torsion Angles for Flu-TDPP.

A	В	С	D	Angle/°	А	В	С	D	Angle/°
<b>S</b> 1	C14	C15	5 C16	-0.1(3)	C22	C21	C24	C27	179.6(3)
<b>S</b> 1	C17	C18	8C19	179.2(2)	C23	C18	C19	C20	0.5(5)
<b>S</b> 1	C17	C18	8 C23	0.7(4)	C23	C22	C26	C25	176.3(3)
S2	C41	C42	2 C43	0.0(3)	C23	C22	C26	C31	-65.2(4)
S2	C44	C45	5 C46	-161.0(3)	C23	C22	C26	C32	58.7(4)
S2	C44	C45	5 C50	15.0(4)	C24	C21	C22	C23	-177.4(3)
N1	C1	C2	C3	179.6(4)	C24	C21	C22	C26	0.1(3)
N1	C1	C2	C5	1.5(3)	C24	C25	C26	C22	1.6(3)
N1	C1	C14	4S1	13.0(5)	C24	C25	C26	C31	-117.3(3)
N1	C1	C14	4C15	-168.4(3)	C24	C25	C26	C32	119.2(3)
N1	C7	C8	C01E	<b>3</b> 67.7(3)	C24	C25	C30	C29	0.5(5)

N1	C7	C8 C9	-165.6(3)	C24	C27	C28	C29	0.1(5)
N2	C4	C5 C2	1.1(3)	C25	C24	C27	C28	2.0(5)
N2	C4	C5 C6	-179.6(4)	C26	C22	C23	C18	-176.5(3)
N2	C4	C41 S2	-1.5(4)	C26	C25	C30	C29	178.3(3)
N2	C4	C41 C42	-179.2(3)	C27	C24	C25	C26	179.5(3)
N2	C33	C34 C35	-177.6(6)	C27	C24	C25	C30	-2.3(4)
N2	C33	C34 C35A	A 168.3(5)	C27	C28	C29	C30	-1.9(5)
N2	C33	C34 C39	-71.1(5)	C28	C29	C30	C25	1.6(5)
N2	C33	C34 C39A	A -62.6(5)	C30	C25	C26	C22	-176.5(3)
C1	N1	C6 O1	-179.2(3)	C30	C25	C26	C31	64.7(4)
C1	N1	C6 C5	0.6(3)	C30	C25	C26	C32	-58.8(4)
C1	N1	C7 C8	80.3(4)	C33	N2	C3	02	-3.3(4)
C1	C2	C3 O2	1.6(7)	C33	N2	C3	C2	176.9(2)
C1	C2	C3 N2	-178.6(4)	C33	N2	C4	C5	-176.6(3)
C1	C2	C5 C4	178.4(2)	C33	N2	C4	C41	1.3(5)
C1	C2	C5 C6	-1.2(4)	C33	C34	C35	C36	-63.2(14)
C1	C14	C15 C16	-178.9(3)	C33	C34	C35A	C36A	-143.7(8)
C011	3 C8	C9 C10	-58.8(4)	C33	C34	C39	C40	109.9(8)
C2	C1	C14 S1	-168.8(2)	C33	C34	C39A	C40A	151.0(9)
C2	C1	C14 C15	9.7(5)	C34	C35	C36	C37	173.8(10)
C2	C5	C6 O1	-179.9(4)	C34	C35A	C36A	C37A	-174.6(9)
C2	C5	C6 N1	0.3(3)	C35	C34	C39	C40	-128.0(11)
C3	N2	C4 C5	-1.5(3)	C35	C36	C37	C38	100.7(17)
C3	N2	C4 C41	176.5(3)	C35A	A C34	C39A	C40A	-88.4(11)
C3	N2	C33 C34	102.2(3)	C35A	A C36A	C37A	C38A	173.5(10)
C3	C2	C5 C4	-0.4(3)	C39	C34	C35	C36	-169.1(12)
C3	C2	C5 C6	-179.9(2)	C39A	A C34	C35A	C36A	88.9(10)

C4	N2	C3 O2	-178.9(3)	C41	S2	C44	C43	-0.6(2)
C4	N2	C3 C2	1.2(3)	C41	S2	C44	C45	175.7(2)
C4	N2	C33 C34	-83.1(4)	C41	C4	C5	C2	-176.8(3)
C4	C5	C6 O1	0.8(7)	C41	C4	C5	C6	2.5(6)
C4	C5	C6 N1	-179.0(4)	C41	C42	C43	C44	-0.5(4)
C4	C41	C42 C43	178.0(3)	C42	C43	C44	S2	0.8(3)
C5	C2	C3 O2	179.7(3)	C42	C43	C44	C45	-175.1(3)
C5	C2	C3 N2	-0.5(3)	C43	C44	C45	C46	14.6(5)
C5	C4	C41 S2	176.1(2)	C43	C44	C45	C50	-169.4(3)
C5	C4	C41 C42	-1.6(5)	C44	S2	C41	C4	-177.6(3)
C6	N1	C1 C2	-1.3(3)	C44	S2	C41	C42	0.4(2)
C6	N1	C1 C14	177.1(3)	C44	C45	C46	C47	173.4(3)
C6	N1	C7 C8	-98.3(3)	C44	C45	C50	C49	-174.4(3)
C7	N1	C1 C2	180.0(3)	C45	C46	C47	C48	0.8(5)
C7	N1	C1 C14	-1.6(5)	C46	C45	C50	C49	1.6(5)
C7	N1	C6 O1	-0.4(5)	C46	C47	C48	C49	2.2(5)
C7	N1	C6 C5	179.4(3)	C46	C47	C48	C51	-174.9(3)
C7	C8	C9 C10	174.7(3)	C47	C48	C49	C50	-3.2(5)
C8	C9	C10C11	-176.2(3)	C47	C48	C49	C53	177.9(3)
C9	C10	C11 C12	61.9(5)	C47	C48	C51	C52	179.3(4)
C13	C01E	3 C8 C7	69.3(4)	C47	C48	C51	C54	1.5(6)
C13	C01E	3 C8 C9	-55.7(4)	C48	C49	C50	C45	1.3(4)
C14	<b>S</b> 1	C17 C16	-0.1(2)	C48	C49	C53	C52	4.9(3)
C14	<b>S</b> 1	C17 C18	-178.5(2)	C48	C49	C53	C58	125.5(3)
C14	C1	C2 C3	1.1(6)	C48	C49	C53	C59	-111.6(3)
C14	C1	C2 C5	-176.9(3)	C48	C51	C52	C53	1.3(4)
C14	C15	C16C17	0.1(4)	C48	C51	C52	C57	-178.1(3)

S80

C15	C16	C17 S1	0.0(3)	C48	C51	C54	C55	176.5(3)
C15	C16	C17 C18	178.3(3)	C49	C48	C51	C52	1.9(4)
C16	C17	C18 C19	1.2(5)	C49	C48	C51	C54	-175.8(3)
C16	C17	C18 C23	-177.4(3)	C50	C45	C46	C47	-2.7(5)
C17	<b>S</b> 1	C14C1	178.9(3)	C50	C49	C53	C52	-173.9(3)
C17	<b>S</b> 1	C14C15	0.1(2)	C50	C49	C53	C58	-53.3(4)
C17	C18	C19 C20	-178.1(3)	C50	C49	C53	C59	69.6(4)
C17	C18	C23 C22	177.6(3)	C51	C48	C49	C50	174.5(3)
C18	C19	C20 C21	0.3(5)	C51	C48	C49	C53	-4.5(3)
C19	C18	C23 C22	-0.9(4)	C51	C52	C53	C49	-3.6(3)
C19	C20	C21 C22	-0.7(4)	C51	C52	C53	C58	-124.3(3)
C19	C20	C21 C24	176.3(3)	C51	C52	C53	C59	112.0(3)
C20	C21	C22 C23	0.2(4)	C51	C52	C57	C56	0.9(5)
C20	C21	C22 C26	177.7(3)	C51	C54	C55	C56	1.4(6)
C20	C21	C24 C25	-176.3(3)	C52	C51	C54	C55	-1.0(5)
C20	C21	C24 C27	2.4(5)	C53	C49	C50	C45	-180.0(3)
C21	C22	C23 C18	0.6(4)	C53	C52	C57	C56	-178.4(3)
C21	C22	C26 C25	-1.0(3)	C54	C51	C52	C53	179.3(3)
C21	C22	C26C31	117.6(3)	C54	C51	C52	C57	-0.1(5)
C21	C22	C26 C32	-118.5(3)	C54	C55	C56	C57	-0.7(6)
C21	C24	C25 C26	-1.6(3)	C55	C56	C57	C52	-0.5(6)
C21	C24	C25 C30	176.6(3)	C57	C52	C53	C49	175.7(3)
C21	C24	C27 C28	-176.6(3)	C57	C52	C53	C58	55.0(5)
C22	C21	C24 C25	1.0(3)	C57	C52	C53	C59	-68.7(4)

**Supplementary Table 33.** Hydrogen Atom Coordinates ( $Å \times 10^4$ ) and Isotropic Displacement Parameters ( $Å^2 \times 10^3$ ) for **Flu-TDPP**.

Atom <i>x</i>	у	Z	U(eq)

H01A 6907.16	7363.82	5338.57	66
H01B 6015.03	8161.71	5333.22	66
H7A 6430.52	6952.56	4048.18	55
H7B 7512.01	7366.73	4383.13	55
H8 5362.86	7223.43	4698.48	59
H9A 6196.63	8783.49	4278.19	61
H9B 5207.86	8158.19	4012.62	61
H10A 5058.4	9240.47	4837.62	69
H10B 4078	8574.43	4603.69	69
H11A 3665.45	10079.65	4351.61	78
H11B 4799.29	10117.2	4115.87	78
H12A 4058.49	9048.84	3534.82	110
H12B 3217.53	9887.09	3515.4	110
H12C 2933.53	8977.6	3776.33	110
H13A 8121.86	8357.81	4972.95	98
H13B 7914.7	8706.73	5494.04	98
H13C 7246.03	9155.27	5012.82	98
H15 4774.53	4083.6	4534.25	53
H16 2968.57	4174.85	3996.86	54
H19 1478.9	4555.45	3452.76	54
H20 -39.31	4921.98	2856.13	54
H23 3101.31	6840.79	3163.45	52
H27 -1526.52	5633.21	2118.42	58
H28 -2439.7	6428.26	1444.94	65
H29 -1600.27	7697.71	1166.7	63
H30 110.75	8240.75	1578.64	57
H31A 786.75	8334.16	2850.84	101

H31B 1321.99	8833.02	2432.32	101
H31C 2129.91	8422.77	2890.04	101
H32A 3136.03	7560.33	2301.99	95
H32B 2278.07	7933.06	1849.18	95
H32C 2436.52	6874.75	1928.96	95
H33A 7446.13	2500.22	5557.33	56
H33B 8498.28	2925.45	5902.81	56
H34A 9675.27	2472.58	5288.35	81
H34 9695.1	2497.96	5348.73	81
H35A 8479.76	902.42	5576.1	122
H35B 9690.05	882.4	5395.53	122
H35C 9039.71	1706.63	6069.29	119
H35D 8656.18	940.47	5679.23	119
H36A 9328.14	1766.11	6276.75	118
H36B 10537.76	1631.13	6105.07	118
H36C 10565.44	844.9	5533.06	107
H36D 10913.78	1546.57	5959.04	107
H37A 9706.69	477.48	6676.47	152
H37B 9335.96	13.87	6158.95	152
H37C 10115.79	-201.09	6119.36	143
H37D 10607.72	500.42	6533.03	143
H38A 11063.08	-472.98	6146.17	219
H38B 11374.12	-145.93	6696.5	219
H38C 11584.9	505.31	6263.69	219
H38D 12309.52	-142.04	6525.55	212
H38E 12325.01	331.27	6012.22	212
H38F 11866.02	-673.73	6035.07	212

H39A 8132.86	1240.44	4820.57	125	
H39B 7382.14	2127.38	4864.34	125	
H39C 8065.78	1336.17	4871.71	101	
H39D 8063.53	2339.5	4687.34	101	
H40A 8503.84	2012.76	4190.98	83	
H40B 9517.48	2329.47	4598.02	83	
H40C 8429.87	2955.43	4458.57	83	
H40D 9718.85	2100.51	4381.59	183	
H40E 8786.73	1374.04	4170.96	183	
H40F 9792.64	1099.9	4591.83	183	
H42 10045.78	5889.37	5549.23	53	
H43 11774.98	5802.71	6140.99	53	
H46 12914.16	5460.34	6872.42	63	
H47 14179.92	5043.38	7556.03	68	
H50 12029.42	2855.37	6625.11	53	
H54 15346.11	4234.3	8347.78	77	
H55 16135.3	3248.51	8963.03	89	
H56 15817.22	1717.91	8888.06	93	
H57 14679.37	1129.33	8209.51	79	
H58A 12067.68	1929.43	7720.41	90	
H58B 12701.15	1008.6	7640.66	90	
H58C 11965.74	1502.56	7189.58	90	
H59A 13643.55	1529.04	6743.58	103	
H59B 14353.6	1004.29	7190.03	103	
H59C 14818.74	1930.2	7007.95	103	

Supplementary Table 34. Atomic Occupancy for Flu-TDPP.

Atom Occupancy	Atom Occupancy	Atom Occupancy
H34A 0.383(5)	H34 0.617(5)	C35 0.383(5)
H35A 0.383(5)	H35B 0.383(5)	C35A 0.617(5)
H35C 0.617(5)	H35D 0.617(5)	C36 0.383(5)
H36A 0.383(5)	H36B 0.383(5)	C36A 0.617(5)
H36C 0.617(5)	H36D 0.617(5)	C37 0.383(5)
H37A 0.383(5)	H37B 0.383(5)	C37A 0.617(5)
H37C 0.617(5)	H37D 0.617(5)	C38 0.383(5)
H38A 0.383(5)	H38B 0.383(5)	H38C 0.383(5)
C38A 0.617(5)	H38D 0.617(5)	H38E 0.617(5)
H38F 0.617(5)	C39 0.383(5)	H39A 0.383(5)
H39B 0.383(5)	C39A 0.617(5)	H39C 0.617(5)
H39D 0.617(5)	C40 0.383(5)	H40A 0.383(5)
H40B 0.383(5)	H40C 0.383(5)	C40A 0.617(5)
H40D 0.617(5)	H40E 0.617(5)	H40F 0.617(5)

# 2.9. X-ray crystallographic data for TPAOMe-TDPP-C4

Supplementary Table 35. Crystal data and structure refinement for TPAOMe-TDPP-C4.

Identification code	TPAOMe-TDPP-C4	
Empirical formula	$C_{62}H_{58}N_4O_6S_2$	
Formula weight	1019.24	
Temperature/K	150.00(10)	
Crystal system	monoclinic	
Space group	P21/n	
a/Å	14.3751(2)	
b/Å	10.10090(10)	
c/Å	18.6369(3)	

a/°	90
β/°	97.4310(10)
γ/°	90
Volume/Å ³	2683.38(6)
Z	2
$\rho_{calc}g/cm^3$	1.261
µ/mm ⁻¹	1.347
F(000)	1076.0
Crystal size/mm ³	$0.1 \times 0.06 \times 0.01$
Radiation	$CuK\alpha$ ( $\lambda = 1.54184$ )
$2\Theta$ range for data collection/°	7.326 to 134.148
Index ranges	$-16 \le h \le 17, -12 \le k \le 12, -20 \le l \le 22$
Reflections collected	13509
Independent reflections	4779 [ $R_{int} = 0.0221$ , $R_{sigma} = 0.0305$ ]
Data/restraints/parameters	4779/0/337
Goodness-of-fit on F ²	1.071
Final R indexes [I>= $2\sigma$ (I)]	$R_1=0.0353,wR_2=0.0929$
Final R indexes [all data]	$R_1=0.0414,wR_2=0.0961$
Largest diff. peak/hole / e Å-3	0.29/-0.25

**Supplementary Table 36.** Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for TPAOMe-TDPP-C4. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_Itensor.

Atom	x	у	Ζ	U(eq)
S01	5151.2(2)	4234.1(4)	4114.7(2)	30.72(11)
0002	2982.7(7)	-246.3(11)	4461.3(6)	36.3(3)
O003	4280.9(8)	12729.7(12)	1277.6(7)	48.9(3)
O004	10403.4(8)	12589.6(13)	4005.6(7)	51.2(3)
N005	4077.9(8)	1434.3(12)	4452.7(7)	30.3(3)

N006 6953.0(9)	10130.9(13)	3222.0(7)	38.4(3)
C007 5364.0(10)	468.5(15)	5016.3(8)	29.5(3)
C008 6378.3(10)	6352.4(15)	4033.4(8)	30.4(3)
C009 5022.0(10)	1644.0(15)	4690.4(8)	28.9(3)
C00A 3795.3(10)	133.9(15)	4621.6(8)	29.8(3)
C00B 6130.9(10)	12164.3(16)	2811.2(8)	34.6(3)
C00C 5656.7(10)	7243.4(15)	3814.4(8)	31.8(3)
C00D 5539.2(10)	2846.7(14)	4618.4(8)	30.1(3)
C00E 6756.0(11)	8886.3(15)	3496.2(8)	32.9(3)
C00F 7841.5(11)	10740.2(15)	3440.0(9)	33.6(3)
C00G 6215.0(10)	5031.4(15)	4316.0(8)	31.3(3)
C00H 6455.6(11)	3030.2(16)	4926.3(9)	35.9(4)
C00I 7297.0(11)	6762.8(15)	3974.8(8)	32.4(3)
C00J 6285.6(11)	10822.9(15)	2728.8(8)	35.3(4)
C00K 8412.4(11)	11103.9(15)	2925.9(9)	35.2(3)
C00L 5835.7(11)	8488.7(15)	3555.7(8)	33.6(3)
C00M 4961.1(11)	12170.8(17)	1769.1(9)	38.6(4)
C00N 9260.4(11)	11712.2(16)	3134.9(9)	37.0(4)
C000 7483.6(11)	7997.9(15)	3714.4(8)	34.1(3)
C00P 5481.2(10)	12840.3(16)	2331.2(8)	35.3(3)
C00Q 3367.9(10)	2343.5(16)	4107.6(9)	35.6(4)
C00R 9551.7(11)	11974.1(16)	3859.2(9)	37.2(4)
C00S 6830.4(11)	4252.6(15)	4756.4(9)	36.4(4)
C00T 8140.5(12)	10989.6(17)	4160.5(9)	40.5(4)
C00U 8990.6(12)	11605.2(17)	4376.9(9)	41.6(4)
C00V 5121.6(14)	10829.9(18)	1677.4(10)	48.6(5)
C00W 5782.4(14)	10172.2(17)	2146.0(10)	47.5(4)

Supplementary Information				
C00X 3162.3(12)	2159(2)	3294.8(9)	47.5(4)	
C00Y 4104.9(13)	14098.1(19)	1362.4(12)	56.8(5)	
C00Z 2382.9(14)	3054(3)	2956.2(12)	69.8(7)	
C010 10752.9(16)	12797(3)	4736.9(12)	76.5(7)	
C011 2015.5(18)	2677(4)	2178.1(14)	103.7(11)	

**Supplementary Table 37.** Anisotropic Displacement Parameters  $(Å^2 \times 10^3)$  for TPAOMe-TDPP-C4. The Anisotropic displacement factor exponent takes the form:  $-2\pi^2[h^2a^{*2}U_{11}+2hka^{*}b^{*}U_{12}+...]$ .

Atom U ₁₁	U22	U33	U ₂₃	U ₁₃	U12
S01 35.5(2)	26.6(2)	30.3(2)	2.42(14)	5.07(14)	-4.23(14)
O002 32.3(5)	36.5(6)	39.6(6)	5.9(5)	3.1(4)	-6.8(5)
O003 48.2(7)	44.5(7)	50.1(7)	6.4(6)	-8.8(6)	-2.8(6)
O004 42.9(6)	57.0(8)	53.1(8)	2.2(6)	3.4(5)	-13.8(6)
N005 32.7(6)	27.6(7)	30.8(6)	3.6(5)	4.8(5)	-2.5(5)
N006 42.2(7)	29.7(7)	42.0(8)	9.2(6)	0.9(6)	-6.6(6)
C007 32.7(7)	26.9(7)	29.8(7)	-0.2(6)	7.2(6)	-5.2(6)
C008 38.0(8)	27.7(8)	26.2(7)	-0.5(6)	7.1(6)	-4.5(6)
C009 33.6(7)	28.4(8)	25.5(7)	-0.9(6)	7.0(6)	-3.6(6)
C00A 34.2(7)	29.9(8)	26.2(7)	-0.1(6)	7.0(6)	-5.3(6)
C00B 35.6(8)	34.4(8)	34.2(8)	-1.5(7)	5.4(6)	-4.3(7)
C00C 35.4(8)	31.0(8)	29.7(8)	-1.4(6)	6.8(6)	-4.9(6)
C00D 36.8(7)	27.3(8)	27.0(7)	1.3(6)	6.9(6)	-3.3(6)
C00E 42.1(8)	27.9(8)	28.7(7)	2.1(6)	4.8(6)	-5.3(6)
C00F 40.2(8)	24.7(7)	36.3(8)	4.9(6)	6.2(6)	-1.9(6)
C00G 37.2(8)	28.5(8)	29.3(7)	-1.7(6)	8.6(6)	-3.0(6)
C00H 39.4(8)	29.8(8)	38.2(8)	6.4(7)	3.4(7)	-3.5(7)
C00I 36.8(8)	29.2(8)	31.5(8)	2.3(6)	5.9(6)	-1.4(6)
C00J 40.5(8)	31.8(8)	33.5(8)	6.5(6)	5.1(7)	-5.0(7)

Supplementary Information					
C00K 44.8(8)	29.4(8)	31.6(8)	3.9(6)	5.9(6)	2.2(7)
C00L 38.5(8)	29.5(8)	33.0(8)	2.2(6)	4.8(6)	-0.4(6)
C00M 39.0(8)	39.3(9)	37.0(9)	7.4(7)	3.3(7)	-5.4(7)
C00N 42.2(8)	34.4(8)	36.5(9)	7.7(7)	12.4(7)	1.4(7)
C000 34.9(8)	33.2(8)	35.0(8)	2.4(6)	7.8(6)	-5.1(6)
C00P 35.6(8)	32.2(8)	39.0(9)	1.5(7)	8.2(7)	-0.7(6)
C00Q 31.4(7)	32.9(8)	42.9(9)	6.1(7)	6.2(6)	-1.4(6)
COOR 37.5(8)	30.4(8)	44.0(9)	2.6(7)	6.6(7)	-2.3(7)
C00S 36.1(8)	31.9(8)	40.6(9)	4.1(7)	3.3(7)	-7.0(7)
C00T 47.8(9)	40.5(9)	35.4(9)	2.2(7)	13.7(7)	-7.8(7)
C00U 50.4(9)	42.2(10)	32.5(8)	-3.3(7)	6.9(7)	-6.1(8)
C00V 66.1(11)	37.2(10)	38.8(9)	1.4(7)	-7.7(8)	-11.7(8)
C00W 67.3(11)	28.7(8)	43.9(10)	2.7(7)	-2.7(8)	-4.5(8)
C00X 43.2(9)	56.6(11)	41.8(10)	12.2(9)	1.4(7)	-4.9(8)
C00Y 48.7(10)	47.9(11)	69.1(13)	4.6(9)	-10.4(9)	8.3(9)
C00Z 51.2(11)	86.3(16)	68.8(14)	33.7(13)	-4.3(10)	-0.4(11)
C010 59.6(13)	103(2)	63.4(14)	-10.6(13)	-3.4(11)	-30.3(13)
C011 72.1(16)	156(3)	74.0(17)	49.9(19)	-26.0(13)	-27.0(18)

Supplementary Table 38. Bond Lengths for TPAOMe-TDPP-C4

Atom	Atom	Length/Å	Atom Atom	Length/Å
S01	C00D	1.7380(15)	COOB COOP	1.386(2)
S01	C00G	1.7261(15)	COOC COOL	1.383(2)
O002	C00A	1.2292(17)	C00D C00H	1.380(2)
O003	C00M	1.3721(19)	COOE COOL	1.400(2)
O003	C00Y	1.418(2)	C00E C00O	1.398(2)
O004	C00R	1.3687(19)	COOF COOK	1.389(2)

O004 C010	1.406(2)	COOF COOT 1.379(2)
N005 C009	1.3882(18)	C00G C00S 1.374(2)
N005 C00A	1.4222(19)	C00H C00S 1.400(2)
N005 C00Q	1.4591(19)	C00I C00O 1.377(2)
N006 C00E	1.3998(19)	C00J C00W 1.390(2)
N006 C00F	1.429(2)	C00K C00N 1.376(2)
N006 C00J	1.423(2)	C00M C00P 1.382(2)
C007 C007 ¹	1.407(3)	C00M C00V 1.388(3)
C007 C009	1.394(2)	C00N C00R 1.386(2)
C007 C00A ¹	1.441(2)	C00Q C00X 1.517(2)
C008 C00C	1.394(2)	COOR COOU 1.386(2)
C008 C00G	1.465(2)	C00T C00U 1.384(2)
C008 C00I	1.402(2)	C00V C00W 1.375(2)
C009 C00D	1.440(2)	C00X C00Z 1.513(3)
C00B C00J	1.385(2)	C00Z C011 1.526(3)

### Supplementary Table 39. Bond Angles for TPAOMe-TDPP-C4.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C00G	S01	C00D	92.60(7)	COOT	C00F	N006	120.67(14)
C00M	O003	C00Y	116.67(14)	COOT	C00F	C00K	119.06(15)
C00R	O004	C010	117.33(15)	C008	C00G	S01	121.71(11)
C009	N005	C00A	111.45(12)	COOS	C00G	S01	110.28(11)
C009	N005	C00Q	130.08(12)	COOS	C00G	C008	128.01(14)
C00A	N005	C00Q	118.38(12)	C00D	C00H	COOS	113.52(14)

C00E	N006	C00F	119.92(12)	C000	C00I	C008	121.58(14)
C00E	N006	C00J	121.70(13)	C00B	C00J	N006	120.89(14)
C00J	N006	C00F	118.38(12)	C00B	C00J	C00W	118.33(15)
C007 ¹	C007	C00A ¹	108.09(16)	C00W	C00J	N006	120.78(15)
C009	C007	C007 ¹	109.62(16)	C00N	C00K	C00F	120.25(15)
C009	C007	$C00A^1$	142.30(13)	C00C	C00L	C00E	120.57(14)
C00C	C008	C00G	123.07(13)	O003	C00M	C00P	125.00(15)
C00C	C008	C00I	117.33(14)	O003	C00M	C00V	115.76(15)
C00I	C008	C00G	119.60(13)	C00P	C00M	C00V	119.24(15)
N005	C009	C007	106.52(12)	C00K	C00N	COOR	120.39(15)
N005	C009	C00D	126.47(13)	C00I	C000	C00E	120.75(14)
C007	C009	C00D	127.01(13)	C00M	C00P	C00B	120.08(15)
O002	C00A	N005	121.63(13)	N005	C00Q	C00X	113.43(14)
O002	C00A	C007 ¹	134.04(14)	O004	C00R	COON	115.50(15)
N005	C00A	C007 ¹	104.33(12)	O004	C00R	C00U	124.71(15)
C00J	C00B	C00P	120.97(15)	C00U	C00R	COON	119.79(15)
C00L	C00C	C008	121.62(14)	C00G	COOS	C00H	113.79(14)
C009	C00D	S01	126.67(11)	C00F	C00T	C00U	121.20(15)
С00Н	C00D	S01	109.80(11)	C00T	C00U	C00R	119.30(15)
С00Н	C00D	C009	123.47(14)	C00W	C00V	C00M	120.34(16)

N006	C00E	C00L	121.62(14)	C00V	C00W	C00J	120.98(16)
C000	C00E	N006	120.23(14)	C00Z	C00X	C00Q	112.42(17)
C000	C00E	C00L	118.15(14)	C00X	C00Z	C011	113.2(2)
C00K	C00F	N006	120.27(14)				

**Supplementary Table 40.** Hydrogen Atom Coordinates ( $Å \times 10^4$ ) and Isotropic Displacement Parameters ( $Å^2 \times 10^3$ ) for TPAOMe-TDPP-C4.

Atom x	у	Ζ	U(eq)
H00B 6467.88	12618.53	3194.07	42
H00C 5039.77	6994.35	3842.99	38
H00H 6791.97	2402.12	5218.64	43
H00I 7792.34	6187.56	4115.13	39
H00K 8220.53	10935.57	2438.63	42
H00L 5340.76	9067.07	3420.15	40
H00N 9640.53	11949.06	2788.08	44
H00O 8100.63	8243.57	3683.37	41
H00P 5395.18	13745.04	2387.55	42
H00A 3577.73	3245.18	4207.98	43
H00D 2792.21	2218.22	4319.18	43
H00S 7439.66	4513.44	4926.04	44
H00T 7763.9	10739.57	4507.29	49
H00U 9183.4	11769.57	4864.48	50
H00V 4780.54	10373.93	1297.07	58
H00W 5894.17	9278.86	2071.77	57
H00E 3726.91	2340.76	3077.85	57
H00F 2987.64	1244.41	3191.4	57

	Supplementary Information						
H00G 3592.26	14368.21	1010.92	85				
H00J 4655.43	14595.57	1293.48	85				
H00M 3947.77	14257.17	1840.11	85				
H00Q 2611.87	3957.73	2964.36	84				
H00R 1868.66	3021.07	3245.33	84				
H01A 11353.01	13225.08	4769.21	115				
H01B 10819.4	11960.67	4983.11	115				
H01C 10324.82	13346.18	4957.87	115				
H01D 2526.6	2661.37	1893.7	156				
H01E 1558.65	3316.38	1979.99	156				
H01F 1730.2	1817.31	2170.97	156				

Supplementary Table 41. Solvent masks information for TPAOMe-TDPP-C4.

Number	Х	Y	Z	Volume	Electron count	Content
1	0.205	0.556	0.377	11.3	0.1	
2	0.295	0.056	0.123	11.3	0.1	
3	0.705	0.944	0.877	11.3	0.1	
4	0.795	0.444	0.623	11.3	0.1	

## 2.10. X-ray crystallographic data for Flu-TDPP-C8

Supplementary Table 42. Crystal data and structure refinement for Flu-TDPP-C8.				
Identification code	Flu-TDPP-C8			
Empirical formula	$C_{60}H_{64}N_2O_2S_2$			
Formula weight	909.25			
Temperature/K	103(1)			
Crystal system	orthorhombic			
Space group	P212121			

a/Å	46.2686(12)
b/Å	14.7572(3)
c/Å	8.3418(2)
α/°	90
β/°	90
$\gamma/^{\circ}$	90
Volume/Å ³	5695.7(2)
Z	4
$\rho_{calc}g/cm^3$	1.060
µ/mm ⁻¹	1.147
F(000)	1944.0
Crystal size/mm ³	$0.12\times0.11\times0.1$
Radiation	$CuK\alpha$ ( $\lambda = 1.54184$ )
$2\Theta$ range for data collection/°	6.286 to 148.264
Index ranges	$-53 \le h \le 57, -13 \le k \le 18, -9 \le l \le 5$
Reflections collected	18598
Independent reflections	10160 [ $R_{int} = 0.0423$ , $R_{sigma} = 0.0587$ ]
Data/restraints/parameters	10160/270/796
Goodness-of-fit on F ²	1.042
Final R indexes [I>= $2\sigma$ (I)]	$R_1 = 0.0963, \ wR_2 = 0.2599$
Final R indexes [all data]	$R_1=0.1105, \ wR_2=0.2711$
Largest diff. peak/hole / e Å ⁻³	0.71/-0.63
Flack parameter	0.487(15)

**Supplementary Table 43.** Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for Flu-TDPP-C8. U_{eq}is defined as 1/3 of of the trace of the orthogonalised U_{II} tensor.

Atom <i>x</i>	у	Z	U(eq)

<b>S</b> 1	5527.3(4)	7280.5(12)	9587(2)	37.5(5)
S2	4459.8(4)	7024.7(12)	376(2)	37.5(5)
C48	4068.4(15)	5838(4)	-5296(9)	26.9(14)
C52	3606.6(16)	6213(5)	-6103(8)	27.4(14)
C47	4348.1(15)	5520(4)	-5191(8)	26.6(14)
C49	3937.9(16)	6283(5)	-3999(8)	28.5(15)
C23	6048.4(16)	7988(4)	13935(9)	28.7(15)
C51	3857.5(16)	5827(5)	-6615(8)	28.7(15)
C21	5639.9(16)	8750(5)	15166(10)	37.7(18)
C50	4094.8(16)	6413(5)	-2592(9)	30.8(15)
01	5238(3)	5381(7)	4068(12)	44(2)
C45	4372.5(16)	6090(5)	-2487(9)	31.4(16)
C19	5609.5(15)	8212(4)	12391(8)	23.9(14)
C26	6360.3(16)	7706(5)	14358(9)	31.5(16)
C20	5487.3(16)	8662(5)	13714(9)	29.2(15)
C53	3632.2(17)	6593(5)	-4392(9)	34.0(16)
C2	4982.9(16)	7461(4)	5648(8)	25.9(15)
C18	5439.0(15)	8104(5)	10954(9)	28.9(15)
C27	6112.2(18)	8831(5)	18086(9)	34.7(17)
C22	5920.1(15)	8410(4)	15235(9)	26.6(14)
C24	6132.4(16)	8462(5)	16548(9)	30.3(15)
C57	3368.1(18)	6235(7)	-7161(10)	42(2)
C46	4499.7(16)	5639(5)	-3806(9)	30.9(15)
C28	6358.1(17)	8772(5)	19109(10)	38.4(18)
C5	4999.1(15)	6883(5)	4287(10)	31.0(16)
C41	4741.9(17)	6747(5)	1639(10)	34.4(17)
C001	5895.1(16)	7889(5)	12521(9)	31.1(16)

C54	3884.3(18)	5450(5)	-8140(10)	37.2(18)
C58	3410.6(18)	6141(5)	-3268(9)	35.8(17)
C29	6608.6(18)	8375(6)	18600(10)	41.5(19)
C1	5181.5(17)	7191(5)	6780(9)	32.9(16)
C17	5198.0(17)	8581(5)	10463(10)	34.7(16)
C31	6387.4(17)	6644(5)	14326(10)	36.3(17)
C16	5086.3(18)	8295(5)	8963(9)	34.5(17)
C43	4787.4(16)	5736(5)	-481(9)	33.9(16)
C42	4892.8(16)	6030(5)	983(9)	32.8(16)
C25	6389.8(16)	8054(5)	16011(10)	32.0(16)
C15	5244.8(17)	7598(5)	8308(9)	33.2(16)
C4	4803.8(19)	7158(5)	3136(10)	37.2(18)
C44	4545.2(16)	6206(5)	-1020(10)	34.6(17)
C32	6580.3(17)	8106(6)	13183(10)	39.1(18)
C55	3649.7(19)	5478(5)	-9171(11)	41.7(19)
C30	6629.8(18)	8010(5)	17006(10)	35.7(17)
C56	3394(2)	5867(7)	-8635(10)	46(2)
C59	3601.5(18)	7599(5)	-4368(11)	41.0(19)
N1	5272(3)	6305(8)	6310(16)	31(3)
C6	5168(3)	6125(8)	4735(17)	31(3)
02	4751.8(16)	8944(5)	5878(9)	23.7(17)
C3A	4724(6)	7910(30)	5500(40)	54(8)
C33	4542(2)	8673(8)	2719(15)	33(3)
C7	5443(2)	5669(8)	7224(15)	33(3)
C8	5767(2)	5771(9)	6981(15)	37(3)
N2	4712(2)	8022(6)	3597(12)	23(2)
C35A	4018(3)	9263(11)	2280(30)	40(5)

O2A 4605(4)	8461(10)	6423(17)	43(4)
C34A 4322(3)	8888(11)	2550(20)	35(4)
C9A 5939(4)	4973(13)	7640(30)	53(6)
C10A 6137(4)	5547(18)	8700(30)	67(5)
C13A 6811(5)	5337(18)	10850(30)	72(7)
C12A 6657(5)	5820(20)	9480(50)	114(11)
C14A7133(5)	5570(30)	10890(60)	95(15)
N2A 4606(4)	7729(12)	3990(20)	32(4)
C11A 6446(5)	5160(30)	8650(40)	109(6)
C33A 4320(4)	8054(10)	3635(19)	30(3)
C36A 3834(3)	8666(12)	1190(20)	36(3)
C37 3655(3)	8310(9)	770(20)	70(5)
C39A 3078(6)	8973(18)	-810(50)	94(13)
C38A 3344(4)	8469(15)	-150(40)	62(8)
C40A 2874(9)	8300(30)	-1640(90)	180(30)
C37A 3537(3)	9072(11)	850(20)	33(3)
C8A 5646(4)	5398(14)	7360(30)	54(5)
C7A 5664(5)	6249(16)	6340(40)	62(7)
C36 3744(3)	9157(10)	1700(30)	82(6)
N1A 5379(5)	6568(17)	5950(30)	47(5)
C6A 5266(5)	6350(15)	4330(30)	27(5)
O1A 5383(4)	5788(12)	3510(20)	48(4)
C3 4817(3)	8245(9)	5220(20)	29(3)
C9 5933(2)	5191(13)	8220(20)	64(5)
C10 6250(3)	5480(20)	8250(20)	116(9)
C11 6409(3)	5263(19)	9750(30)	109(6)
C12 6677(4)	5851(15)	9990(30)	106(7)

	Supplementary Information						
C13	6943(3)	5297(18)	10360(30)	113(9)			
C14	7127(5)	5740(20)	11670(30)	96(10)			
C34	4213(2)	8567(9)	2860(15)	37(3)			
C35	4073(2)	9256(10)	1687(18)	52(4)			
C38	3324(3)	8274(14)	560(30)	102(9)			
C39	3229(4)	9018(15)	-590(30)	109(8)			
C40	2922(4)	8902(19)	-1170(30)	103(8)			

**Supplementary Table 44.** Anisotropic Displacement Parameters (Å²×10³) for Flu-TDPP-C8. The Anisotropic displacement factor exponent takes the form:  $-2\pi^{2}[h^{2}a^{*2}U_{11}+2hka^{*}b^{*}U_{12}+...]$ .

Atom	n U11	U22	U33	U23	U13	U12
<b>S</b> 1	50.9(11)	27.9(8)	33.6(10)	-5.7(8)	-11.0(9)	4.6(8)
S2	47.0(10)	32.6(9)	32.9(10)	-6.8(8)	-9.0(8)	6.3(8)
C48	36(4)	23(3)	22(3)	-1(3)	-2(3)	-3(3)
C52	41(4)	26(3)	15(3)	7(3)	-2(3)	-3(3)
C47	41(4)	16(3)	22(3)	0(3)	3(3)	0(3)
C49	40(4)	31(3)	15(3)	-5(3)	-5(3)	2(3)
C23	38(4)	14(3)	34(4)	4(3)	-3(3)	-2(3)
C51	41(4)	28(3)	17(3)	3(3)	0(3)	-7(3)
C21	36(4)	38(4)	39(5)	11(3)	3(3)	-3(3)
C50	40(4)	22(3)	31(4)	-4(3)	3(3)	-6(3)
01	63(7)	32(5)	37(6)	-9(4)	-12(5)	2(5)
C45	39(4)	26(3)	28(4)	4(3)	3(3)	-3(3)
C19	40(4)	17(3)	15(3)	-5(2)	0(3)	-4(3)
C26	39(4)	30(4)	25(4)	0(3)	0(3)	4(3)
C20	38(4)	22(3)	28(4)	5(3)	-2(3)	0(3)
C53	41(4)	31(4)	30(4)	-3(3)	1(3)	1(3)
C2	50(4)	18(3)	10(3)	-3(2)	-1(3)	-5(3)

	Supplementary Information						
C18	36(4)	29(3)	22(4)	6(3)	-4(3)	-9(3)	
C27	50(4)	24(3)	30(4)	0(3)	-3(3)	1(3)	
C22	41(4)	11(3)	28(4)	3(3)	1(3)	-3(2)	
C24	42(4)	24(3)	25(4)	6(3)	2(3)	-2(3)	
C57	36(4)	57(5)	34(5)	-5(4)	-6(3)	-1(4)	
C46	33(4)	30(3)	29(4)	-3(3)	-3(3)	-1(3)	
C28	40(2)	39(2)	36(2)	-0.1(13)	-0.7(13)	-0.5(13)	
C5	32(4)	27(3)	34(4)	-1(3)	-3(3)	3(3)	
C41	46(4)	24(3)	34(4)	0(3)	-2(3)	-8(3)	
C001	40(4)	30(4)	24(4)	-15(3)	-1(3)	1(3)	
C54	47(4)	31(4)	33(4)	-12(3)	0(3)	-1(3)	
C58	47(4)	30(4)	30(4)	0(3)	-3(3)	-2(3)	
C29	42(4)	44(4)	39(5)	11(4)	-6(3)	3(4)	
C1	46(4)	29(4)	24(4)	3(3)	-12(3)	5(3)	
C17	45(4)	27(3)	32(4)	-7(3)	-8(3)	-5(3)	
C31	46(4)	26(3)	37(5)	2(3)	4(3)	3(3)	
C16	48(4)	23(3)	33(4)	1(3)	-9(3)	1(3)	
C43	39(4)	33(4)	29(4)	-3(3)	-11(3)	4(3)	
C42	37(4)	31(4)	30(4)	2(3)	-8(3)	0(3)	
C25	38(4)	21(3)	37(4)	-5(3)	-3(3)	0(3)	
C15	49(4)	23(3)	28(4)	2(3)	-3(3)	4(3)	
C4	55(5)	22(3)	34(4)	-7(3)	-6(4)	2(3)	
C44	39(4)	29(4)	37(4)	5(3)	-3(3)	-1(3)	
C32	35(4)	50(5)	32(4)	-10(4)	3(3)	6(3)	
C55	56(5)	26(4)	43(5)	0(3)	-8(4)	0(3)	
C30	43(4)	32(4)	32(4)	0(3)	-4(3)	0(3)	
C56	51(5)	57(5)	29(4)	-11(4)	-11(4)	-7(4)	

Supplementary Information							
C59	48(4)	31(4)	44(5)	-2(4)	-4(4)	3(3)	
N1	38(6)	25(6)	29(6)	-14(4)	-9(5)	10(5)	
C6	36(7)	25(6)	31(7)	-16(5)	-2(6)	-4(5)	
O2	28(3)	17(2)	26(3)	3(2)	-1(2)	-2(2)	
C3A	51(17)	80(20)	33(16)	-27(16)	-22(12)	6(15)	
C33	51(5)	21(5)	27(6)	11(4)	-5(4)	0(4)	
C7	39(5)	22(5)	38(6)	-11(4)	-13(4)	7(4)	
C8	41(5)	42(7)	28(6)	-5(5)	-7(4)	11(4)	
N2	40(5)	9(4)	20(5)	4(3)	-5(4)	-9(4)	
C35A	49(7)	37(7)	34(10)	9(6)	-7(7)	-7(6)	
O2A	65(10)	42(8)	22(7)	-9(6)	1(7)	2(7)	
C34A	.50(7)	23(7)	31(10)	-4(6)	-5(6)	-7(6)	
C9A	74(9)	46(8)	40(11)	19(8)	5(8)	-6(7)	
C10A	. 67(5)	67(5)	66(5)	0.2(14)	-0.4(14)	-0.5(13)	
C13A	. 50(11)	50(13)	115(19)	-38(13)	7(10)	-23(9)	
C12A	. 59(12)	165(19)	120(20)	-14(17)	10(14)	9(13)	
C14A	.53(11)	60(20)	170(50)	30(30)	-10(14)	-30(12)	
N2A	55(8)	18(8)	23(9)	-7(7)	1(6)	-4(6)	
C11A	.73(6)	145(12)	108(13)	5(13)	-15(6)	18(6)	
C33A	. 55(8)	20(7)	15(8)	-10(5)	2(6)	-2(5)	
C36A	36(3)	35(3)	36(4)	0.1(13)	-0.4(13)	1.1(13)	
C37	76(8)	39(7)	96(13)	31(7)	6(8)	1(6)	
C39A	. 67(15)	84(18)	130(30)	10(18)	-47(18)	-11(13)	
C38A	.65(11)	52(10)	69(17)	-11(11)	-25(11)	-7(10)	
C40A	. 110(30)	120(30)	300(80)	-60(40)	-120(40)	10(20)	
C37A	. 33(3)	32(3)	33(3)	0.6(13)	0.5(13)	0.3(13)	
C8A	77(9)	43(10)	44(13)	-10(8)	-7(8)	-4(8)	

	Supplementary Information						
C7A	56(10)	59(12)	71(16)	12(11)	0(9)	5(8)	
C36	61(6)	58(8)	128(16)	8(9)	-12(7)	12(6)	
N1A	56(10)	46(13)	38(13)	-22(9)	-8(9)	4(9)	
C6A	27(5)	27(5)	27(5)	-0.5(14)	-0.4(13)	0.3(13)	
01A	57(10)	34(8)	54(11)	-27(8)	-18(8)	11(8)	
C3	31(7)	18(6)	38(8)	6(6)	-4(6)	1(5)	
C9	49(6)	103(13)	40(9)	22(8)	5(6)	40(7)	
C10	43(6)	210(30)	99(13)	24(14)	7(6)	32(9)	
C11	73(6)	145(12)	108(13)	5(13)	-15(6)	18(6)	
C12	96(9)	160(15)	62(13)	-79(12)	10(8)	4(9)	
C13	89(9)	170(20)	84(14)	-61(14)	8(11)	-3(12)	
C14	116(16)	100(20)	77(15)	-23(14)	-11(12)	-2(14)	
C34	52(5)	32(6)	29(7)	5(5)	1(5)	4(5)	
C35	60(6)	64(9)	32(8)	12(6)	-3(6)	18(5)	
C38	84(9)	91(14)	130(20)	0(13)	-22(11)	-15(9)	
C39	117(15)	88(14)	120(20)	-14(13)	-32(14)	3(12)	
C40	116(15)	100(18)	93(18)	11(15)	-25(13)	-8(13)	

### Supplementary Table 45. Bond Lengths for Flu-TDPP-C8.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
S1	C18	1.716(8)	C1	N1	1.428(14)
S1	C15	1.751(8)	C1	N1A	1.47(2)
S2	C41	1.727(8)	C17	C16	1.418(11)
S2	C44	1.724(8)	C16	C15	1.377(11)
C48	C47	1.379(10)	C43	C42	1.385(10)
C48	C49	1.402(10)	C43	C44	1.392(10)
C48	C51	1.471(10)	C25	C30	1.388(11)

		Sur	Supplementary Infor		mation
C52	C51	1.362(10)	C4	N2	1.398(12)
C52	C53	1.537(10)	C4	N2A	1.433(18)
C52	C57	1.414(10)	C55	C56	1.388(12)
C47	C46	1.363(10)	N1	C6	1.424(19)
C49	C50	1.393(10)	N1	C7	1.445(14)
C49	C53	1.522(10)	O2	C3	1.207(17)
C23	C26	1.543(10)	C3A	O2A	1.25(3)
C23	C22	1.384(10)	C3A	N2A	1.40(3)
C23	COOT	1.384(10)	C33	N2	1.441(12)
C51	C54	1.394(10)	C33	C34	1.537(11)
C21	C20	1.409(11)	C7	C8	1.520(11)
C21	C22	1.391(10)	C8	C9	1.548(11)
C50	C45	1.373(11)	N2	C3	1.48(2)
01	C6	1.273(15)	C35A	C34A	1.532(12)
C45	C46	1.414(10)	C35A	C36A	1.522(12)
C45	C44	1.471(11)	C34A	C33A	1.526(12)
C19	C20	1.407(9)	C9A	C10A	1.527(13)
C19	C18	1.444(9)	C9A	C8A	1.514(12)
C19	COOT	1.409(10)	C10A	C11A	1.540(13)
C26	C31	1.571(10)	C13A	C12A	1.526(13)
C26	C25	1.478(11)	C13A	C14A	1.531(13)
C26	C32	1.532(11)	C12A	C11A	1.536(13)
C53	C58	1.541(11)	N2A	C33A	1.438(19)
C53	C59	1.492(10)	C36A	C37A	1.529(11)
C2	C5	1.422(9)	C37	C36	1.527(12)
C2	C1	1.376(10)	C37	C38	1.543(12)
C2	C3A	1.37(3)	C39A	C38A	1.540(13)

		Supplementary Information						
C2	C3	1.435(15)	C39A	C40A	1.539(13)			
C18	C17	1.380(10)	C38A	C37A	1.510(12)			
C27	C24	1.397(11)	C8A	C7A	1.520(13)			
C27	C28	1.425(11)	C7A	N1A	1.44(2)			
C22	C24	1.473(10)	C36	C35	1.527(11)			
C24	C25	1.408(10)	N1A	C6A	1.49(3)			
C57	C56	1.350(12)	C6A	01A	1.20(3)			
C28	C29	1.366(12)	C9	C10	1.527(12)			
C5	C4	1.380(11)	C10	C11	1.489(12)			
C5	C6	1.415(14)	C11	C12	1.526(12)			
C5	C6A	1.46(2)	C12	C13	1.512(13)			
C41	C42	1.380(11)	C13	C14	1.532(12)			
C41	C4	1.418(11)	C34	C35	1.553(11)			
C54	C55	1.386(12)	C38	C39	1.526(13)			
C29	C30	1.438(12)	C39	C40	1.508(12)			
C1	C15	1.439(11)						

### Supplementary Table 46. Bond Angles for Flu-TDPP-C8.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C18	S1	C15	92.2(3)	C18	C17	C16	113.9(7)
C44	S2	C41	94.1(4)	C15	C16	C17	112.2(7)
C47	C48	C49	120.9(7)	C42	C43	C44	114.3(7)
C47	C48	C51	131.8(7)	C41	C42	C43	114.3(7)
C49	C48	C51	107.3(6)	C24	C25	C26	111.5(7)
C51	C52	C53	112.2(6)	C30	C25	C26	128.0(7)
C51	C52	C57	118.6(7)	C30	C25	C24	120.4(7)
C57	C52	C53	129.2(7)	C1	C15	<b>S</b> 1	125.5(6)

			Supplem	entary	Inform	nation	
C46	C47	C48	119.5(7)	C16	C15	<b>S</b> 1	110.8(6)
C48	C49	C53	112.0(6)	C16	C15	C1	123.7(7)
C50	C49	C48	119.4(7)	C5	C4	C41	128.2(7)
C50	C49	C53	128.6(7)	C5	C4	N2	106.0(7)
C22	C23	C26	110.1(6)	C5	C4	N2A	104.2(9)
C22	C23	C00T	119.7(7)	C41	C4	N2A	124.1(9)
C00T	C23	C26	130.2(7)	N2	C4	C41	124.9(8)
C52	C51	C48	109.0(6)	C45	C44	S2	121.2(6)
C52	C51	C54	122.0(7)	C43	C44	S2	108.4(6)
C54	C51	C48	128.9(7)	C43	C44	C45	130.4(7)
C22	C21	C20	118.0(8)	C54	C55	C56	118.7(8)
C45	C50	C49	119.6(7)	C25	C30	C29	118.8(7)
C50	C45	C46	120.2(7)	C57	C56	C55	122.4(8)
C50	C45	C44	121.4(7)	C1	N1	C7	127.6(11)
C46	C45	C44	118.4(7)	C6	N1	C1	108.9(9)
C20	C19	C18	118.9(6)	C6	N1	C7	123.4(11)
C20	C19	C00T	118.5(6)	01	C6	C5	135.0(12)
C00T	C19	C18	122.6(6)	01	C6	N1	118.6(12)
C23	C26	C31	109.9(6)	C5	C6	N1	106.4(9)
C25	C26	C23	101.9(6)	C2	C3A	N2A	109(2)
C25	C26	C31	110.8(6)	O2A	C3A	C2	130(2)
C25	C26	C32	113.7(6)	O2A	C3A	N2A	120(2)
C32	C26	C23	111.8(6)	N2	C33	C34	115.6(9)
C32	C26	C31	108.6(6)	N1	C7	C8	113.9(10)
C19	C20	C21	121.1(7)	C7	C8	C9	110.2(9)
C52	C53	C58	110.9(6)	C4	N2	C33	129.3(10)
C49	C53	C52	99.3(6)	C4	N2	C3	110.9(9)

	Supplementary Information						
C49	C53	C58	110.9(6)	C33	N2	C3	119.8(10)
C59	C53	C52	111.6(7)	C36A	C35A	C34A	113.1(11)
C59	C53	C49	112.6(7)	C33A	C34A	C35A	111.9(11)
C59	C53	C58	111.0(7)	C8A	C9A	C10A	113.3(12)
C5	C2	C3	108.2(8)	C9A	C10A	C11A	109.5(12)
C1	C2	C5	109.8(6)	C12A	C13A	C14A	111.2(13)
C1	C2	C3	139.6(9)	C13A	C12A	C11A	110.0(13)
C3A	C2	C5	105.3(12)	C4	N2A	C33A	133.0(14)
C3A	C2	C1	141.4(13)	C3A	N2A	C4	108.1(17)
C19	C18	<b>S</b> 1	120.0(5)	C3A	N2A	C33A	118.7(18)
C17	C18	S1	110.9(5)	C12A	C11A	C10A	110.2(13)
C17	C18	C19	129.2(7)	N2A	C33A	C34A	112.6(14)
C24	C27	C28	118.2(7)	C35A	C36A	C37A	112.7(11)
C23	C22	C21	122.0(7)	C36	C37	C38	110.6(11)
C23	C22	C24	108.7(6)	C40A	C39A	C38A	109.8(13)
C21	C22	C24	129.3(7)	C37A	C38A	C39A	112.5(12)
C27	C24	C22	131.2(7)	C38A	C37A	C36A	113.8(11)
C27	C24	C25	121.0(7)	C9A	C8A	C7A	112.3(12)
C25	C24	C22	107.8(6)	N1A	C7A	C8A	110.2(19)
C56	C57	C52	119.3(8)	C37	C36	C35	110.0(10)
C47	C46	C45	120.4(7)	C1	N1A	C6A	110.3(15)
C29	C28	C27	121.1(8)	C7A	N1A	C1	132(2)
C2	C5	C6A	110.4(10)	C7A	N1A	C6A	117(2)
C4	C5	C2	110.1(6)	C5	C6A	N1A	101.6(15)
C4	C5	C6	141.1(8)	01A	C6A	C5	137.5(19)
C4	C5	C6A	136.6(11)	01A	C6A	N1A	120.5(19)
C6	C5	C2	107.0(7)	C2	C3	N2	103.0(10)

	Supplementary Information								
C42	C41	S2	108.8(6)	O2	C3	C2	135.2(15)		
C42	C41	C4	125.1(7)	O2	C3	N2	121.8(12)		
C4	C41	S2	126.0(6)	C10	C9	C8	109.3(10)		
C23	C00T	C19	120.7(6)	C11	C10	C9	115.3(12)		
C55	C54	C51	119.0(8)	C10	C11	C12	112.7(12)		
C28	C29	C30	120.4(8)	C13	C12	C11	112.5(12)		
C2	C1	C15	128.5(7)	C12	C13	C14	111.5(12)		
C2	C1	N1	105.8(8)	C33	C34	C35	107.4(8)		
C2	C1	N1A	105.9(10)	C36	C35	C34	110.4(10)		
C15	C1	N1A	123.5(10)	C39	C38	C37	109.5(11)		
N1	C1	C15	124.4(8)	C40	C39	C38	113.2(12)		

Supplementary Table 47. Torsion Angles for Flu-TDPP-C8.

A	В	С	D	Angle/°	А	В	С	D	Angle/°
<b>S</b> 1	C18	C17	C16	-1.2(8)	C41	S2	C44	C43	0.2(6)
S2	C41	C42	C43	1.1(8)	C41	C4	N2	C33	-0.3(18)
S2	C41	C4	C5	170.0(7)	C41	C4	N2	C3	-179.3(10)
S2	C41	C4	N2	-22.0(13)	C41	C4	N2A	C3A	172.0(19)
S2	C41	C4	N2A	14.4(15)	C41	C4	N2A	C33A	a-2(3)
C48	3 C47	C46	C45	-0.4(10)	C001	C23	C26	C31	-65.4(10)
C48	3 C49	C50	C45	-1.2(11)	C001	C23	C26	C25	177.0(7)
C48	3 C49	C53	C52	2.3(7)	C001	C23	C26	C32	55.3(10)
C48	3 C49	C53	C58	119.0(7)	C001	C23	C22	C21	-0.6(10)
C48	3 C49	C53	C59	-115.9(8)	С00Т	C23	C22	C24	-177.5(6)
C48	3C51	C54	C55	176.6(7)	С00Т	C19	C20	C21	-3.2(10)
C52	2 C51	C54	C55	0.8(11)	C001	C19	C18	<b>S</b> 1	21.0(9)
C52	2 C 57	C56	C55	-1.3(14)	C001	C19	C18	C17	-159.6(7)

C47 C48 C49	C50	0.8(10)	C54	C55	C56	C57	1.5(13)
C47 C48 C49	C53	178.8(6)	C1	C2	C5	C4	-179.0(7)
C47 C48 C51	C52	178.7(7)	C1	C2	C5	C6	12.6(10)
C47 C48 C51	C54	2.5(13)	C1	C2	C5	C6A	-15.0(13)
C49 C48 C47	C46	0.0(10)	C1	C2	C3A	O2A	22(6)
C49 C48 C51	C52	-2.6(8)	C1	C2	C3A	N2A	-164.4(13)
C49 C48 C51	C54	-178.8(7)	C1	C2	C3	02	-16(3)
C49 C50 C45	C46	0.9(11)	C1	C2	C3	N2	166.4(10)
C49 C50 C45	C44	-179.5(7)	C1	N1	C6	01	176.7(13)
C23 C26 C25	C24	1.7(8)	C1	N1	C6	C5	-3.5(15)
C23 C26 C25	C30	-178.8(7)	C1	N1	C7	C8	-89.1(16)
C23 C22 C24	C27	179.1(7)	C1	N1A	C6A	C5	0(2)
C23 C22 C24	C25	-0.6(8)	C1	N1A	C6A	01A	-173(2)
C51 C48 C47	C46	178.6(7)	C17	C16	C15	<b>S</b> 1	1.5(8)
C51 C48 C49	C50	-178.1(6)	C17	C16	C15	C1	-178.9(7)
C51 C48 C49	C53	-0.1(8)	C31	C26	C25	C24	-115.2(7)
C51 C52 C53	C49	-4.0(7)	C31	C26	C25	C30	64.4(10)
C51 C52 C53	C58	-120.8(7)	C42	C41	C4	C5	-7.4(14)
C51 C52 C53	C59	115.0(7)	C42	C41	C4	N2	160.6(9)
C51 C52 C57	C56	0.7(12)	C42	C41	C4	N2A	-163.0(12)
C51 C54 C55	C56	-1.3(12)	C42	C43	C44	S2	0.4(9)
C21 C22 C24	C27	2.4(12)	C42	C43	C44	C45	-179.4(7)
C21 C22 C24	C25	-177.3(7)	C15	<b>S</b> 1	C18	C19	-178.9(6)
C50 C49 C53	C52	-179.9(7)	C15	<b>S</b> 1	C18	C17	1.7(6)
C50C49C53	C58	-63.2(10)	C15	C1	N1	C6	179.4(10)
C50C49C53	C59	61.9(11)	C15	C1	N1	C7	-1.2(19)
C50 C45 C46	C47	-0.1(11)	C15	C1	N1A	C7A	-3(3)

S107

C50 C45	C44	S2	-20.3(10)	C15	C1	N1A	C6A	-173.6(14)
C50 C45	C44	C43	159.5(8)	C4	C5	C6	01	12(3)
C19C18	C17	C16	179.4(7)	C4	C5	C6	N1	-167.7(11)
C26 C23	C22	C21	178.7(6)	C4	C5	C6A	N1A	166.4(14)
C26 C23	C22	C24	1.7(7)	C4	C5	C6A	01A	-22(4)
C26 C23	C007	C19	-179.2(7)	C4	C41	C42	C43	178.9(8)
C26 C25	C30	C29	-178.4(7)	C4	N2	C3	C2	1.5(13)
C20 C21	C22	C23	-0.6(10)	C4	N2	C3	02	-176.8(12)
C20 C21	C22	C24	175.6(6)	C4	N2A	C33A	C34A	-83(2)
C20 C19	C18	<b>S</b> 1	-159.4(5)	C44	S2	C41	C42	-0.8(6)
C20 C19	C18	C17	19.9(11)	C44	S2	C41	C4	-178.5(7)
C20 C19	C007	C23	2.0(10)	C44	C45	C46	C47	-179.8(6)
C53 C52	C51	C48	4.3(8)	C44	C43	C42	C41	-1.0(10)
C53 C52	C51	C54	-179.2(7)	C32	C26	C25	C24	122.1(7)
C53 C52	C57	C56	179.2(8)	C32	C26	C25	C30	-58.3(10)
C53 C49	C50	C45	-178.8(7)	N1	C1	C15	<b>S</b> 1	21.6(13)
C2 C5	C4	C41	-176.9(8)	N1	C1	C15	C16	-158.0(10)
C2 C5	C4	N2	13.3(10)	N1	C7	C8	C9	169.7(13)
C2 C5	C4	N2A	-17.6(11)	C6	C5	C4	C41	-15(2)
C2 C5	C6	01	174.5(17)	C6	C5	C4	N2	175.4(14)
C2 C5	C6	N1	-5.2(13)	C6	N1	C7	C8	90.3(16)
C2 C5	C6A	N1A	8.5(19)	C3A	C2	C5	C4	17.1(19)
C2 C5	C6A	01A	-180(3)	C3A	C2	C5	C6A	-179(2)
C2 C1	C15	<b>S</b> 1	-172.9(7)	C3A	C2	C1	C15	-28(3)
C2 C1	C15	C16	7.5(13)	C3A	C2	C1	N1A	169(3)
C2 C1	N1	C6	11.1(13)	C3A	N2A	C33A	C34A	104(3)
C2 C1	N1	C7	-169.4(12)	C33	N2	C3	C2	-177.6(10)
C2 C1	N1A	C7A	162(2)	C33	N2	C3	02	4.2(19)
---------	------	------------	-------------	------	------	-------	------	------------
C2 C1	N1A	C6A	-9(2)	C33	C34	C35	C36	177.2(12)
C2 C3A	N2A	C4	-1(3)	C7	N1	C6	01	-3(2)
C2 C3A	N2A	C33A	. 173.7(19)	C7	N1	C6	C5	177.0(12)
C18 S1	C15	C1	178.6(7)	C7	C8	C9	C10	-165.4(16)
C18 S1	C15	C16	-1.8(6)	C8	C9	C10	C11	158(2)
C18 C19	C20	C21	177.2(6)	N2	C33	C34	C35	-173.7(11)
C18 C19	C007	C23	-178.5(6)	C35A	C34A	.C33A	N2A	-176.1(14)
C18C17	C16	C15	-0.2(10)	C35A	C36A	.C37A	C38A	-177(2)
C27 C24	C25	C26	179.5(7)	O2A	C3A	N2A	C4	173(3)
C27 C24	C25	C30	-0.1(11)	O2A	C3A	N2A	C33A	-12(5)
C27 C28	C29	C30	0.4(12)	C34A	C35A	C36A	C37A	-176.7(16)
C22 C23	C26	C31	115.4(6)	C9A	C10A	C11A	C12A	. 170(2)
C22 C23	C26	C25	-2.1(7)	C9A	C8A	C7A	N1A	173(2)
C22 C23	C26	C32	-123.9(6)	C10A	C9A	C8A	C7A	68(3)
C22 C23	C007	C19	-0.1(10)	C13A	C12A	C11A	C10A	. 122(3)
C22 C21	C20	C19	2.6(10)	C14A	C13A	C12A	C11A	. 138(3)
C22 C24	C25	C26	-0.8(8)	C36A	C35A	C34A	C33A	72(2)
C22 C24	C25	C30	179.6(7)	C37	C36	C35	C34	-75.4(17)
C24 C27	C28	C29	0.6(11)	C37	C38	C39	C40	166(2)
C24 C25	C30	C29	1.1(11)	C39A	C38A	C37A	C36A	-167(3)
C57 C52	C51	C48	-177.0(7)	C40A	C39A	C38A	C37A	-173(4)
C57 C52	C51	C54	-0.5(11)	C8A	C9A	C10A	C11A	-169(3)
C57 C52	C53	C49	177.5(8)	C8A	C7A	N1A	C1	89(3)
C57 C52	C53	C58	60.7(10)	C8A	C7A	N1A	C6A	-101(3)
C57 C52	C53	C59	-63.6(10)	C7A	N1A	C6A	C5	-172(2)
C46 C45	C44	<b>S</b> 2	159.4(6)	C7A	N1A	C6A	01A	14(4)

C46 C45	C44	C43	-20.8(12)	C36	C37	C38	C39	69(2)
C28 C27	C24	C22	179.6(7)	N1A	C1	C15	<b>S</b> 1	-12.0(17)
C28 C27	C24	C25	-0.8(11)	N1A	C1	C15	C16	168.5(14)
C28 C29	C30	C25	-1.2(12)	C6A	C5	C4	C41	25(2)
C5 C2	C1	C15	177.9(8)	C6A	C5	C4	N2A	-175.6(17)
C5 C2	C1	N1	-14.5(10)	C3	C2	C5	C4	-12.7(10)
C5 C2	C1	N1A	14.3(13)	C3	C2	C5	C6	178.9(10)
C5 C2	C3A	O2A	177(4)	C3	C2	C1	C15	18.2(17)
C5 C2	C3A	N2A	-9(3)	C3	C2	C1	N1	-174.2(13)
C5 C2	C3	02	-175.6(15)	C9	C10	C11	C12	-159(2)
C5 C2	C3	N2	6.5(11)	C10	C11	C12	C13	-130(2)
C5 C4	N2	C33	169.9(11)	C11	C12	C13	C14	-139(2)
C5 C4	N2	C3	-9.0(12)	C34	C33	N2	C4	86.4(16)
C5 C4	N2A	C3A	12(2)	C34	C33	N2	C3	-94.7(14)
C5 C4	N2A	C33A	-162.5(19)	C38	C37	C36	C35	-171.7(13)
C41 S2	C44	C45	-179.9(6)					

Supplementary Table 48. Hydrogen Atom Coordinates ( $Å \times 10^4$ ) and Isotropic Displacement Parameters ( $Å^2 \times 10^3$ ) for Flu-TDPP-C8.

Atom	x	у	ζ	U(eq)
H47	4432.69	5226.75	-6058.44	32
H21	5555.96	9026.56	16053.25	45
H50	4012.03	6716.86	-1730.22	37
H20	5302.54	8905.83	13627.94	35
H27	5942.68	9106.83	18433.83	42
H57	3194.94	6500.92	-6845.16	51
H46	4687.94	5422.87	-3727.53	37
H28	6348	9008.28	20141.41	46

H00T	5981.55	7606.93	11646.88	37
H54	4057.03	5182.83	-8459.79	45
H58A	3220.87	6191.86	-3725.63	54
H58B	3414.06	6437.91	-2244.39	54
H58C	3458.77	5513.07	-3135.16	54
H29	6766.31	8340.87	19288.16	50
H17	5116.29	9046.81	11062.05	42
H31A	6279.32	6391.11	15199.84	54
H31B	6586.98	6475.99	14427.11	54
H31C	6312.5	6417.75	13330.17	54
H16	4924.68	8549.97	8476.99	41
H43	4871.43	5264.82	-1056.61	41
H42	5051.65	5766.49	1482.24	39
H32A	6531.71	7924.64	12110.75	59
H32B	6770.08	7887.9	13444.69	59
H32C	6577.16	8754.68	13256.2	59
H55	3663.2	5241.59	-10202.13	50
H30	6801.15	7750.1	16648.82	43
H56	3235	5873.05	-9316.52	55
H59A	3742.99	7864.8	-5065.45	62
H59B	3630.23	7817.04	-3295.3	62
H59C	3411.33	7762.43	-4726.5	62
H33A	4594.41	8632.93	1594.66	40
H33B	4594.25	9275.18	3085.93	40
H7A	5386.99	5058.29	6927.47	39
H7B	5399.84	5747.36	8353.47	39
H8A	5821.11	6402.13	7097.94	44

H8B 5818.28	5578.1	5905.92	44
H35A 3921.4	9323.49	3308.9	48
H35B 4032.17	9862	1810.75	48
H34A 4407.34	8729.17	1527.7	42
H34B 4441.73	9354	3037.13	42
H9AA 6033.07	4877.2	6617.29	64
H9AB 5912.9	4384.74	8142	64
H10A 6065.62	5543.81	9796.37	80
H10B 6137.78	6168.15	8323.28	80
H13A 6788.68	4686.74	10738.19	86
H13B 6723.07	5514.52	11862.36	86
H12A 6798.13	6028.83	8703.49	137
H12B 6552.09	6335.86	9882.5	137
H14A 7219.45	5411.18	9879.57	142
H14B 7226.01	5247.97	11736.2	142
H14C 7155.56	6213.86	11058.47	142
H11A 6450.32	4578.17	9196.68	130
H11B 6504.24	5066.36	7550.16	130
H33C 4222.76	8203.11	4630.31	36
H33D 4211.2	7575.4	3115.4	36
H36A 3810.09	8077.44	1693.39	43
H36B 3935.54	8576.31	187.24	43
H37A 3720.12	7774.56	1345.35	85
H37B 3747.43	8312.82	-271.49	85
H39A 2977.21	9271.11	67.19	113
H39B 3138.98	9433.11	-1564.19	113
H38A 3280.49	7961.21	498.13	75

H38B 3455.28	8229.32	-1040.61	75
H40A 2678.61	8412.21	-1307.06	264
H40B 2927.08	7690.36	-1347.66	264
H40C 2888.72	8367.98	-2779.27	264
H37C 3441.03	9195	1862.68	39
H37D 3561.83	9645.14	299.91	39
H8AA 5559.6	5549.67	8387.49	65
H8AB 5521.19	4961.2	6836.78	65
H7AA 5768.41	6715.95	6915.57	75
H7AB 5768.83	6117.03	5358.8	75
H36C 3676.04	9112.51	2799.28	99
H36D 3656.11	9687.06	1217.41	99
H9A 5848.15	5270.35	9277.03	77
H9B 5919.61	4554.86	7938.19	77
H10C 6348.34	5198.56	7359.84	139
H10D 6258	6133.97	8086.14	139
H11C 6466.67	4631.33	9724.91	130
H11D 6280.73	5344.3	10661.38	130
H12C 6710.91	6200.93	9022.95	127
H12D 6642.26	6273.07	10859.19	127
H13C 7058.56	5230.52	9398.88	136
H13D 6885.68	4696.86	10713.35	136
H14D 7327.94	5675.65	11416.78	144
H14E 7087.55	5458.56	12684.24	144
H14F 7079.87	6376.08	11738.03	144
H34C 4150.9	8689.5	3950.19	45
H34D 4155.81	7954.57	2582.11	45

Supplementary Information					
H35C 4124.84	9867.36	2000.02	62		
H35D 4144.77	9151.3	611.38	62		
H38C 3267.87	7686.65	145.3	123		
H38D 3230.71	8357.62	1594.05	123		
H39C 3246.01	9600.18	-57.92	131		
H39D 3357.7	9022.65	-1507.54	131		
H40D 2873.13	9394.9	-1872.56	155		
H40E 2793.38	8898.51	-271.02	155		
H40F 2905.73	8340.05	-1743.23	155		

## Supplementary Table 49. Atomic Occupancy for Flu-TDPP-C8.

Atom	Occupancy	Atom Occupancy	Atom	Occupancy
01	0.612(7)	N1 0.612(7)	C6	0.612(7)
02	0.612(7)	C3A 0.388(7)	C33	0.612(7)
H33A	0.612(7)	H33B 0.612(7)	C7	0.612(7)
H7A	0.612(7)	H7B 0.612(7)	C8	0.612(7)
H8A	0.612(7)	H8B 0.612(7)	N2	0.612(7)
C35A	0.388(7)	H35A 0.388(7)	H35B	0.388(7)
O2A	0.388(7)	C34A 0.388(7)	H34A	0.388(7)
H34B	0.388(7)	C9A 0.388(7)	Н9АА	0.388(7)
H9AB	0.388(7)	C10A 0.388(7)	H10A	0.388(7)
H10B	0.388(7)	C13A 0.388(7)	H13A	0.388(7)
H13B	0.388(7)	C12A 0.388(7)	H12A	0.388(7)
H12B	0.388(7)	C14A 0.388(7)	H14A	0.388(7)
H14B	0.388(7)	H14C 0.388(7)	N2A	0.388(7)
C11A	0.388(7)	H11A0.388(7)	H11B	0.388(7)
C33A	0.388(7)	H33C 0.388(7)	H33D	0.388(7)

C36A 0.388(7)	H36A 0.388(7)	H36B	0.388(7)
C37 0.612(7)	H37A 0.612(7)	H37B	0.612(7)
C39A 0.388(7)	H39A 0.388(7)	H39B	0.388(7)
C38A 0.388(7)	H38A 0.388(7)	H38B	0.388(7)
C40A 0.388(7)	H40A 0.388(7)	H40B	0.388(7)
H40C 0.388(7)	C37A 0.388(7)	H37C	0.388(7)
H37D 0.388(7)	C8A 0.388(7)	H8AA	0.388(7)
H8AB 0.388(7)	C7A 0.388(7)	H7AA	0.388(7)
H7AB 0.388(7)	C36 0.612(7)	H36C	0.612(7)
H36D 0.612(7)	N1A 0.388(7)	C6A	0.388(7)
O1A 0.388(7)	C3 0.612(7)	C9	0.612(7)
H9A 0.612(7)	H9B 0.612(7)	C10	0.612(7)
H10C 0.612(7)	H10D0.612(7)	C11	0.612(7)
H11C 0.612(7)	H11D0.612(7)	C12	0.612(7)
H12C 0.612(7)	H12D0.612(7)	C13	0.612(7)
H13C 0.612(7)	H13D0.612(7)	C14	0.612(7)
H14D 0.612(7)	H14E 0.612(7)	H14F	0.612(7)
C34 0.612(7)	H34C 0.612(7)	H34D	0.612(7)
C35 0.612(7)	H35C 0.612(7)	H35D	0.612(7)
C38 0.612(7)	H38C 0.612(7)	H38D	0.612(7)
C39 0.612(7)	H39C 0.612(7)	H39D	0.612(7)
C40 0.612(7)	H40D 0.612(7)	H40E	0.612(7)
H40F 0.612(7)			

## Supplementary Table 50. Solvent masks information for Flu-TDPP-C8.

Number X		Y	Y Z Volume		Electron count	Content
1	0.250	0.504	-0.937	601.7	123.0	

Supplementary Information						
2	0.750	0.807	-0.932	601.7	123.0	

## 2.11. ¹H, ¹³C NMR and mass spectra



Supplementary Figure 34. ¹H NMR of Ph-TDPP in Chloroform-d.



**Supplementary Figure 35.** MALDI-TOF-MS of Ph-TDPP. Calcd. for C₄₂H₄₈N₂O₂S₂: *m/z*: 676.3157. Found: 676.3426.



Supplementary Figure 36. ¹³C NMR of 1N-TDPP in Chloroform-d.



Supplementary Figure 37. ¹³C NMR of 1N-TDPP in Chloroform-d.



**Supplementary Figure 38.** MALDI-TOF-MS of 1N-TDPP. Calcd. for C₅₀H₅₂N₂O₂S₂: *m/z*: 776.3470. Found: 776.3426.



Supplementary Figure 39. ¹H NMR of 2N-TDPP in Chloroform-d.



**Supplementary Figure 40.** MALDI-TOF-MS of 2N-TDPP. Calcd for C₅₀H₅₂N₂O₂S₂: *m/z*: 776.3470. Found: 776.3467.



Supplementary Figure 41. ¹H NMR of An-TDPP in Chloroform-d.



Supplementary Figure 42. ¹³C NMR of An-TDPP in Chloroform-d.



Supplementary Figure 43. MALDI-TOF-MS of An-TDPP. Calcd for C58H56N2O2S2: m/z: 876.3783. Found:



Supplementary Figure 44. ¹H NMR of Py-TDPP in Chloroform-d.



Supplementary Figure 45. ¹³C NMR of Py-TDPP in Chloroform-d (saturated solution).



**Supplementary Figure 46.** MALDI-TOF-MS of Py-TDPP. Calcd. for C₆₂H₅₆N₂O₂S₂: *m/z*: 924.3873. Found: 924.3883.







Supplementary Figure 48. ¹³C NMR of Th-TDPP in Chloroform-d (saturated solution).



Supplementary Figure 49. ¹H NMR of Flu-TDPP in Chloroform-d.



Supplementary Figure 50. ¹³C NMR of Flu-TDPP in Chloroform-*d* (saturated solution).



Supplementary Figure 51. MALDI-TOF-MS of Flu-TDPP. Calcd for C₆₀H₆₄N₂O₂S₂: *m/z*: 908.4409. Found: 908.4425.



Supplementary Figure 52. ¹H NMR of Flu-TDPP-C8 in Chloroform-d.



Supplementary Figure 53. ¹³C NMR of Flu-TDPP-C8 in Chloroform-*d* (saturated solution).



**Supplementary Figure 54.** MALDI-TOF-MS of Flu-TDPP-C8. Calcd for C₆₀H₆₄N₂O₂S₂: *m/z*: 908.4409. Found: 908.4469.



Supplementary Figure 55. ¹H NMR of TPAOMe-TDPP in Chloroform-d.



Supplementary Figure 56. ¹³C NMR of TPAOMe-TDPP in Chloroform-d (saturated solution).



Supplementary Figure 57. MALDI-TOF-MS of TPAOMe-TDPP. Calcd for C70H74N4O6S2: m/z: 1130.5050. Found:

1130.5164.



Supplementary Figure 58. ¹H NMR of TPAOMe-TDPP-C4 in Chloroform-d.



Supplementary Figure 59. ¹³C NMR of TPAOMe-TDPP-C4 in Chloroform-*d* (saturated solution).



**Supplementary Figure 60.** MALDI-TOF-MS of TPAOMe-TDPP-C4. Calcd for C₆₂H₅₈N₄O₆S₂: *m/z*: 1018.3798. Found:1018.3806.



Supplementary Figure 61. The ¹H NMR spectrum of Br₂-TTDPP in Chloroform-d.



Supplementary Figure 62. ¹H NMR of TPAOMe-TTDPP in Chloroform-d.



Supplementary Figure 63. ¹H NMR of TPAOMe-TTDPP in Chloroform-d.



**Supplementary Figure 64.** MALDI-TOF-MS of TPAOMe-TTDPP. Calcd for C₇₈H₇₈N₄O₆S₄: *m/z*: 1294.4804. Found: 1294.4776.





Supplementary Figure 65. ¹H NMR of TPAOMe-BTT in Chloroform-d.

Supplementary Figure 66. ¹H NMR of TPAOMe-BBTT in Chloroform-d.



**Supplementary Figure 67.** MALDI-TOF-MS of TPAOMe-BBTT. Calcd for C₇₈H₇₈N₄O₆S₄: *m/z*: 1188.4498. Found: 1188.4316.



Supplementary Figure 68. ¹H NMR of 2N-NTT in Chloroform-d.



Supplementary Figure 69. ¹³C NMR of 2N-NTT in Chloroform-d.



Supplementary Figure 70. MALDI-TOF-MS of 2N-NTT. Calcd for C₅₀H₄₄N₄S₄: *m/z*: 828.2449. Found: 828.2546.



Supplementary Figure 71. ¹H NMR of Flu-NTT in Chloroform-d.



**Supplementary Figure 72.** ¹³C NMR of Flu-NTT in Chloroform-*d*.



**Supplementary Figure 73.** MALDI-TOF-MS of Flu-NTT. Calcd for C₆₀H₅₆N₄S₄: *m/z*: 960.3397. Found: 960.3388.



Supplementary Figure 74. The ¹H NMR spectrum of TPAOMe-NTT in Chloroform-d.



Supplementary Figure 75. The ¹³C NMR spectrum of TPAOMe-NTT in Chloroform-d.



Supplementary Figure 76. ¹H NMR of NTC in Chloroform-d.



Supplementary Figure 77. ¹³C NMR of NTC in Chloroform-d.



Supplementary Figure 78. MALDI-TOF-MS of NTC. Calcd for C₇₆H₁₀₈N₄S₆: *m*/*z*: 1268.6898. Found: 1268.6955.



Supplementary Figure 79. ¹H NMR of Br₂-NTC in Chloroform-d.



Supplementary Figure 80. ¹H NMR of 2N-NTC in dichloromethane-*d2*.



Supplementary Figure 81. ¹³C NMR of 2N-NTC in Chloroform-d.



**Supplementary Figure 82.** MALDI-TOF-MS of 2N-NTC. Calcd for C₉₆H₁₂₀N₄S₆: *m*/*z*: 1521.7871. Found: 1521.7827.





Supplementary Figure 83. ¹H NMR of Flu-NTC in Chloroform-d.





**Supplementary Figure 85.** MALDI-TOF-MS of Flu-NTC. Calcd for C₁₀₆H₁₃₂N₄S₆: *m*/*z*: 1653.8810. Found: 1653.8831.

## 2.12. Optimized coordinates

Optimized coordinates for Ph-TDPP singlet state at RB3LYP/6-31G(d,p) level of theory and basis set.

	U		5
С	-0.14107600	-1.79427900	0.00022200
С	-0.57520400	-0.41657700	0.00102700
С	0.57520400	0.41657700	0.00102800
С	1.72304100	-0.37957900	0.00093000
С	-1.72304100	0.37958000	0.00092800
С	0.14107600	1.79427900	0.00022100
N	-1.29108100	1.70483500	0.00076600
N	1.29108000	-1.70483400	0.00076800
C	-2.08242100	2.92198700	0.00050300
н	-2 71040700	2 99451600	0.89334100
Н	-1.36722600	3.74611500	0.00018500
C	2 08242100	-2 92198700	0.00051300
н	1 36722600	-3 74611500	0.00019800
н	2 71051400	-2 99382200	-0.89230500
0	0.73642900	2.55502200	-0.00127100
0	-0.73643000	-2 87021000	-0.00127100
Č	-3.08752600	-0.07072900	0.00127000
C C	-3 481 53000	-1 40387700	-0.00101900
C C	-4 87924300	-1 57733800	-0.00073700
н	-2 75904000	-2 21399800	-0.00182700
C II	5 59716400	0.39601200	-0.01087900
н	-5 35422300	-2 55072300	-0.03298100
C II	3.08752600	0.07072900	0.00162200
C	3.48153000	1 40387700	0.00102200
C	4 87924300	1.40387700	-0.00073300
н	2 75904000	2 21300000	0.01087200
II C	5 59716500	0.39601200	-0.01087200
н	5 35422400	2 55072300	-0.03297500
S	4 50875600	0.07124200	-0.03297500
S	4.50875600	-0.97124200	0.01156600
C S	-7.05114900	-0 21344000	-0.00357300
C	-7 64897700	0.95476700	-0.51183400
C C	7 88970500	1 22246400	0.50812000
C	-9.03297800	1 10736400	-0.50812000
н	-7 02527400	1.73826700	-0.93208500
C II	-9.27310400	-1.07011300	0.50081300
н	-7 44984100	-2 11884400	0.93313500
C II	-9 85248000	0.09539300	-0.00568100
н	-9 47256200	2 01601100	-0.90915100
Н	-9 90077400	-1 85996100	0.90281100
н	-10 93166400	0.21423100	-0.00628000
C	7 05114900	0.21344000	-0.00357300
C	7 64897600	-0.95476400	-0 51184200
Č	7 88970600	1 22246000	0.50812600
C	9.03297800	-1 10736200	-0 50862600
н	7.025277300	-1 73826200	-0.93209600
C	9 27310500	1.07011000	0.50081700
н	7 44984200	2 11883700	0.93314600
Ċ	9 85248000	-0.09539400	-0.00568500
Ĥ	9 47256200	-2.01600600	-0.90916700
н	9 90077500	1.85995500	0.90281900
H	10 93166400	-0.21423100	-0.00628600
Н	2.71040500	-2.99451100	0.89335300
Н	-2.71051200	2.99381800	-0.89231700

		······································	
С	-0.28480600	-1.63249900	-0.70244500
С	-0.60532100	-0.32234300	-0.18560300
С	0.60531800	0.32236800	0.18555800
C	1.68118100	-0.52859200	-0.07567500
C	-1 68118300	0.52861600	0.07563200
C	0.28480300	1 63252500	0.70239700
N	1 14560700	1.03232300	0.70239700
IN N	-1.14500700	1.70030800	0.00733300
IN C	1.14560500	-1./0034300	-0.60/38000
C	-1.83466600	2.90012900	1.04/04000
H	-2.52186900	2.69089000	1.8/214/00
Н	-1.05808400	3.58310700	1.39511100
С	1.83466400	-2.90010500	-1.04708500
Н	1.05808200	-3.58307800	-1.39516800
Н	2.52187600	-2.69086300	-1.87218400
О	0.96259500	2.55766100	1.14586300
О	-0.96259700	-2.55763500	-1.14591300
С	-3.07466400	0.25888900	-0.15464600
С	-3.57317000	-0.92096100	-0.69412300
С	-4.97833000	-0.93761300	-0.81245300
Н	-2.91975800	-1.73365400	-0.99589200
С	-5.59622400	0.21887600	-0.37639500
н	-5 52929100	-1 76512900	-1 24283100
C .	3 07466100	-0 25886800	0 15461200
C	3 57316800	0.02008700	0.69408000
C	4 07822800	0.92098700	0.09408000
	4.9/032000	1 7226800	0.01242000
п	2.919/3800	1./3308800	0.99382900
C	5.59621900	-0.21886800	0.3/039400
H	5.52928800	1.76515000	1.242/9900
S	4.40469700	-1.35478900	-0.20994300
S	-4.40470200	1.35479700	0.20994000
H	2.38445200	-3.37206900	-0.22746600
Н	-2.38446400	3.37208700	0.22742400
С	-7.02053600	0.58985000	-0.39825100
С	-8.04547100	-0.31088500	0.06574600
С	-7.38733500	1.83584800	-0.89007200
С	-7.76835300	-1.56823000	0.66873800
С	-9.41892500	0.09211200	-0.05155800
С	-8.73843400	2.22947600	-0.97944000
Н	-6.61515400	2.50887100	-1.24941900
С	-8.78462500	-2.39695000	1.09078000
Н	-6.73776700	-1.86806700	0.81459000
С	-10.44207600	-0.79209700	0.38503100
C	-9.73536100	1.36995800	-0.58280400
Н	-8.98301700	3,20769200	-1.38187200
C C	-10 13683000	-2 01385600	0.93738900
Ч	-8 54438000	-3 34973100	1 55318000
Н	-11 47699100	-0 47728400	0.28027400
н	10 77005800	1 65778000	0.20027400
11 U	10.02802200	2.67861400	1 26873000
	7.02052800	-2.07801400	0.20873900
C	7.02052800 8.04547700	-0.38985500	0.59827900
C	0.04J4//00	1.92594200	-0.003/2200
C	7.36731000	-1.65564500	0.69015500
C	7.70857700	1.30819700	-0.008/4800
C	9.41892600	-0.09213900	0.05161400
С	8.73840500	-2.22947700	0.97953300
Н	6.61511800	-2.50885200	1.24948300
С	8.78466100	2.39690100	-1.09079200
Н	6.73779400	1.86803800	-0.81462300
С	10.44209000	0.79205400	-0.38497900
С	9.73534400	-1.36997600	0.58289500
Н	8.98297400	-3.20768700	1.38199100
С	10.13686100	2.01380200	-0.93737000
Н	8.54443000	3.34967200	-1.55321900
Н	11.47700100	0.47723600	-0.28019700
Н	10.77993900	-1.65780200	0.66482200
Н	10.92897300	2.67854700	-1.26872200

Optimized coordinates for 1N-TDPP singlet state at RB3LYP/6-31G(d,p) level of theory and basis set.
	0	·····	
С	-0.22437700	1.76857200	0.24712400
С	-0.59369800	0.38362100	0.06815500
С	0.59369800	-0.38361800	-0.06817200
С	1.70305000	0.46143300	0.01695100
С	-1.70305000	-0.46143000	-0.01696500
С	0.22437600	-1.76856900	-0.24714000
Ν	-1.20975700	-1.75147200	-0.20583400
Ν	1.20975700	1.75147500	0.20582300
С	-1.94322000	-2.99525200	-0.35631300
Ĥ	-2.59132000	-2.97678900	-1.23746700
Н	-1.19067900	-3.77503900	-0.48402200
C	1 94322000	2 99525600	0.35629600
й	1 19067800	3 77504200	0.48400800
н	2 59132400	2 97679500	1 23744600
0	0.86906100	-2.80361000	-0.40620000
Ő	-0.86906100	2 80361300	0.40618400
C	-3.08613000	-0.08361200	0.07082600
Č	-3 54179700	1 21601900	0.26394300
C	-4 94463400	1 31817500	0.31861300
н	-2 85750900	2 05192600	0.37090200
C II	-5 60775800	0.11365900	0.16905400
Ŭ	-5 46349900	2 25286700	0.49515100
C	3 08612900	0.08361400	-0.07084000
C	3 54179700	-1 21601600	-0.26396500
C	1 94463400	1 3 1 8 1 7 2 0 0	-0.20390300
Е	2 85750000	2 05192100	-0.31803000
II C	5 60775900	0.11365800	0 16005700
С Н	5.00775900	2 25286200	-0.10903700
s s	1 45603100	1 18302000	0.05120100
S	-4 45693100	-1 18391900	-0.05129100
5 Н	2 54267500	3 21024000	-0.03128900
II H	2.54267500	3 21924000	0.53008000
II C	11 61547500	1 45508700	0.50171300
C	10 25960000	1.43508700	-0.50171500
C	-10.23900000	0.65978200	-0.31094900
C	9.54110700	0.63161600	-0.10038900
C C	-9.85204500	-0.03101000	0.18617200
C	-11.25005000	0 17873200	0.18017200
С Н	7 56576000	1 8/321000	0.47343200
Н	12 30652500	2 25018000	0.76537700
H H	-9.87146900	2.25018000	-0.78113100
II C	-7 94077900	0.86971800	-0.17173500
C	-7.94077900	1 65560200	-0.17175500
E H	-11 63939400	-1.82102400	0.32200000
Н	-13 19160800	0.00731400	-0 14627500
II C	-7 57435000	-1.42117100	0.51656000
C	-7.04962600	-0.13952000	0.16789900
с Н	-9 30630100	-2 63607900	0.79648900
Н	-6 89090900	-2 21457800	0.80345300
C II	7 57435300	1 42117700	-0 51653000
Č	8 92639200	1.65560800	-0 52202600
C C	9.85264700	0.63161500	-0.18608500
C	9 34110600	-0.65978800	0.16639200
C C	7 94077800	-0.86972400	0.17172800
C C	7.04962700	0.13952100	-0.16789300
н	11 63939700	1 82102700	-0.45579300
Н	6 89091400	2 21459000	-0.80341100
н	9 30630700	2.63608900	-0 79643100
II C	11 25603200	0.84045200	-0 18613600
C	10 2505200	-1 68959400	0.51093900
ч	7 56575700	-1 84322000	0.27340900
	11 61547200	-1 45510000	0.50171200
C	12 11034600	-0 17873000	0 14939000
с	Q 87146600	-2 66800000	0.78110300
и П	12 30652100	-2 25010700	0.76536600
и П	13 10160200	-0.00732100	0.14630500
11	13.19100000	-0.00/52100	0.1-030300

Optimized coordinates for 2N-TDPP singlet state at RB3LYP/6-31G(d,p) level of theory and basis set.

inized coordinates for 7th TDTT sh	igiet state at RD3D11	1/0 510(u,p)1	ever of theory	unu
С	-0.13195800	0.00036900	1.79506800	
С	-0.57361100	0.00008500	0.41992500	
С	0.57361000	-0.00008300	-0.41992800	
С	1.72387700	0.00008400	0.36987700	
С	-1.72387800	-0.00008400	-0.36988000	
С	0.13195700	-0.00037100	-1.79507100	
Ň	-1.30050000	-0.00035800	-1.69722400	
N	1 30049900	0.00035600	1 69722100	
C	2,00020100	0.00055000	2 00082700	
с н	2 72800800	0.80105100	2.97835300	
н	1 38013500	0.00078700	3 73827300	
	-1.38913500	-0.00078700	2 00082500	
	2.09928900	0.00000000	2.90982300	
11 11	2 72800100	0.00077200	2.07824500	
H	2.72800100	-0.8919/200	2.97834300	
0	0.72082300	-0.00059200	-2.8/42/000	
0	-0./2082400	0.00058700	2.8/42/300	
C	-3.08986800	0.00000400	0.08699100	
C	-3.4/58/000	0.00027200	1.42030600	
C U	-4.8/892600	0.00030700	1.60013500	
Н	-2./501/800	0.00043500	2.22/6/200	
C	-5.59592500	0.00006800	0.42520900	
Н	-5.35985200	0.00050100	2.5/153800	
С	3.08986800	-0.00000500	-0.08699400	
С	3.47587000	-0.00027400	-1.42030900	
С	4.87892700	-0.00030600	-1.60013700	
Н	2.75017900	-0.00043800	-2.22767500	
С	5.59592600	-0.00006300	-0.42521000	
Н	5.35985400	-0.00049800	-2.57154000	
S	4.51630500	0.00020600	0.94837200	
S	-4.51630600	-0.00020400	-0.94837400	
С	-7.10708000	2.49784700	0.23721200	
С	-7.76320200	1.22941300	0.14100200	
С	-7.81174100	3.66925500	0.14311200	
С	-7.06723600	0.00003500	0.23274400	
С	-9.19455300	1.22150200	-0.05480800	
С	-9.22218100	3.65777800	-0.05358200	
Н	-7.29157300	4.61940000	0.22077300	
С	-7.76318400	-1.22937200	0.14125300	
С	-9.86788700	-0.00002500	-0.14918300	
С	-9.89038700	2.46726700	-0.14819200	
Н	-9.76210000	4.59709200	-0.12580200	
С	-7.10704500	-2.49777600	0.23774200	
С	-9.19453400	-1.22152200	-0.05456300	
Н	-10.94510300	-0.00004800	-0.29898100	
Н	-10.96685200	2.44563600	-0.29583400	
С	-7.81168900	-3.66921300	0.14387900	
Н	-6.03457900	-2.51946200	0.39524100	
С	-9.89034900	-2.46731600	-0.14769700	
С	-9.22212700	-3.65779800	-0.05283600	
Н	-7.29150900	-4.61933500	0.22175000	
Н	-10.96681300	-2.44573200	-0.29535200	
Н	-9.76203100	-4.59713400	-0.12486700	
С	7.10703600	2.49778000	-0.23763600	
С	7.76318000	1.22937500	-0.14119800	
С	7.81167500	3.66921700	-0.14372100	
С	7.06723600	-0.00003100	-0.23274300	
С	9.19452900	1.22152200	0.05462000	
С	9.22211200	3.65779900	0.05299900	
Н	7.29149100	4.61934000	-0.22155300	
С	7.76320800	-1.22941000	-0.14105500	
С	9.86788700	0.00002400	0.14918600	
С	9.89033900	2.46731500	0.14781000	
Н	9.76201200	4.59713400	0.12507200	
С	7.10709000	-2.49784300	-0.23731600	
С	9.19455800	-1.22150100	0.05475600	
Н	10.94510300	0.00004500	0.29898400	
Н	10.96680300	2.44572900	0.29546600	
С	7.81175700	-3.66925200	-0.14326600	

Optimized coordinates for An-TDPP singlet state at RB3LYP/6-31G(d,p) level of theory and basis set.

Н	6.03462000	-2.51957400	-0.39478900	
C C	9 89039800	-2 46726800	0.14808500	
C C	0.22210700	2.40720000	0.05242600	
C II	9.22219700	-3.03/7/800	0.03342000	
H	7.29159200	-4.61939600	-0.22096600	
Н	10.96686300	-2.44563900	0.29572700	
Н	9.76211900	-4.59709200	0.12560500	
Н	6.03457000	2.51946900	-0.39513800	
Н	-6.03461100	2.51958000	0.39468800	
Н	2.72800800	0.89319400	2.97798000	
Н	-2.72800200	-0.89321400	-2.97797800	
	21/2000200	0107021.00	21,777,7000	
Optimized coordinates for Py-TDPP singlet	state at RB3I VI	P/6-31G(d n) le	evel of theory and has	is set
optimized coordinates for Ty-TDTT singlet		/0-510( <b>u</b> ,p) K		515 Set.
С	0.08431800	0.68272300	1.11888600	
С	0.52433300	-0.47739500	0.37937200	
С	-0.62271900	-1.17955300	-0.07841000	
С	-1.77353500	-0.50775900	0.33959100	
С	1.67528000	-1.14522400	-0.04492800	
С	-0.18263700	-2.33854400	-0.81989900	
Ν	1 24913600	-2 26103900	-0 76340400	
N	-1 34754900	0.60845400	1.05745300	
C	2 04614600	3 28627100	1.05745500	
C II	2.04014000	-3.2802/100	-1.41251500	
п	2.6/40/800	-3.82254300	-0.09500000	
Н	1.33490200	-3.98492600	-1.85602700	
С	-2.14425700	1.62809500	1.71589100	
Н	-1.43283300	2.31436700	2.17804700	
Н	-2.76143200	2.18149900	1.00206600	
0	-0.77327600	-3.24580400	-1.40298000	
0	0.67496200	1.58697800	1.70671100	
С	3.03865500	-0.76405100	0.20388200	
С	3.42697900	0.35054800	0.93825800	
Ċ	4 82471900	0 50640800	1 03064200	
Ч	2 70136500	1.01615400	1 30537300	
	5 54044400	0.47416800	0.27919200	
C II	5.34944400	-0.4/410800	0.5/616200	
Н	5.29803400	1.29890000	1.59/59100	
C	-3.13/11800	-0.88/4/600	0.08688300	
С	-3.52520900	-2.01243300	-0.63052700	
С	-4.92299900	-2.15097200	-0.74415700	
Н	-2.79987700	-2.69660700	-1.05971300	
С	-5.64846300	-1.14310500	-0.13712800	
Н	-5.40104300	-2.96250300	-1.28048000	
S	-4.56168100	0.00115000	0.62126300	
S	4.46441500	-1.61820200	-0.37983300	
С	7.00286500	-0.67594700	0.30411300	
C	7 90543000	0 39047400	0.02828900	
C C	7 51925900	-1 96544400	0.52901900	
Č	0.21/15200	0.12149900	0.04825100	
e	7 47202700	1 71025000	0.04033100	
C	7.4/203/00	1./1955900	-0.51010100	
U	8.88208600	-2.21811200	0.53033400	
Н	6.82809800	-2.//40/500	0./4491100	
C	10.24429300	1.18845100	-0.19805400	
С	9.80498300	-1.18462800	0.30850100	
С	8.36072700	2.72301700	-0.55094700	
Н	6.41022900	1.91465900	-0.39400200	
Н	9.24572900	-3.22299400	0.72594300	
С	9.77619000	2.50500200	-0.48764600	
С	11.65045800	0.93410000	-0.16082900	
С	11.22178300	-1.41203100	0.33556400	
H	8 00161700	3 71516900	-0.81114800	
C .	10 70681300	3 53078600	-0.72112900	
C C	12 5/252200	1 00135400	_0 30821/00	
	12.34332200	0.20070500	0.11570400	
	11.57(79200	-0.377/9300	0.113/0400	
H	11.5/6/8200	-2.418/2900	0.338/3600	
C	12.07497000	3.27450000	-0.67366400	
Н	10.34552200	4.53136200	-0.94240100	
Н	13.61201300	1.79629600	-0.36647000	
Н	13.17480600	-0.58653600	0.14183900	
Н	12.78140100	4.07895600	-0.85546600	
С	-7.11257100	-1.07525800	0.00009000	

С	-7.88469400	0.09588800	-0.23804600
С	-7.76925700	-2.25760100	0.38864700
С	-9.30161900	0.04941600	-0.02930600
С	-7.31934000	1.32705100	-0.72138100
С	-9.14231600	-2.30646300	0.57325100
Н	-7.17160700	-3.14291900	0.57941900
С	-10.10014000	1.21593200	-0.24089800
С	-9.93307900	-1.16278800	0.38601200
С	-8.08351700	2.43540800	-0.92733100
Н	-6.26024800	1.36468800	-0.94335600
Н	-9.61336300	-3.23369500	0.88748000
С	-9.49568100	2.43095900	-0.68204300
С	-11.51140900	1.17387000	-0.01682800
С	-11.35226900	-1.17707900	0.60016900
Н	-7.62605300	3.34869600	-1.29834800
С	-10.29719800	3.56737000	-0.87916900
С	-12.27226400	2.33553600	-0.22462000
С	-12.10699400	-0.06042800	0.41183500
Н	-11.81409800	-2.10726900	0.91986400
С	-11.66998200	3.51810700	-0.64967100
Н	-9.83209300	4.48968700	-1.21631700
Н	-13.34436400	2.30167900	-0.05086400
Н	-13.18027700	-0.08568600	0.57988700
Н	-12.27559700	4.40586700	-0.80572900
Н	-2.78412100	1.19960300	2.49286500
Н	2.67517700	-2.86747200	-2.20358200

Optimized coordinates for TDPP singlet state at RB3LYP/6-31G(d,p) level of theory and basis set.

C	0.000.40100	1 7071 4000	0 0000 4100
C	0.09942100	-1./9/14000	0.00004100
С	0.56596900	-0.43032700	0.00009100
С	-0.56596900	0.43032700	0.00009100
С	-1.72999300	-0.33818500	0.00003700
С	1.72999300	0.33818600	0.00004000
С	-0.09942100	1.79714000	0.00004400
Ν	1.33132200	1.67292300	0.00001600
Ν	-1.33132200	-1.67292300	0.00001100
С	2.15188000	2.87062500	0.00002300
Н	2.78142000	2.92755600	-0.89287100
Н	1.45693700	3.71187200	0.00004800
С	-2.15188100	-2.87062500	0.00001600
Н	-1.45693700	-3.71187200	0.00004000
Н	-2.78145200	-2.92752300	0.89288900
0	-0.66798900	2.88698600	0.00003400
0	0.66798900	-2.88698600	0.00003000
С	3.08728500	-0.14476400	0.00000800
С	3.44935900	-1.48492300	0.00003100
С	4.85027000	-1.68912800	-0.00001500
Н	2.70827300	-2.27805100	0.00007600
С	5.56345500	-0.51826500	-0.00007100
Н	5.31377400	-2.66857400	-0.00000600
С	-3.08728500	0.14476400	0.00000500
С	-3.44935900	1.48492300	0.00002900
С	-4.85027100	1.68912700	-0.00001800
Н	-2.70827400	2.27805100	0.00007600
С	-5.56345500	0.51826400	-0.00007700
Н	-5.31377500	2.66857300	-0.00000800
S	-4.53205400	-0.86708900	-0.00007800
S	4.53205400	0.86708900	-0.00007100
Н	-2.78141900	-2.92755400	-0.89287900
Н	2.78145000	2.92752300	0.89289700
Н	6.63644700	-0.38449500	-0.00011200
Н	-6.63644700	0.38449300	-0.00011900

Optimized coordinates for Th-TDPP singlet state at RB3LYP/6-31G(d,p) level of theory and basis set.

С	-0.19921400	-1.78871400	-0.01375400
С	-0.58797100	-0.39742700	-0.01322400
С	0.58797000	0.39742500	-0.01322200

С	1.71020500	-0.43596300	-0.01320900
С	-1.71020500	0.43596100	-0.01320900
С	0.19921400	1.78871100	-0.01375000
Ν	-1.23457400	1.74657100	-0.01339900
Ν	1.23457400	-1.74657400	-0.01340300
С	-1.98550300	2.98903500	-0.01318700
Н	-2.61028100	3.08209900	0.88008200
Η	-1.24366200	3.78929000	-0.01321100
С	1.98550200	-2.98903700	-0.01319300
Н	1.24366100	-3.78929200	-0.01321900
Н	2.61063300	-3.08214100	-0.90617000
0	0.83030300	2.84416100	-0.01461900
0	-0.83030300	-2.84416300	-0.01462600
С	-3.08632800	0.02987100	-0.01198300
С	-3.52380800	-1.29046500	-0.01355200
С	-4.92402600	-1.42111200	-0.01832000
Н	-2.82719600	-2.12308100	-0.01704700
С	-5.60415100	-0.21489800	-0.01980700
Н	-5.43073000	-2.37938200	-0.03320000
С	3.08632800	-0.02987200	-0.01198100
С	3.52380700	1.29046400	-0.01354700
С	4.92402500	1.42111200	-0.01831400
Η	2.82719400	2.12307900	-0.01704000
С	5.60415100	0.21489800	-0.01980300
Н	5.43072800	2.37938300	-0.03319100
S	4.47362900	-1.12047600	-0.00540700
S	-4.47362800	1.12047600	-0.00540700
Н	2.61028000	-3.08210400	0.88007600
Н	-2.61063300	3.08214100	-0.90616400
С	-7.02901600	0.02365700	-0.02773000
С	-7.71220500	1.20879600	-0.21613300
S	-8.16472700	-1.29291500	0.22836400
С	-9.12517200	1.06554700	-0.16113100
Н	-7.21219300	2.15263400	-0.40212800
С	-9.52009600	-0.22469700	0.06761900
Η	-9.81932600	1.88743000	-0.29144100
Η	-10.52428000	-0.61548200	0.15289600
С	7.02901700	-0.02365500	-0.02772600
С	7.71220600	-1.20879400	-0.21613100
S	8.16472600	1.29291700	0.22837100
С	9.12517300	-1.06554300	-0.16112800
Н	7.21219500	-2.15263200	-0.40212800
С	9.52009600	0.22470000	0.06762400
Н	9.81932700	-1.88742600	-0.29143900
Н	10.52428000	0.61548600	0.15290200

Optimized coordinates for Flu-TDPP singlet state at RB3LYP/6-31G(d,p) level of theory and basis set.

of Flu-TDI I	singlet state at RD5L1	170-510(u,p)	lever of theory
С	0.04394500	-1.79913600	-0.23023300
С	-0.52927900	-0.47345800	-0.23119700
С	0.52928000	0.47344900	-0.23119500
С	1.75345900	-0.20046000	-0.23100100
С	-1.75345800	0.20045100	-0.23099800
С	-0.04394300	1.79912700	-0.23022200
Ν	-1.45916300	1.56324700	-0.23081300
Ν	1.45916400	-1.56325600	-0.23082400
С	-2.37104700	2.69267100	-0.23103100
Н	-3.00322800	2.70017200	0.66180800
Н	-1.74409100	3.58579800	-0.23130000
С	2.37104700	-2.69267900	-0.23105400
Н	1.74409200	-3.58580600	-0.23132900
Н	3.00345400	-2.69986600	-1.12373200
0	0.43776800	2.93078100	-0.22852200
0	-0.43776700	-2.93078900	-0.22854000
С	-3.06372600	-0.38695100	-0.23162100
С	-3.31938600	-1.75388300	-0.22898300
С	-4.69083100	-2.07053700	-0.22641200
Н	-2.51735300	-2.48538300	-0.21885000
	<b>G</b> 4 40		

С	-5.52894600	-0.96953700	-0.22617800
Н	-5.06172200	-3.08801400	-0.19363800
С	3.06372600	0.38694200	-0.23162300
С	3.31938500	1.75387600	-0.22897800
С	4.69083000	2.07053100	-0.22640700
Н	2.51735100	2.48537400	-0.21883900
С	5.52894500	0.96953100	-0.22618000
Н	5.06172000	3.08800700	-0.19362800
S	4.58535500	-0.50307500	-0.24154700
S	-4.58535300	0.50306900	-0.24153800
Н	3.00323100	-2.70018900	0.66178300
Н	-3.00345500	2.69986500	-1.12370700
C	-7 72099700	-2 04267400	-0 70769400
C	-6 99146100	-0.93658300	-0.22151800
c	-7 70218800	0.18270200	0.26393700
C	9.08749500	0.18118500	0.26575700
C	9.8010/100	0.03/00600	0.22352100
c	-9.80104100	-0.95490000	-0.22353100
с п	-9.11213900	-2.03028300	-0.70000700
п	-7.18439200	-2.89480100	-1.111/8300
н	-/.15568000	1.03363900	0.00189300
Н	-9.64/85500	-2.91389500	-1.09020800
C	-10.04421100	1.2/360300	0./3/01500
С	-11.398/2300	0.62341000	0.45440100
С	-12.67304700	1.13271200	0.67601200
С	-13.78671100	0.35473300	0.33836600
С	-13.62336000	-0.91954000	-0.21518100
С	-12.34683800	-1.43751300	-0.44058800
С	-11.23558400	-0.66088000	-0.10386800
Η	-12.81166800	2.12143100	1.10568800
Н	-14.78649900	0.74369300	0.50768000
Η	-14.49758800	-1.51068800	-0.47170400
Η	-12.22487500	-2.42766000	-0.87074700
С	-9.86335400	2.57538400	-0.07551100
Н	-8.86608300	2.99772900	0.08639100
Н	-9.98742600	2.39207000	-1.14636800
Н	-10.59916100	3.32628800	0.23049500
С	-9.86143700	1.56186700	2.24404000
Н	-9.98458300	0.65152700	2.83717700
Н	-8.86407800	1.96783900	2.44291700
Н	-10.59702400	2.29640600	2.58796500
C	13.62335800	0.91954400	-0.21519900
Č	13 78671200	-0 35472200	0.33836300
c	12 67304900	-1 13269800	0.67602000
C	11 39872300	-0.62340000	0.45440700
C	11.35672500	0.66088300	-0 10387800
c	12 34683500	1 43751300	-0.44060900
ч	14 49758500	1.51068000	0.47173100
п п	14.79650000	0.74267000	-0.4/1/3100
11 11	12 81167100	-0.74307900	1 10570000
11	12.8110/100	-2.12141200	0.9707900
п	12.22487000	2.42/03300	-0.8/0/8000
C	10.04421300	-1.2/339000	0.75705500
C	9.08/49300	-0.18118000	0.25826900
C	/./0218800	-0.18269800	0.26394400
C	6.99145900	0.93658000	-0.22152200
C	7.72099200	2.04266700	-0./0//1200
С	9.11213500	2.0502/900	-0.70668800
C	9.80103900	0.93490700	-0.22354000
Н	7.15568200	-1.03363000	0.66191200
Н	7.18458500	2.89478800	-1.11181000
Н	9.64784900	2.91388500	-1.09024000
С	9.86144300	-1.56183100	2.24406300
Н	9.98459000	-0.65148300	2.83718600
Η	8.86408500	-1.96780200	2.44294900
Н	10.59703200	-2.29636500	2.58799700
С	9.86335500	-2.57538300	-0.07547300
Η	8.86608500	-2.99772700	0.08643800
Н	9.98742500	-2.39208600	-1.14633400
Н	10.59916300	-3.32628200	0.23054200

	singlet state at I	B3E11/0 510	(a,p) level of the
С	-0.08874000	-1.66147800	0.76171400
С	-0.56410100	-0.41991300	0.19928700
C	0 56035200	0 36403500	_0 17399900
C	1 72225600	0.22265700	0.12024200
C	1.73323000	-0.33303700	0.12924300
C	-1./3699200	0.27739000	-0.10453800
С	0.08503600	1.60628700	-0.73479900
Ν	-1.34331700	1.49262300	-0.66490300
Ν	1.33963200	-1.54837100	0.69056500
С	-2.17033700	2.58210700	-1.14983600
- Н	-2 79092200	3 00275600	-0 35304900
и П	1 47074000	2 24811000	1 50648200
П	-1.4/9/4900	3.34811000	-1.30048300
C	2.16683300	-2.636/1100	1.17/82500
Н	1.47645100	-3.40153100	1.53738400
Н	2.78640700	-3.06014900	0.38167000
О	0.64734300	2.59984100	-1.19448900
0	-0.65106500	-2.65345100	1.22460200
C	-3.08553700	-0 16238200	0 11095800
C C	3 44103800	1 38136700	0.67782600
C	-3.44193800	-1.58150700	0.07782000
C	-4.83216/00	-1.5/053600	0.78300900
H	-2.69530100	-2.09653300	1.00893700
С	-5.59002800	-0.51452000	0.30570800
Н	-5.27386800	-2.45441500	1.22755000
С	3.08174200	0.10339100	-0.09205000
С	3.43773200	1.32466600	-0.65459900
C	4 82789400	1 51569000	-0 75704600
U U	2 60000100	2 04974900	0.06520200
	2.09090100	2.046/4600	-0.90550200
C	5.58553800	0.45866600	-0.28148100
Н	5.27141500	2.42540700	-1.14402100
S	4.53617300	-0.81638200	0.29797200
S	-4.53983900	0.74681400	-0.30288300
С	-7.04309400	-0.38199300	0.26120600
С	-7.68106300	0.86754200	0.14146000
C	-7 87243400	-1 51915800	0.33952100
e C	0.06206400	0.09051200	0.00675700
C II	-9.00300400	0.98031300	0.090/3/00
Н	-/.08409000	1.//342800	0.08/3/000
С	-9.25457400	-1.41564200	0.31230900
Н	-7.42486400	-2.50482700	0.41648700
С	-9.88355000	-0.16067900	0.18617900
Н	-9.51759500	1.95934800	-0.00429900
Н	-9 86033100	-2 31181400	0 38318800
C C	7.03803200	0.32748100	-0 23674300
C	7.03003200	0.52740100	-0.23074300
C	7.08081300	-0.33/48900	0.043/3300
C	/.855/8000	1.09822100	-1.08/94500
С	9.06924800	-0.66495500	0.68582200
Н	7.09867100	-1.14982300	1.34099100
С	9.23771700	0.99559900	-1.05843900
Н	7.39662000	1.76420600	-1.81164800
С	9.87819300	0.11094800	-0.16724200
н	9 53413900	-1 34288500	1 39241400
н	0.83432700	1.59015700	1.74087500
II N	11 29 (10100	0.05228000	-1./408/300
N	-11.28610100	-0.05238000	0.15154400
Ν	11.28029400	0.00416900	-0.13498100
С	11.91009600	-1.22228900	0.23307900
С	12.94670100	-1.23774400	1.17099600
С	11.52008000	-2.43697100	-0.35779800
С	13 59129600	-2 42797800	1 51428000
н	13 25917800	-0 30724000	1 63347800
	12 14050500	3 67655400	0.00576200
C	12.14030300	-3.02033400	-0.00370300
H	10.72333900	-2.44033600	-1.09438300
С	13.18554300	-3.63316500	0.93068600
Н	14.39389500	-2.40122700	2.24144600
Н	11.84339100	-4.56715100	-0.45752300
С	12.10494400	1.12654200	-0.44618700
Č	11 87185200	2 37633000	0 13670200
C C	12 10200400	0.0000000	1 22622500
C Â	13.18390400	0.99089000	-1.55022500
С	12.67744500	3.47547800	-0.16809000
Н			
	11.04750800	2.49460900	0.83241100

Optimized coordinates for TPAOMe-TDPP singlet state at RB3LYP/6-31G(d,p) level of theory and basis set.

Н	13.37701900	0.02674100	-1.79491700
С	13.75362100	3.32704000	-1.05028100
Н	12.46448300	4.42964600	0.29872400
Н	14.83721900	1.97379300	-2.31286000
С	-12.08539200	-1.09705800	-0.40179000
С	-13.21021900	-1.57531600	0.29161700
С	-11.78126300	-1.65453200	-1.64793400
С	-14.00382800	-2.57570100	-0.25033200
Н	-13.45875200	-1.15124300	1.25892400
С	-12.56195400	-2.67755600	-2.19005900
Н	-10.92060900	-1.28994100	-2.19921100
С	-13.68407800	-3.14093200	-1.49400600
Н	-14.87385200	-2.94847300	0.27995700
Н	-12.29348700	-3.08901200	-3.15562500
С	-11.93920600	1.11624200	0.64545700
С	-12.93055700	1.75169100	-0.10813500
С	-11.61837300	1.63867900	1.91072000
С	-13.59788500	2.87700000	0.38022900
Н	-13.18959100	1.35818700	-1.08559300
С	-12.26093800	2.76919300	2.39337700
Н	-10.85770200	1.15134700	2.51178100
С	-13.26052300	3.39698000	1.63459900
Н	-14.36415700	3.34054600	-0.22939200
Н	-12.01698500	3.17756900	3.36847100
0	14.61079100	4.32734100	-1.41092100
0	13.73613400	-4.85421900	1.19740500
0	-13.83860300	4.49449500	2.20619300
0	-14.52236500	-4.12615300	-1.93237400
С	14.40489000	5.61737400	-0.85776300
Н	15.18548900	6.25347600	-1.27733100
Н	13.42278500	6.02405700	-1.13146700
Н	14.49618300	5.60927000	0.23607500
С	14.79617300	-4.91960100	2.13784400
Н	14.47900700	-4.57691100	3.13123500
Н	15.08291500	-5.97048200	2.19639800
Н	15.66206400	-4.32723900	1.81494200
С	-14.85557800	5.16870500	1.48267400
Н	-15.17445700	5.99941000	2.11375300
Н	-14.48155400	5.56365100	0.52925900
Н	-15.71509700	4.51483700	1.28612400
С	-14.24480900	-4.73338700	-3.18408300
Н	-15.02220700	-5.48380600	-3.33418800
Н	-14.28293400	-4.00612500	-4.00538200
Н	-13.26357600	-5.22533600	-3.18759500
Н	-2.81079900	2.26473100	-1.97817700
Н	2.80828100	-2.31686300	2.00438800

## Optimized coordinates for TPAOMe-TTDPP singlet state at RB3LYP/6-31G(d,p) level of theory and basis set.

С	-0.43666900	-1.62359500	0.64762100
С	-0.63142500	-0.25777100	0.22091400
С	0.63790300	0.29998000	-0.07599400
С	1.63462800	-0.65993400	0.14294000
С	-1.62903900	0.69457900	-0.01760600
С	0.44018400	1.66006400	-0.51708500
Ν	-0.97809200	1.85887000	-0.43808700
Ν	0.98294200	-1.82142000	0.56542800
С	-1.51894600	3.19326400	-0.69948600
Н	-0.77357262	3.79253078	-1.17927537
Н	-2.37554886	3.11260038	-1.33558735
С	1.52298300	-3.14268200	0.88030100
Н	2.40983525	-3.03445365	1.46909613
Н	0.79610495	-3.70334472	1.43003331
0	1.21172300	2.53817000	-0.90734300
0	-1.20408300	-2.50658200	1.02976400
С	-3.04471800	0.48249600	0.09160100
С	-3.63513700	-0.66854900	0.60680800
С	-5.03876300	-0.66102500	0.55044900
Н	-3.04151300	-1.49072500	0.99297600

C	5 57704200	0 40 471 700	0.01552400
C III	-5.57704300	0.484/1/00	-0.01555400
Н	-5.65139/00	-1.4/869100	0.912/9000
С	3.04911100	-0.46206300	-0.00088100
С	3.63860200	0.70222000	-0.48708800
С	5.04273000	0.66685600	-0.49822300
Η	3.04367400	1.54831800	-0.81578700
С	5.58355600	-0.51586500	-0.01724900
Н	5.65424900	1.48620400	-0.85860800
S	4.30480300	-1.61219400	0.46257400
S	4 20632500	1.58449500	0.48205100
C C	10.01004700	0.40288400	0.20822200
C	-10.91094700	1.4001.000	-0.20823300
C	-11.89484700	1.49916900	-0.28550600
С	-11.35984300	-0.82705500	-0.01864100
С	-13.24705900	1.20358400	-0.19641900
Н	-11.59475100	2.53463500	-0.41146000
С	-12.70904300	-1.13085100	0.09116900
Н	-10.63845300	-1.63716100	0.03943000
С	-13.68616300	-0.12096400	-0.00175700
Н	-13.97570500	2.00282000	-0.26996200
Н	-13 01589000	-2 15893900	0 24561800
C	10.91793000	-0 56735200	0.07486500
C C	11 97095500	1 20752500	0.07400500
C	11.0/903300	-1.29/32300	0.80022900
C	11.3861/100	0.49418100	-0./2280800
С	13.23046300	-0.99002100	0.73217700
Н	11.55827900	-2.09829300	1.45892100
С	12.73524700	0.80776800	-0.80041600
Η	10.68310500	1.06529800	-1.32261600
С	13.69016800	0.07140200	-0.07261300
Н	13.94060800	-1.56110600	1.31933900
Н	13.06118100	1.62020500	-1.43977400
N	-15 05693100	-0 42478000	0 10048100
N	15.05073300	0.38639400	-0 14571300
C	16.05010200	0.58059400	-0.14371300
C	10.03019200	-0.02090800	0.02080400
C	17.13638200	-0.42810200	0.8/834300
С	15.96935200	-1.83633300	-0.69161400
С	18.12748500	-1.40085700	1.02496900
Н	17.21257400	0.50137900	1.43297900
С	16.93808500	-2.81664700	-0.53454800
Н	15.13759900	-2.00192100	-1.36848000
С	18.02935900	-2.60670700	0.32216300
Н	18.95730000	-1.21008100	1.69482000
Н	16.88065600	-3.75216600	-1.08102200
C	15 48894300	1 72960300	-0.36490100
C C	14 96265600	2 78654700	0.38480500
C C	16 46722100	2.78034700	1 22262400
C C	15.29105000	2.01432300	-1.33202400
	13.38103900	4.10150200	0.10994400
H	14.21204300	2.58169600	1.14120900
С	16.90461500	3.31490100	-1.53653800
Н	16.88506400	1.20404800	-1.92103700
С	16.36142900	4.37221000	-0.79128400
Н	14.94773100	4.89551900	0.76595300
Η	17.66015600	3.54069800	-2.28170900
С	-15.56016100	-1.68448900	-0.34244000
С	-16.42721100	-2.43068200	0.47378300
С	-15.21925400	-2.19611100	-1.59870700
С	-16 93731400	-3 64584900	0.04078200
н	-16 70091500	-2 04572500	1 45060500
C C	15 71025800	3 42926900	2 03261400
U U	-15./1025800	1 (2800200	-2.03201400
п	-14.556/5500	-1.62800200	-2.24361700
U	-16.5/916200	-4.16003100	-1.21446000
H	-17.60766600	-4.22591900	0.66628900
Н	-15.42073000	-3.79668500	-3.00980400
С	-15.97715300	0.52724100	0.63194600
С	-17.17533600	0.80772500	-0.03163500
С	-15.71191800	1.18466400	1.84615300
С	-18.09758600	1.71384800	0.49609400
Н	-17.39397600	0.30612500	-0.96863300
С	-16.61263800	2,10284300	2.36555000
Н	-14 79070900	0 97092700	2 37821100
	17.75070500	0.71074100	2.2/021100

С	-17.81677200	2.37314400	1.69778200
Н	-19.01801700	1.90249100	-0.04327300
Н	-16.41300500	2.61383900	3.30157800
0	16.85197500	5.61443600	-1.07725400
0	18.93213600	-3.62914800	0.39567600
0	-18.63843600	3.28327300	2.29977900
0	-17.12699100	-5.36814100	-1.54020900
С	16.33586100	6.72073000	-0.35454000
Н	16.85270800	7.60054100	-0.74030200
Н	15.25599400	6.83955100	-0.51133100
Н	16.53298900	6.63028300	0.72150100
С	20.05541900	-3.47004100	1.24723700
Н	19.75514000	-3.33922600	2.29490800
Н	20.63729300	-4.38802300	1.15362700
Н	20.67660800	-2.61721200	0.94436200
С	-19.86997600	3.59365700	1.66806500
Н	-20.36135100	4.32696600	2.30904000
Н	-19.71685300	4.03052500	0.67275900
Н	-20.51254800	2.70858500	1.57478000
С	-16.79680800	-5.93564600	-2.79769800
Н	-17.32941600	-6.88630300	-2.84873700
Н	-17.12068400	-5.29637800	-3.62919000
Н	-15.71877900	-6.12126800	-2.88854500
С	6.96689900	-0.89041500	0.11829300
С	7.51132700	-2.10801500	0.48298400
S	8.25102900	0.27109200	-0.18584500
С	8.92463200	-2.11858800	0.50422100
Н	6.90501000	-2.97833200	0.70907800
С	9.50146500	-0.91196000	0.15786200
Н	9.50866800	-3.00188000	0.73398000
С	-6.95870400	0.82585700	-0.23200400
С	-7.49796200	1.94824000	-0.83294400
S	-8.24787700	-0.24818500	0.29244900
С	-8.91038700	1.94578600	-0.88469400
Н	-6.88827900	2.74745000	-1.23996800
С	-9.49302200	0.82485800	-0.32547200
Н	-9.48713000	2.73630800	-1.34992000
Н	-1.80318226	3.65035317	0.22527302
Н	1.75833606	-3.65745363	-0.02772934

### Optimized coordinates for NTT singlet state at RB3LYP/6-31G(d,p) level of theory and basis set.

С	-2.18316300	-1.36681900	0.00000600
С	-0.76586200	-1.68984100	0.00000700
С	0.24035500	-0.65926100	0.00000200
С	-0.24035500	0.65926100	-0.00000300
С	-1.63107000	0.96601500	-0.00000400
С	-2.63239300	0.01362100	0.00000100
С	1.63107000	-0.96601500	0.00000300
С	0.76586200	1.68984100	-0.00000700
С	2.18316300	1.36681900	-0.00000600
С	2.63239300	-0.01362100	-0.00000100
Н	1.88831300	-2.02001200	0.00000900
Η	-1.88831300	2.02001200	-0.00001000
Ν	0.50994400	2.99671300	-0.00001300
Ν	2.96125100	2.45054100	-0.00001100
S	1.96606600	3.76322900	-0.00001600
Ν	-2.96125100	-2.45054100	0.00001100
Ν	-0.50994400	-2.99671300	0.00001200
S	-1.96606600	-3.76322900	0.00001600
С	4.04641200	-0.37266400	-0.00000200
С	5.15954200	0.44144100	0.00001700
S	4.54562000	-2.06338000	-0.00002800
С	6.40421500	-0.25988800	0.00001200
Η	5.08044700	1.51998100	0.00003400
С	6.21894000	-1.61752000	-0.00001200
С	-4.04641200	0.37266400	0.00000200
С	-5.15954200	-0.44144100	-0.00002400

S	-4.54562000	2.06338000	0.00004000
С	-6.40421500	0.25988800	-0.00001700
Н	-5.08044700	-1.51998100	-0.00004800
С	-6.21894000	1.61752000	0.00001700
С	7.74624500	0.42105800	0.00003100
Н	7.86667000	1.06074100	-0.88157500
Н	7.86666100	1.06070900	0.88166000
Н	8.56189200	-0.30661900	0.00002200
С	-7.74624500	-0.42105800	-0.00004200
Н	-7.86665900	-1.06070400	-0.88167600
Н	-7.86667200	-1.06074600	0.88155900
Н	-8.56189200	0.30661900	-0.00003100
Н	6.97672400	-2.38951700	-0.00002100
Н	-6.97672400	2.38951700	0.00003000

## Optimized coordinates for 2N-NTT singlet state at RB3LYP/6-31G(d,p) level of theory and basis set.

С	-1.56947500	2.04101000	-0.08888800
С	-0.13022000	1.85131100	-0.01385100
С	0.45431500	0.53500200	0.02123000
С	-0.45431500	-0.53500500	-0.02124100
С	-1.86207500	-0.33976200	-0.09588300
С	-2.46937900	0.90238300	-0.12978400
С	1.86207500	0.33975900	0.09587200
С	0.13022000	-1.85131500	0.01383900
С	1.56947500	-2.04101300	0.08887500
С	2.46937900	-0.90238700	0.12977200
Н	2.46960000	1.23796900	0.13095200
Н	-2.46960000	-1.23797200	-0.13096500
Ν	-0.56285300	-2.98786100	-0.01871600
Ν	1.92245500	-3.32715700	0.11060500
S	0.53474600	-4.21274100	0.04177500
N	-1.92245500	3.32715300	-0.11061800
N	0.56285300	2.98785700	0.01870300
S	-0.53474700	4.21273800	-0.04178800
Č	3,91600400	-1.05660000	0.19803200
C	4.67258300	-2.20078600	0.34653400
S	4.97672200	0.33985500	0.09440300
C	6 07939700	-1 98837900	0 38834900
H	4.22014000	-3.17877700	0.43838200
C	6 41415900	-0 64988600	0.26548500
C	-3 91600400	1.05659700	-0 19804300
C	-4 67258200	2 20078300	-0.34655500
S	-4 97672300	-0 33985500	-0.09439900
Ċ	-6.07939600	1 98837600	-0 38836900
н	-4 22013800	3 17877300	-0.43841200
C	-6 41415900	0.64988500	-0 26548900
C	7 04943800	-3 12284900	0.59599500
н	6 60376400	-3 89181100	1 23417700
н	7 31815500	-3 60743400	-0.35095300
н	7 97534800	-2 78259300	1.06570300
C	-7 04943600	3 12284500	-0 59602500
н	-7 31815000	3 60744100	0.35091700
н	-6 60376300	3 89179900	-1 23421700
н Н	-7.97534600	2 78258400	-1.06572900
C II	8 81822700	-0 57988100	-0.38306100
C	10.09687700	0.03336200	-0.38642000
C	7 73389600	-0.00432200	0.26396200
C	11 21195800	-0.55191900	-1 04640600
C	10 27231400	1 28682000	0 28414300
C C	7 92453400	1.23002000	0.02301800
C	12 44077900	0.06790000	-1 03748800
н	11 07757400	-1 50083400	-1 55906200
C	11 55245700	1 80043100	0.27620100
Č	0 14880500	1 86900000	0.93080100
н	7 08674600	1 70164000	1 44417800
C	12 61382100	1 30471800	-0 36805000
н	12.01362100	_0 39040200	-0.50895900
н	11 60111100	2 84022100	0.78951600
11	11.00114400	2.07733100	0.76651000

Н	9.27416300	2.81855800	1.44476200
Н	13.58866900	1.78319000	-0.36907400
С	-8.81822600	0.57989000	0.38306200
С	-10.09687600	-0.03335300	0.38643100
С	-7.73389700	0.00432200	-0.26395500
С	-11.21195600	0.55193700	1.04641100
С	-10.27231500	-1.28682000	-0.28411500
С	-7.92453600	-1.24893600	-0.92389500
С	-12.44077700	-0.06788200	1.03750400
Н	-11.07757200	1.50085900	1.55905400
С	-11.55245700	-1.89943100	-0.27616200
С	-9.14889700	-1.86910800	-0.93085700
Н	-7.08624900	-1.70165500	-1.44415000
С	-12.61382000	-1.30471000	0.36899300
Н	-13.28474100	0.39042600	1.54452100
Н	-11.68114500	-2.84933900	-0.78846300
Н	-9.27416600	-2.81857400	-1.44471500
Н	-13.58866800	-1.78318200	0.36911600
Н	-8.69103000	1.50841600	0.93000600
Н	8.69103100	-1.50839900	-0.93001800

### Optimized coordinates for Flu-NTT singlet state at RB3LYP/6-31G(d,p) level of theory and basis set.

	U	· · 1 ·	-
С	-1.49843100	-2.08600200	-0.20080500
С	-0.06837700	-1.85284500	-0.08266400
С	0.47126100	-0.52045200	0.01379300
С	-0.47125800	0.52048700	-0.01383200
С	-1.86947600	0.28282600	-0.13123800
С	-2.43445500	-0.97633200	-0.22403100
С	1.86948000	-0.28279100	0.13119800
С	0.06838100	1.85288000	0.08262100
С	1,49843600	2.08603600	0.20075900
Ċ	2,43446000	0.97636600	0.22398800
H	2.50554100	-1.16149100	0.15135400
Н	-2.50553800	1.16152500	-0.15139900
N	-0.66092200	2 96694300	0.07269400
N	1 80814200	3 38122400	0.27669600
S	0 39386200	4 22363600	0 20412700
N	-1 80813800	-3 38118900	-0 27674700
N	-1.80813800	-2.96690800	-0.07274000
S	0.30385800	4 22360100	0.20/17000
S C	-0.39383800	-4.22300100	-0.2041/900
C	4 58608700	2 22/20100	0.55446400
c	4.38098700	2.33430100	0.33440400
S	4.98320800	-0.1/911300	0.18010400
U U	5.998/4600	2.16582700	0.62106400
H C	4.099/3900	3.29140000	0.68209400
C	6.381//200	0.84635500	0.44419800
C	-3.8/288300	-1.17453800	-0.33300200
C	-4.5869/600	-2.33425700	-0.5545/800
S	-4.98326800	0.1/913300	-0.18605600
C	-5.99873600	-2.165/8500	-0.62116500
H	-4.09974400	-3.29134600	-0.6822/000
С	-6.38176800	-0.84632700	-0.44421200
С	6.92472400	3.32012300	0.90819600
H	7.18613600	3.86966700	-0.00480700
Н	6.44390400	4.03367200	1.58425900
Н	7.85649300	2.98713100	1.37118200
С	-6.92470800	-3.32006800	-0.90837200
Н	-6.44387100	-4.03358900	-1.58445300
Н	-7.18614600	-3.86965200	0.00460100
Н	-7.85646400	-2.98705400	-1.37136800
С	13.74987500	-2.52625400	0.43987000
С	14.40084900	-1.50910900	-0.26589200
С	13.69653700	-0.37883700	-0.69721500
С	12.33900000	-0.27807200	-0.41522700
С	11.68423700	-1.30388000	0.29620800
С	12.38669000	-2.43187100	0.72627800
Н	14.31009100	-3.39706600	0.76771900
Н	15.46176200	-1.59718300	-0.48109400

н	14 21206900	0.40560100	-1 24533100
н	11 88543400	-3 22461100	1 27460400
n C	11.36557400	0 84417700	-0 77643200
C C	10.06646900	0.31574600	0 16673000
C C	8 80826200	0.31374000	-0.10075900
C	7 72222400	0.39910800	-0.1/515000
C	7.72222400	1.00064800	1.05164000
C	0.20625600	-1.00904800	1.05104900
C	9.20023000	-1.00133000	0.44710000
U U	8 64210200	-0.95545800	0.44/10900
п	6.04219200 7.11967100	1.64423900	-0.08192000
п	/.1160/100	-1.31218/00	1.54294000
п	9.34992100	-2.3038/900	1.5551/500
C	-7.94009300	1.009/2200	-1.05151500
C	-7.72222300	-0.24450100	-0.44540400
C	-8.80826300	-0.89920400	0.1/511100
C	-10.0664/300	-0.315/8/00	0.166/4000
C	-10.2/299200	0.93545100	-0.44699800
C	-9.20625800	1.60142000	-1.05436400
Н	-7.11867000	1.51230700	-1.54276200
Н	-8.64219600	-1.84431900	0.68180/00
Н	-9.34992200	2.56599100	-1.53291100
C	-11.36558100	-0.84427800	0.77637400
С	-12.33900800	0.27800000	0.41526300
С	-13.69654800	0.37873600	0.69724900
С	-14.40086000	1.50904400	0.26602400
С	-13.74988400	2.52625500	-0.43964100
С	-12.38669600	2.43190300	-0.72604700
С	-11.68424300	1.30387500	-0.29607400
Н	-14.21208100	-0.40575400	1.24529000
Н	-15.46177500	1.59709600	0.48122600
Н	-14.31010000	3.39709600	-0.76741500
Н	-11.88543800	3.22469300	-1.27429700
С	-11.24270400	-1.01163700	2.30752500
Н	-10.49609000	-1.77335200	2.55562800
Н	-10.94477800	-0.07337100	2.78350400
Н	-12.19866600	-1.32594600	2.73930600
С	-11.78574000	-2.18384700	0.13119400
Н	-11.87806100	-2.08648800	-0.95412000
Н	-11.04751200	-2.96428900	0.34388200
Н	-12.75025700	-2.51797400	0.52758800
С	11.78574300	2.18380400	-0.13137900
Н	11.04751600	2.96422900	-0.34413300
Н	11.87807300	2.08654400	0.95394300
Н	12.75025800	2.51789000	-0.52781300
С	11.24268300	1.01139500	-2.30759700
Н	10.94475000	0.07308600	-2.78348700
Н	10.49607100	1.77309000	-2.55576400
Н	12.19864300	1.32566100	-2.73941600

## Optimized coordinates for NTC singlet state at RB3LYP/6-31G(d,p) level of theory and basis set.

	6		•
С	-1.92938800	-1.70804600	0.00000000
С	-0.47771300	-1.79327500	0.00000000
С	0.34678800	-0.61135400	-0.00000200
С	-0.34678800	0.61135300	-0.00000400
С	-1.76575700	0.68605000	-0.00000600
С	-2.60138800	-0.41931700	-0.00000200
С	1.76575700	-0.68605100	-0.00000200
С	0.47771300	1.79327400	-0.00000600
С	1.92938800	1.70804600	-0.00000500
С	2.60138700	0.41931600	-0.00000200
Н	2.19083700	-1.68430300	-0.00000300
Н	-2.19083700	1.68430200	-0.00001200
Ν	0.01075800	3.04000300	-0.00000900
Ν	2.51809700	2.90470700	-0.00000600
S	1.32030800	4.03716900	-0.00001000
Ν	-2.51809700	-2.90470700	0.00000100
Ν	-0.01075900	-3.04000400	0.00000100
S	-1.32030800	-4.03717000	0.00000300

С	7.74101100	1.38384000	-0.00004100
С	8.57317600	0.10164600	-0.00001000
С	7.75501300	-1.01674800	0.00002300
С	6.38017500	-0.59346500	0.00001800
С	6.33119200	0.79218900	-0.00002000
С	4.04832300	0.30149700	0.00000200
С	5.01647600	1.29875800	-0.00002900
Н	4.74661700	2.34566900	-0.00005700
С	10.15722500	-1.58800800	0.00002900
S	4.80982100	-1.30848100	0.00004800
Н	11.09651700	-2.12300400	0.00004100
С	8.00039200	2.22773500	-1.26768100
Н	7.34204800	3.10229800	-1.28768000
Н	9.03570000	2.58407500	-1.28750100
Н	7.82105000	1.64224300	-2.17327000
С	8.00040100	2.22780200	1.26755200
Н	7.34205700	3.10236600	1.28751100
Н	7.82106600	1.64235700	2.17317400
Н	9.03570900	2.58414300	1.28734500
S	8.66074100	-2.49226900	0.00005700
С	9.95309700	-0.22972900	-0.00000500
Н	10.76735600	0.48614300	-0.00002700
С	-7.74101100	-1.38384000	-0.00005000
С	-8.57317600	-0.10164500	-0.00001200
С	-7.75501300	1.01674900	0.00002700
С	-6.38017500	0.59346500	0.00001900
С	-6.33119300	-0.79218900	-0.00002700
С	-4.04832300	-0.30149800	0.00000000
С	-5.01647600	-1.29875800	-0.00003900
Н	-4.74661800	-2.34567000	-0.00007300
С	-10.15722400	1.58800900	0.00003600
S	-4.80982000	1.30848000	0.00005200
Н	-11.09651600	2.12300600	0.00005000
С	-8.00039400	-2.22772700	-1.26769400
Н	-7.34205000	-3.10229100	-1.28769900
Н	-9.03570100	-2.58406700	-1.28751500
Н	-7.82105200	-1.64223000	-2.17328100
С	-8.00040100	-2.22780800	1.26753800
Н	-7.34205600	-3.10237200	1.28749200
Н	-7.82106600	-1.64236800	2.17316300
Н	-9.03570900	-2.58415000	1.28733000
S	-8.66074000	2.49227000	0.00007000
С	-9.95309700	0.22973000	-0.00000500
Н	-10.76735600	-0.48614100	-0.00003000

## Optimized coordinates for 2N-NTC singlet state at RB3LYP/6-31G(d,p) level of theory and basis set.

С	-1.53925900	-2.06386500	-0.11152700
С	-0.10095400	-1.84961700	-0.11768900
С	0.46454900	-0.52624600	-0.04031400
С	-0.46454800	0.52624700	0.04031300
С	-1.86809600	0.30859300	0.04579800
С	-2.46036600	-0.94266000	-0.02648500
С	1.86809600	-0.30859100	-0.04579900
С	0.10095500	1.84961800	0.11768700
С	1.53925900	2.06386600	0.11152500
С	2.46036600	0.94266100	0.02648200
Н	2.48832200	-1.19639400	-0.11168400
Н	-2.48832200	1.19639500	0.11168200
Ν	-0.61092000	2.97152200	0.19982000
Ν	1.87085200	3.35314300	0.18997300
S	0.46690200	4.21393500	0.26492800
Ν	-1.87085200	-3.35314200	-0.18997500
Ν	0.61092100	-2.97152100	-0.19982000
S	-0.46690100	-4.21393400	-0.26493000
С	7.29150300	2.93950600	0.08663300
С	8.36770900	1.85745800	-0.00023400
С	7.79426900	0.59614400	-0.07064100
С	6.36561000	0.72740100	-0.04190700

С	6.03311700	2.07229300	0.04874900
С	3.89986300	1.12350700	0.01785200
С	4.64397700	2.29676300	0.08256400
Н	4.16518200	3.26362800	0.15154600
С	10.28807600	0.53320800	-0.10015000
S	4.97431200	-0.29316200	-0.08785700
С	7.35443500	3.89877700	-1.12256700
Н	6.53102100	4.61923100	-1.08369900
Н	8,29467100	4,46015400	-1.11959900
н	7 28535400	3 34895400	-2 06489900
C	7 39166300	3 73442700	1 40736400
ч	6 56901400	4 45251700	1.48596800
и П	7 24882000	2.06710100	2 27222200
и П	23265700	4 20200800	1 44000200
11	8.09022000	4.29290800	1.44990300
3	8.98022900	-0.038//100	-0.10930900
U U	9.77880400	1.81930000	-0.01884100
Н	10.41834500	2.69135700	0.0546/400
C	-7.29150300	-2.93950500	-0.08665500
С	-8.367/0900	-1.85745800	0.00022100
С	-7.79426900	-0.59614500	0.07064000
С	-6.36561000	-0.72740100	0.04190600
С	-6.03311700	-2.07229200	-0.04876200
С	-3.89986300	-1.12350600	-0.01785500
С	-4.64397600	-2.29676200	-0.08257800
Н	-4.16518100	-3.26362600	-0.15156900
С	-10.28807600	-0.53320900	0.10014800
S	-4.97431300	0.29316200	0.08786800
С	-7.39166200	-3.73441400	-1.40739400
Н	-6.56901200	-4.45250300	-1.48600500
Н	-8.33265500	-4.29289400	-1.44994000
Н	-7.34881700	-3.06717000	-2.27224600
С	-7.35443600	-3.89878700	1.12253500
Н	-6.53102200	-4.61924100	1.08366200
Н	-7.28535600	-3.34897400	2.06487300
Н	-8.29467200	-4.46016500	1.11956100
S	-8.98023000	0.65876900	0.16958000
C	-9.77880300	-1.81936700	0.01882600
н	-10 41834500	-2 69135700	-0.05469600
C	-15 18490700	3 22346200	-0 58098900
Č	-13.85699100	2 86323500	-0.61856300
C	-13 44467700	1 56141000	-0 22212900
C	-14 43910500	0.62711100	0.22212900
Ċ	-15 79894500	1 02964500	0.21455100
C	16 16602900	2 20018700	0.24233700
U U	-10.10002900	1 87148200	-0.14009800
и П	-11.55012400	1.87148500	-0.01907200
11	-13.48397300	4.22145000	-0.885559200
II C	-13.10330100	1 15042000	-0.95180000
C	-12.08004300	1.13942900	-0.23397300
	-14.01380300	-0.07208800	0.00093200
н	-16.34892400	0.31/23400	0.5/64/800
Н	-1/.21022/00	2.59623100	-0.12113800
C	-12.69223800	-1.03021300	0.5/3/1000
C	-11.68843900	-0.1123/500	0.13256100
H	-14.76189300	-1.383/1600	0.95109600
H	-12.39404300	-2.01761100	0.91021800
С	12.69223700	1.03020500	-0.57372100
С	14.01586200	0.67207900	-0.60694000
С	14.43910400	-0.62711400	-0.21434400
С	13.44467700	-1.56140800	0.22214800
С	12.08664500	-1.15942700	0.25599000
С	11.68843900	0.11237300	-0.13256000
Н	16.54892300	-0.31726300	-0.57647800
Н	12.39404200	2.01760000	-0.91024100
Н	14.76189200	1.38370300	-0.95111400
С	15.79894400	-1.02964900	-0.24254800
С	13.85699100	-2.86322800	0.61859800
Н	11.35012400	-1.87147600	0.61909800
С	15.18490700	-3.22345600	0.58102700
С	16.16602800	-2.29918600	0.14612200

Н	13.10330200	-3.57179400	0.95185100
Н	15.48597400	-4.22144600	0.88564200
Н	17.21022700	-2.59623100	0.12116500

### Optimized coordinates for Flu-NTC singlet state at RB3LYP/6-31G(d,p) level of theory and basis set.

	0	( 1)	2
С	-1.41735300	-2.15234600	0.19173800
С	0.00644300	-1.85609800	0.19145600
С	0.49443600	-0.49997500	0.19106200
Ċ	-0.49443700	0.49996400	0.19102000
Č	-1.88313000	0.20230600	0.19122200
C	-2 40216400	-1 08323400	0 19134200
C C	1 88312000	0.20231600	0.10128200
C C	0.00644300	1 85608700	0.19128200
C	-0.00044300	2 15222600	0.19154400
C	2 40216200	1.08222400	0.19104300
U	2.40210200	1.06522400	0.19133300
H	2.55388500	-1.05513300	0.1919/300
H	-2.55388700	1.05512300	0.19183/00
N	-0.78221300	2.93790500	0.19140600
Ν	1.67374700	3.46097800	0.19193700
S	0.22202700	4.24225800	0.19190000
Ν	-1.67374800	-3.46098800	0.19210500
Ν	0.78221200	-2.93791500	0.19160200
S	-0.22202800	-4.24226800	0.19215000
С	7.11057600	3.35544200	0.19987600
С	8.24795600	2.33406300	0.19444700
С	7.74801700	1.03980000	0.18429500
С	6.31409500	1.09003000	0.18545900
С	5.90409100	2.41652100	0.19525800
С	3.82873200	1.34616600	0.19100200
С	4.50417900	2.56206800	0.19826500
Н	3.97030800	3.50218500	0.20478400
С	10.24282400	1.12065700	0.16659000
S	4.98382300	-0.00997000	0.17979400
С	7.14114700	4.24428400	-1.06310700
н	6 27816000	4 91779400	-1 07899600
Н	8.04843100	4 85726400	-1.08030300
Н	7 11955200	3 63708900	-1 97188900
II C	7.14187000	4 23077700	1 47228300
н	6 27832500	4 90331100	1.49637300
П Ц	7 12186700	2 61204500	2 27460000
11	7.12180700 8.04862500	4 94429000	2.37400900
п	8.04802300 0.00551500	4.84458900	1.494/0/00
S	9.00331300	-0.14/3/200	0.1/159000
U U	9.038/8/00	2.37735400	0.18394600
H	10.24/11/00	3.28/35000	0.15804500
C	-/.1105/900	-3.35545100	0.19974200
C	-8.24/95800	-2.3340/200	0.19436600
C	-7.74801900	-1.03980800	0.18429000
C	-6.31409/00	-1.09004000	0.18545900
С	-5.90409300	-2.41653100	0.19518400
C	-3.82873400	-1.34617600	0.19100000
C	-4.50418100	-2.56207900	0.19819100
Н	-3.97031100	-3.50219700	0.20466200
С	-10.24282600	-1.12066300	0.16656300
S	-4.98382500	0.00996100	0.17987000
С	-7.14114400	-4.24422300	-1.06329100
Н	-6.27815700	-4.91773100	-1.07921500
Н	-8.04842800	-4.85720100	-1.08052600
Н	-7.11954500	-3.63697600	-1.97203800
С	-7.14188800	-4.23085800	1.47209900
Н	-6.27833500	-4.90339500	1.49615500
Н	-7.12188000	-3.61407800	2.37446000
Н	-8.04863500	-4.84447200	1.49454400
S	-9.00551600	0.14756500	0.17165300
С	-9.65878900	-2.37736200	0.18385200
Н	-10.24712200	-3.28735500	0.15789300
С	-12.61504900	-1.68734600	0.66613300
Ē	-11,66455600	-0.77796400	0.15341300
Ċ	-12,12153800	0.45216700	-0.36817900
-			

С	-13.47556000	0.74629400	-0.37089800
С	-14.41180500	-0.17746800	0.13522000
С	-13.97622000	-1.39961700	0.65336300
Н	-12.27280300	-2.62084600	1.10086300
Н	-11.40636400	1.15540800	-0.78682800
Н	-14.68388100	-2.11809900	1.05740500
С	-14.17611500	2.00413600	-0.88595500
С	-15.63888500	1.66685300	-0.59592500
С	-16.77440200	2.43035300	-0.84055800
С	-18.02951900	1.91861700	-0.49022300
С	-18.14300500	0.65499300	0.09868200
С	-17.00697200	-0.11754100	0.34723600
С	-15.75461900	0.39328500	-0.00202000
Н	-16.69742200	3.41350500	-1.29773400
Н	-18.92265800	2.50762600	-0.67720200
Н	-19.12377200	0.27169100	0.36488200
Н	-17.10044100	-1.09847800	0.80489900
С	18.14300500	-0.65498900	0.09868700
Ċ	18.02952300	-1.91859300	-0.49026300
Ċ	16.77440900	-2.43031800	-0.84062200
Ċ	15.63889000	-1.66682700	-0.59596900
C	15,75462000	-0.39328000	-0.00201900
č	17.00697100	0.11753400	0.34726300
H	19.12377100	-0.27169600	0.36490600
н	18 92266400	-2 50759500	-0 67725700
н	16 69743200	-3 41345300	-1 29783300
н	17 10043600	1 09845600	0.80496000
C	14 17612200	-2 00410100	-0.88601900
C	13 47556300	-0 74627700	-0.37092200
C	12 12154100	-0.45215100	-0.36820000
Č	11 66455500	0.77796000	0.15343400
C	12 61504400	1 68732500	0.66619300
C	13 97621600	1 39959700	0.65342000
C	14 41180400	0.17746700	0.13523500
н	11 40637000	-1 15537800	-0.78687800
н	12 27279600	2 62080800	1 10095600
н	14 68387400	2.02000000	1.05749200
C C	13 72160600	2.11000400	0 10700600
ч	13.88426100	3 13710300	-0.10799000
н н	12 65664300	-3.13/10300	0.90042900
П Ц	12.05004500	-3.43282000	-0.2/322100
II C	14.27834700	-4.141/5100	-0.44000900
с u	13.93390100	-2.20435500	-2.39880700
П Ц	14 24844800	1 22510200	2.00125400
11	14.24644600	-1.32310300	-2.90780200
Г	14.49401300	-3.00940200	-2.70811100
с u	-13.93388300	2.20444300	-2.398/9400
11	-12.8/239/00	2.38133400	-2.00110900
н	-14.24042900	3 06050400	-2.90/02200
n C	-14.49439400	2 25022800	-2.70801100
ч	-13./2109500	3.23932000	-0.10/00400
H	-13.00420300	3.13707300	-0.20033000
ц	14 27854100	A 1A177100	0.2/309/00
11	-14.2/034100	4.141//100	-0.43773000

Optimized coordinates for TPAOMe-BTT	Singlet state at RE	B3LYP/6-31G(0	l,p) level of theory and basis set.
С	2.93727700	-2.64806800	0.09640400
С	3.84934300	-3.68033900	0.17769700
С	5 21406100	2 27061000	0.16010200

	-		-
С	2.93727700	-2.64806800	0.09640400
С	3.84934300	-3.68033900	0.17769700
С	5.21496100	-3.27961000	0.16019300
Н	3.53772300	-4.71228100	0.26550300
С	5.36386400	-1.90586900	0.05951300
С	-2.93727700	-2.64806800	0.09640100
С	-3.84934400	-3.68034100	0.17768400
С	-5.21496200	-3.27961000	0.16018000
Н	-3.53772300	-4.71228300	0.26548000
С	-5.36386400	-1.90586900	0.05951400
S	-3.79742800	-1.11870200	-0.02439300
S	3.79742800	-1.11870300	-0.02440700

SI	61

С	6.58000100	-1.08762200	0.01585000
С	6.64672800	0.16219100	0.66203700
С	7.72523000	-1.50483700	-0.68990800
С	7.79229600	0.94498600	0.62207500
Н	5.79247400	0.51063700	1.23507500
С	8.87413000	-0.72612100	-0.74048900
н	7 70080100	-2 43591100	-1 24548500
C	2.02281200	-2.43591100	-1.24348500
U U	8.95381300	0.51566400	-0.0810/600
Н	7.81414800	1.89229900	1.14900200
Н	9.73057000	-1.06963700	-1.30989900
С	-6.58000200	-1.08762200	0.01585300
С	-6.64673500	0.16218100	0.66205900
С	-7.72522400	-1.50482700	-0.68992100
С	-7.79230200	0.94497600	0.62209900
н	-5 79248400	0.51061900	1 23510900
C	8 87412400	0.72611000	0.74050000
П	-8.87412400	-0.72011000	1 24551200
п	-/./00/8900	-2.43389300	-1.24331200
С	-8.93381400	0.51566400	-0.08106800
Н	-7.81415900	1.89228100	1.14904000
Н	-9.73055900	-1.06961800	-1.30992200
Ν	10.09932200	1.30760400	-0.12868200
Ν	-10.09932200	1.30760400	-0.12867200
С	-10.01247800	2.73043600	-0.09140500
С	-10 83415300	3 47405600	0 76135100
C	9 11551/00	3 /1888200	0.02735400
c	10 77811000	4 8602000	0.78280000
U U	-10.7/811000	4.80930900	0.78280000
Н	-11.53199400	2.95686000	1.41164800
С	-9.03780000	4.80344400	-0.89532900
Н	-8.47647800	2.85744800	-1.60091600
С	-9.87190700	5.54284800	-0.04322600
Η	-11.43378800	5.41208700	1.45305300
Н	-8.34652000	5.33935500	-1.53727600
С	-11.38832400	0.70146800	-0.19364400
С	-11,73759000	-0.34569100	0.66558400
Ĉ	-12 34425800	1 15740000	-1 11777100
C	12.00864800	0.04216000	0.60112000
U U	-12.99804800	-0.94210900	1.20004000
П	-11.01346700	-0./0420000	1.38984900
С	-13.60690200	0.58537500	-1.1/24//00
Н	-12.08823900	1.96903600	-1.79076300
С	-13.94477100	-0.47411600	-0.31741100
Η	-13.23194200	-1.75410000	1.27948600
Η	-14.34853500	0.93433300	-1.88339800
С	11.38832500	0.70146600	-0.19363200
С	12.34426800	1,15738400	-1.11775500
Ċ	11 73758200	-0 34568000	0.66561600
C	13 60691300	0.58535900	-1 17244100
п	12.08825600	1.06001000	1 70076200
п	12.08823000	1.90901000	-1./90/0300
U U	12.99864100	-0.94215900	0.6011/300
Н	11.01345200	-0./041/900	1.3898/900
С	13.94477300	-0.47412000	-0.31735600
Н	14.34855200	0.93430600	-1.88335900
Н	13.23192800	-1.75408000	1.27955300
С	10.01247800	2.73043500	-0.09143700
С	10.83414500	3.47406800	0.76131600
С	9.11552300	3.41887000	-0.92740600
Ċ	10 77810200	4 86932200	0 78274300
ц	11 52107800	2 05688200	1 41162800
II C	0.02780000	2.93088300	0.80540200
U U	9.03/80900	4.80343200	-0.89340300
Н	8.47649400	2.85/42500	-1.60096600
С	9.87190700	5.54284900	-0.04330300
Н	11.43377300	5.41211000	1.45299500
Н	8.34653600	5.33933400	-1.53736500
0	-15.20883900	-0.97375000	-0.45987800
0	-9.72448700	6.90027900	-0.09804800
0	9,72448900	6,90027800	-0.09814700
Ō	15 20884300	-0.97375600	-0.45980300
C C	-15 602/2200	-2 04588500	0.38082600
U	-13.00243300	-2.07300300	0.10052400
п	-10.02849800	-2.2003/200	0.10055400
н	-14.97/002100	-2.93095200	0.23315100

Н	-15.57649600	-1.76163600	1.44084300
С	-10.54180000	7.69597800	0.74458700
Н	-10.36530500	7.47732800	1.80576400
Н	-10.26590400	8.73184600	0.54203900
Н	-11.60830600	7.55764300	0.52421300
С	10.54179300	7.69599100	0.74448400
Н	10.26589900	8.73185600	0.54191700
Н	10.36528700	7.47735700	1.80566300
Н	11.60830200	7.55765100	0.52412300
С	15.60242800	-2.04587800	0.38092100
Н	16.62849600	-2.28836900	0.10064200
Н	15.57648000	-1.76161400	1.44093300
Н	14.97001700	-2.93094800	0.23325300
С	1.48319000	-2.68617100	0.10324400
С	0.70579300	-1.53652000	0.12696900
С	0.73109000	-3.91855500	0.08307900
С	-0.70579300	-1.53652000	0.12696800
С	-0.73108900	-3.91855500	0.08307800
С	-1.48319000	-2.68617100	0.10324300
N	1.25372600	-5.14801400	0.06030200
N	-1.25372500	-5.14801500	0.06030100
S	0.00000100	-6.20852800	0.04091800
С	-6.33781300	-4.27655200	0.29373500
Н	-7.22997400	-3.82465800	0.73407400
Н	-6.62692000	-4.70002700	-0.67639500
Н	-6.02992200	-5.11289800	0.92881700
С	6.33781200	-4.27655000	0.29376000
Н	6.62692500	-4.70003100	-0.67636600
Н	7.22997100	-3.82465200	0.73410000
Н	6.02991800	-5.11289200	0.92884500
Н	-1.19866900	-0.56958800	0.15473900
Н	1.19866800	-0.56958800	0.15474100

# Optimized coordinates for TPAOMe-NTT singlet state at RB3LYP/6-31G(d,p) level of theory and basis set.

	(11) singlet state at 10	55E11/0 510(	u,p) ievei oi i
С	1.20967100	-1.59548400	1.62156800
С	-0.17932600	-1.32759800	1.28440600
С	-0.53762700	-0.33793300	0.30029700
С	0.53763200	0.33797100	-0.30022900
С	1.89363800	0.07013900	0.03682400
С	2.28742100	-0.87040800	0.97229900
С	-1.89363200	-0.07010400	-0.03675900
С	0.17933200	1.32763600	-1.28433800
С	-1.20966500	1.59552100	-1.62150200
С	-2.28741500	0.87044100	-0.97223600
Н	-2.64265000	-0.65751600	0.48379400
Н	2.64265600	0.65754900	-0.48373200
Ν	1.05194800	2.07204300	-1.96063600
Ν	-1.34421100	2.54323200	-2.55035500
S	0.17238700	3.04501500	-2.95562100
Ν	1.34421700	-2.54319500	2.55042300
Ν	-1.05194200	-2.07200300	1.96070700
S	-0.17238000	-3.04497400	2.95569300
С	-3.68772800	1.11871400	-1.28039600
С	-4.24678400	1.92302600	-2.25257600
S	-4.96653000	0.33697200	-0.36169000
С	-5.66913500	1.91872800	-2.29097200
Н	-3.63946000	2.49561300	-2.94038700
С	-6.22258700	1.09526200	-1.32349300
С	3.68773500	-1.11868900	1.28045200
С	4.24679200	-1.92302400	2.25261100
S	4.96653600	-0.33693500	0.36175300
С	5.66914400	-1.91873600	2.29099700
Н	3.63946900	-2.49562200	2.94041400
С	6.22259500	-1.09525400	1.32353200
С	-6.44073200	2.69970100	-3.32383400
Н	-6.63269100	3.73006500	-2.99882100
Н	-5.87348900	2.75916500	-4.25767500
Н	-7.40705900	2.23814100	-3.54102800

S163

С	6.44074600	-2.69973600	3.32383600
Н	5.87351800	-2.75920400	4.25768600
Η	6.63268200	-3.73009800	2.99880400
Н	7.40708400	-2.23819500	3.54101900
С	-9.94980200	1.52816500	-0.79777700
С	-8.61806000	1.80380900	-1.07968300
С	-7.62887300	0.80295100	-1.02517700
Ĉ	-8.04526900	-0.48902400	-0.64967800
Ċ	-9 37073400	-0.77021300	-0 34839900
c	10 35532700	0.23335800	0.42328700
ч	8 337/1700	2 82034800	1 33277000
11	-8.55741700	1 20024200	-1.55277000
п	-7.51598900	-1.29024300	-0.39809700
Н	-9.65304/00	-1.//556100	-0.05/04200
C	8.04528800	0.48903300	0.649/5100
C	7.62888100	-0.80295100	1.02520800
C	8.61805500	-1.80382400	1.07966200
С	9.949/9500	-1.52818900	0.79774000
С	10.35533200	-0.23337500	0.42328800
С	9.37075200	0.77021300	0.34845800
Н	7.31401900	1.29026400	0.59881300
Н	8.33740200	-2.82036900	1.33271800
Н	9.65307400	1.77556800	0.05713300
Н	10.68560700	-2.32226700	0.85678300
Η	-10.68562400	2.32222900	-0.85686200
Ν	-11.70503800	-0.04913600	-0.13103000
Ν	11.70504000	0.04911000	0.13101100
С	-12.54678000	0.94371800	0.45224600
С	-13.82955700	1.18508300	-0.06879500
С	-12.12568700	1.68634700	1.56027100
С	-14.66123600	2.13483100	0.50637700
Н	-14.17015300	0.61629000	-0.92772300
С	-12.94793000	2.66032600	2.13073600
Н	-11.14084300	1.50661700	1.97893600
С	-14.22631600	2.88607300	1.60841600
Н	-15.65281100	2.32431100	0.10880700
Н	-12.58620800	3.21943000	2.98534100
С	-12.25016600	-1.34147400	-0.38916500
Ċ	-13.01609200	-1.99968100	0.57790100
C	-12 04999100	-1 97225800	-1 62979700
č	-13 57995400	-3 25168300	0.32320400
н	-13 18015600	-1 52493800	1 53968600
C	-12 58752500	-3 22583500	-1 88215300
н	-11 46503900	-1 47149000	-2 39424100
C	-13 36199300	-3 87613500	-0.90958700
ч	14 17167900	3 72916100	1 00/07800
н	12 43467800	3 71767700	2 83708400
C	12 54675700	-5./1/0//00	0.45232200
c	12.54075700	1 19511000	-0.45252500
C	12 12562300	-1.18511000	1 56025200
C	14 66121100	-1.08032800	-1.500555500
U U	14.00121100	-2.13464200	-0.30030700
п	14.1/018400	-0.01034000	0.92739200
U U	12.94/84300	-2.00029100	-2.1508/000
п	11.14076300	-1.50658600	-1.9/89/500
C II	14.22624900	-2.88605300	-1.60861000
H	15.65280100	-2.32433300	-0.10904100
Н	12.58608900	-3.2193/100	-2.98548200
C	12.25018/00	1.34143500	0.3891/500
C	13.0160/100	1.99967800	-0.57789800
C	12.05007200	1.97216800	1.62984400
C	13.57995200	3.25166700	-0.32317400
H	13.18008800	1.52497500	-1.53971100
C	12.58762500	3.22573100	1.88222800
H	11.46515200	1.47137100	2.39429200
C	13.36205100	3.87606700	0.90965300
Н	14.17164400	3.72917500	-1.09495500
Η	12.43482500	3.71753400	2.83718700
0	-15.11674500	3.80277600	2.09211400
0	-13.85468400	-5.10055000	-1.26321500
0	13.85476700	5.10046400	1.26331000

0	15.11666000	-3.80274300	-2.09236700
С	-14.72813300	4.58862000	3.20707900
Н	-15.57192500	5.24591600	3.42181300
Н	-14.52146000	3.96836000	4.08887600
Н	-13.84337200	5.19919000	2.98481300
С	-14.64118100	-5.80384200	-0.31543900
Н	-14.92683600	-6.74063300	-0.79602000
Н	-14.07412800	-6.02597900	0.59784500
Н	-15.54759700	-5.24615600	-0.04617700
С	14.64122100	5.80379400	0.31552600
Н	14.07412400	6.02597100	-0.59772200
Н	14.92690200	6.74056400	0.79613300
Н	15.54762200	5.24611600	0.04619600
С	14.72800600	-4.58856000	-3.20733700
Н	14.52130000	-3.96827900	-4.08911200
Н	15.57178900	-5.24585100	-3.42211800
Н	13.84325300	-5.19913500	-2.98505200

### Optimized coordinates for TPAOMe-BBTT singlet state at UB3LYP/6-31G(d,p) level of theory and basis set.

	STT Singlet state at e	000011/0001	5(a,p) 10101 01
С	-2.81558900	0.92740700	0.00082300
С	-3.29072100	2.23849300	0.05361700
С	-4.69441800	2.37482800	0.03882900
Н	-2.61767800	3.08120400	0.11963900
С	-5.34312600	1.14257900	-0.02300000
С	2.81558900	-0.92740600	-0.00082000
С	3.29072100	-2.23849300	-0.05361500
С	4.69441700	-2.37482800	-0.03882700
Н	2.61767700	-3.08120500	-0.11963600
С	5.34312600	-1.14257900	0.02300200
S	4.19087200	0.17732600	0.07392900
S	-4.19087200	-0.17732600	-0.07392700
С	-6.77312300	0.83861300	-0.03784400
С	-7.28086700	-0.32369700	0.58017400
С	-7.70642600	1.67336300	-0.68686700
С	-8.63354800	-0.62847400	0.56646900
Н	-6.60137400	-0.98219700	1.11276000
С	-9.06099100	1.37254200	-0.71261200
Н	-7.35954000	2.54947600	-1.22257000
С	-9.55667000	0.21544800	-0.08170600
Н	-8.98787500	-1.51919700	1.07284200
Н	-9.74527800	2.02667800	-1.24124000
С	6.77312300	-0.83861300	0.03784600
С	7.28086700	0.32369700	-0.58017300
С	7.70642600	-1.67336300	0.68686800
С	8.63354800	0.62847400	-0.56646900
Н	6.60137400	0.98219700	-1.11275900
С	9.06099200	-1.37254300	0.71261200
Н	7.35954100	-2.54947600	1.22257100
С	9.55667000	-0.21544800	0.08170600
Н	8.98787400	1.51919700	-1.07284200
Н	9.74527900	-2.02667800	1.24124000
Ν	-10.93088600	-0.09057300	-0.10284500
Ν	10.93088600	0.09057200	0.10284400
С	11.37504900	1.44588900	0.08352700
С	12.39104300	1.85119900	-0.78740300
С	10.81839400	2.39802800	0.95571300
С	12.85403200	3.16861000	-0.79264600
Н	12.83065000	1.12691500	-1.46526500
С	11.25758600	3.71360300	0.94097200
Н	10.03494700	2.09759200	1.64359500
С	12.28302600	4.11101500	0.06956600
Н	13.64588600	3.44553000	-1.47820600
Н	10.83072300	4.45284700	1.61059500
С	11.90826100	-0.94790900	0.12703300
С	11.83517100	-2.02775600	-0.75908000
С	12.97887600	-0.89697500	1.03617900
С	12.79034200	-3.04610000	-0.73545500
Н	11.01895400	-2.07694000	-1.47239800

С	13.94392700	-1.89331100	1.05099300
Н	13.04882000	-0.06513300	1.72926800
С	13.85611200	-2.98082900	0.16906500
Н	12.69933600	-3.86932000	-1.43387800
Н	14.77276700	-1.85880700	1.75026300
С	-11.90826100	0.94790800	-0.12703500
С	-12.97887500	0.89697500	-1.03618100
С	-11.83517100	2.02775500	0.75907900
С	-13.94392600	1.89331100	-1.05099500
Н	-13.04881800	0.06513300	-1.72927000
С	-12.79034200	3.04610000	0.73545400
Η	-11.01895500	2.07694000	1.47239800
С	-13.85611200	2.98082900	-0.16906700
Н	-14.77276500	1.85880700	-1.75026600
Н	-12.69933700	3.86931900	1.43387700
С	-11.37504800	-1.44589000	-0.08352800
С	-12.39104300	-1.85119900	0.78740100
С	-10.81839300	-2.39802800	-0.95571400
С	-12.85403200	-3.16861000	0.79264400
Н	-12.83065100	-1.12691500	1.46526300
С	-11.25758500	-3.71360300	-0.94097400
Н	-10.03494600	-2.09759200	-1.64359500
С	-12.28302500	-4.11101500	-0.06956800
Н	-13.64588600	-3.44553100	1.47820300
Н	-10.83072200	-4.45284700	-1.61059700
0	14.85042400	-3.91204300	0.27268100
0	12.64916100	5.42504900	0.14305900
0	-12.64916100	-5.42504900	-0.14306200
0	-14.85042400	3.91204300	-0.27268400
С	14.81086600	-5.03260700	-0.59599500
Н	15.68072400	-5.64074700	-0.34379900
Н	13.90034200	-5.62793200	-0.44929500
Н	14.87505700	-4.73196800	-1.64978800
С	13.67827300	5.88205000	-0.71939500
Н	13.40371000	5.76615800	-1.77586000
Н	13.80900300	6.94218200	-0.49778400
Н	14.62449500	5.35645000	-0.53645700
С	-13.67827300	-5.88205100	0.71939200
Н	-13.80900200	-6.94218300	0.49778100
Н	-13.40371000	-5.76615800	1.77585700
Н	-14.62449500	-5.35645000	0.53645400
С	-14.81086700	5.03260600	0.59599300
Н	-15.68072400	5.64074600	0.34379600
Н	-14.87505800	4.73196700	1.64978500
Н	-13.90034300	5.62793200	0.44929300
С	-1.44916300	0.48387300	-0.00016300
С	-0.32365100	1.37216700	0.03288700
С	-1.06926500	-0.89540400	-0.03458900
С	1.06926400	0.89540400	0.03459100
C	0.32365000	-1.37216600	-0.03288500
C	1.44916300	-0.48387300	0.00016600
N	-1.95927900	-1.89606400	-0.0/20/400
N	0.40547200	-2.71110500	-0.06692800
N	-0.40547300	2.71110500	0.06693100
N	1.9592/800	1.89606500	0.0/20/600
5	-1.12228400	-3.30329200	-0.10008000
8	1.12228300	3.30329300	0.10008200
	5.36350300	-3./2216600	-0.14090900
н	6.31298600	-3.00312600	-0.6/959/00
н ц	5.5/244000	-4.15565000	0.84605500
п	4./153/100	-4.42/91800	-0.00849200
с u	-3.30330300	5.72210500 4.15262000	0.14091100
п ц	-3.3/244100	4.13303000	-0.64005200
н Ц	-0.31290000	1 12701 000	0.07939900
11	-4./133/100	4.42/91000	0.00049300

#### **Supplementary Reference**

1. Dimroth, K.; Umbach, W.; Blöcher, K. H., Bis-phenoxy-Radicals of the Polyphenyl Series. *Angew. Chem. Int. Ed.* **1963**, *2* (10), 620-621.

2. Zeng, Z.; Sung, Y. M.; Bao, N.; Tan, D.; Lee, R.; Zafra, J. L.; Lee, B. S.; Ishida, M.; Ding, J.; Lopez Navarrete, J. T.; Li, Y.; Zeng, W.; Kim, D.; Huang, K. W.; Webster, R. D.; Casado, J.; Wu, J., Stable tetrabenzo-Chichibabin's hydrocarbons: tunable ground state and unusual transition between their closed-shell and open-shell resonance forms. *J. Am. Chem. Soc.* **2012**, *134* (35), 14513-14525.

3. Casado, J.; Miller, L. L.; Mann, K. R.; Pappenfus, T. M.; Higuchi, H.; Ortí, E.; Milián, B.; Pou-Amérigo, R.; Hernández, V.; López Navarrete, J. T., Quinonoid oligothiophenes as electron-donor and electron-acceptor materials. A spectroelectrochemical and theoretical study. *J. Am. Chem. Soc.* **2002**, *124* (41), 12380-12388.

4. Takahashi, T.; Matsuoka, K.-i.;Takimiya, K.; Otsubo, T.; Aso, Y., Extensive quinoidal oligothiophenes with dicyanomethylene groups at terminal positions as highly amphoteric redox molecules. *J. Am. Chem. Soc.* **2005**, *127* (25), 8928-8929.

5. Qiao, Y.; Guo, Y.; Yu, C.; Zhang, F.; Xu, W.; Liu, Y.; Zhu, D. Diketopyrrolopyrrole-containing quinoidal small molecules for high-performance, air-stable, and solution-processable *n*-channel organic field-effect transistors. *J. Am. Chem. Soc.* **2012**, *134* (9), 4084-4087.

6. Xia, D.; Keerthi, A.; An, C.; Baumgarten, M., Synthesis of a quinoidal dithieno[2,3-d;2',3'-d]benzo[2,1-*b*;3,4-*b*']-dithiophene based open-shell singlet biradicaloid. *Org. Chem. Front.* **2017**, *4* (1), 18-21.

7. Zhang, C.; Medina Rivero, S.; Liu, W.; Casanova, D.; Zhu, X.; Casado, J., Stable cross-conjugated tetrathiophene diradical. *Angew. Chem. Int. Ed.* **2019**, *58* (33), 11291-11295.

Yang, K.; Zhang, X.; Harbuzaru, A.; Wang, L.; Wang, Y.; Koh, C.; Guo, H.; Shi, Y.; Chen, J.; Sun, H.; Feng, K.; Ruiz Delgado, M. C.; Woo, H. Y.; Ortiz, R. P.; Guo, X., Stable organic diradicals based on fused quinoidal oligothiophene imides with high electrical conductivity. *J. Am. Chem. Soc.* 2020. 142 (9), 4329–4340

9. Chase, D. T.; Rose, B. D.; McClintock, S. P.; Zakharov, L. N.; Haley, M. M., Indeno[1,2-b]fluorenes: fully conjugated antiaromatic analogues of acenes. *Angew. Chem. Int. Ed.* **2011**, *50* (5), 1127-1130.

10. Shimizu, A.; Kishi, R.; Nakano, M.; Shiomi, D.; Sato, K.; Takui, T.; Hisaki, I.; Miyata, M.; Tobe, Y., Indeno[2,1-*b*]fluorene: a 20-pi-electron hydrocarbon with very low-energy light absorption. *Angew. Chem. Int. Ed.* **2013**, *52* (23), 6076-6079.

11. Barker, J. E.; Dressler, J. J.; Cardenas Valdivia, A.; Kishi, R.; Strand, E. T.; Zakharov, L. N.; MacMillan, S. N.; Gomez-Garcia, C. J.; Nakano, M.; Casado, J.; Haley, M. M., Molecule isomerism modulates the diradical properties of sSupplementary Table inglet diradicaloids. *J. Am. Chem. Soc.* **2020**, *142* (3), 1548-1555.

12. Hiroto, S.; Furukawa, K.; Shinokubo, H.; Osuka, A., Synthesis and biradicaloid character of doubly linked corrole dimers. *J. Am. Chem. Soc.* **2006**, *128* (38), 12380-12381.

13. Konishi, A.; Hirao, Y.; Nakano, M.; Shimizu, A.; Botek, E.; Champagne, B.; Shiomi, D.; Sato, K.; Takui, T.; Matsumoto, K.; Kurata, H.; Kubo, T., Synthesis and characterization of teranthene: a singlet biradical polycyclic aromatic hydrocarbon having kekulé structures. *J. Am. Chem. Soc.* **2010**, *132* (32), 11021-11023.

14. Sun, Z.; Huang, K.-W.; Wu, J., Soluble and stable zethrenebis(dicarboximide) and its quinone. *Org. Lett.* **2010**, *12* (20), 4690-4693.

15. Rana, A.; Hong, Y.; Gopalakrishna, T. Y.; Phan, H.; Herng, T. S.; Yadav, P.; Ding, J.; Kim, D.; Wu, J., Stable expanded porphycene-based diradicaloid and tetraradicaloid. *Angew. Chem. Int. Ed.* **2018**, *57* (38), 12534-12537.

16. Benincori, T.; Appoloni, G.; Mussini, P. R.; Arnaboldi, S.; Cirilli, R.; Quartapelle Procopio, E.; Panigati, M.; Abbate, S.; Mazzeo, G.; Longhi, G., Searching for models exhibiting high circularly polarized luminescence: electroactive inherently chiral oligothiophenes. *Chem. Eur. J.* **2018**, *24* (43), 11082-11093.

17. Du, T.; Gao, R.; Deng, Y.; Wang, C.; Zhou, Q.; Geng, Y., Indandione-terminated quinoids: facile synthesis by alkoxide-mediated rearrangement reaction and semiconducting properties. *Angew. Chem. Int. Ed.* **2020**, *59* (1), 221-225.

18. Wang, M.; Hu, X.; Liu, P.; Li, W.; Gong, X.; Huang, F.; Cao, Y., Donor-acceptor conjugated polymer based on naphtho[1,2-c:5,6-c]bis[1,2,5]thiadiazole for high-performance polymer solar cells. *J. Am. Chem. Soc.* **2011**, *133* (25), 9638-9641.

19. Li, Y.; Li, L.; Wu, Y.; Li, Y., A review on the origin of synthetic metal radical: singlet open-shell radical ground state? *J. Phys. Chem. C* **2017**, *121* (15), 8579-8588.

20. Canola S, Casado J, Negri F. The double exciton state of conjugated chromophores with strong diradical character: insights from TDDFT calculations. *Phys. Chem. Chem. Phys.* **2018**, *20* (37), 24227-24238.

21. Noodleman L. Valence bond description of antiferromagnetic coupling in transition metal dimers. *J. Chem. Phys.* 1981, 74(10), 5737-5743.

22. Rudebusch GE, Zafra JL, Jorner K, Fukuda K, Marshall JL, Arrechea-Marcos I, Espejo GL, Ortiz RP, Gómez-García CJ, Zakharov LN, Nakano M, Ottosson H, Casado, J and Haley, MM. Diindenofusion of an anthracene as a design strategy for stable organic biradicals. *Nat. Chem.* **2016**, *8* (8), 753-759.

23. Dressler JJ, Teraoka M, Espejo GL, Kishi R, Takamuku S, Gómez-García CJ, Zakharov LN, Nakano M, Casado J, Haley MM. Thiophene and its sulfur inhibit indenoindenodibenzothiophene diradicals from low-energy lying thermal triplets. *Nat. Chem.* **2018**, *10*(11), 1134-1140.

24. Stuyver T, Chen B, Zeng T, Geerlings P, De Proft F, Hoffmann R. Do diradicals behave like radicals? *Chem. Rev.* **2019**, *119* (21), 11291-11351.

25. Sabuj MA, Huda MM, Rai N. Donor-acceptor conjugated macrocycles with polyradical character and global aromaticity. *Iscience* **2020**, *23*(11), 101675.

26. Sabuj MA, Huda MM, Sarap CS, Rai N. Benzobisthiadiazole-based high-spin donor-acceptor conjugated polymers with localized spin distribution. *Mater. Adv.* **2021**, *2*, 2943 - 2955.

27. Grimme S, Hansen A. A practicable real-space measure and visualization of static electron-correlation effects. *Angew. Chem. Int. Ed.* **2015**, *54*(42), 12308-12313.

28. Pérez-Guardiola A, Sandoval-Salinas ME, Casanova D, San-Fabián E, Pérez-Jiménez AJ, Sancho-Garcia JC. The role of topology in organic molecules: origin and comparison of the radical character in linear and cyclic oligoacenes and related oligomers. *Phys. Chem. Chem. Phys.* **2018**, *20*(10), 7112-7124.