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Supplementary Note 1 
 

Development of Symphony mapping metrics 

Although Symphony inherently assumes that all query cell types are present in the reference, 

users may not always know whether their data contains novel (“unseen”) query cell types. To 

help identify these situations, Symphony provides two metrics that quantify how well query cells 

are represented by the reference: per-cell mapping metric and per-cluster mapping metric. Both 

metrics are based on the Mahalanobis distance, a multivariate distance metric which measures 

the distance from a point (vector in multidimensional space) to a distribution (Methods). The per-

cell metric gives a value to each query cell, whereas the per-cluster metric gives a value to each 

(user-defined) query cluster. Because the metric measures distance, higher values indicate a 

greater difference between the query and reference and therefore a worse mapping. In order to 

handle a large range of potential query-to-reference dataset differences, we do not prescribe 

specific cutoff values to use in all situations. Rather, users can select a threshold above which to 

flag query cells/clusters warranting further investigation or removal from the mapping. We 

explored Symphony’s behavior when the query contains unseen cell types as well as the 

performance of the mapping metrics in the analyses below. 

Mapping confidence vs. prediction confidence 

As a point of clarification, we note that mapping confidence is separate but related to the concept 

of prediction confidence. Symphony’s prediction confidence score reflects certainty in the 

annotation transfer step when the reference is assumed to contain the query cell state. It assigns 

lower confidence to query cells that lie “on the border” between two reference states (Methods). 

Testing mapping metrics in different missing cell type scenarios 

We first tested the metrics using the fetal liver hematopoiesis dataset, in three increasingly 

difficult scenarios. In each scenario, we artificially remove cell type(s) from the reference dataset 

prior to reference building, then mapped a held-out query donor containing all 27 cell types, 

including the now “unseen” types. We assessed how well each mapping metric could distinguish 

the missing type, as defined by AUC (which measures the ability to rank cells according to their 

probability of class membership, here missing vs. present in the reference). In aggregate, these 

case study scenarios show that the Symphony mapping metrics can be extremely useful in 

identifying novel cell states. However, the metrics may lack sensitivity in detecting very fine-

grained cell state missing in the reference. Symphony typically maps these query states to the 

most similar reference state. 
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Scenario 1: Reference missing non-immune cells 

In the easiest scenario, the reference did not contain hepatocytes, fibroblasts, and endothelial cells (the 

non-immune cell types). After mapping the query containing all cell types (Supplementary Fig. 9a), we 

found that the unseen non-immune query cell types were clearly distinguishable as having worse per-

cell and per-cluster mapping metrics compared to the cell types captured in the reference (per-cell AUC 

= 0.997 and per-cluster AUC = 1.0) (Supplementary Fig. 9b-d). 

Scenario 2: Reference missing myeloid cells 

In a more difficult example, we built a reference missing a subset of immune cells: all cells of the 

myeloid lineage. Upon mapping the query (Supplementary Fig. 10a), we found that the distance 

metrics for the unseen myeloid cell types are generally higher than for the seen cells (per-cell AUC = 

0.996, per-cluster AUC = 0.996) (Supplementary Fig. 10b-d). However, the distinguishability was 

somewhat lower compared to the first scenario, since the missing cell types are biologically more 

similar to the cell types in the reference. The distinguishability also varied by cell type along the myeloid 

lineage, where more differentiated myeloid cells (Kupffer cells and Mono-Mac) had the highest per-cell 

metrics (worst mapping). For unseen cell types that had the lowest metrics (better mapping), we found 

that they mapped onto biologically similar cell states in the reference. For example, the neutrophil-

myeloid progenitor cells mapped onto reference hematopoietic stem cells (Supplementary Fig. 10a), 

which likely reflects their similar, less differentiated state. VCAM1+ erythroblastic island macrophages 

(VCAM1+ EI Macro.) cells are transcriptionally similar to both macrophages and erythroid cells1; 

supporting their mapping onto reference erythroid cells (Supplementary Fig. 10a). 

Scenario 3: Reference missing Kupffer cells 

In the most difficult scenario, we built a reference missing Kupffer cells, which are liver tissue-resident 

macrophages. This scenario is especially difficult because the reference contains biologically similar 

macrophage and monocyte states. In this case, Symphony maps the unseen query Kupffer cells onto 

their immediate precursor (Monocyte-Macrophage) state in the reference (Supplementary Fig. 11a). 

The mapping metrics are not able to clearly distinguish the Kupffer cells as novel (per-cell AUC = 

0.633, per-cluster AUC = 0.963) (Supplementary Fig. 11b-d). 

 

Comparison of Symphony mapping metrics to Seurat mapping score 

Next, we sought to systematically compare the performance of the Symphony mapping metrics to the 

Seurat mapping score, using the 10x PBMCs dataset described previously. Using reference datasets 

(5’ and 3’v2), we iteratively removed one broad cell type from the reference prior to reference building, 
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representing 7 different “missing cell type” scenarios: B, DC, HSC, Mono, MK, NK, and T. We built 

references using Symphony and Seurat for each scenario, mapped the query (3’v1) containing all cell 

types onto each reference, and then calculated the Symphony per-cell metric, Symphony per-cluster 

metric, and Seurat mapping score for each scenario (Supplementary Fig. 12). 

When each method was permitted to select a unique cutoff value for each scenario to flag 

unseen cells, all three metrics performed comparably well (Symphony mean per-cell AUC = 0.88, 

per-cluster AUC = 0.86, Seurat AUC = 0.86; Supplementary Fig. 13a). Consistent with our 

observations in the fetal liver scenarios, the ability for mapping scores to detect novel populations 

highly depends on the identity of the missing cell type (Supplementary Fig. 13a). For example, it 

is easier for all three methods to call out missing B or T cells as novel than it is to identify NK 

cells or MKs as novel. We next calculated the AUCs for each method by aggregating all cells 

from all 7 scenarios together and using “seen” vs. “unseen” as the label to predict for each cell. 

When methods were made to choose the same cutoff values across all 7 scenarios, the AUCs 

are also highly similar across the three metrics (Symphony per-cell AUC = 0.926, Symphony per-

cluster AUC = 0.994, Seurat mapping score AUC = 0.961; Supplementary Fig. 13b). 
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Supplementary Figure 1: Overview of reference mapping pipeline and Symphony data 
structures. (a) The overall analysis pipeline comprises various functions (orange boxes) that each 
perform a transformation on the data. Symphony mapping takes in a query gene expression matrix and 
a Symphony reference built from integrated reference datasets, and outputs the query cell locations in 
the harmonized feature embedding. Models trained on the reference feature embedding (e.g. cell type 
classifier) can transfer annotations to the query for various downstream tasks. (b) Steps of reference 
building algorithm. Reference datasets spanning multiple batches are aggregated into a single 
expression matrix on which PCA and Harmony integration is performed. The output of reference 
compression is the Symphony minimal reference elements, consisting of data structures	", #, $, %&'(, 
)*, and + (red symbols, defined in figure itself and Methods). ,-. (the harmonized reference 
embedding) is not directly used for the mapping calculation but is saved for downstream annotation 
transfer. (c) Steps of query mapping algorithm, indicating where each reference element is used. Query 
cells are projected into reference PCA space, clustered to reference centroids, and corrected to 
harmonized space by removing query batch effects. Background colors for each outlined step in (b) 
and (c) delineate where the components calculated in reference building (b) are used in mapping (c). 
“hPC” denotes harmonized PC. 
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Supplementary Figure 2: Nearest neighbor correlation (k-NN-corr) metric. The k-NN-correlation 
metric assesses how well an alternative embedding recapitulates the structure of a gold standard 
embedding. k-NN-corr is asymmetric in that it matters which of the two embeddings is selected as the 
gold standard. Consider a gold standard embedding (a) and two alternative embeddings (b) and (c), 
representing a good mapping and a bad mapping, respectively. For a given query cell q (red circle), we 
identify its top / nearest reference cell neighbors (gray circles) in the gold standard embedding (/ = 3 
depicted by black edges) and calculate the distance between the query cell and each neighbor. The 
distances between the same query-reference neighbor pairs are then calculated in the alternate 
embedding. k-NN-corr is the Spearman correlation between the distances in the gold standard vs. 
alternative embedding, ranging from -1 to +1. Example k-NN-corr for one query cell and / = 500 for the 
(d) Symphony embedding and (e) PCA projection embedding. (f) k-NN-corr distribution across query 
cells for / = 500 and a gold standard Harmony embedding, for either the Symphony embeddings (blue) 
or a simple PCA projection with no correction step (light red), faceted by query dataset. Dotted vertical 
lines denote mean k-NN-corr for a given query and mapping method. 
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Supplementary Figure 3: Symphony performance on PbmcBench benchmark. Following the 
cross-technology PBMC benchmarking experiment from Abdelaal et al. (2019)2, we ran a total of 48 
train-test experiments per Symphony-based classifier. Two different versions of the Symphony feature 
embeddings were generated depending on variable gene selection method: top 2,000 variable genes 
(vargenes) or top 20 differentially genes (DEGs) expressed per cell type. Symphony embeddings were 
used to train 3 downstream classifiers: k-NN (/ = 5), SVM with radial kernel, and multinomial logistic 
regression with ridge. (a, b) Median cell type F1-score across 48 experiments for the 5-NN classifier 
with (a) variable gene selection and (b) DEG selection, assigning a label to every query cell. Non-
diagonal values represent train on one technology, test on another (42 experiments, all with donor 1). 
Values along the diagonal indicate train on donor 1, test on donor 2 of the same technology (6 
experiments; missing square because donor 2 not sequenced with 10x v3). (c, d) is analogous to (a, b) 
except considering only “high-confidence” cells (predicted with >60% confidence, i.e. ≥4 reference 
neighbors with winning vote) for F1 score calculations. Colored by median F1 score. 
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Supplementary Figure 4: Symphony constructs and maps to a multi-million cell atlas. To 
demonstrate Symphony’s scalability to multi-million cell atlases, we used a large-scale scRNA-seq 
dataset (Ren et al., 2021)3. We built a Symphony reference of 1.39 million cells from 270 samples and 
mapped a held-out set of 14 samples (1 = 72,781 cells) as the query. UMAP plots show the resulting 
embeddings of reference and query cells, colored by author-defined major cell type. 
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Supplementary Figure 5: Comparison of Symphony to alternative reference mapping methods 
on a cross-species pancreas benchmark. (a) Standard PCA pipeline applied to the Baron et al.4 
query dataset exhibits strong species and donor effects, demonstrating the need for within-query 
integration. We benchmarked Symphony mapping (on a Harmony-integrated reference), Seurat 
mapping (on a Seurat anchor-based-integrated reference), and scArches mapping (on a trVAE-
integrated reference). For each approach, we built an integrated reference (b), mapped the query, then 
predicted query cell types using a 5-NN classifier to transfer annotations using the respective reference 
embedding. For Seurat, we also tested the TransferData function. (c) Query cell prediction accuracy by 
species for each method as measured by cell type F1-score (color), with author-defined ground truth 
labels. Mouse samples did not have any acinar or epsilon cells. The resulting joint cell embedding for 
each tool was visualized by UMAP (b, d): (b) reference cells colored by dataset/technology, (d) query 
cells colored by correct (green) or incorrect (red) cell type prediction for 5-NN classifiers. 
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Supplementary Figure 6: Comparison of de novo integration methods for harmonizing all five 
pancreatic islet cell datasets. As a comparison to reference mapping (Fig. 4), we integrated all five 
pancreatic islet cell technologies (1 = 16,342 cells) using three de novo integration methods: Harmony, 
Seurat anchor-based integration, and trVAE. UMAP visualizations for the integrated embedding colored 
by batch (a) and cell types (b) for each method. Cell types for reference datasets (c1, celseq, celseq2, 
smartseq) were defined within each dataset separately based on marker genes. Query cell types were 
defined by Baron et al. (c, d) Degree of mixing between reference and query datasets (c) and mixing 
between query donors (d) was measured with LISI metric on query cell neighborhoods (human: 1 = 
8,569 cells from 4 donors, mouse: 1 = 1,866 cells from 2 donors) for each method, demonstrating 
comparable mixing among de novo integration methods (compare to Fig. 4e-f). Boxplot center line 
represents the median; lower and upper box limits represent the 25% and 75% quantiles, respectively; 
whiskers extend to box limit ±1.5 × IQR; outlying points plotted individually. 
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Supplementary Figure 7: Mapping to a fetal liver hematopoiesis trajectory. (a) Size and cell type 
(color) composition of each donor sample in the 10x 3’ reference dataset across 27 author-defined cell 
types from Popescu et al. (2019). pcw = post-conception weeks. (b) Library complexity in number of 
genes (nGene) for each sample in reference (10x 3’) and query (10x 5’) datasets, showing low 
complexity for donor F2 and F5 for 5’-sequenced samples (1 = 3,953 cells, removed from further 
analysis). Boxplot center line represents the median; lower and upper box limits represent the 25% and 
75% quantiles, respectively; whiskers extend to box limit ±1.5 × IQR; outlying points plotted individually. 
(c) UMAP projections of query cells into reference UMAP space after Symphony mapping, faceted by 
query donor, colored by cell type. Reference UMAP embedding in bottom-right. 
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Supplementary Figure 8: Fetal liver hematopoiesis cell type classification. We mapped the query 
(5’, 1 = 21,414 cells, 5 donors) dataset onto the reference (3’, 1 = 113,063 cells, 14 donors) and 
assessed cell type classification accuracy across 27 fine-grained cell types: (a) Cell type confusion 
matrix for 30-NN cell type classification, colored by the proportion of query cells in a given true cell type 
that was classified to each reference label (rows sum to 1). True cell type is defined by the original 
authors (Popescu et al., 2019)1. Rows (true query cell types) are sorted by hierarchical clustering on 
the average gene expression (all genes) for the cell types to order similar types together. Bar graph 
(right) shows population size for each cell type. (b) Boxplots showing prediction confidence (measured 
as proportion of nearest reference neighbors with winning vote) across query cells for 30-NN, colored 
by whether the cell received a correct (1 = 18,195 cells) vs. incorrect (1 = 3,219 cells) prediction. 
Boxplot center line represents the median; lower and upper box limits represent the 25% and 75% 
quantiles, respectively; whiskers extend to box limit ±1.5 × IQR; outlying points plotted individually. (c) 
Relationship between prediction confidence score (x-axis; proportion of 30-NN with winning vote) and 
prediction accuracy (y-axis; proportion of correctly classified cells), across all 1 = 21,414 query cells, 
showing that the two measures track closely. Point size is the number of cells with a given prediction 
confidence score. Error bars show 95% C.I. using the binomial proportion confidence interval, centered 
at the mean. (d) Median cell type F1 and overall classification accuracy across varying values of / = 5, 
10, 30, 50 used for query cell type prediction.  
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Supplementary Figure 9: Scenario where reference is missing non-immune cells. (a) UMAP of 
harmonized embedding, with reference (1 = 89,566) shown as density colored by cell type and query 
cells (1 = 16,945) plotted with unseen states colored (and present states in gray), to highlight where the 
unseen cells map to. (b) Symphony per-cell mapping metrics calculated on the query cells, colored by 
whether cell types are unseen vs. seen, plotted by individual cell types as a boxplot (left, in descending 
order by mean) or aggregating all the unseen vs. seen cell types together in a violin plot (right). Unseen 
query cell types: Endothelial cells (1 = 321 cells), Fibroblasts (1 = 361), Hepatocytes (1 = 306). Seen 
query cell types (1 cells): B cell (87), DC precursor (14), DC1 (56), DC2 (292), Early Erythroid (1,131), 
Early lymphoid/T (57), HSC/MPP (292), ILC precursor (340), Kupffer Cell (6,022), Late Erythroid (235), 
Mast cell (78), Megakaryocyte (570), MEMP (166), Mid Erythroid (2,833), Mono-Mac (1,035), Monocyte 
(375), Monocyte precursor (44), Neut.-myeloid progenitor (91), NK (1,976), pDC precursor (9), Pre pro 
B cell (12), pre-B cell (84), pro-B cell (106), VCAM1+ Erythroblastic Island macrophage (52). Boxplot 
center line represents the median; lower and upper box limits represent the 25% and 75% quantiles, 
respectively; whiskers extend to box limit ±1.5 × IQR; outlying points plotted individually. (c) AUC for the 
per-cell metric, measuring how distinguishable seen vs. unseen cells are. (d) Symphony per-cluster 
mapping metrics for each query cell type, with x-axis ordered the same as in (b), colored by unseen vs. 
seen. Light gray shading indicates clusters too small to calculate the metric (1 < 2 × dimensionality, 
Methods). (e) AUC for per-cluster metric across all query cells (all cells of the same cluster receive the 
same metric). 
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Supplementary Figure 10: Scenario where reference is missing myeloid lineage cells. (a) UMAP 
of harmonized embedding, with reference (1 = 64,049) shown as density colored by cell type and query 
cells (1 = 16,945) plotted with unseen states colored (and present states in gray), to highlight where the 
unseen cells map to. (b) Symphony per-cell mapping metrics calculated on the query cells, colored by 
whether cell types are unseen vs. seen, plotted by individual cell types as a boxplot (left, in descending 
order by mean) or aggregating all the unseen vs. seen cell types together in a violin plot (right). Unseen 
query cell types: Kupffer cells (1 = 6,022 cells), Mono-Mac (1 = 1,035), Monocyte (1 = 375), Monocyte 
precursor (1 = 44), DC1 (1 = 56), DC2 (1 = 292), VCAM1+ Erythroblastic Island macrophage (1 = 52), 
Neut.-myeloid progenitor (1 = 91), DC precursor (1 = 14), pDC precursor (1 = 9). Seen query cell types 
(1 cells): B cell (87), Early Erythroid (1,131), Early lymphoid/T (57), HSC/MPP (292), ILC precursor 
(340), Endothelial cells (321), Fibroblasts (361), Hepatocytes (306), Late Erythroid (235), Mast cell (78), 
Megakaryocyte (570), MEMP (166), Mid Erythroid (2,833), NK (1,976), Pre pro B cell (12), pre-B cell 
(84), pro-B cell (106). Boxplot center line represents the median; lower and upper box limits represent 
the 25% and 75% quantiles, respectively; whiskers extend to box limit ±1.5 × IQR; outlying points 
plotted individually. (c) AUC for the per-cell metric, measuring how distinguishable seen vs. unseen 
cells are. (d) Symphony per-cluster mapping metrics for each query cell type, with x-axis ordered the 
same as in (b), colored by unseen vs. seen. Light gray shading indicates clusters too small to calculate 
the metric (1 < 2 × dimensionality, Methods). (e) AUC for per-cluster metric across all query cells (all 
cells of the same cluster receive the same metric). 
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Supplementary Figure 11: Scenario where reference is missing Kupffer cells. (a) UMAP of 
harmonized embedding, with reference (1 = 77,299) shown as density colored by cell type and query 
cells (1 = 16,945) plotted with unseen states colored (and present states in gray), to highlight where the 
unseen cells map to. (b) Symphony per-cell mapping metrics calculated on the query cells, colored by 
whether cell types are unseen vs. seen, plotted by individual cell types as a boxplot (left, in descending 
order by mean) or aggregating all the unseen vs. seen cell types together in a violin plot (right). Unseen 
query cell type: Kupffer cells (1 = 6,022 cells). Seen query cell types (1 cells): B cell (87), DC precursor 
(14), DC1 (56), DC2 (292), Early Erythroid (1,131), Early lymphoid/T (57), HSC/MPP (292), ILC 
precursor (340), Endothelial cells (321 cells), Fibroblasts (361), Hepatocytes (306), Late Erythroid 
(235), Mast cell (78), Megakaryocyte (570), MEMP (166), Mid Erythroid (2,833), Mono-Mac (1,035), 
Monocyte (375), Monocyte precursor (44), Neut.-myeloid progenitor (91), NK (1,976), pDC precursor 
(9), Pre pro B cell (12), pre-B cell (84), pro-B cell (106), VCAM1+ Erythroblastic Island Macrophage 
(52). Boxplot center line represents the median; lower and upper box limits represent the 25% and 75% 
quantiles, respectively; whiskers extend to box limit ±1.5 × IQR; outlying points plotted individually. (c) 
AUC for the per-cell metric, measuring how distinguishable seen vs. unseen cells are. (d) Symphony 
per-cluster mapping metrics for each query cell type, with x-axis ordered the same as in (b), colored by 
unseen vs. seen. Light gray shading indicates clusters too small to calculate the metric (1 < 2 × 
dimensionality, Methods). (e) AUC for per-cluster metric across all query cells (all cells of the same 
cluster receive the same metric).  
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Supplementary Figure 12: Symphony mapping metrics and Seurat mapping score across 
PBMCs missing cell type scenarios. In a total of 7 “missing cell type” scenarios, we built references 
with datasets (3’v2 and 5’, total 1 = 15,813 cells) each with one major cell type artificially removed (B, 
DC, HSC, MK, Mono, NK, or T). (a) Onto each “missing cell type” reference, we mapped a separate 
query dataset (3’v1, 1 = 4,758 cells) containing all cell types: B (1 = 589 cells), DC (1 = 78), HSC (1 = 
21), MK (1 = 30), Mono (1 = 1,193), NK (1 = 291), and T (1 = 2,556). We calculated Symphony per-cell 
metrics for query cells across the scenarios (title of boxplot indicates the missing type). Query cells are 
grouped by cell type and colored by seen (green) vs. unseen (orange) in the reference for that 
scenario. Higher values indicate worse mapping. Boxplot center line represents the median; lower and 
upper box limits represent the 25% and 75% quantiles, respectively; whiskers extend to box limit 
±1.5 × IQR; outlying points plotted individually. (b) Symphony per-cluster metrics for each scenario (1 
value assigned to each query cluster), colored by seen (green) vs. unseen (orange). Higher values 
indicate worse mapping. Light gray “too few cells” bar indicates that the HSC cluster was too small (1 = 
21 cells) to calculate the per-cluster metric (Methods). (c) Seurat mapping confidence scores for the 
same scenarios with Seurat reference mapping pipeline. Lower values indicate worse mapping. Cell 
numbers and boxplot boundaries defined the same way as in (a). 
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Supplementary Figure 13: ROC curves for Symphony metrics and Seurat mapping score across 
PBMCs missing cell type scenarios. AUCs were calculated across all query cells in each scenario 
using a binary label of missing vs. present in the reference as the ground truth for prediction. We 
generated ROCs for each metric in two ways: (a) considering each scenario separately (threshold 
values independent across scenarios) and (b) aggregating cells across all 7 scenarios together for a 
single calculation. For the Symphony per-cell metric and Seurat mapping score, each query cell is 
assigned its own value, whereas for the Symphony per-cluster metric, all cells from the same cluster 
are assigned the same value. The HSC cluster (1 = 21 cells) was too small to calculate a per-cluster 
score and all HSCs were assigned a distance of 0 in all scenarios (unable to be flagged as novel) for 
inclusion in AUC calculations. 
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Supplementary Figure 14: Extending Symphony to scATAC-seq data. We built a reference using a 
scATAC-seq dataset (Buenrostro et al., 2018)5, then mapped a held-out donor as the query. (a) 
Symphony reference embedding (1 = 1,736) built from all donors except BM1214 (1 = 298), colored by 
“known” cell type. UMAP shows regions of related cell types along Lymphoid, Myeloid, and Erythroid 
differentiation pathways as in Buenrostro et al. (b, c) Symphony mapping embedding, colored by (b) 
reference or query or (c) “known” cell type. (d) Barplot showing, for each of the 3 “known” cell types 
present in the query (CMP, GMP, and pDC), the number of query cells predicted across each of the cell 
types by Symphony (5-NN). (e) Prediction confidence scores for the query cells, measuring the 
proportion of 5 nearest reference neighbors supporting the predicted cell type label, colored by whether 
the query was ultimately predicted correctly (1 = 113, 56, and 30 cells for CMP, GMP, and pDC, 
respectively) or incorrectly (1 = 24, 32, and 43 cells for CMP, GMP, and pDC, respectively). Boxplot 
center line represents the median; lower and upper box limits represent the 25% and 75% quantiles, 
respectively; whiskers extend to box limit ±1.5 × IQR; outlying points plotted individually. Hematopoietic 
cell type abbreviations are as in Buenrostro et al.; UNK = unknown. 
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Supplementary Figure 15: Inferring query surface protein expression in memory T cells. (a) 
Mean Pearson correlation for CCA reference between k-NN predicted protein expression and ground 
truth for different values of / (total 1 = 104,716 cells from 54 samples). Bar height represents the mean 
per-donor correlation for each protein, error bars represent standard deviation, and individual data 
points (gray) show correlation values per donor. (b) Symphony reference built from a standard mRNA 
PCA embedding (reference protein values were not used to build embedding but treated as annotations 
only). Contour fill represents density of reference cells. Black points represent soft-cluster centroids in 
the Symphony mixture model. (c) We measured the accuracy of protein expression prediction based on 
the PCA reference with the Pearson correlation between predicted and ground truth expression for 
each surface protein across query cells in each donor (total 1 = 89,085 cells from 54 samples). Note 
that the number of cells is different from the CCA experiment since a different set of 54 random query 
samples was selected for each. Bar height represents the mean per-donor correlation for each protein, 
error bars represent standard deviation, and individual data points show correlation values per donor. 
(d) Ground truth and predicted expression of CD4, CCR6, and CD69 based on PCA reference. Ground 
truth is the 50-NN-smoothed expression measured in the CITE-seq experiment. Colors are scaled 
independently for each marker from minimum (blue) to maximum (yellow) expression. 
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Supplementary Table 1: Links to public datasets used in the study. 

Dataset URL 

10x PBMCs - 5', 3’v1, and 3’v2 

Data obtained from Korsunsky et al. (2019): 
https://github.com/immunogenomics/harmony2019/tree/master/data/figure4  
 
Original links from 10x: 
https://support.10xgenomics.com/single-cell-vdj/datasets/2.2.0/vdj_v1_hs_pbmc_5gex 
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/pbmc6k 
https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/pbmc8k 

PbmcBench https://zenodo.org/record/3357167#.YSL8p9NKhTY 

Pancreas reference - CelSeq, 
CelSeq2, FluidigmC1, SmartSeq2 

Data obtained from Korsunsky et al. (2019): 
https://github.com/immunogenomics/harmony2019/tree/master/data/figure5 
 
Links from original studies: 
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE81076 
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE85241 
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE86469 
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-5061/  

Pancreas query - inDrop (Baron et al.) https://hemberg-lab.github.io/scRNA.seq.datasets/human/pancreas/ 

Fetal liver – 10x 3prime https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-7407/ 
Note: Data post-doublet removal obtained by contacting Haniffa Lab directly 

Fetal liver – 10x 5prime 
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-7407/ 
Note: Data post-doublet removal and with updated cell type labels obtained by contacting Haniffa Lab 
directly 

Memory T cell CITE-seq https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE158769 

Healthy human kidney (fetal) https://www.kidneycellatlas.org/ 

Renal cell carcinoma https://singlecell.broadinstitute.org/single_cell/study/SCP1288/tumor-and-immune-reprogramming-
during-immunotherapy-in-advanced-renal-cell-carcinoma#study-summary 

Tabula Muris Senis (FACS) https://figshare.com/articles/dataset/Processed_files_to_use_with_scanpy_/8273102?file=23937842 
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COVID-19 (1.46 million cells) 

Obtained AnnData file GSE158055_covid19.h5ad from: 
https://drive.google.com/file/d/1TXDJqOvFkJxbcm2u2-_bM5RBdTOqv56w/view,  
based on Seurat issue: https://github.com/satijalab/seurat/issues/4030 
 
Original GEO entry: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE158055   

scATAC-seq hematopoiesis https://github.com/pinellolab/scATAC-
benchmarking/blob/master/Real_Data/Buenrostro_2018/input/combined.sorted.merged.bed 
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Supplementary Table 2: Canonical lineage markers used to assign cell types for 10x PBMCs. Output from differential expression analysis 
using ‘presto’ R package, filtered by AUC > 0.7. feature = gene name; logFC = log fold change between cell in cluster vs. out; statistic = Wilcoxon 
rank sum U statistic (two-sided); auc = area under ROC curve; pval = nominal p value; padj = Benjamini-Hochberg adjusted p value. 
 
feature cluster avgExpr logFC statistic auc pval padj 

CD3D 0 1.78676830868529 0.877333269978165 37656887.5 0.716988781682442 0 0 

CD14 1 1.78477839127833 1.50530784771773 35867022.5 0.850731630640911 0 0 

LYZ 1 4.92399328600779 3.5906467827157 39467819.5 0.936139107757723 0 0 

IL7R 10 2.04550047000887 1.25311928859376 13579714.5 0.786742365078379 3.13679503276481E-224 3.77468470835634E-221 

CD3D 10 1.93635187201459 0.94301151113881 12662328.5 0.733593498706425 2.78494540909109E-135 1.6178612174813E-132 

NKG7 10 2.98880961019686 2.41203440799825 15534974 0.900020555379948 0 0 

FCGR3A 11 1.94373474844031 1.7555278752743 14362449 0.886365584565502 0 0 

GNLY 11 4.22625268218644 3.98632816531166 15847917.5 0.978039933094512 0 0 

NKG7 11 4.40615611271639 3.87973883347676 16012681.5 0.988208194731184 0 0 

FCER1A 12 2.21268156205806 2.18811766189059 7101564.5 0.953249455123184 0 0 

LYZ 12 4.59233650799729 2.92053018185472 6260723.5 0.840382603727941 2.46527467669406E-122 3.75859569939048E-120 

CD14 13 1.1540164091107 0.723180724295266 5104550.5 0.728613108054774 2.21657308291791E-86 7.46852134558359E-83 

LYZ 13 4.17830950353582 2.49650391370271 5504571.5 0.785711288217196 1.04404287379257E-81 3.19799823541516E-78 

MS4A1 15 1.55388485789561 1.19384101525677 2807275 0.846543894142623 6.59199105015374E-119 1.1105527322194E-114 

FCER1A 16 1.05950930074463 1.00417568966425 2670357.5 0.852880962380848 0 0 

CD4 16 1.19888593683425 0.890821709447361 2557383 0.81679822803367 9.4351522643525E-73 8.36600053671297E-71 

PPBP 17 2.9996533286936 2.9802777954512 2981402.5 0.971386415589087 0 0 

GNLY 18 4.55629665919862 4.18418355562252 2175569.5 0.960646542379033 4.81086567985013E-156 1.47361189288064E-152 

NKG7 18 3.45353005181828 2.79177591228098 2061579.5 0.910313009312962 2.59440869977478E-81 3.23762987889671E-78 

CD59 19 0.63224770779975 0.540340970725541 1350437.5 0.746298866048489 7.22323199400776E-66 2.53520394589685E-63 

CD3D 19 2.38517541410561 1.35857449873343 1506027.5 0.832283327060927 4.12414220844212E-30 5.24373009702825E-28 

IL7R 2 1.93009639836918 1.21411686085724 32187123 0.781712761160087 0 0 

CD3D 2 1.94976284046533 1.02574478032896 30977999 0.752347363680327 0 0 

CD14 20 1.33284105633847 0.893749918888884 1329227.5 0.769830753094578 8.06174780936685E-31 1.18101100299481E-27 

MS4A1 20 1.47104626246811 1.10625303937475 1431703.5 0.829180395088985 7.32216617263723E-57 9.18200198553587E-53 
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LYZ 20 4.24206810750422 2.52955511750738 1349895 0.781800470159251 6.92642866938767E-21 2.91723859482935E-18 

CD59 21 0.765414497853269 0.67231925512772 563984 0.819566692678475 8.17613435994139E-43 1.16731640306723E-40 

FCER1A 22 0.782967391361607 0.72144467062165 477699.5 0.738895290833018 2.95557365799568E-48 2.8052140516199E-46 

CD34 22 0.725298096778682 0.724647341066981 500362 0.773949157392441 0 0 

CD59 22 0.525852657487562 0.432336841491258 497291 0.769199000781123 4.12908544493898E-29 2.73868907444437E-27 

CD14 3 1.69313585718211 1.39786966244197 35250510.5 0.856797592679122 0 0 

MS4A7 3 0.823124691611784 0.60698401926253 29225816 0.710361593001127 0 0 

LYZ 3 4.84438118123862 3.48973699248142 37795908 0.918665929320983 0 0 

MS4A1 4 2.26652747634342 2.09228102487396 34444861.5 0.934548042664074 0 0 

CD8A 5 1.31956626459957 1.1359604861495 23971531 0.784040114909325 0 0 

CD3D 5 2.17559379584735 1.23716036266784 24459894.5 0.800013086124953 0 0 

NKG7 5 2.72133993007831 2.21283831969749 25984413.5 0.849875735779722 0 0 

CD8A 6 1.31480156739005 1.1153190514941 21368335.5 0.829705518961626 0 0 

CD3D 6 1.87974112784284 0.904470643652137 18665587.5 0.724761222670392 4.25357025195161E-186 2.65407029757884E-183 

IL7R 7 1.76741135839176 0.974692517036475 15892397 0.729568428269657 8.77053995799087E-182 2.95514573344544E-178 

CD3D 7 1.83602038062372 0.848488196606203 15431018 0.708388014020842 7.30751188566763E-136 9.11923353613649E-133 

FCGR3A 8 2.37839235614051 2.22538797138707 18217956 0.945813793017875 0 0 

MS4A7 8 1.90942728705767 1.70838924767227 17661235 0.916910748095454 0 0 

LYZ 8 2.91754494761029 1.25299183653605 13745420 0.7136150634475 1.54685266418214E-124 1.26811809408645E-122 

MS4A1 9 2.34422120213461 2.06273196159553 16498005.5 0.929034654591585 0 0 
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Supplementary Table 3: Top 10 differentially expressed genes (columns) per cluster (rows) used to assign cell types for 10x PBMCs. 
 
Cluster 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 

0 RPL32 RPS15A RPS14 RPS27A RPS25 RPS3A RPS12 RPL35A RPL11 LDHB 

1 S100A8 S100A9 S100A6 LYZ TYROBP FTL FCN1 S100A4 GPX1 S100A12 

10 CCL5 GZMK NKG7 GZMA KLRB1 CTSW IL32 CST7 KLRG1 LYAR 

11 NKG7 PRF1 GNLY CST7 CTSW GZMB GZMA FGFBP2 KLRD1 CD247 

12 HLA-DRB1 HLA-DPB1 HLA-DRA HLA-DPA1 HLA-DQA1 CST3 FCER1A HLA-DQB1 CD74 HLA-DMA 

13 S100A8 S100A9 LYZ S100A12 FCN1 FTL CTSS S100A6 AIF1 CSTA 

14 – dying (removed) MT-CYB MT-ATP6 MT-CO2 MALAT1 MT-CO3 MT-ND5 RPL32 MT-ATP8 MT-ND3 MT-ND4L 

15 CD79B CD79A MS4A1 IGHM CD37 IGHD LINC00926 CD74 HLA-DQB1 IGKC 

16 ITM2C LILRA4 IRF7 PLD4 IRF8 JCHAIN SEC61B SERPINF1 TCF4 C12orf75 

17 PPBP SDPR NRGN HIST1H2AC PF4 TUBB1 GNG11 GPX1 CLU SPARC 

18 GNLY CTSW NKG7 KLRD1 CD7 XCL2 TRDC HOPX XCL1 KLRC1 

19 ACTG1 PFN1 TMSB10 CORO1A ACTB IL32 ARHGDIB GAPDH AES CFL1 

2 IL32 LTB LDHB IL7R CD3D EEF1A1 TRAC CD3E CD2 RPSA 

20 S100A8 CD79A MS4A1 S100A9 CD74 CD79B IGHM HLA-DRB1 MNDA LINC00926 

21 JCHAIN MZB1 PPIB SEC11C ITM2C TNFRSF17 HSP90B1 SSR4 SUB1 IGHA1 

22 PRSS57 SERPINB1 HNRNPA1 RP11-620J15.3 NPM1 SOX4 CAT RPS24 GNB2L1 STMN1 

3 LYZ CTSS FCN1 CST3 TYROBP GPX1 PSAP FTH1 S100A9 GSTP1 

4 CD79A CD74 CD79B CD37 TCL1A MS4A1 IGHM HLA-DRA HLA-DPB1 HLA-DQB1 

5 CCL5 NKG7 IL32 CTSW B2M HLA-A CST7 HLA-C CD3D GZMA 

6 CD8B CD8A RPL32 RPS14 RPS12 RPS3A RP11-
291B21.2 RPS15A RPS25 RPS5 

7 RPS15A RPS27A RPS12 RPL32 LDHB RPS14 RPL11 RPS25 RPS3 EEF1A1 

8 LST1 COTL1 AIF1 FCER1G FCGR3A FTL SAT1 PSAP FTH1 LINC01272 

9 MS4A1 CD79A CD74 CD79B BANK1 CD37 HLA-DQA1 HLA-DRA HLA-DPB1 HLA-DPA1 
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Supplementary Table 4: Cell type classification confusion matrix for the three 10x PBMCs mapping experiments. 

 
 
 
 
 
 

True cell 
type 

Query 
dataset 

Predicted 
B 

Predicted 
DC 

Predicted 
HSC 

Predicted 
MK 

Predicted 
Mono_CD14 

Predicted 
Mono_CD16 

Predicted 
NK 

Predicted 
T_CD4 

Predicted 
T_CD8 

B 3'v1 587 0 0 0 0 0 1 0 1 
DC 3'v1 0 77 0 0 0 1 0 0 0 
HSC 3'v1 4 0 17 0 0 0 0 0 0 
MK 3'v1 0 0 0 26 2 2 0 0 0 
Mono_CD14 3'v1 0 5 0 0 800 36 0 0 0 
Mono_CD16 3'v1 0 0 0 0 3 349 0 0 0 
NK 3'v1 0 0 0 0 0 0 285 0 6 
T_CD4 3'v1 0 0 0 0 0 0 0 1639 18 
T_CD8 3'v1 0 0 0 0 0 0 7 88 804 
B 3'v2 1226 0 0 1 0 0 2 0 2 
DC 3'v2 0 247 0 0 8 0 0 0 0 
HSC 3'v2 0 0 18 0 1 0 0 0 0 
MK 3'v2 0 0 0 59 2 1 0 1 0 
Mono_CD14 3'v2 0 2 0 0 1820 0 0 0 0 
Mono_CD16 3'v2 0 0 0 0 16 226 0 0 0 
NK 3'v2 0 0 0 0 0 0 321 0 1 
T_CD4 3'v2 0 0 0 0 0 0 0 2480 44 
T_CD8 3'v2 0 0 0 0 0 0 29 110 1688 
B 5' 1174 0 0 0 0 0 0 0 0 
DC 5' 0 177 0 0 4 0 0 0 0 
HSC 5' 2 0 22 0 0 0 0 0 0 
MK 5' 0 0 0 54 1 0 0 0 0 
Mono_CD14 5' 1 1 0 0 2220 2 0 1 2 
Mono_CD16 5' 0 1 0 0 26 346 0 0 0 
NK 5' 1 0 0 0 0 0 299 1 2 
T_CD4 5' 0 0 0 0 0 0 0 2092 43 
T_CD8 5' 0 0 0 0 0 0 0 41 995 
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Supplementary Table 5: Runtime benchmark comparing Symphony, scArches, and Seurat reference mapping. The pipelines were run on 
different-sized reference and query datasets (num cells). Elapsed time for reference building (RB), query mapping (QM), or de novo integration 
(DN) was measured in seconds (s). Grey shading indicates job failed due to excess memory or time requirements. MEM = memory error (>120 
GB), TIME = elapsed time exceeded >24 hrs. Note: All jobs run on a Linux cluster (CPUs). Symphony/Harmony and Seurat were run using 4 
cores; scArches/trVAE was run with 48 cores. 
 

Query 
num cells 

Ref num 
cells 

Symphony 
RB (s) 

Symphony 
QM (s) 

Harmony 
DN (s) 

scArches 
RB (s) 

scArches 
QM (s) 

trVAE DN 
(s) 

Seurat 
RB (s) 

Seurat 
QM (s) 

Seurat 
DN (s) 

1000 20000 61.667 0.056 167.558 919.205 4.980392 698.4887 754.823 19.963 894.035 
1000 50000 419.6 0.163 490.889 8908.704 8.132626 6240.8065 5484.759 49.384 6926.44 
1000 100000 1411.927 0.082 391.786 61663.67 21.394529 50170.357 MEM MEM MEM 
1000 250000 4374.974 0.07 7058.002 TIME TIME TIME MEM MEM MEM 
1000 500000 21093.27 0.195 8895.052 TIME TIME TIME MEM MEM MEM 

10000 20000 177.539 2.249 67.431 596.6031 100.05232 1866.4176 768.275 133.855 1874.4 
10000 50000 447.894 1.996 493.657 5629.113 142.92039 12379.71 6080.779 321.077 MEM 
10000 100000 990.855 1.382 1459.878 40529.68 156.72127 80063.65 MEM MEM MEM 
10000 250000 6775.721 1.715 4117.026 TIME TIME TIME MEM MEM MEM 
10000 500000 10189.41 1.18 10243.75 TIME TIME TIME MEM MEM MEM 

100000 20000 173.493 43.261 512.148 727.9022 38120.236 67454.434 784.617 1486.463 MEM 
100000 50000 163.667 13.535 2323.836 12598.06 70715.102 TIME 5704.96 3323.411 MEM 
100000 100000 485.216 13.401 1074.483 TIME TIME TIME MEM MEM MEM 
100000 250000 3972.34 31.683 10031.27 TIME TIME TIME MEM MEM MEM 
100000 500000 16781.98 46.042 16520.88 TIME TIME TIME MEM MEM MEM 
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Supplementary Table 6: Effect of number of query cells and query donors on mapping runtime. Elapsed time is shown (in s). Boldface 
visually highlights the parameters being tested (varied) for a given series of experiments. ! = 100 centroids, " = 20 dimensions, mapping to a 
50,000-cell reference (built from 30 donors) for all experiments. 

Query num cells Query num donors Query mapping 
elapsed time (s) 

Effect of # query donors (keep num cells constant) 
10000 6 0.81 
10000 15 1.861 
10000 30 3.887 
10000 60 1.196 
10000 120 1.536 
Effect of # query cells (keep num donors constant) 
1000 6 0.067 
2500 6 0.189 
5000 6 0.393 
10000 6 0.81 

 
 
Supplementary Table 7: Effect of number of reference centroids and embedding dimensions on runtime. Elapsed time is shown (in s). 
Boldface visually highlights the parameters being tested (varied) for a given series of experiments. 50,000-cell reference (30 donors) and 10,000-
cell query (6 donors) used for all experiments. 
 
! (# centroids) " (# dimensions) Reference building 

elapsed time (s) 
Query mapping 
elapsed time (s) 

Effect of # centroids (keep everything else constant) 
25 20 58.94 0.693 
50 20 70.89 0.741 
100 20 139.38 0.805 
200 20 275.89 0.983 
400 20 1781.44 5.106 
Effect of # dimensions (keep everything else constant) 
100 10 219.04 0.753 
100 20 142.43 0.812 
100 40 270.97 1.581 
100 80 176.37 0.934 
100 160 300.96 1.132 
100 320 567.17 1.36 
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Supplementary Table 8: Cell type classification confusion matrix for human cells in pancreas benchmarking example. True cell types 
were defined by the original authors (Baron et al., 2016). Predicted labels were assigned using different reference mapping methods (and 
alternative annotation transfer methods for Seurat). 
 

True cell 
type Method 

Predicted 
acinar 

Predicted 
alpha 

Predicted 
beta 

Predicted 
delta 

Predicted 
ductal 

Predicted 
endothelial 

Predicted 
epsilon 

Predicted 
gamma 

Predicted 
immune 

Predicted 
stellate 

acinar Symphony (5-NN) 950 0 0 0 2 1 0 0 0 5 

alpha Symphony (5-NN) 18 2295 5 1 1 0 0 2 2 2 

beta Symphony (5-NN) 21 8 2481 9 2 0 0 3 0 1 

delta Symphony (5-NN) 4 1 33 559 1 0 0 0 2 1 

ductal Symphony (5-NN) 176 1 4 0 896 0 0 0 0 0 

endothelial Symphony (5-NN) 0 0 0 0 0 247 0 0 0 5 

epsilon Symphony (5-NN) 0 2 0 6 0 0 8 2 0 0 

gamma Symphony (5-NN) 1 4 4 0 0 0 0 246 0 0 

immune Symphony (5-NN) 0 1 0 0 4 0 0 0 82 0 

stellate Symphony (5-NN) 0 1 1 0 0 0 0 0 0 455 

acinar Seurat (5-NN) 951 0 0 0 1 1 0 0 0 5 

alpha Seurat (5-NN) 12 2303 4 1 3 0 0 2 1 0 

beta Seurat (5-NN) 16 19 2483 5 0 0 0 2 0 0 

delta Seurat (5-NN) 2 4 64 529 0 0 0 0 2 0 

ductal Seurat (5-NN) 178 1 5 0 893 0 0 0 0 0 

endothelial Seurat (5-NN) 0 0 6 0 7 235 0 0 0 4 

epsilon Seurat (5-NN) 0 4 1 5 0 0 4 4 0 0 

gamma Seurat (5-NN) 1 6 3 0 1 0 0 244 0 0 

immune Seurat (5-NN) 0 0 0 0 7 0 0 0 80 0 

stellate Seurat (5-NN) 0 4 3 1 3 0 0 0 0 446 

acinar Seurat (TransferData) 951 0 0 0 2 0 0 0 0 5 

alpha Seurat (TransferData) 8 2310 4 1 0 0 0 2 1 0 

beta Seurat (TransferData) 18 10 2489 6 0 0 0 2 0 0 

delta Seurat (TransferData) 2 3 56 538 0 0 0 0 2 0 

ductal Seurat (TransferData) 177 1 6 1 892 0 0 0 0 0 

endothelial Seurat (TransferData) 0 0 7 0 6 235 0 0 0 4 
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epsilon Seurat (TransferData) 0 0 1 9 0 0 0 8 0 0 

gamma Seurat (TransferData) 1 1 3 0 0 0 0 250 0 0 

immune Seurat (TransferData) 0 1 3 0 2 0 0 0 81 0 

stellate Seurat (TransferData) 0 4 5 1 1 0 0 0 0 446 

acinar scArches/trVAE (5-NN) 144 293 465 2 48 0 0 0 0 6 

alpha scArches/trVAE (5-NN) 2 1724 201 370 2 0 4 23 0 0 

beta scArches/trVAE (5-NN) 2 174 2186 159 2 0 0 2 0 0 

delta scArches/trVAE (5-NN) 0 19 14 565 2 0 0 1 0 0 

ductal scArches/trVAE (5-NN) 171 26 30 12 830 0 2 3 0 3 

endothelial scArches/trVAE (5-NN) 0 18 8 26 38 58 0 1 0 103 

epsilon scArches/trVAE (5-NN) 0 9 0 9 0 0 0 0 0 0 

gamma scArches/trVAE (5-NN) 0 18 33 63 1 0 2 138 0 0 

immune scArches/trVAE (5-NN) 0 28 9 19 6 0 1 2 22 0 

stellate scArches/trVAE (5-NN) 0 11 31 7 9 0 0 0 0 399 
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Supplementary Table 9: Cell type classification confusion matrix for mouse cells in pancreas benchmarking example. True cell types were 
defined by the original authors (Baron et al., 2016). Predicted labels were assigned using different reference mapping methods (and alternative 
annotation transfer methods for Seurat). 
 

True cell 
type Method 

Predicted 
acinar 

Predicted 
alpha 

Predicted 
beta 

Predicted 
delta 

Predicted 
ductal 

Predicted 
endothelial 

Predicted 
epsilon 

Predicted 
gamma 

Predicted 
immune 

Predicted 
stellate 

alpha Symphony (5-NN) 0 123 56 9 0 0 0 3 0 0 

beta Symphony (5-NN) 0 7 861 25 0 0 0 1 0 0 

delta Symphony (5-NN) 0 3 29 185 0 0 0 1 0 0 

ductal Symphony (5-NN) 2 0 2 0 270 0 0 0 0 1 

endothelial Symphony (5-NN) 0 0 0 0 0 139 0 0 0 0 

gamma Symphony (5-NN) 0 4 18 5 0 0 0 14 0 0 

immune Symphony (5-NN) 1 0 1 0 1 0 0 0 58 0 

stellate Symphony (5-NN) 0 0 0 0 0 1 0 0 1 59 

alpha Seurat (5-NN) 0 161 17 6 0 0 3 4 0 0 

beta Seurat (5-NN) 0 28 850 15 0 0 1 0 0 0 

delta Seurat (5-NN) 0 12 38 156 0 0 6 6 0 0 

ductal Seurat (5-NN) 2 1 2 0 270 0 0 0 0 0 

endothelial Seurat (5-NN) 0 5 2 0 2 129 0 0 0 1 

gamma Seurat (5-NN) 0 5 11 2 0 0 3 20 0 0 

immune Seurat (5-NN) 1 0 1 0 5 0 0 0 54 0 

stellate Seurat (5-NN) 0 0 0 0 0 1 0 0 1 59 

alpha Seurat (TransferData) 0 150 31 8 0 0 0 2 0 0 

beta Seurat (TransferData) 0 18 856 20 0 0 0 0 0 0 

delta Seurat (TransferData) 0 6 36 167 0 0 1 8 0 0 

ductal Seurat (TransferData) 1 0 2 0 272 0 0 0 0 0 

endothelial Seurat (TransferData) 0 4 2 0 1 129 0 0 0 3 

gamma Seurat (TransferData) 0 6 13 6 0 0 0 16 0 0 

immune Seurat (TransferData) 1 0 2 0 0 0 0 0 58 0 

stellate Seurat (TransferData) 0 0 0 0 0 1 0 0 0 60 

alpha scArches/trVAE (5-NN) 0 191 0 0 0 0 0 0 0 0 
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beta scArches/trVAE (5-NN) 0 826 68 0 0 0 0 0 0 0 

delta scArches/trVAE (5-NN) 0 205 7 6 0 0 0 0 0 0 

ductal scArches/trVAE (5-NN) 35 171 10 1 58 0 0 0 0 0 

endothelial scArches/trVAE (5-NN) 0 78 0 0 0 60 0 0 0 1 

gamma scArches/trVAE (5-NN) 0 38 2 1 0 0 0 0 0 0 

immune scArches/trVAE (5-NN) 1 58 0 0 0 0 0 0 0 2 

stellate scArches/trVAE (5-NN) 0 47 0 0 0 0 0 0 0 14 
 

 



Kang et al. 
 
Supplementary Table 10: LISI comparison between methods. Degree of mixing as measured by Local Inverse Simpson’s Index (LISI) 
calculated between reference and query cells and between donors within the query for reference mapping and corresponding de novo integration 
methods for pancreas benchmarking example. ref_query LISI: degree of mixing between reference and query cells (ranges from 1-2); 
query_donors LISI: degree of mixing among query donors (ranges from 1-6). 
 

Baron et al. human cells 

Method 
mean ref_query 

LISI 
mean query_donors 

LISI 
Symphony mapping 1.51 2.67 
Harmony de novo 1.4 2.55 
Seurat mapping 1.17 2.04 
Seurat de novo 1.38 2.96 

scArches mapping 1.02 1.12 
trVAE de novo 1.27 2.52 

Baron et al. mouse cells 

Method 
mean ref_query 

LISI 
mean query_donors 

LISI 
Symphony mapping 1.26 2.91 
Harmony de novo 1.23 2.7 
Seurat mapping 1.05 2.46 
Seurat de novo 1.2 3.09 

scArches mapping 1 1.24 
trVAE de novo 1.19 3.05 
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Supplementary Table 11: Cell type classification confusion matrix for fetal liver example. Mapping query (10x 5’) cells onto the reference 
(10x 3’) atlas of fetal liver cells, prediction using 10-NN. True cell types as defined by Popescu et al. (2019) (rows) and Symphony predicted 
annotations (columns). 
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B cell 494 0 0 0 1 4 0 0 0 3 0 0 0 0 0 0 0 1 0 0 0 5 3 0 76 0 0 

DC precursor 0 91 8 57 0 0 0 0 0 0 0 1 0 0 0 0 0 0 56 73 21 0 2 0 0 0 0 

DC1 0 0 73 2 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 

DC2 0 2 18 1251 0 0 0 0 0 0 0 0 0 0 0 0 0 280 45 0 0 0 7 0 0 0 0 

Early Erythroid 0 0 0 0 1417 0 0 0 0 0 0 0 0 4 0 46 129 0 0 0 0 0 0 0 0 0 0 

Early lymphoid/T 1 0 0 0 0 304 0 0 0 0 350 0 0 0 0 0 0 0 0 0 0 30 0 0 0 0 0 

Endothelial cell 1 0 0 0 0 0 563 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 

Fibroblast 0 0 0 0 0 0 6 53 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hepatocyte 0 0 0 0 0 0 0 0 87 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

HSC_MPP 0 0 0 0 0 2 0 1 0 531 0 0 0 0 0 3 0 0 0 0 52 0 0 11 0 5 0 

ILC precursor 0 0 0 0 0 0 0 0 0 0 153 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

Kupffer Cell 2 0 0 0 0 0 8 0 0 0 0 5064 0 0 0 0 0 111 2 0 0 0 4 1 0 0 0 

Late Erythroid 0 0 0 0 0 0 0 0 0 0 0 0 141 0 0 0 2 0 0 0 0 1 0 0 0 0 0 

Mast cell 1 0 0 0 9 0 0 0 0 2 0 0 0 532 0 0 0 0 0 0 0 0 0 0 0 0 0 

Megakaryocyte 0 0 0 0 0 0 0 0 0 0 0 0 0 0 357 0 0 0 0 0 0 0 0 0 0 1 0 

MEMP 0 0 0 0 12 0 0 0 0 29 0 0 0 3 98 165 0 0 0 0 0 0 0 0 0 0 0 

Mid Erythroid 0 0 0 0 104 0 0 0 0 0 0 1 32 0 0 0 2043 0 0 0 0 2 0 0 0 1 9 

Mono-Mac 0 0 1 13 0 0 0 0 0 0 0 70 0 0 0 0 0 992 6 0 2 0 2 0 0 0 0 

Monocyte 1 0 0 98 0 0 0 0 0 0 0 0 0 1 0 0 0 40 907 10 1 0 0 0 0 0 0 

Monocyte precursor 0 50 3 28 0 0 0 0 0 0 0 0 0 0 0 0 0 4 12 37 4 0 0 0 0 0 0 

Neut-myeloid prog. 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 54 0 0 0 0 0 0 

NK 0 0 0 0 0 10 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1780 0 0 0 0 0 

pDC precursor 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 66 0 0 0 0 

Pre pro B cell 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 65 10 10 0 

pre-B cell 71 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 1 0 0 0 3 4 4 3 702 463 0 

pro-B cell 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 25 272 0 

VCAM1+ EI macro. 0 0 0 0 0 0 0 0 0 0 0 442 0 0 0 0 0 42 0 0 0 0 0 0 0 0 8 
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Supplementary Methods 
 
During Symphony reference building, we calculate two reference compression terms, !" and #, which are 

precomputed in advance to be used later during the correction step of the reference mapping algorithm. This 

section describes the relevant parts of the linear mixture model framework shared by Harmony and Symphony 

and derives the reference compression terms. 

 

Harmony mixture of experts model learned from reference cells 

In the Harmony mixture model learned during reference integration, the $ clusters represent $ “experts” in a 

mixture of experts that serve as surrogate variables for cell states within the low-dimensional space. For each 

reference cluster $, we learn a cluster-specific linear model for each PC: that is, the location in PC space for 

each reference cell % (&"[∙,*]) can be modeled as in Equation (1). For each cluster $, we estimated ,"- ∈

ℝ(123)	×	7, representing the parameters of the linear model. The batch-independent intercept terms ,"-[8,∙] 

represent the location of cluster centroid k in PC space. The remaining batch-dependent terms ,"-[9:;,∙] 

represent reference batch effect coefficients for each PC. See Korsunsky et al. (2019)6 for full details. 

&"[∙,*] = =>"[-,*]
?

@,"-[8,∙]
A +	,"-[9:;,∙]

A C"D + E 
(1) 

 

After Harmony integration, the batch effects for the reference cells have been removed by subtracting the 

batch-dependent terms from each cell. In the final integrated embedding, the harmonized PCs for each 

reference cell are thereby modeled as the weighted summation of only the intercept terms for the clusters over 

which the cell is assigned (captured in >") as well as a cell-specific residual E. 

&F"[∙,*] = =>"[-,*]
?

,"-[8,∙]
A + E (2) 

 

Symphony models non-harmonized query cells with harmonized reference cells 

The goal of reference mapping is to add the query cells to our model, modeling all cells together in order to 

estimate and remove the query batch effects. Let G = H+ I represent the total number of cells (sum of 

number of query and reference cells). Let	C∗ ∈ [0, 1](12M)	×	N denote a design matrix for reference mapping in 

which the first H columns represent query cells, and the remaining I columns represent harmonized reference 

cells. The star (∗) indicates the design matrix has been augmented: the first row (C[8,∙]) consists entirely of 1s, 

corresponding to the batch-independent intercepts (we model the intercepts for all cells). The remaining c rows 

(C[9:O,∙]
∗ )	represent the one-hot batch assignment of the cells among the P query batches. Note that for the 
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reference cell columns, these values are all 0 since the reference cells do not belong to any query batches. We 

do not include reference batch terms in our design matrix because the reference batch-dependent factors have 

already been removed during reference integration. Therefore, each harmonized reference cell is modeled only 

by a weighted average of the centroid locations for the clusters over which it belongs and a cell-specific 

residual. 

Let matrix > ∈ 	ℝ?×N denote the assignment of query and reference cells (columns) across the reference 

clusters (rows). Then, the parameters (,Q-) of the mixture of experts model can be solved for as in Equation 

(3). The notation diag(>-) ∈ 	ℝN×N denotes the diagonalized $th row of >. Let & ∈ 	ℝ7×N denote the horizontal 

matrix concatenation of the uncorrected query cells in original PC space (&Q) and corrected reference cells in 

harmonized space (&F"). For each cluster $, let matrix ,Q- ∈ 	ℝ(12M)	×	7  represent the query parameters to be 

estimated. The first row of ,Q- represents the batch-independent intercept terms, and the remaining P rows of 

,Q- represent the query batch-dependent coefficients to be estimated. 

,Q- ≈ WC∗	diag(>-)	C
∗A + XYZ

[1
C∗	diag(>-)	&

A 

 

(3) 

Derivation of cached reference-dependent terms 

Instead of directly solving Eq. (3) above, we rewrite diag(>-), C∗, and & by separating out the reference and 

query-dependent components of each matrix. This allows us to determine which components of the calculation 

can be precomputed during reference building to reduce computational steps during reference mapping. 

Assuming the query cells are placed in the first H columns of > and the reference cells are placed in the last I 

columns of >, then > is the horizontal concatenation of >Q and >". Let vector >Q[-,∙] of size H denote the $th 

row of >Q, and let >Q
(-) denote the diagonalized square matrix (of dimensions H×H) of >Q[-,∙]. Let vector >"[-,∙] 

of size I denote the $th row of >", and let >"
(-) denote the diagonalized square matrix (of dimensions I × I) of 

>"[-,∙]. Then, diag(>-)	can be rewritten as >Q
(-)
⨁>"

(-), the direct sum of the diagonal matrices for the query and 

reference cells. 

diag(>-) = >Q
(-)
⨁	>"

(-)
= ]

>[-,9] ⋯ 0

⋮ ⋱ ⋮
0 ⋯ >[-,a2b]

c 

 

>Q
(-)

= ]

>Q[-,9] 0 0

0 ⋱ 0
0 0 >Q[-,a]

c   >"
(-)

= ]

>"[-,9] 0 0

0 ⋱ 0
0 0 >Q[-,b]

c 
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Similarly, we can partition the full design matrix C∗ into the left H columns and right I columns that represent 

the query and reference components: CQ∗ ∈ {0,1}(12M)	×f and C"g ∈ {0,1}(12M)	×h. The horizontal concatenation of 

CQ
∗  and C"g∗ yields C∗. Note that C"g  is not the original reference design matrix across reference batches (C"), but 

rather assignment of reference cells (columns) to query batches (rows). Since reference cells do not belong to 

any query batches, C"g  is a zero matrix, and C"g∗ is the same zero matrix augmented with a row of 1s. In a 

simple example where there are two batches in the query (P = 2), the design matrices take the form: 

C∗ = i
1	⋯ 	1	
CQ C"

g j = k
1 ⋯ 1
1 ⋯ 0
0 ⋯ 1

	
1 ⋯ 1
0 ⋯ 0
0 ⋯ 0

l 

 

CQ
∗ 	= k

1 ⋯ 1
1 ⋯ 0
0 ⋯ 1

l  C"
g∗ 	= k

1 ⋯ 1
0 ⋯ 0
0 ⋯ 0

l 

Similarly, we can partition the embedding & into the left H columns and right I columns that represent the 

query and reference components: &Q ∈ ℝ7×f and &F" ∈ ℝ7×h, respectively. The horizontal concatenation of &Q 

and &F" yields &. 

&Q = ]

&Q[9,9] ⋯ &Q[9,a]
⋮ ⋱ ⋮

&Q[m,9] ⋯ &Q[m,a]

c  &F" = ]

&F"[9,9] ⋯ &F"[9,b]
⋮ ⋱ ⋮

&F"[m,9] ⋯ &F"[m,b]

c 

We can then explicitly substitute the query-dependent and reference-dependent components of diag(>-), C∗, 

and & to rewrite Equation (3) as follows. 

,Q- = n[CQ
∗ C"

g∗] k
>Q
(-)

0

0 >"
(-)
l o
CQ
A

C"
A
p + XYq

[1

[CQ
∗ C"

g∗] k
>Q
(-)

0

0 >"
(-)
l o
&Q
A

&F"
A
p 

 

,Q- = r@CQ
∗>Q

(-)
C"
g∗>"

(-)D o
CQ
A

C"
A
p + XYs

[1

@CQ
∗>Q

(-)
C"
g∗>"

(-)D o
&Q
A

&F"
A
p 

 

 

,Q- = tuCQ
∗>Q

(-)
CQ
∗ A +	C"

g∗>"
(-)
C"
g∗Av + XYw

[1

uCQ
∗>Q

(-)
&Q
A + C"

g∗>"
(-)
&F"
Av (4) 

In Equation (4), the bolded terms designate terms that depend only on reference cells and can therefore be 

precomputed ahead of time during the reference building process and subsequently cached for later use 

during query mapping. The first of these terms, C"g∗>"
(-)
C"
g∗A of dimensions (1 + P) × (1 + P), can be further 

simplified as follows. 



Kang et al. 
 

C"
g∗>"

(-)
C"
g∗A = k

1 ⋯ 1
0 ⋯ 0
0 ⋯ 0

l	>"
(-)
k
1 0 0
⋮ ⋮ ⋮
1 0 0

l 

= k
>"[-,9] ⋯ >"[-,b]
0 ⋯ 0
0 ⋯ 0

l	k
1 0 0
⋮ ⋮ ⋮
1 0 0

l = x
= >"[-,*]

b

*y9
0 0

0 0 0
0 0 0

z = 	 k
!- 0 0
0 0 0
0 0 0

l 

 

Intuitively, !- ∈ ℝ is the number of cells (can be a non-integer number since the cells are soft assigned) 

belonging to cluster $. Therefore, to capture this term for all $ clusters, we need only save !" ∈ 	ℝ?×1, a vector 

containing the size of each of the $ clusters in terms of the number of cells contained within them. Similarly, 

the second of the reference-dependent terms, C"g∗>"
(-)
&F"
A, can also be further simplified as follows. 

C"
g∗>"

(-)
&F"
A = k

1 ⋯ 1
0 ⋯ 0
0 ⋯ 0

l	>"
(-)
]

&F"[9,9] ⋯ &F"[m,9]
⋮ ⋱ ⋮

&F"[9,b] ⋯ &F"[m,b]

c 

= k
>"[-,9] ⋯ >"[-,b]
0 ⋯ 0
0 ⋯ 0

l ]

&F"[9,9] ⋯ &F"[m,9]
⋮ ⋱ ⋮

&F"[9,b] ⋯ &F"[m,b]

c 

= ]
>"[-,∙] ∙ &F"[∙,9]

A ⋯ >"[-,∙] ∙ &F"[∙,m]
A

0 ⋯ 0
0 ⋯ 0

c 

 

Therefore, to capture this term for all $ clusters, we need only save # ∈ 	ℝ?×7, a matrix containing $ rows, 

where each row consists of the vector @>"[-,∙] ∙ &F"[∙,9]
A ⋯ >"[-,∙] ∙ &F"[∙,m]

A D for the corresponding cluster. We can 

directly calculate # = >"&F"
A. 
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