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<b>REVIEWER COMMENTS</B> 

Reviewer #1 (Expertise: multimodal single-cell data analysis): 

Joyce Kang et al. introduce Symphony, a method for constructing scRNA-seq reference datasets and 

rapidly mapping query datasets to these references. The method builds on the earlier Harmony method 

developed by the same group. As large, high-quality scRNA-seq reference datasets are now able to be 

assembled, and their proper use can greatly improve the analysis of new query datasets, there is an 

urgent need for such “reference mapping” methods in the community and I am quite excited by the 

Symphony method developed here. However, I have several comments about the manuscript in its 

current form, which I hope can help to further improve the work. 

The authors should explore what would happen if the query contains cell states that are not present in 

the reference. Although the authors state this is a condition for query mapping (first condition for 

Harmony de novo equivalence), users may not always know whether their dataset contains a new cell 

state before mapping, and so it is worth exploring what results are expected in this case and how users 

may identify the presence of novel states in a reference-mapping workflow. For example, Seurat 

generates a mapping score and a prediction score for each query cell, which can be used to assess the 

mapping confidence. Can Symphony provide any metric that could help identify poorly-mapped query 

cells? 

Can other normalisation methods be incorporated into the Symphony reference-construction and 

mapping workflow? log-normalisation may not be the best normalisation method for scRNA-seq data, 

and more recent methods like GLM-PCA or SCTransform could give better results. 

Can Symphony be extended to allow the construction and mapping of other data modalities, particularly 

scATAC-seq? Since the method works in low-dimensional space, I’d imagine this is possible with scATAC-

seq data processed using LSI (which uses the SVD), although some aspects would need to be modified 

(storing reference mean and SD not required, you could perhaps store the inverse document frequency 

for each peak in the reference instead?). 

Under the section “Symphony maps against a large reference within seconds”, the authors claim to have 

shown that Symphony scales efficiently to map against multimillion-cell references. However, the 

authors did not actually demonstrate construction of a multimillion-cell reference, and there are other 

limitations that may become relevant as the datasets become much larger (the use of 32-bit sparse 

matrices, for example). To support their claim, the authors should actually demonstrate the construction 

of such a reference, and the mapping of queries to it. 



In Figure 4, the immune cells in the Symphony reference seem to be split into two separate clusters of 

cells. Are these cells truly distinct (different immune cell types) or is this an artefact of the reference 

building? This also appears to be the case, although less extreme, for the beta and alpha cells. 

Figure 4e: as well as reference-query mixing, it’s important to measure how well preserved the original 

query low-dimensional structure is in the mapped embedding. This could be done per-batch in the 

query, using kNN-corr or a similar metric. 

My understanding is that CCA captures shared sources of variation across two matrices. Since the 

authors use CCA for defining a joint embedding for the CITE-seq reference, would this embedding be 

bias to only capture sources of variation that were present in both the RNA and protein assays? What 

would happen in the case where one modality captures variation that is not shared in the second 

modality (for example, protein separates CD4 and CD8 T cells whereas this separation is very difficult to 

detect in the RNA modality)? The authors should also compare with the multimodal reference 

construction method in Seurat v4 (WNN followed by supervised PCA). 

The explanation of how cell type labels are transferred from reference to query is unclear. Is it a simple 

majority vote using the label of the 5 nearest neighbours, or is the distance to each neighbour also 

considered? Also, how sensitive are the label predictions to the choice of k, and when should users alter 

the k parameter? 

Minor comments and suggestions: 

The overlapping density plots shown in Figure 2C at first glance appear to show the Harmony methods 

with a density peak at 1, but these in fact are from the PCA plots below. An alternative visualisation 

could be used that would avoid this problem (violin plot or boxplot for example). 

The Seurat functions BuildSNN and RunModularityClustering aren’t part of v3/v4. They were replaced by 

FindNeighbors and FindClusters. Which functions and Seurat version were used for clustering? 

The GitHub repository containing the code to reproduce the analysis is not accessible, so I was unable to 

review the code used. 

The authors should make the R package available on CRAN on Bioconductor. 



Reviewer #2 (Expertise: Methods for the integration of single-cell data): 

In this paper by Kang et al, entitled "Efficient and precise single-cell reference atlas mapping with 

Symphony", the authors present an algorithm to build integrated atlases and rapidly mapping query 

datasets. This mapping is much faster than performing de novo integration of the reference and the 

query and yields similar results. Moreover, it performs batch correction simultaneously to mapping, if 

necessary. As such, the reference atlas is frozen and not influenced by the query dataset. These are all 

useful and desirable functionalities in scRNAseq data analysis. The authors demonstrate Symphony 

capabilities on several datasets with complex experimental designs and compare Symphony 

performances with Seurat and scArches. The manuscript is well written, the methods section is accurate, 

and the description of the analyses is in general sound and convincing. I also congratulate the authors 

for the optimal implementation of the github page, with clear and documented tutorials, a rarity when 

reviewing yet unpublished tools. 

In my opinion, the main limitation of this tool is the first condition that must be met for its use: the fact 

that all cell states in the query data set are captured by the reference dataset. Although “reasonable”, it 

is not easy to satisfy this requirement. Often the user does not know a priori the composition of its 

dataset. In fact, the entire operation of mapping it to an atlas is performed to answer this very question. 

A dataset, even if obtained trough cell sorting, could contain contaminant cells or unknown populations. 

When comparing organisms, as performed in the manuscript for pancreas populations in human and 

mouse, the comparability of cell populations is also an issue. Seurat, for example, assigns cells two 

different scores: mapping score and prediction score. The first reflect confidence that the cell is well 

represented in the reference, the second reflect confidence in the associated annotation. Is it possible 

to provide a similar mapping score for Symphony? E.g. in the Pancreas dataset analysis, Schwann cells 

are present in the query but not in the reference. These cells are mapped (to the most transcriptionally 

similar cell types I assume) but are not considered in accuracy estimation. Is there any way to assign a 

score that flag these cells as not represented in the reference? For example, are they far away from 

most centroids? A mapping score is important because a user could mislabel cells and the misuse them 

without realizing it. 

Note that this could also be used on purpose to force the positioning of cells on a reference or on a 

trajectory. For example, the authors in lines 354/356 discuss about healthy and diseased samples. It 

would then be interesting to see what happens if we map tumor cells to an atlas that contain the same 

normal tissue. Can we discriminate cancer cells with stem or differentiated features? 

Finally, is it possible to provide a “prediction” score for the 5-NN classifier, since this classifier is 

implemented in the symphony package? 

Minor comments: 



- Is the mapping of each query batch independent from the rest of the query? i.e. if I map once a query 

composed of multiple batches or if I perform several mappings, one for each batch, do I get the same 

results? This would also be an advantage over performing de novo integration or using other tools since 

the inferred label would not change. 

- Seurat is sometimes referred to as Seurat, Seurat v4, Seurat 3, Seurat 3 / 4. Also, at line 79 authors say 

that Seurat v4 is “compatible” wit Seurat integration. This is a bit confusing (and not clear). Seurat 3 and 

4 adopts the same exact anchor-based integration strategy, both for de novo integration and label 

transfer. The only difference (for what concerns the topic of this work) is that Seurat v4 introduces the 

mapQuery function that allows query projection onto the reference UMAP structure. Therefore the 

authors can simply refer to “Seurat” and specify the used version only in the method section. 

- In figure S1C Zr_corr should be replaced with Zr as written in table 2. 

- The calculation of LISI is not clear; from what I understood, the value should range between the 

minimum and maximum number of categories. Why then in figure 2c values seem to go below 1 and 

above 3? How many neighbours are used for LISI calculation? 

- Line 157: the use of “similarity” here is not intuitive. Authors should say that it is an elaboration of 

distance (see line 156). Moreover, the checkmark and x mark in figure S2 are misleading since they 

evocate “correct” and “wrong” but instead it is a matter of good and bad mapping. 

- What are the dashed lines in figures 2d and S2f? 

- Figure 2 refers to “harmony” embedding whereas the text talks mainly about gold standard 

embedding. I would uniformise for clarity. 

- The 5-NN classifier is not described in the methods. How does it work? Sometimes the authors use 

different numbers of neighbors. How can a user tune this number? 

- Schwann cells are shown in figure S4a but not in figure 4b. how are they classified after symphony 

mapping? De novo integration appears to locate them close to stellate cells. 

- When comparing Symphony with Seurat in the Pancreas dataset, it is not clear if the authors used the 

labels predicted by the Seurat TransferData function. 

- Line 243-248. Does this refer to figure S5C and S5D? If yes, please insert ref to the figure. 

- Here the use of 3’ and 5’ is a bit confusing. Figure 5b even names 3’ cells. I would use the same 

nomenclature adopted in figure 1: reference (3’) and query (5’). 

- Line 267-270 and figure S7 description are complex and should be rephrased. Please avoid using 

expressions such as “5’-to-3’ experiment”, use query-to-reference instead. 

- Line 272: here figure S6C should be cited. 

- In the description of CITE-seq dataset analysis, it should be made clear that ground truth protein values 

are derived by smoothing of the measured expression. 

- Line 771: V is not defined in the glossary. 



- Line 873-875. Here it is stated that the top 2,000 variable genes across all cells were selected. But in 

the pbmc tutorial and also in the pbmc pre-built reference (both in the github rep), there are more than 

2,000 variable genes. It looks like the function for variable genes selection performs a union of the 

variable genes identified in each batch. Is this the case? 

- Line 957: I would not use U to indicate the matrixes since U is already used to indicate gene loadings. 

Reviewer #3 (Expertise: single-cell data integration): 

Summary 

The manuscript presents a new pipeline, Symphony, to accelerate the mapping of the new query cells 

with a minimal change to the reference embeddings. Symphony compresses reference via building a 

linear mixture model first introduced by Harmony and assigns labels iteratively to the query cells in a 

low dimension embedding based on similarity. Symphony can efficiently store the reference data to 

allow the mapping of new cells. The potential reduction of training time to compress reference datasets 

and increase consistency in data visualization would be of interest to the general scRNA-seq community. 

Major comments 

1.The promise of fast mapping of new query cells can only be achieved with a comprehensive and ready-

to-go reference dataset. It would be important to provide pre-built atlas level reference embeddings for 

1) adult mouse from Tabula Muris, Tabula Muris Senis, Microwellseq, 2) adult human from Human Cell 

Atlas, and demonstrate their usability. 

2.First assumption of Symphony is that “all cell states represented in the query data set are captured by 

the reference dataset”. However, in practice, it is hard to know a priori all cell types in the query 

dataset. Thus, it still would be important for potential users to know how Symphony would handle novel 

query cell types or query cell types that do not have corresponding cell types in the training set. 

3.The mapping time scales well with reference cell size. How well does it scale well with the number of 

cell types in the reference datasets? 

4.The runtime analysis only included Symphony reference building, query mapping, and Harmony de 

novo. How does this runtime fare against that of other methods (Seurat v4, scArches, SCN, scmap-cell, 

scmap-cluster, and SCINA)? 



5.It wasn’t clear how the protein expression was inferred in Figure 6 and how the parameters (50-NN) 

were chosen. 

6.What are some of the guiding principles for selecting a reference dataset? 

Minor comments 

1.To better demonstrate the accuracy of cell-type annotation, Fig.S3a should be included in the main 

figures. 

2.After line 102 “Symphony builds upon the linear mixture model framework first introduced by 

Harmony.”, the authors should emphasize the differences between the two algorithms. 



Reviewer #1 

Joyce Kang et al. introduce Symphony, a method for constructing 

scRNA-seq reference datasets and rapidly mapping query datasets to 

these references. The method builds on the earlier Harmony method 

developed by the same group. As large, high-quality scRNA-seq 

reference datasets are now able to be assembled, and their proper use 

can greatly improve the analysis of new query datasets, there is an 

urgent need for such “reference mapping” methods in the community and 

I am quite excited by the Symphony method developed here. However, I 

have several comments about the manuscript in its current form, which 

I hope can help to further improve the work. 

We thank the reviewer for their enthusiasm about our manuscript. 

Reviewer #1, Comment #1 

The authors should explore what would happen if the query contains 

cell states that are not present in the reference. Although the 

authors state this is a condition for query mapping (first condition 

for Harmony de novo equivalence), users may not always know whether 

their dataset contains a new cell state before mapping, and so it is 

worth exploring what results are expected in this case and how users 

may identify the presence of novel states in a reference-mapping 

workflow. For example, Seurat generates a mapping score and a 

prediction score for each query cell, which can be used to assess the 

mapping confidence. Can Symphony provide any metric that could help 

identify poorly-mapped query cells? 

We thank the reviewer for focusing our attention to the situation where query cell types are not 

represented in the reference dataset. It is true that in practice, this basic assumption for 

Symphony might be violated by users. Below, we describe our analyses where we assess the 

consequence of violating this assumption. As we (and the reviewer) expected, mapped cells may 

be assigned inappropriate identities. We agreed with the reviewer that there would be a benefit to 

have “mapping confidence” and “prediction confidence” scores that can indicate potential 

mismatches between the query and the reference, and flag situations where a cell type missing 

in the reference dataset is present. 

To address the problem of mapping confidence, we have developed two new metrics: (1) per-

cell mapping metric and (2) per-cluster mapping metric. The first metric gives a score to each 

query cell, whereas the second metric gives a score to user-defined groups of query cells 

representing putative query cell types (e.g. derived from clustering within the query internally). 

These metrics are based on Mahalanobis distance, which can be thought of as a 

multidimensional Z-score that measures how far away query cells/clusters are from the reference 

clusters in the low-dimensional harmonized embedding. These metrics can be used to identify 

individual query cells or cell clusters that are poorly represented by the reference. Higher 

distance metrics indicate lower confidence in the mapping. We have included new analyses 

demonstrating how these scores can be used (described below). To address the separate but 
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related topic of prediction confidence, we have added a prediction confidence score to the 

k-NN prediction function, which provides the proportion of neighbors supporting the predicted 

label (see Reviewer #1, Comment #8 for more details on prediction confidence). 

In new analyses, we show what happens when we map novel cell types in increasingly difficult 

scenarios using the fetal liver hematopoiesis dataset (Supplementary Figs. 9-11). In some 

scenarios, such as when the novel cell types are completely distinct from the reference (e.g. 

mapping non-immune cell types onto an immune-only reference, Supplementary Fig. 9), the 

per-cell and per-cluster metrics are able to clearly distinguish the poorly mapping cells (per-cell 

AUC=0.997, per-cluster AUC=1.0). In other scenarios, where the novel cell types are more 

similar to an existing reference cell state, the metrics may have more difficulty in identifying the 

novel cell type. For example, when Kupffer cells (specialized tissue-resident macrophages in the 

liver) are missing in the reference (Supplementary Fig. 11), they map onto the very closely 

related (direct precursor) “Monocyte-Macrophage” reference cell state (per-cell AUC=0.633, per-

cluster AUC=0.963). Another example of a difficult situation is the novel Schwann cells in the 

pancreas analysis (see Reviewer #2, Comment #1 for details). Currently, Symphony will tend to 

map novel cell states to the most similar reference state. In some cases, this behavior can 

actually be useful and biologically informative, as we demonstrate in a new analysis of mapping 

tumor cells onto the corresponding healthy tissue (see Reviewer #2, Comment #2). 

We also compared the performance of our mapping confidence score metrics against the Seurat 

mapping confidence score, which was brought up by Reviewers #1 and #2 . Note that because 

Seurat does not scale efficiently to datasets >100,000 cells (see Reviewer #3, Comment #4), 

we performed this comparison using the smaller 10x PBMCs dataset of ~25,000 cells for faster 

runtimes. For each of the 7 major cell types, we constructed a “missing cell type” scenario 

where the reference (3’v2 and 5’) is missing the cell type, and the query (3’v1) contains the cell 

type (simulating a “novel” query type) along with all other cell types. We then assessed how well 

each mapping metric could distinguish the missing type, as defined by AUC (which measures 

the ability to rank cells according to their probability of class membership, here missing vs. 

present in the reference). We find that the Symphony per-cell metric, per-cluster metric, and 

Seurat mapping scores offer comparable performance (AUCs below). Furthermore, the ability 

for mapping metrics to detect novel populations depends on the identity of the missing cell type 

(Supplementary Fig. 12, 13a), which is consistent with our observations from the fetal liver 

missing cell types examples. 

Table of AUC values for each “missing cell type” experiment: 

Missing  
population 

Symphony  
per-cell  
metric 

Symphony  
per-cluster  

metric 

Seurat  
mapping  

score 

B 1 1 0.99 

DC 0.84 1 0.94 

HSC 0.99 0 0.89 

MK 0.69 1 0.55 

Mono 0.92 1 0.95 

NK 0.79 1 0.74 

T 0.94 1 0.98  
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AUC values when combining all 7 experiments (same cutoff threshold across all experiments): 

 Symphony per-cell AUC = 0.926 

 Symphony per-cluster AUC = 0.994 

 Seurat mapping score AUC = 0.961 

In our thorough exploration of mapping metrics, we have learned that identifying poorly mapped 

cells may be a nontrivial problem. Mapping algorithms are specifically designed to map cells 

accurately despite the presence of potentially large batch effects and variable sequencing data. 

They are intentionally forgiving algorithms. Indeed, our colleagues have also noted that a single 

per-cell metric may be insufficient to fully capture the mapping confidence, as Satija and 

colleagues noted on the FAQ page for Azimuth: “Azimuth computes a series of metrics that relate 

to QC for the mapping procedure. We’ve found that a single metric is insufficient to describe the 

quality of mapping, and therefore compute [several metrics]”. Identification of poorly mapped cells 

may require additional investigation by users if these metrics flag problematic cells. We note 

some of the challenges around this issue in the updated manuscript in the Discussion, and 

highlight it as a potentially important future direction that the single cell analysis community 

should invest further effort in. 

Added to Main Text:  

Symphony helps identify query cell types missing in the reference 

Although the first assumption of Symphony is that the reference is comprehensive, users may not 

always be aware if their query contains new “unseen” cell states prior to mapping. Symphony will 

typically map missing query states onto their most similar reference state(s) in these situations. 

To help users flag unseen cell states, we developed two metrics that help users detect and 

remove poorly mapping cells (Methods): (1) per-cell mapping metric and (2) per-cluster mapping 

metric. These metrics are based on Mahalanobis distance, a multivariate distance metric 

analogous to the univariate Z-score. They measure how far away query cells (1) or user-defined 

query clusters (2) are from the reference cell states in the low-dimensional embedding, where 

higher metrics indicate worse mapping. 

In general, we found that these metrics were potentially useful for flagging novel cell types 

(Supplementary Note 1). For example, we tested the metric using the fetal liver hematopoiesis 

dataset described above. We found that the ability to call out a query cell type as novel depends 

on the cell type as well as what is present in the reference (Supplementary Figs. 9-11). For 

example, when the “missing” cell types are very different from the reference (mapping non-

immune cell types like fibroblasts, endothelial cells, and hepatocytes onto an immune-only 

reference), the mapping metrics are able to clearly distinguish the missing cell states as novel 

(per-cell AUC=0.997, per-cluster AUC=1.0, Supplementary Fig. 9). In situations where the novel 

cell types are very similar to an existing reference cell state, the metrics may have more difficulty 

in identifying them. For example, when Kupffer cells (specialized tissue-resident liver 

macrophages) are missing in the reference (Supplementary Fig. 11), they map onto the closely 

related (immediate precursor) “Monocyte-Macrophage” reference cell state (per-cell AUC=0.633, 

per-cluster AUC=0.963). Our metrics are in general comparable to the Seurat mapping score, 

though different metrics offer the strongest performance under different scenarios 

(Supplementary Note 1, Supplementary Fig. 12-13). 
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Add to Discussion:  

Identification of novel cell-types that have failed to map is an important future direction for mapping 

algorithms. To identify potentially novel cell-types, we provide two mapping metrics and a prediction 

confidence score to aid users in flagging and removing poorly mapping cells. We recognize that 

these metrics may be less informative in cases where the novel population is very similar to an 

existing reference population. Hence, Symphony does not entirely supplant the need for users 

interested in novel cell type discovery to conduct de novo analyses of the query alone. 

Added as Supplementary Note 1: Mapping confidence metrics  

Development of Symphony mapping metrics 

Although Symphony inherently assumes that all query cell types are present in the reference, 

users may not always know whether their data contains novel (“unseen”) query cell types. To 

help identify these situations, Symphony provides two metrics that quantify how well query cells 

are represented by the reference: per-cell mapping metric and per-cluster mapping metric. Both 

metrics are based on the Mahalanobis distance, a multivariate distance metric which measures 

the distance from a point (vector in multidimensional space) to a distribution (Methods). The per-

cell metric gives a value to each query cell, whereas the per-cluster metric gives a value to each 

(user-defined) query cluster. Because the metric measures distance, higher values indicate a 

greater difference between the query and reference and therefore a worse mapping. In order to 

handle a large range of potential query-to-reference dataset differences, we do not prescribe 

specific cutoff values to use in all situations. Rather, users can select a threshold above which to 

flag query cells/clusters warranting further investigation or removal from the mapping. We 

explored Symphony’s behavior when the query contains unseen cell types as well as the 

performance of the mapping metrics in the analyses below. 

Mapping confidence vs. prediction confidence 

As a point of clarification, we note that mapping confidence is separate but related to the concept 

of prediction confidence. Symphony’s prediction confidence score reflects certainty in the 

annotation transfer step when the reference is assumed to contain the query cell state. It assigns 

lower confidence to query cells that lie “on the border” between two reference states (Methods). 

Testing mapping metrics in different missing cell type scenarios 

We first tested the metrics using the fetal liver hematopoiesis dataset, in three increasingly 

difficult scenarios. In each scenario, we artificially remove cell type(s) from the reference dataset 

prior to reference building, then mapped a held-out query donor containing all 27 cell types, 

including the now “unseen” types. We assessed how well each mapping metric could distinguish 

the missing type, as defined by AUC (which measures the ability to rank cells according to their 

probability of class membership, here missing vs. present in the reference). In aggregate, these 

case study scenarios show that the Symphony mapping metrics can be extremely useful in 

identifying novel cell states. However, the metrics may lack sensitivity in detecting very 

fine-grained cell state missing in the reference. Symphony typically maps these query states to 

the most similar reference state. 
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Scenario 1: Reference missing non-immune cells 

In the easiest scenario, the reference did not contain hepatocytes, fibroblasts, and endothelial 

cells (the non-immune cell types). After mapping the query containing all cell types 

(Supplementary Fig. 9a), we found that the unseen non-immune query cell types were clearly 

distinguishable as having worse per-cell and per-cluster mapping metrics compared to the cell 

types captured in the reference (per-cell AUC=0.997 and per-cluster AUC=1.0) (Supplementary 

Fig. 9b-d). 

Supplementary Figure 9: Scenario where reference is missing non-immune cells. Unseen query cell 

types: endothelial cells (n=321 cells), fibroblasts (n=361), hepatocytes (n=306). (a) UMAP of harmonized 

embedding, with reference (n=89,566) shown as density colored by cell type and query cells (n=16,945) 

plotted with unseen states colored (and present states in gray), to highlight where the unseen cells map to. 

(b) Symphony per-cell mapping metrics calculated on the query cells, colored by whether cell types are 

unseen vs. seen, plotted by individual cell types as a boxplot (left, in descending order by mean) or 

aggregating all the unseen vs. seen cell types together in a violin plot (right). (c) AUC for the per-cell metric, 

measuring how distinguishable seen vs. unseen cells are. (d) Symphony per-cluster mapping metrics for 

each query cell type, with x-axis ordered the same as in (b), colored by unseen vs. seen. Light gray shading 

indicates clusters too small to calculate the metric (num cells < 2 x dimensionality, Methods). (e) AUC for 

per-cluster metric across all query cells (all cells of the same cluster receive the same metric). 
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Scenario 2: Reference missing myeloid cells 

In a more difficult example, we built a reference missing a subset of immune cells: all cells of the 

myeloid lineage. Upon mapping the query (Supplementary Fig. 10a), we found that the distance 

metrics for the unseen myeloid cell types are generally higher than for the seen cells (per-cell 

AUC=0.996, per-cluster AUC=0.996) Supplementary Fig. 10b-d). However, the 

distinguishability was somewhat lower compared to the first scenario, since the missing cell 

types are biologically more similar to the cell types in the reference. The distinguishability also 

varied by cell type along the myeloid lineage, where more differentiated myeloid cells (Kupffer 

cells and Mono-Mac) had the highest per-cell metrics (worst mapping). For unseen cell types that 

had the lowest metrics (better mapping), we found that they mapped onto biologically similar cell 

states in the reference. For example, the neutrophil-myeloid progenitor cells mapped onto 

reference hematopoietic stem cells (Supplementary Fig. 10a), which likely reflects their similar, 

less differentiated state. VCAM1+ erythroblastic island macrophages (VCAM1+ EI Macro.) cells 

are transcriptionally similar to both macrophages and erythroid cells [1]; supporting their mapping 

onto reference erythroid cells (Supplementary Fig. 10a). 

Supplementary Figure 10: Scenario where reference is missing myeloid lineage cells. Unseen query 

cell types: Kupffer cells (n=6,022 cells), Mono-Mac (n=1,035), Monocyte (n=375), Monocyte precursor 

(n=44), DC1 (n=56), DC2 (n=292), VCAM1+ EI Macro. (n=52), Neut-myeloid prog. (n=91), DC precursor 
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(n=14), pDC precursor (n=9). (a) UMAP of harmonized embedding, with reference (n=64,049) shown as 

density colored by cell type and query cells (n=16,945) plotted with unseen states colored (and present 

states in gray), to highlight where the unseen cells map to. (b) Symphony per-cell mapping metrics 

calculated on the query cells, colored by whether cell types are unseen vs. seen, plotted by individual cell 

types as a boxplot (left, in descending order by mean) or aggregating all the unseen vs. seen cell types 

together in a violin plot (right). (c) AUC for the per-cell metric, measuring how distinguishable seen vs. 

unseen cells are. (d) Symphony per-cluster mapping metrics for each query cell type, with x-axis ordered 

the same as in (b), colored by unseen vs. seen. Light gray shading indicates clusters too small to calculate 

the metric (num cells < 2 x dimensionality, Methods). (e) AUC for per-cluster metric across all query cells 

(all cells of the same cluster receive the same metric). 

Scenario 3: Reference missing Kupffer cells 

In the most difficult scenario, we built a reference missing Kupffer cells, which are liver tissue-

resident macrophages. This scenario is especially difficult because the reference contains 

biologically similar macrophage and monocyte states. In this case, Symphony maps the unseen 

query Kupffer cells onto their immediate precursor (Monocyte-Macrophage) state in the reference 

(Supplementary Fig. 11a). The mapping metrics are not able to clearly distinguish the Kupffer 

cells as novel (per-cell AUC=0.633, per-cluster AUC=0.963) (Supplementary Fig. 11b-d). 

9 



 

Supplementary Figure 11: Scenario where reference is missing Kupffer cells. Unseen query cell type: 

Kupffer cells (n=6,022 cells). (a) UMAP of harmonized embedding, with reference (n=77,299) shown as 

density colored by cell type and query cells (n=16,945) plotted with unseen states colored (and present 

states in gray), to highlight where the unseen cells map to. (b) Symphony per-cell mapping metrics 

calculated on the query cells, colored by whether cell types are unseen vs. seen, plotted by individual cell 

types as a boxplot (left, in descending order by mean) or aggregating all the unseen vs. seen cell types 

together in a violin plot (right). (c) AUC for the per-cell metric, measuring how distinguishable seen vs. 

unseen cells are. (d) Symphony per-cluster mapping metrics for each query cell type, with x-axis ordered 

the same as in (b), colored by unseen vs. seen. Light gray shading indicates clusters too small to calculate 

the metric (num cells < 2 x dimensionality, Methods). (e) AUC for per-cluster metric across all query cells 

(all cells of the same cluster receive the same metric). 

Comparison of Symphony mapping metrics to Seurat mapping score 

Next, we sought to systematically compare the performance of the Symphony mapping metrics to 

the Seurat mapping score, using the 10x PBMCs dataset described previously. Using reference 

datasets (5’ and 3’v2), we iteratively removed one broad cell type from the reference prior to 

reference building, representing 7 different “missing cell type” scenarios: B, DC, HSC, Mono, MK, 

NK, and T. We built references using Symphony and Seurat for each scenario, mapped the 

query (3’v1) containing all cell types onto each reference, and then calculated the Symphony per-

cell metric, Symphony per-cluster metric, and Seurat mapping score for each scenario 

(Supplementary Fig. 12). 

Supplementary Figure 12: Symphony mapping metrics and Seurat mapping score across PBMCs 

missing cell type scenarios. We mapped a query (3’v1) containing all cell types onto references built with 

datasets (3’v2 and 5’) with one major cell type artificially removed: B, DC, HSC, MK, Mono, NK, and T (total 

7 “missing cell type” scenarios). (a) Symphony per-cell metrics for query cells across the scenarios (title of 

boxplot shows the missing type). Query cells are grouped by cell type and colored by seen (green) vs. 
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unseen (orange) in the reference for that scenario. Higher values indicate worse mapping. (b) Symphony 

per-cluster metrics for each scenario (1 value assigned to each query cluster), colored by seen (green) vs. 

unseen (orange). Higher values indicate worse mapping. Light gray “too few cells” bar indicates that the 

HSC cluster was too small (n=21 cells) to calculate the per-cluster metric (Methods). (c) Seurat mapping 

confidence scores for the same scenarios with Seurat reference mapping pipeline. Lower values indicate 

worse mapping. 

When each method was permitted to select a unique cutoff value for each scenario to flag unseen 

cells, all three metrics performed comparably well (Symphony mean per-cell AUC=0.88, per-

cluster AUC=0.86, Seurat AUC=0.86; Supplementary Fig. 13a). Consistent with our observations 

in the fetal liver scenarios, the ability for mapping scores to detect novel populations highly 

depends on the identity of the missing cell type (Supplementary Fig. 13a). For example, it is 

easier for all three methods to call out missing B or T cells as novel than it is to identify NK cells or 

MKs as novel. We next calculated the AUCs for each method by aggregating all cells from all 7 

scenarios together and using “seen” vs. “unseen” as the label to predict for each cell. When 

methods were made to choose the same cutoff values across all 7 scenarios, the AUCs are also 

highly similar across the three metrics (Symphony per-cell AUC=0.926, Symphony per-cluster 

AUC=0.994, Seurat mapping score AUC=0.961; Supplementary Fig. 13b). 

 

Supplementary Figure 13: ROC curves for Symphony metrics and Seurat mapping score across 

PBMCs missing cell type scenarios. AUCs were calculated across all query cells in each scenario using a 

binary label of missing vs. present in the reference as the ground truth for prediction. We generated ROCs 

for each metric in two ways: (a) considering each scenario separately (threshold values independent across 

scenarios) and (b) aggregating cells across all 7 scenarios together for a single calculation. For the 

Symphony per-cell metric and Seurat mapping score, each query cell is assigned its own value, whereas for 

the Symphony per-cluster metric, all cells from the same cluster are assigned the same value. The HSC 
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cluster (21 cells) was too small to calculate a per-cluster score and all HSCs were assigned a distance of 0 

in all scenarios (unable to be flagged as novel) for inclusion in AUC calculations. 

Add to Methods: Mapping confidence metrics  

Symphony offers two scores that measure the confidence in query mapping. We recommend that 

users try both metrics and further investigate any query cells/clusters that appear to map poorly. 

Background: Mahalanobis distance 

Mahalanobis distance is a multivariate metric that measures the distance from a point to a 

distribution. It can be thought of as analogous to the univariate Z-score. We use Mahalanobis 

distance rather than Euclidean distance since Euclidean distance assumes uncorrelated features, 

whereas Mahalanobis distance accounts for potentially correlated features. PCA technically 

returns uncorrelated variables (which would have a covariance matrix containing zeros in all non-

diagonal positions); however, when considering the distribution of cells surrounding each soft 

cluster individually (rather than all cells altogether), the covariance matrices have non-zero 

values. Mahalanobis distance (D) from a point x to a distribution with mean i and covariance 

matrix E in d-dimensional space is defined as: 

D 2 = (x − i)' E−1(x − i) 

(1) Per-cell mapping metric. This metric measures the weighted Mahalanobis distance between 

each query cell and the distribution of reference cells they map nearest to, weighted by cluster 

membership. In the formula above, x is the query cell position (d-dimensional vector), and i and E 

are the weighted mean (i) and covariance matrix (E) for each reference Harmony soft cluster 

centroid in pre-Harmonized PC space, weighted according to the reference cells belonging to that 

cluster. For each query cell, we calculate its Mahalanobis distance ( D) to each reference centroid 

then take the weighted average across all centroids the query cell belongs to (defined using R). 

Because the metric is a distance measure, it ranges from 0 to infinity. In practice, we have noticed 

that cell states well-represented in the reference tend to have values less than 10. 

(2) Per-cluster mapping metric. This metric takes in a user-defined set of query cluster labels 

(e.g. putative cell types from running a de novo PCA pipeline on the query followed by graph-

based clustering). User-defined clusters are likely to represent unique cell types within the query 

data. The intuition behind this metric is that if a query cell type is well-represented by the 

reference PC structure, then it should map closely to a reference centroid. We first project the 

query into reference pre-Harmony PCs, then calculate the Mahalanobis distance between the 

query cluster and its nearest reference centroid, where the covariance is defined using the query 

cluster in reference PC space. All cells in a given cluster receive the same score. By aggregating 

signal using multiple query cells per cluster rather than each cell individually, this metric 

potentially offers greater discriminatory ability than the per-cell metric. A disadvantage of the 

metric is that it is sometimes difficult to anticipate what the covariance of the query will be upon 

projection into reference PCs. Additionally, if a query cluster has very few cells, the estimation of 

its covariance matrix becomes numerically unstable; in practice, we return NAs for clusters 

smaller than 2d, where d is the dimensionality of the embedding. 
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Add to Methods: Evaluating performance of Symphony mapping metrics  

Simulating missing cell type scenarios in fetal liver hematopoiesis dataset 

Using the 3’ fetal liver dataset described above (n=113,063 cells), we held out one random donor (F8, 

16,945 cells) as the query and used the remaining 13 donors as the reference dataset. We constructed 

3 increasingly difficult scenarios where the reference is missing cell types present in the query by 

artificially removing cell types from the reference (cell types defined by original annotations): 

1. Removing all non-immune cell types: endothelial cells (n=321 cells), fibroblasts (n=361), 

hepatocytes (n=306) 

2. Removing all myeloid cells: Kupffer cells (n=6,022 cells), Mono-Mac (n=1,035), Monocyte 

(n=375), Monocyte precursor (n=44), DC1 (n=56), DC2 (n=292), VCAM1+ EI Macro. 

(n=52), Neut-myeloid prog. (n=91), DC precursor (n=14), pDC precursor (n=9) 

3. Removing Kupffer cells (n=6,022 cells) 

For each of the three scenarios, we built a Symphony reference using the same variable gene selection 

and reference building parameters as in the previous section (“Fetal liver hematopoiesis trajectory 

inference example”), then mapped the query containing all 27 cell types onto the reference. We 

calculated both per-cell mapping and per-cluster mapping metrics for the query cells. To plot ROC 

curves and calculate AUC values for each metric, we used the ‘pROC’ package in R (roc and auc 

functions), using a binary label of missing vs. present in the reference as the ground truth for prediction. 

Note that for the per-cluster metric, the pDC precursor (n=9 cells), DC precursor (n=14), and Pre-pro B 

cell (n=12) clusters were too small to calculate a per-cluster score and were assigned a value of 0 for the 

per-cluster metric in all scenarios (unable to be flagged as novel) for inclusion in AUC calculations. 

Comparison of Symphony mapping metrics to Seurat mapping score 

Using the 10x PBMCs dataset described above, we designated the 3’v2 and 5’ data as the 

reference and held out the 3’v1 data as a query. For each of the major cell types (B, DC, HSC, 

MK, Mono, NK, or T), we artificially removed all reference cells of that type and built a Symphony 

reference with that type missing (total 7 references/scenarios). We used the same reference 

building parameters as the original 10x PBMCs analysis. We then mapped all query cells onto 

each reference, simulating 7 scenarios where the query contains a different novel unseen 

population, and calculated Symphony per-cell and per-cluster mapping metrics for the query 

cells in each scenario. 

For each scenario, we also built a reference using Seurat (v4.0.2), integrating the 

reference dataset with FindIntegrationAnchors with 20 dimensions and mapping the query 

with FindTransferAnchors and MapQuery. We calculated query mapping scores with the 

MappingScore function. The Seurat mapping score is based on projecting the query into the 

reference space, then projecting back into the query and finding cells whose local neighborhoods 

are most altered by the transformation (see documentation). 

We generated ROC curves and calculated AUCs across all query cells with the ‘pROC’ package 

in R (roc and auc functions), using a binary label of missing vs. present in the reference as the 

ground truth for prediction. For the Symphony per-cell metric and Seurat mapping score, each 

query cell was assigned its own value for the mapping metric, whereas for the Symphony per-

cluster metric, all cells from the same cluster were assigned the same value. The HSC 
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cluster (21 cells) was too small to calculate a per-cluster score and all HSCs were assigned a 

value of 0 for the per-cluster metric in all scenarios (unable to be flagged as novel) for inclusion in 

AUC calculations. We calculated AUCs for each metric in two ways: (1) considering each 

scenario separately (threshold values independent across scenarios) and (2) aggregating cells 

across all 7 scenarios together into a single AUC calculation. 

Reviewer #1, Comment #2: 

Can other normalisation methods be incorporated into the Symphony 

reference-construction and mapping workflow? log-normalisation may not 

be the best normalisation method for scRNA-seq data, and more recent 

methods like GLM-PCA or SCTransform could give better results. 

We thank the reviewer for this comment and agree that in some cases other normalization 

methods can produce different or potentially better results. Symphony is not tied to the 

log(CP10K+1) normalization. In designing Symphony, we made the core method agnostic to the 

specific approach used to normalize the data, as long as the reference and query datasets are 

normalized in the same way. Users can use the normalization method of their choice by using the 

buildReferenceFromHarmonyObject reference building function (where all preprocessing 

steps prior to the Harmony integration step are customizable). We have added text about 

alternative normalization strategies in the Methods. 

We have also made the Symphony code compatible with the Seurat-based workflow (see new 

vignette at https://github.com/immunogenomics/symphony/blob/main/vignettes/Seurat.ipynb, 

which demonstrates how a user can use SCTransform normalization with Symphony). As an 

example of using alternative normalization strategies, we used the ‘hcabm40k’ dataset which is 

packaged with SeuratData, and performed two Symphony analyses using different normalization 

methods: SCTransform and log(CP10K+1). We found the resulting embeddings were highly 

concordant (see UMAP plots from vignette, reproduced below). As an additional example of using 

a different normalization strategy with Symphony, see Reviewer #1, Comment #3 (below) which 

uses TF-IDF weighting/normalization. 
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Added to Methods:  

Normalization 

Starting with the gene expression matrix for reference cells, we perform log(CP10K+1) library size 

normalization of the cells (if not already done). Log-normalization is recommended and performed by 

default (and used in all scRNA-seq analyses in the manuscript). However, Symphony can be used 

with other normalization methods, such as SCTransform63 or TF-IDF (see scATAC-seq analysis). The 

only requirement is that reference and query datasets are normalized in the same manner. 

Reviewer #1, Comment #3: 

Can Symphony be extended to allow the construction and mapping of other 

data modalities, particularly scATAC-seq? Since the method works in 

low-dimensional space, I’d imagine this is possible with scATAC-seq 

data processed using LSI (which uses the SVD), although some aspects 

would need to be modified (storing reference mean and SD not required, 

you could perhaps store the inverse document frequency for each peak in 

the reference instead?) 

We thank the reviewer for this creative idea. We agree that it would be useful to extend 

Symphony to be able to construct references and map queries for other single-cell modalities 

besides RNA (such as open chromatin regions via scATAC-seq). Encouragingly, the SnapATAC 

pipeline, recently developed by Fang et al. for the analysis of scATAC-seq data [2], uses 

Harmony for batch integration, so we felt that it might be possible to make a Symphony reference 

for this modality. As we mentioned above, Symphony is able to accommodate different 

normalization strategies, and we felt that TF/IDF weighting, commonly used in scATAC-seq 

analysis, might also be easily compatible with Symphony.We have explored the reviewer’s 

suggestion in a new analysis. As suggested, we modified Symphony to be able to store the 
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inverse document frequency calculated on the reference cells rather than gene means and 

standard deviations. 

To demonstrate functionality, we used an existing scATAC-seq dataset of hematopoiesis 

differentiation from Buenrostro et al. [3]. We chose this dataset because it is a popular published 

benchmark and has “known” ground truth cell types as defined by FACS [4]. We note that this is 

also an early dataset and has some challenges too. It has a small number of cells by current 

standards, lack of overlap between cell types represented across donors, and closely related cell 

types along differentiation. Nonetheless, with minimal modification to the existing Symphony 

pipeline, we were able to show that Symphony can build a reasonable scATAC-seq reference 

embedding which distinguishes cell types along different differentiation pathways similar to the 

original tSNE in Buenrostro et al. [3] and map a query dataset such that the query cells 

preferentially map to their corresponding reference cell types (Supplementary Fig. 14). 

This analysis shows promise, and we plan to pursue scATAC-seq reference mapping as a future 

direction. scATAC-seq differs from scRNA-seq in that open chromatin regions (“peaks”) are 

typically defined within datasets, rather than having a set list of genes as features. In our 

analysis, we bypassed this issue by using shared peaks between reference and query for 

mapping. An important open problem is how to optimally select features to perform reference 

mapping on reference and query datasets that potentially derive from separate studies. One 

approach may be to remap query reads to the reference open chromatin regions or binning the 

genome into small (e.g. 500 or 1k bp) regions (added to Discussion). 
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ding Symphony to scATAC-seq data. We built a reference using a scATAC-seq dataset (Buenrostro et 

al.), then mapped a held-out donor as the query. (a) Diagram of the differentiation pathway of flow-sorted 

(“known”) cell types present in the reference (reproduced from Buenrostro et al. [3]) (b) Symphony 

reference embedding (n=1,736) built from all donors except BM1214, colored by “known” cell type. UMAP 

shows regions of related cell types along Lymphoid, Myeloid, and Erythroid differentiation pathways as in 

Buenrostro et al.[2]. (c, d) Symphony mapping embedding, colored by (c) reference or query or (d) “known” 

cell type. (e) Barplot showing, for each of the 3 “known” cell types present in the query (CMP, GMP, and 

pDC), the number of query cells predicted across each of the cell types by Symphony (5-NN). (f) Prediction 

confidence scores for the query cells, measuring the proportion of 5 nearest reference neighbors 

supporting the predicted cell type label, colored by whether the query was ultimately predicted correctly or 

not. 

Added to Main Text:  

Extension of Symphony to scATAC-seq data 

We next wondered whether Symphony may be extended to other single-cell modalities, especially 

scATAC-seq. As a proof-of-concept analysis, we built a reference (n=1,736 cells) using a published 

scATAC-seq dataset of flow-sorted cells capturing hematopoietic differentiation [3,4], leaving out one 

donor (n=298 cells) to map as a query (Supplementary Fig. 11). We modified Symphony to use the 
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shared open chromatin peaks as input features rather than genes (Methods) and were able to map the 

query cells such that 84% of cells were assigned their “known” cell type or the immediate precursor 

type (Supplementary Fig. 11d-e). 

Added to Discussion:  

Single-cell reference mapping using modalities beyond scRNA-seq poses unique challenges. For 

example, in scATAC-seq, peaks are not standardized and are typically redefined by peak calling 

algorithms in each analysis. Hence, it is not immediately clear how to optimally select the best peak 

features to perform reference mapping when reference and query datasets have been analyzed with 

different peak sets. One approach may be to remap query reads to the reference open chromatin 

regions or binning the genome into small (e.g. 500 or 1k bp) regions. 

Added to Methods:  

Extending Symphony to scATAC-seq 

scATAC-seq is different from scRNA-seq in that open chromatin peaks are typically defined in a 

dataset-specific manner (i.e. rather than a pre-specified list of genes that apply to all datasets). Hence, 

this proof-of-concept analysis was run on peaks called on all cells as defined by the benchmarking 

paper by Chen et al.52, obtained from the Pinello Lab Github: https://github.com/pinellolab/scATAC-

benchmarking/blob/master/Real_Data/Buenrostro_2018/input/co  mbined.sorted.merged.bed]. In this 

dataset, peaks were called on each cell type aggregated separately then merged. The full peaks x 

cells matrix was calculated using chromVAR’s getCounts function as demonstrated in 

[https://github.com/pinellolab/scATAC-

benchmarking/blob/master/Real_Data/Buenrostro_2018/run_met 

hods/chromVAR/chromVAR_buenrostro2018_kmers.ipynb], and subsequently binarized. The cell type 

information was also gathered from the Pinello Lab Github [https://github.com/pinellolab/scATAC-

benchmarking/blob/master/Real_Data/Buenrostro_2018/input/me tadata.tsv] while the donor 

information was inferred from the cell name. 

We defined the query cells (n=298) as those that belong to donor BM1214 while the remaining cells 

(n=1,736) were assigned as reference. BM1214 had cells corresponding to CMPs, GMPs, and pDCs, 

whose cell types all had cells from other donors also in the reference set. Since scATAC-seq is 

sparse and zero-inflated, the mean-scaling approach used for genes was changed to TF-IDF 

normalization on the binarized peaks x cells matrices. Seurat’s TF-IDF function was modified to allow 

for an IDF vector as input and outputted the TF matrix, IDF vector, and normalized peaks x cells 

matrix. Following the TF-IDF implementation in Stuart & Butler et al. (2019)18, we computed 

log(TFxIDF). The inverse-document frequency (IDF) vector was calculated on the reference cells 

only and then used in the query cell normalization to get all the cells in the same space before 

mapping. With only this change to the Symphony methods, scATAC-seq query cells were mapped to 

a comparable reference. Feature selection, SVD, and Harmony were done as in the 10x PBMC 

analysis . Predicted query cell types were calculated using 5-NN. For plotting, we used the same cell 

type colors primarily defined from the Supplemental Data Table 1 of the original Buenrostro et al. 

(2018) paper with GMPs changed to a darker orange to better distinguish them visually from the 

CMPs and the ‘unknown’ cells changed from grey to black, allowing grey to be used as the ‘null’ 

color to better emphasize the other cell type colors. 

Reviewer #1, Comment #4: 
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Under the section “Symphony maps against a large reference within 

seconds”, the authors claim to have shown that Symphony scales 

efficiently to map against multimillion-cell references. However, the 

authors did not actually demonstrate construction of a multimillion-

cell reference, and there are other limitations that may become 

relevant as the datasets become much larger (the use of 32-bit sparse 

matrices, for example). To support their claim, the authors should 

actually demonstrate the construction of such a reference, and the 

mapping of queries to it. 

We thank the reviewer for this comment and agree that to support our claim that Symphony 

supports multi-million cell reference, we should actually demonstrate it directly. In a new analysis, 

we used the recent Ren et al. (Cell, 2021) COVID-19 PBMC dataset which contains 1.46 million 

cells comprising 284 samples from 196 individuals (GSE158055). We split the dataset into a 

random 270 samples (1.39 million cells) for reference construction and held-out 14 samples 

(72,781 cells) for query mapping (Methods). Reference building took 17.7 hours elapsed time 

(18.8 hrs total if including UMAP step) using 48.5 GB of memory. Mapping the query took 11.0 

seconds (62.6 seconds including UMAP projection). We have included this result in the text under 

the runtime section “Symphony maps against a large reference within seconds” and added 

Supplementary Fig. 4 showing the mapping embedding. 

Supplementary Figure 4: Symphony constructs and maps to a multi-million cell atlas. To 

demonstrate scalability to multimillion cell atlases, we used a large-scale scRNA-seq dataset (Ren et al., 

Cell, 2021). We built a Symphony reference of 1.39 million cells from 270 samples and mapped a held-out 

set of 14 samples (n=72,781 cells) as the query. UMAP plots show the resulting embeddings of reference 

and query cells, colored by author-defined major cell type. 

As a technical point, we note per the reviewer’s point that the published gene expression matrix 

(from GSE158055) was indeed too large to directly read into R due to a limitation on 32-bit 

sparse matrices in R. The maximum number of non-zero values in a sparse matrix currently 

cannot exceed >2^31-1 for the Matrix package. The spam64 package in theory is able to 

handle larger matrices, but as of writing this, it currently does not support the readMM() function 

1 9  

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE158055
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE158055


to read in the matrix. Therefore, to bypass this issue, we performed all pre-processing for this 

dataset in python using scanpy before loading the expression matrix (subset by variable 

genes) into R for further processing and reference building with Symphony. 

Added to Main Text:  

To directly test Symphony’s scalability to multi-million cell atlases, we built a reference of 1.39 

million cells (270 samples) from a recent COVID-19 dataset [5] in 17.7 hours and mapped a 

held-out query of 72,781 (14 samples) in 11.0 seconds (Methods, Supplementary Fig. 4). 

Added to Methods:  

Constructing and mapping to multi-million cell atlas. We obtained the AnnData file for the 

dataset (GSE158055_covid19.h5ad) from https://drive.google.com/file/d/1TXDJqOvFkJxbcm2u2-

_bM5RBdTOqv56w/view. The link to the AnnData object was obtained from the following GitHub 

issue (response from user saketkc): https://github.com/satijalab/seurat/issues/4030. Due to a 

limitation on the 32-bit sparse matrices in R (the maximum number of non-zero values in a 

sparse matrix currently cannot exceed >2^31-1 for the Matrix package), the gene 

expression matrix (1,462,702 cells × 27,943 genes) was preprocessed using the Python 

scanpy package. We log(CP10k+1) normalized the data and subset to 1,301 variable genes 

(list of variable genes was obtained from contacting the original authors). The remainder of 

the analysis was performed in R. We held out a random 5% of samples (14 samples, 72,781 

cells) as the query and built a Symphony reference using the other 95% of samples (270 

samples, 1,389,921 cells), integrating over 'Sample.name' and 'dataset' with theta = 2.5 and 

1.5, respectively, following the original publication. Reference building and mapping 

procedures were run on a Linux cluster with 4 cores and timed using the system.time 

function in R. UMAP steps were excluded from runtime as these are not inherent to the 

Symphony algorithm. 

Reviewer #1, Comment #5: 

In Figure 4, the immune cells in the Symphony reference seem to be 

split into two separate clusters of cells. Are these cells truly 

distinct (different immune cell types) or is this an artefact of the 

reference building? This also appears to be the case, although less 

extreme, for the beta and alpha cells. 

We thank the reviewer for noting that the reference immune cells segregate into two distinct 

clusters. We have further examined the immune clusters, denoted immune_1 (20 cells) and 

immune_2 (7 cells) using presto [6] to test for differential expression between them. The left table 

below shows the top 5 differentially expressed genes per group, and the right table shows output 

for several marker genes. We found that indeed there are biologically meaningful differences 

between the two clusters: immune_1 is likely macrophage (LYZ+, CD14+), and immune_2 is likely 

mast cells (KIT+). However, given the extremely small number of cells in each cluster we decided 

to just aggregate them together under a single "immune" label for presentation. 
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Reviewer #1, Comment #6: 

Figure 4e: as well as reference-query mixing, it’s important to 

measure how well preserved the original query low-dimensional 

structure is in the mapped embedding. This could be done per-batch in 

the query, using kNN-corr or a similar metric. 

We thank the reviewer for the important point. The goal of reference mapping is to map query 

cells into the reference embedding, but not at the expense of disrupting the original query low-

dimensional structure (i.e. as defined from PCA on each batch of query cells). Following the 

reviewer’s suggestion, we have developed a new metric called “within-query k-NN correlation” 

(wiq-kNN-corr), described below in the updated Methods. We observe that Symphony and 

Seurat exhibit nearly identical wiq-kNN-corr, whereas scArches performs more poorly on this 

metric (Fig. 4g). We have also updated the LISI plots in Fig. 4 and Supplementary Fig. 6 to be 

boxplots rather than density plots (as was suggested in Reviewer #1, Minor Comment #1). 

Added to Legend: (g) Degree to which the query low-dimensional structure is preserved after mapping, as 

measured by within-query k-NN correlation (wiq-kNN-corr, with k=500) calculated across all query cells, 

within each query donor. Vertical lines indicate the mean wiq-kNN-corr. 

Added to Main Text:  

Reference mapping should place query cells into the reference embedding, but not at the 

expense of disrupting the query’s original low-dimensional structure. Therefore, we developed a 

new metric called within-query k-NN correlation (wiq-kNN-corr), which is similar to the k-NN-corr 

metric but instead measures how well the original query low-dimensional structure is preserved 

after mapping. Anchoring on each query cell, we calculate it’s (1) distances to the k nearest 

neighbors in the original query PCA embedding within each query batch (in this case, donor) and 

(2) the distances to those same k cells after reference mapping. Then, wiq-kNN-corr is the 

Spearman correlation between (1) and (2), ranging between -1 and 1 where higher values 
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represent better retention of the sorted ordering of original neighbors. We observe that for 

k=500 Symphony and Seurat exhibit nearly identical wiq-kNN-corr (mean wiq-kNN-corr=0.59 in 

human, 0.55 in mouse for Symphony; 0.6 in human, 0.57 in mouse for Seurat), whereas 

scArches performs more poorly on this metric (0.19 in human, 0.13 in mouse) (Fig. 4g). 

Added to Methods:  

To assess how well the query low-dimensional structure is preserved in the mapped embedding, we 

developed a new metric called within-query k-NN-correlation (wiq-kNN-corr). For each query batch 

(here, donor), we run a standard PCA pipeline on the cells (using 20 dimensions and selecting 2,000 

variable genes per batch using vst). Then, anchoring on each query cell, we calculate it’s (1) 

distances to the k nearest neighbors in the query PCA embedding and (2) the distances to those 

same k cells after reference mapping. Then, wiq-kNN-corr is the Spearman correlation between (1) 

and (2), ranging between -1 and 1 where higher values represent better retention of the sorted original 

neighbor ordering. The calculation is similar to k-NN correlation described above, except instead of 

measuring the sorted ordering of reference neighbors in a de novo integration embedding, we 

measure the sorted ordering of query neighbors. 

Reviewer #1, Comment #7: 

My understanding is that CCA captures shared sources of variation 

across two matrices. Since the authors use CCA for defining a joint 

embedding for the CITE-seq reference, would this embedding be biased to 

only capture sources of variation that were present in both the RNA and 

protein assays? What would happen in the case where one modality 

captures variation that is not shared in the second modality (for 

example, protein separates CD4 and CD8 T cells whereas this separation 

is very difficult to detect in the RNA modality)? The authors should 

also compare with the multimodal reference construction method in 

Seurat v4 (WNN followed by supervised PCA). 

We appreciate the reviewer’s concern that CCA may be biased to capturing sources of variation 

present in both RNA and protein assays. We believe that RNA-protein integration is in itself an 

extremely interesting and challenging area, and is indeed a topic of great interest in the single 

cell analysis field [7]. The dataset used in the analysis is from a study that we have recently 

published, which used canonical correlation analysis (CCA) to integrate memory T cells 

assayed with CITE-seq [8]. In our experience, CCA works well for T cells and is able to 

distinguish populations that are blurred in scRNA-seq only data (e.g. better separation of CD4+ 

and CD8+ T cells; Supplementary Fig. 15). We agree that benchmarking against the recently 

published Seurat WNN approach [9] would be informative and represents a fruitful direction for 

future work, especially once the field has converged upon optimal metrics by which to compare 

multimodal embeddings. 

However, the main point of the multimodal T cell analysis is to demonstrate that Symphony can 

be used with other linear starting embeddings beyond PCA (in this case, CCA) which has been 

used to integrate multimodal datasets [8]. We have modified the Discussion to clarify that there 

are several strategies to build multimodal references, including Seurat v4 WNN. Symphony 

should theoretically work on all approaches that are based on an initial linear projection. Since 
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multimodal analysis is relevant to only one of our benchmarks, we felt that a complete 

investigation is beyond the scope of this manuscript. 

Added to Discussion:  

As another example, multimodal single-cell integration is an important area of active 

research. For the CITE-seq analysis, we used one strategy (CCA) based on finding shared 

variation between modalities [8], but alternative approaches have been proposed [9,10] that 

may be optimal for specific applications. 

Reviewer #1, Comment #8: 

The explanation of how cell type labels are transferred from reference 

to query is unclear. Is it a simple majority vote using the label of 

the 5 nearest neighbours, or is the distance to each neighbour also 

considered? Also, how sensitive are the label predictions to the choice 

of k, and when should users alter the k parameter? 

We thank the reviewer for pointing out that the cell type label transfer step is unclear. For the k-

NN label transfer, we use a simple majority vote using the label of the k nearest neighbors; no 

distance information is used. Specifically, we use the k-NN classification function implemented in 

the R class package, which provides both a prediction and a probability (proportion of the votes 

for the winning class), which serves as the prediction confidence score. We have added details to 

the Methods and have modified the main text to make this more intuitive: 

Added to Methods (under “Query label prediction and prediction confidence”):  Once 

query cells are embedded in the same low-dimensional feature space as the reference, 

reference labels can be transferred to the query using any downstream model (e.g. k-NN, 

SVM, logistic regression) using the harmonized PCs as input. See the PbmcBench 

benchmarking analysis which compares multiple downstream methods. 

For most analyses presented, we use a simple and intuitive k-NN classifier (as 

implemented in the ‘class’ package in R), which uses majority vote with ties broken randomly. We 

provide a convenient wrapper function in the Symphony package (‘knnPredict’), which can 

optionally return the prediction confidence measuring the proportion of reference neighbors 

contributing to the winning vote. For k-NN prediction, we would recommend that users alter the k 

parameter so that it is ideally no larger than the number of cells in the rarest cell type of the 

reference. For example, if the reference contains only 10 cells of a rare cell type, then we 

recommend the user set k no higher than 10, to ensure that rare cell types in the reference have 

the chance of being predicted given a majority vote k-NN classifier. 

Modified Main Text:  

Once query cells are mapped into the reference low-dimensional feature embedding, users can 

choose any downstream model to predict query labels from the reference cells using their shared 

harmonized features as input (Methods). To demonstrate this, we used a simple and intuitive k-

NN classifier to annotate query cells across 9 cell types based on the majority vote of each query 

cell’s 5 nearest reference cells in the harmonized embedding [...] 

For the Symphony-based k-NN model, we also enabled the option for Symphony to leave cells as 

unclassified based on a “prediction confidence score” (Methods), which measures the proportion 

of reference neighbors with the winning vote. 
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To investigate how sensitive the label transfer is to the choice of k, we used the fetal liver 

hematopoiesis example to test values of k ranging from 5-50. We found that the median cell type 

F1 score (ranging from 0.82 to 0.84) and overall classification accuracy (ranging from 0.846 to 

0.850) for the query were both highly stable over values of k. We have added this result to 

Supplementary Fig. 8d (below). We would recommend that users alter the k parameter so that it 

is ideally no larger than the number of cells in the rarest cell type of the reference. For example, if 

the reference contains only 10 cells of a rare cell type, then we recommend the user set k no 

higher than 10, to ensure that rare cell types in the reference have the chance of being predicted 

given a majority vote k-NN classifier. In general, if the cell types in the reference are clearly well-

separated, k should not make a big difference; if the cell types are more mixed, then k might be 

more important. 

To address the concept of a prediction confidence score for the k-NN classifier (brought up in 

Reviewer #1, Comment #1), we have augmented the k-NN prediction function in our package to 

return the proportion of reference neighbors used to make the assignment. This reflects the 

confidence in cell type assignment and can be used to identify cells that lie “on the border” 

between two annotated reference cell states. For the fetal liver example, we find that cells that 

are incorrectly predicted by 30-NN have lower confidence than cells that are correctly predicted 

(added as Supplementary Fig. 8b). In fact, prediction accuracy tracks closely with prediction 

confidence (Supplementary Fig. 8c). 

Added to Legend: (b) Boxplots showing prediction confidence (measured as the proportion of nearest 

reference neighbors with the winning vote) across query cells for 30-NN, colored by correct vs. incorrect 

prediction. (c) Relationship between prediction confidence score (x-axis; proportion of 30-NN with winning 

vote) and prediction accuracy (y-axis; proportion of correctly classified cells), showing that the two 

measures track closely. Point size is the number of cells with a given prediction confidence score. Error 

bars show 95% C.I. using the binomial proportion confidence interval. (d) Median cell type F1 and overall 

classification accuracy across varying values of k=5, 10, 30, 50 used for query cell type prediction. 

Added to Main Text (fetal liver section):  

We first inferred query cell types with k-NN classification (Methods) and confirmed accurate cell 

type assignment based on the authors’ independent query annotations47, achieving median cell 

type F1 score of 0.83 and overall accuracy of 85.0% for k=30 (Supplementary Fig. 8a, 

Supplementary Table 9). Correctly predicted cells generally had a higher proportion of reference 

neighbors supporting the predicted label (Supplementary Fig. 8b-c). To assess sensitivity to the 
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parameter of k for inference, we tested values of k ranging from 5 to 50 and found that median 

F1 remained highly stable (0.82-0.84) across choices of k (Supplementary Fig. 8d). 

As another example of using the prediction score, we use the example of predicting ground truth 

(as obtained by flow sorting) cell types in the Buenrostro scATAC-seq dataset (see Reviewer 

#1, Comment #3), which contains a continuum of closely related cell states undergoing 

differentiation (Supplementary Fig. 14) rather than clearly segregating cell types. We built a 

reference from all donors except one (BM1214), then mapped the query donor and inferred its 

cell types using 5-NN. Cells with incorrectly predicted cell types tended to have a lower 

proportion of neighbors supporting their prediction due to falling on the “border” between two 

reference cell types, showing the utility of the metric. 

 

 

 

Additionally, we would like to emphasize that Symphony embeddings can be used to predict 

query labels from reference cells using additional strategies beyond a k-NN classifier 

(linear/logistic regression, SVMs, etc.), as demonstrated in Fig. 3a in the comparison to 

supervised classification methods. For most analyses in the manuscript, we used k-NN since it is 

simple and intuitive. Part of the Discussion (reproduced below) acknowledges other strategies 

for predicting cell labels: 

Discussion:   

We approach annotation transfer in two steps. We first learn a predictive model in the reference 

embedding, and then map query cells and use their reference coordinates to predict query 

annotations. In this two-step approach, Symphony mapping provides a feature space but is 

otherwise independent from the choice of downstream inference model. In PBMC type prediction 

(Fig. 3a), we used Symphony embeddings to train multiple competitive classifiers: k-NN, SVM, 

and logistic regression. In our specific analyses, we found that a simple k-NN classifier can 

achieve high performance with only 5-10 neighbors, and modestly outperformed SVM and logistic 

regression (Fig. 3a). In practice, users can choose more complex inference models if it is 

warranted for certain annotations. 

Minor comments 

Reviewer #1, Minor Comment #1: 
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The overlapping density plots shown in Figure 2C at first glance 

appear to show the Harmony methods with a density peak at 1, but these 

in fact are from the PCA plots below. An alternative visualisation 

could be used that would avoid this problem (violin plot or box plot 

for example). 

We thank the reviewer for pointing this out. We have now updated Fig. 2c to use a boxplot 

instead of a density plot, as suggested. 

 

Reviewer #1, Minor Comment #2: 

The Seurat functions BuildSNN and RunModularityClustering aren’t part 

of v3/v4. They were replaced by FindNeighbors and FindClusters. Which 

functions and Seurat version were used for clustering? 

We thank the reviewer for catching this discrepancy. The function used for clustering was the 

internal (non-exported) Seurat function Seurat:::RunModularityClustering (Louvain 

implementation). The function used for building the nearest neighbor graph is actually not from 

the Seurat package but was actually the 

singlecellmethods:::buildSNN_fromFeatures function from the singlecellmethods 

package (available on GitHub): 

https://github.com/immunogenomics/singlecellmethods/blob/master/R/buildSNN.R. We 

apologize for the incorrect attribution and have updated the Methods text to reflect this 

distinction and thank the reviewer for pointing this out. 

Reviewer #1, Minor Comment #3: 

The GitHub repository containing the code to reproduce the analysis is 

not accessible, so I was unable to review the code used. 

We apologize for this inadvertent oversight. The code to reproduce the analyses is now available 

and accessible at https://github.com/immunogenomics/symphony_reproducibility.  

Added to code availability:  

Jupyter notebooks and scripts to reproduce figures are available at 

https://github.com/immunogenomics/symphony_reproducibility. 
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Reviewer #1, Minor Comment #4: 

The authors should make the R package available on CRAN on 

Bioconductor. 

We are actively working on making the R package available on CRAN and it will be fully available 

once the manuscript is accepted for publication. 
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Reviewer #2 

In this paper by Kang et al, entitled "Efficient and precise single-

cell reference atlas mapping with Symphony", the authors present an 

algorithm to build integrated atlases and rapidly mapping query 

datasets. This mapping is much faster than performing de novo 

integration of the reference and the query and yields similar results. 

Moreover, it performs batch correction simultaneously to mapping, if 

necessary. As such, the reference atlas is frozen and not influenced 

by the query dataset. These are all useful and desirable 

functionalities in scRNAseq data analysis. The authors demonstrate 

Symphony capabilities on several datasets with complex experimental 

designs and compare Symphony performances with Seurat and scArches. 

The manuscript is well written, the methods section is accurate, and 

the description of the analyses is in general sound and convincing. I 

also congratulate the authors for the optimal implementation of the 

github page, with clear and documented tutorials, a rarity when 

reviewing yet unpublished tools. 

We thank the reviewer for their positive and enthusiastic comments. 

Reviewer #2, Comment #1: 

In my opinion, the main limitation of this tool is the first condition 

that must be met for its use: the fact that all cell states in the 

query data set are captured by the reference dataset. Although 

“reasonable”, it is not easy to satisfy this requirement. Often the 

user does not know a priori the composition of its dataset. In fact, 

the entire operation of mapping it to an atlas is performed to answer 

this very question. A dataset, even if obtained through cell sorting, 

could contain contaminant cells or unknown populations. When comparing 

organisms, as performed in the manuscript for pancreas populations in 

human and mouse, the comparability of cell populations is also an 

issue. Seurat, for example, assigns cells two different scores: 

mapping score and prediction score. The first reflect confidence that 

the cell is well represented in the reference, the second reflect 

confidence in the associated annotation. Is it possible to provide a 

similar mapping score for Symphony? E.g. in the Pancreas dataset 

analysis, Schwann cells are present in the query but not in the 

reference. These cells are mapped (to the most transcriptionally 

similar cell types I assume) but are not considered in accuracy 

estimation. Is there any way to assign a score that flag these cells 

as not represented in the reference? For example, are they far away 

from most centroids? A mapping score is important because a user could 

mislabel cells and the misuse them without realizing it. 

We thank the reviewer for this helpful feedback and comments. We now offer two new metrics that 

help reflect the confidence in mapping, as well as one new metric for prediction confidence. 

Ultimately, we recommend that users try several metrics to evaluate their mapping and perform a 
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manual review for any suspicious query cells or cell clusters. For full details, please see 

Reviewer #1, Comment #1. 

Using these metrics, we see that the mouse cells in the pancreas example appear to be 

comparable (slightly higher metrics) to the human cells. This is perhaps expected given that in 

order to perform the mapping, we “humanized” the mouse genes by using the corresponding 

orthologs to translate between the gene names of the two species; we do not see any evidence 

that there is a novel cell type in the mouse cells based on the metrics that we developed. 

We find that the Schwann cells are a particularly 

difficult example, and neither Symphony nor 

Seurat’s mapping metrics (shown below) are able 

to distinguish them as potentially novel. They are a 

very small population in the query (<20 cells). The 

Symphony per-cluster metric generally works well 

(see Reviewer #1, Comment #1), but because it 

requires the calculation of query cluster covariance 

in low-dimensional space, it is challenging to define 

parameters accurately for rare populations; this 

makes identification of mismapping difficult. As 

described in Reviewer #2, Minor Comment #9, 

the Schwann cells are mapped to stellate cells (the most transcriptionally similar type) by both 

Symphony and Seurat mapping as well as de novo integration methods. 

 

We further note that the identity of these cells is somewhat uncertain. While they are labelled as 

Schwann cells by the original authors, the authors also noted that some of the markers were not 

consistent with conventional Schwann cells (quoted from Baron et al., Cell Systems, 2016): 
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“We hypothesize that this population of 13 cells represents pancreatic Schwann cells responding to 

injury. These cells express known Schwann cell markers such as SOX10, S100B, CRYAB, NGFR, PLP1, and 

PMP22. However, components of the myelin sheath are lowly expressed or absent, and several genes 

shown previously to be upregulated in the Schwann cell response to nerve injury mark the population. 

These genes include SOX2, ID4, and FOXD3, which are transcription factors associated with Schwann cell 

dedifferentiation and repression of myelin sheath component expression... Based on this profile of 

expression of known Schwann cell and injury markers, we characterize this cell population as Schwann 

cells that dedifferentiated under extraction and culture conditions.” 

Hence, given the somewhat ambiguous identity of Schwann cells and extremely low population 

size in this example, we focus the discussion of confidence metrics in the new Supplementary 

Note 1 on the fetal liver hematopoiesis and 10x PBMCs examples. 

Reviewer #2, Comment #2: 

Note that this could also be used on purpose to force the positioning 

of cells on a reference or on a trajectory. For example, the authors 

in lines 354/356 discuss about healthy and diseased samples. It would 

then be interesting to see what happens if we map tumor cells to an 

atlas that contain the same normal tissue. Can we discriminate cancer 

cells with stem or differentiated features? 

We thank the reviewer for the suggestion and agree that it would be interesting to map tumor 

cells onto the corresponding healthy tissue. By “forcing” the positioning of tumor cells onto a 

healthy reference embedding, we may potentially find normal cell types that the tumor cells are 

most similar to. In a new analysis, we built a reference atlas of healthy fetal kidney cells from 

Stewart et al. (n=27,203 cells) [11]. For the query, we used a renal cell carcinoma (RCC) dataset 

(n=34,326) from Bi et al. [12], which includes both tumor cells and tumor-associated 

immune/stromal compartments. We find that tumor cells have higher per-cell metrics (indicating 

worse mapping) compared to the immune and stromal cells. Interestingly, the tumor cells map 

primarily to the reference “proximal tubule” and its immediate precursor state (“Medial S shaped 

body”), which is consistent with prior literature that RCC derives from proximal tubule cells [13]. 

We refer the reviewer to the new Fig. 6 and additions to the Main Text (below) for more details. 

Added to Main Text:  

Symphony maps tumor-derived cells onto a healthy atlas 

Given that Symphony maps unseen query cells to their most similar reference type, we 

hypothesized that Symphony may be able to map tumor-derived cells onto an atlas of 

corresponding healthy tissue. As an exploratory analysis, we built a reference (n=27,203 cells) of 

healthy fetal kidney [11] and mapped a renal cell carcinoma (RCC) dataset (n=34,326 cells) [12], 

transferring reference cell type labels to the query using 10-NN and comparing the predicted 

labels to the original annotations from Bi et al. (Methods, Fig. 6). As a sanity check, we observed 

excellent correspondence between the original and predicted annotations for immune and stromal 

cell types (Fig. 6c). We next examined the mapping results for the cells from the three tumor 

programs (TP1, TP2, and Cycling Tumor) originally defined by Bi et al. We found that TP1 and 

TP2 both primarily mapped to the reference “Proximal tubule” cell type and its direct precursor 

(“Medial S shaped body”); Cycling Tumor primarily mapped to “Medial S shaped body”, 
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“Proximal tubule”, and “Proliferating distal renal vesicle,” concordant with a more actively 

proliferating phenotype (Fig. 6d). These results are consistent with prior literature, as RCC has 

been thought to arise from proximal tubule cells [13]. Compared to the immune/stromal 

compartments, the tumor cells exhibited higher per-cell mapping metrics, indicating that they are 

less well-represented by the reference (Fig. 6e). This example demonstrates how intentionally 

mapping novel cell types, such as cancer cells onto a healthy atlas, can potentially provide 

biologically informative results. 

 

Figure 6. Mapping tumor cells onto an atlas of healthy tissue. We built a reference of healthy fetal kidney 

(Stewart et al., 2019) and mapped a renal cell carcinoma dataset (Bi et al., 2021). (a) UMAP of healthy fetal 

kidney reference (n=27,203), colored by cell type as defined by the original publication. (b) Mapping tumor query 

dataset (which contains myeloid, lymphoid, stromal, and tumor compartments) onto the reference. Cells colored 

by reference (gray) or query compartment (as defined by original authors). (c, d) Heatmaps comparing original 

query cell types (rows), as defined by Bi et al., to the predicted reference cell types from Symphony (columns) for 

(c) immune and stromal compartments and (d) tumor cells. Color bar indicates the proportion of query cells per 

original cell type that were predicted to be of each reference type (rows sum to 1). Columns sorted by 

hierarchical clustering on the average gene expression (all genes) for the cell types to order similar types 

together. (e) Boxplot of per-cell mapping metric per query cell type (higher values indicate less confidence in the 

mapping), colored by tumor cells (orange) or immune/stromal (green) as defined in Bi et al. 

Added to Methods:  

We mapped a renal cell carcinoma dataset onto a reference of healthy fetal kidney cells (datasets in 

Supplementary Table 1). 

Building the healthy kidney reference 
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We found that the reference dataset gene names were assigned using Gencode v24, whereas the 

query dataset gene names were assigned using Gencode v30 liftover37 (query dataset .gtf file was 

provided by Bi et al.). For many genes, the names were mismatched between the two versions 

(different synonyms for the same gene). Therefore, to sync the two datasets, we used the Ensembl IDs 

of the reference genes to "convert" them to Gencode v30 gene names. We used the top 2,000 variable 

genes across all cells to build the reference with 15 PCs, integrating over “Experiment” with theta=0.5. 

Note that this reference building procedure is different from the original study (Stewart et al. 2019), 

which did not use Harmony. For improved readability, we collapsed cell type labels for immune and 

stromal cells (e.g. ‘Proliferating monocyte’ and ‘Monocyte’ were collapsed into ‘Monocyte’). 

Mapping the renal cell carcinoma dataset 

We mapped the query dataset starting from expression using default Symphony parameters, 

correcting for query ‘donor_id’. Because some gene names remained discordant between reference 

and query datasets, the mapping was based on the 1,723 (out of 2,000) reference variable genes 

shared. We used 10-NN to transfer reference cell type labels to the query. 

In lines 354-356 of the original submission (referenced by the reviewer), we wrote that: “...a 

reference with only healthy individuals is useful for annotation of cell types, while a reference with 

both healthy and diseased individuals is useful for annotation of cell types and pathological cell 

states.” If a query diseased cell does not map well to a healthy reference, it is difficult to attribute 

the difference to a healthy vs. disease difference, or a batch difference between reference and 

query. Therefore, in general, we recommend that if the biological question is about healthy vs. 

diseased states, then ideally a reference containing both healthy and diseased cells is used. 

Users can map cases and controls onto a common reference, for example, and then quantify 

abundance differences across reference-defined cell states. 

Reviewer #2, Comment #3: 

Finally, is it possible to provide a “prediction” score for the 5-NN 

classifier, since this classifier is implemented in the symphony 

package? 

We have added a prediction score to the k-NN prediction classifier that reports the proportion of 

neighbor reference cells that have the predicted label (ranging from 0 to 1). This score is helpful 

to identify cells that may fall “on the boundary” between two annotated clusters (see Reviewer 

#1, Comment #8 for details). 

Minor comments 

Reviewer #2, Minor Comment #1: 

Is the mapping of each query batch independent from the rest of the 

query? i.e. if I map once a query composed of multiple batches or if I 

perform several mappings, one for each batch, do I get the same 

results? This would also be an advantage over performing de novo 

integration or using other tools since the inferred label would not 

change. 
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We thank the reviewer for this insightful question. In the Symphony model, all query cells from all 

batches play a role in parameter estimation. Hence, each query batch is technically not 

independent. We have updated the Methods to inform users of this. We believe the lack of 

independence can actually serve as a helpful feature in Symphony, especially for complex query 

datasets that may contain complex batch structure where batch correcting within the query is 

advantageous. In practice, for more simple queries, the effect is minimal. For example, for the 

fetal liver example, regardless of whether one maps all five query donors together vs. individually, 

we find that the overall cell type prediction accuracy is the same (0.85 for both cases). 

Added to Methods (under “Mixture of experts correction”):  

Note that mapping results may slightly differ based on whether one maps query cells all together 

(correcting for query batches) or maps each query batch separately. Because all query cells play 

a role in parameter estimation if mapped altogether, the batches are technically not independent. 

Reviewer #2, Minor Comment #2: 

Seurat is sometimes referred to as Seurat, Seurat v4, Seurat 3, Seurat 

3 / 4. Also, at line 79 authors say that Seurat v4 is “compatible” with 

Seurat integration. This is a bit confusing (and not clear). Seurat 3 

and 4 adopts the same exact anchor-based integration strategy, both for 

de novo integration and label transfer. The only difference (for what 

concerns the topic of this work) is that Seurat v4 introduces the 

mapQuery function that allows query projection onto the reference UMAP 

structure. Therefore the authors can simply refer to “Seurat” and 

specify the used version only in the method section. 

We thank the reviewer for clarifying this confusing terminology. We have edited the manuscript 

text and figures to refer to Seurat as simply “Seurat” and have moved version details to the 

Methods for clarity. For the initial submission, we had used Seurat v4 beta (since Seurat v4 was 

still under development), but we have now installed Seurat 4.0.2 and reran all the analyses with 

the most updated version to remake Fig. 4 and Supplementary Figs. 5-6. We now use Seurat 

v4.0.2 for all analyses in the manuscript. 

Reviewer #2, Minor Comment #3: 

In figure S1C Zr_corr should be replaced with Zr as written in table 

2. 

We thank the reviewer for catching the mismatch. We have made the change to 

Supplementary Fig. 1 and legend. 

Reviewer #2, Minor Comment #4: 

The calculation of LISI is not clear; from what I understood, the 

value should range between the minimum and maximum number of 

categories. Why then in figure 2c values seem to go below 1 and above 

3? How many neighbours are used for LISI calculation? 

We thank the reviewer for pointing this out. The reviewer’s understanding is correct; in this 

example, LISI should range between 1 and 3. The values that seem to go below 1 and above 3 in 
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Fig. 3c were an artifact of the geom_density_ridges function in the ggridges package 

used for plotting. We have updated the figure to use a boxplot instead, which clarifies that the 

values range from 1 to 3 as expected (see Reviewer #1, Comment #9 for updated plot). For the 

LISI calculations, we used the default parameters for compute_lisi (with perplexity = 30). 

Perplexity refers to the effective number of each cell’s neighbors. We have added this to the 

Methods. 

Added to Methods:  

To compare dataset mixing between de novo integration and mapping, we calculated Local 

Inverse Simpson Index (LISI) using the compute_lisi function from 

https://github.com/immunogenomics/LISI with default parameters (perplexity = 30). 

Perplexity represents the effective number of each cell’s neighbors. 

Reviewer #2, Minor Comment #5: 

Line 157: the use of “similarity” here is not intuitive. Authors 

should say that it is an elaboration of distance (see line 156). 

Moreover, the checkmark and x mark in figure S2 are misleading since 

they evocate “correct” and “wrong” but instead it is a matter of good 

and bad mapping. 

We thank the reviewer for noting this confusing terminology. To clarify, we used the radial basis 

function (RBF) kernel to measure similarity as a function of squared Euclidean distance: 

similarity(x,y) = exp(-ǁx-yǁ2/(22)). Technically, since we are using Spearman correlation (rank-

based), we can actually use distance directly rather than similarity and obtain the exact same 

correlation rho values. Therefore, for the sake of clarity and intuitiveness, we have rewritten this 

section to simply use the word “distance” rather than similarity, as the Spearman rho values for k-

NN-corr remain the same either way. We have updated Supplementary Fig. 2d-e to reflect this 

change. We have also updated Supplementary Fig. 2b-c by replacing the checkmark and x-

mark with the phrases “Good mapping” and “Bad Mapping”. 
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Reviewer #2, Minor Comment #6: 

What are the dashed lines in figures 2d and S2f? 

We thank the reviewer for noting the confusing lines. The dashed lines in Fig. 2d and 

Supplementary Fig. 2f denote the mean value of k-NN-correlation across all query cells for a 

given mapping approach. In the previous version of the manuscript, there was a plotting error in 

Supplementary Fig. 2f where the mean was plotted as the mean across the entire dataset 

(rather than within each query facet separately). We have since fixed the error in the updated 

figure below and thank the reviewer for noting it. We have also modified the legends for both Fig. 

2d and Supplementary Fig. 2f to clarify. 
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Reviewer #2, Minor Comment #7: 

Figure 2 refers to “harmony” embedding whereas the text talks mainly 

about gold standard embedding. I would uniformise for clarity. 

We thank the reviewer for pointing out this confusing terminology. We have updated the text and 

legend of Fig. 2 to uniformise to “gold standard” embedding (see Reviewer #2, Minor Comment 

#17 for updated Fig. 2). 

Reviewer #2, Minor Comment #8: 

The 5-NN classifier is not described in the methods. How does it work? 

Sometimes the authors use different numbers of neighbors. How can a 

user tune this number? 

We thank the reviewer for this question regarding the classification step. The k-NN classifier 

works as a simple weighted vote of the k nearest neighbors. In our package, users can modify 

the value of k. To help users interpret their results, we have added a prediction confidence 

score. We find that the prediction labels are quite stable regardless of choice of k (see Reviewer 

#1, Comment #8 for details). 

Reviewer #2, Minor Comment #9: 

Schwann cells are shown in figure S4a but not in figure 4b. How are 

they classified after symphony mapping? De novo integration appears to 

locate them close to stellate cells. 

We thank the reviewer for this insightful comment. Schwann cells are a small population of 19 

cells in the query that are missing in the reference. They map closest to the reference stellate 

cells, and all 19 cells are predicted to be “stellate” by 5-NN. To explore whether these two cell 

types are transcriptionally similar, we applied a simple hierarchical clustering to the average 

expression profile for each query cell type (assigned in the Baron et al. human dataset) that 

shows that Schwann cells are indeed transcriptionally similar to stellate cells. To further quantify 

this, we calculated the correlation between each pair of cell types (based on average expression 

of the 2,236 reference variable genes across all cells belonging to that type in the Baron et al. 

human data). We see that stellate is the cell type with the highest correlation to Schwann cells 

(Pearson r=0.68). We now show Schwann cells in Fig. 4b-d. Furthermore, as we mentioned in 

Reviewer #2, Comment #1, the identity of these cells is somewhat uncertain given the original 

author’s observation that these cells lack expression of myelin sheath (which is characteristic of 

Schwann cells) and are hypothesized to represent a dedifferentiated population. 
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Encouragingly, the mapping result is consistent with the de novo integration results. As the 

reviewer noted, de novo integration locates the Schwann cells near stellate cells. Hence, we note 

that identifying Schwann cells as novel may be a difficult task: if de novo integration does not 

distinguish them as clearly distinct, then it will be hard for reference mapping to do so too. The de 

novo integration results for Symphony (left), Seurat (middle), and trVAE (right) are reproduced 

from Supplementary Fig. 6: 

Reviewer #2, Minor Comment #10: 

When comparing Symphony with Seurat in the Pancreas dataset, it is not 

clear if the authors used the labels predicted by the Seurat 

TransferData function. 
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In the original submission, we used 5-NN for all 3 of Symphony, Seurat, and scArches for 

comparability. For Seurat, this was based on Seurat’s embedding of query cells in reference PCA 

space, as calculated in MapQuery. To address this comment, we reran the Seurat experiments 

using TransferData as well, and found the cell type classification results to be overall highly 

concordant: interestingly, 5-NN actually performed slightly better for predicting epsilon cells 

compared to the TransferData function. We added both sets of results (Seurat 5-NN and 

Seurat TransferData) to an updated Supplementary Fig. 5c and updated the Methods. 

 

Reviewer #2, Minor Comment #11: 

Line 243-248. Does this refer to figure S5C and S5D? If yes, please 

insert ref to the figure. 

Yes, those lines refer to (now renumbered) Supplementary Figs. 6c-d. We have inserted a 

reference to those figures into the text. 

Reviewer #2, Minor Comment #12: 

Here the use of 3’ and 5’ is a bit confusing. Figure 5b even names 3’ 

cells. I would use the same nomenclature adopted in figure 1: 

reference (3’) and query (5’). 

We fully agree with the reviewer that the use of 3’ and 5’ is confusing. We have updated Fig. 

5b-d and Supplementary Fig. 7-8, main text, and legends with the reviewer’s suggested 

phrasing (also see next comment below). 

Reviewer #2, Minor Comment #13: 

Line 267-270 and figure S7 description are complex and should be 

rephrased. Please avoid using expressions such as “5’-to-3’ 

experiment”, use query-to-reference instead. 
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We thank the reviewer for noting the convoluted phrasing. We have rephrased the lines noted 

and Supplementary Fig. 8 (renumbered from 7) legend to improve clarity. Part of the reason why 

the wording was complicated is that we initially presented results for “held-out donor” 

experiments (within the 3’ dataset only) in addition to the main query-to-reference experiment. 

For the sake of clarity and readability, we have since removed the held-out donor analysis and 

focus solely on the main query-to-reference experiment in both text and figures for this section. 

 

Modified Supplementary Fig. 8a Legend: Fetal liver hematopoiesis cell type classification. We 

mapped the query (5’, n=21,414, n=5 donors) dataset onto the reference (3’, n=113,063 cells, 14 donors) 

and assessed cell type classification accuracy across 27 fine-grained cell types: (a) Cell type confusion 

matrix for 30-NN cell type classification, colored by the proportion of query cells in a given true cell type 

that was classified to each reference label (rows sum to 1). 

Modified Main Text:  

We first inferred query cell types with k-NN classification (Methods) and confirmed accurate 

cell type assignment based on the authors’ independent query annotations47, achieving median 

cell type F1 score of 0.83 and overall accuracy of 85.0% for k=30 (Supplementary Fig. 8, 

Supplementary Table 7). 

Reviewer #2, Minor Comment #14: 

Line 272: here figure S6C should be cited. 

We have added the citation to the figure (now renumbered Supplementary Fig. 7) in the text. 

Modified Main Text:  

To evaluate query trajectory inference, we used the Symphony joint embedding to position 

query cells from the MEM lineage (n=5,141) in the reference-defined trajectory by averaging the 

FDG coordinates of the 10 nearest reference cells (Supplementary Fig. 7c). 

Reviewer #2, Minor Comment #15: 
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In the description of CITE-seq dataset analysis, it should be made clear 

that ground truth protein values are derived by smoothing of the 

measured expression. 

We thank the reviewer for this comment. To make it clear that the measured protein 

expression was smoothed for the ground truth values, we have modified the Main text as 

follows (see Reviewer #3, Comment #5 for additional details). 

Modified Main Text:  

Then, we mapped the held-out query using only mRNA expression to mimic a unimodal scRNA-

seq experiment, reserving the measured query surface protein expression for validation. To 

mitigate sparsity and variability in detection, we defined ground truth protein values using 50-NN 

smoothing of the measured values from CITE-seq (i.e. averaging the expression of 50 nearest 

neighbors in the embedding, Methods). We accurately predicted the surface protein expression 

of each query cell using the 50-NN average from the nearest reference cells in the harmonized 

embedding. For all proteins, we found strong concordance between predicted and ground truth 

expression (Pearson r: 0.88-0.99, Fig. 7c-d). 

Reviewer #2, Minor Comment #16: 

Line 771: V is not defined in the glossary. 

We have added V to the glossary, clarifying that reference PC embedding Zr = ΣrVrT and 

that query PCA projection embedding Zq = ΣqVq
T. 

Reviewer #2, Minor Comment #17: 

Line 873-875. Here it is stated that the top 2,000 variable genes 

across all cells were selected. But in the pbmc tutorial and also in 

the pbmc pre-built reference (both in the github rep), there are more 

than 2,000 variable genes. It looks like the function for variable 

genes selection performs a union of the variable genes identified in 

each batch. Is this the case? 

We thank the reviewer for recognizing this potentially confusing discrepancy. When generating 

Fig. 2 (PBMCs analysis) included in the original submission version of the manuscript, we did 

select the top 2,000 variable genes across all cells, rather than within each batch (i.e. 3pv1, 3pv2, 

or 5p) separately. However, we have since moved to calculating variable genes within each batch 

separately then pooling them as the recommended variable gene selection approach. To make 

things consistent we have remade Fig. 2 and have redone the 10x PBMCs analysis using top 

1,000 variable genes within each reference donor then pooling them, which kept the total number 

of genes near (but not exactly) 2,000 as in the original version. The updated Fig. 2 is reproduced 

below, and we have updated the Methods text for the analysis. 
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Reviewer #2, Minor Comment #18: 

Line 957: I would not use U to indicate the matrices since U is 

already used to indicate gene loadings. 

We thank the reviewer for catching the overloaded use of the symbol U. We have replaced the 

symbol “U” with “E” (for expression) in this section to improve clarity. 

Modified Methods:  

Mapping from mouse to human genes is then performed with matrix multiplication: Ehuman= 

MEmouse. Note that while the mouse gene expression matrix Emouse contains only integers (Emouse∈ 
Zd×N), the many-to-many mapping means that the mapped human gene expression matrix Ehuman 

may contain non-integers (Ehuman∈ RD×N). 
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Reviewer #3 

Summary 

The manuscript presents a new pipeline, Symphony, to accelerate the 

mapping of the new query cells with a minimal change to the reference 

embeddings. Symphony compresses reference via building a linear 

mixture model first introduced by Harmony and assigns labels 

iteratively to the query cells in a low dimension embedding based on 

similarity. Symphony can efficiently store the reference data to allow 

the mapping of new cells. The potential reduction of training time to 

compress reference datasets and increase consistency in data 

visualization would be of interest to the general scRNA-seq community. 

We thank the reviewer for their overall positive comments. We agree that mapping to stable 

references would aid the interpretation and reproducible annotations for new query datasets. 

Major comments 

Reviewer #3, Comment #1: 

The promise of fast mapping of new query cells can only be achieved 

with a comprehensive and ready-to-go reference dataset. It would be 

important to provide pre-built atlas level reference embeddings for 1) 

adult mouse from Tabula Muris, Tabula Muris Senis, Microwellseq, 2) 

adult human from Human Cell Atlas, and demonstrate their usability. 

We thank the reviewer for this helpful comment. We agree that the value of single-cell reference 

mapping will be realized with high-quality, comprehensive references, and that providing pre-built 

reference atlases would greatly increase the resource value of Symphony. 

Based on the reviewer’s comment, we have added the Tabula Muris Senis (FACS) atlas 

(n=110,824 cells) as a comprehensive mouse atlas, as well as a mapping example in the latest 

version of the pre-built references tutorial on GitHub: 

https://github.com/immunogenomics/symphony/blob/main/vignettes/prebuilt_references_tutorial.i  

pynb. We agree that the adult human atlas from Human Cell Atlas (Tabula Sapiens) would also be 

useful; however, given that it is not yet peer-reviewed, we will defer building a Symphony 

reference from this dataset until cell type annotations are finalized. In the interim, we have focused 

on generating other (more focused) human atlases that we believe will be useful in many 

applications (Table 1). In total, we have generated a compendium of 8 pre-built references readily 

available with this initial release of Symphony (see Table 1 for Zenodo links to download each 

reference). These include 10x PBMCs, pancreatic islet cells, fetal liver hematopoiesis, healthy fetal 

kidney, multimodal memory T cells, cross-tissue fibroblast atlas, cross-tissue immune atlas, in 

addition to the mouse atlas Tabula Muris Senis. In particular, the cell-type-focused fibroblast and T 

cell atlases have already proved useful in other studies from our group [14,15]. In the near future, 

our group has plans to provide additional references to the community as part of the Accelerating 

Medicines Partnership (AMP) Consortium, which aims to build large-scale, clinically 
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actionable atlases from healthy and diseased tissue samples of synovium in rheumatoid arthritis 

synovium and kidney in systemic lupus erythematosus. 

The Symphony pipeline is able to efficiently construct large-scale references within hours, which 

will enable the greater single-cell community to incorporate reference construction and sharing as 

part of routine data sharing practices. We encourage users who use Harmony integration for 

integrative analyses to publish their harmonized atlas as a mappable object using Symphony in a 

public open-access repository such as Zenodo. Our package includes a user-friendly 

buildReferenceFromHarmonyObj function to help facilitate this, and we have provided many 

examples with this manuscript. 

Table 1. A Compendium of Pre-built Symphony Reference Atlases 

  Name Description Zenodo  

Link 

Data source 

1 10x PBMCs Atlas Healthy human PBMCs (n=20,571) 

sequenced using three 10x protocols 

(3’v1, 3’v2, 5’) 

Link  10x Genomics 

  

2 Pancreatic Islet Cells 

Atlas 

Pancreatic islet cells (n=5,887) from 32 

human donors; from 4 separate studies 

Link  Segerstolpe et al. (2016)42
 

Lawlor et al. (2017)43
 Grun 

et al. (2016)44
 Muraro et al. 

(2016)45
  

  

3 Fetal Liver 

Hematopoiesis Atlas 

Human fetal liver cells (n=113,063) from 

14 donors, sequenced with 10x (3') 

Link  Popescu et al. (2019)47
  

  

4 Healthy Fetal Kidney 

Atlas 

Human fetal kidney cells (n=27,203) 

from 6 samples 

Link  Stewart et al. (2019)60
  

  

5 Memory T Cell 

(CITE-seq) Atlas 

Human memory T cells (n=500,089) 

from a tuberculosis cohort (259 

donors) assayed with CITE-seq 

Link  Nathan et al. (2021)56
  

  

6 Cross-tissue  

Fibroblast Atlas 

Human fibroblasts (n=79,148) from 

74 samples spanning 4 inflammatory 

tissues and corresponding controls 

Link  Korsunsky et al. (2021)25
  

  

7 Cross-tissue  

Inflammatory  

Immune Atlas 

Immune cells (n=307,084) from 125 

healthy or disease-affected donors 

across 6 inflammatory diseases 

Link  Zhang et al. (2021)61
  

  

8 Tabula Muris Senis 

(FACS) Atlas 

Mouse cells from 23 tissues and organs 

(n=110,824 cells) across the lifespan. 

Link  The Tabula Muris 

Consortium (2020)62
    

 

4 3  

https://zenodo.org/record/5090425
https://zenodo.org/record/5090425
https://zenodo.org/record/5090425
https://zenodo.org/record/5090425
https://zenodo.org/record/5090425
https://sandbox.zenodo.org/record/772596#.YOdFIhNKjlw
https://zenodo.org/record/5090425
https://zenodo.org/record/5090425


Symphony reference UMAP for Tabula Muris Senis (added to GitHub tutorial): 
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Added to Data Availability Statement:  

Additionally, we provide a compendium of 8 pre-built Symphony references available for 

download on Zenodo (see Table 1). 

Added to Discussion:  

Instead of a single monolithic reference for all cell types across all tissues and disease, we 

expect the proliferation of multiple, well-annotated specialized references that focus on fine-

grained modeling of diverse biological systems. In this initial release of Symphony, we provide 

eight pre-built reference atlases (Table 1) and an efficient, user-friendly pipeline to facilitate 

community expansion of high-quality references for the single-cell community. We encourage 

atlas builders to share their datasets as a mappable reference on open-access data 

repositories, such as Zenodo. 

Reviewer #3, Comment #2: 

First assumption of Symphony is that “all cell states represented in 

the query data set are captured by the reference dataset”. However, in 

practice, it is hard to know a priori all cell types in the query 

dataset. Thus, it still would be important for potential users to know 

how Symphony would handle novel query cell types or query cell types 

that do not have corresponding cell types in the training set. 

We thank the reviewer for the helpful feedback. We agree that it is difficult to know whether the 

first assumption of Symphony is violated a priori. We have added new analyses that address this 

and now offer several confidence metrics that can aid users in identifying cells that may not be 

well-represented in the reference. For details, please see Reviewer #1, Comment #1 for an 

extensive discussion and Reviewer #2, Comment #2. 

Reviewer #3, Comment #3: 

The mapping time scales well with reference cell size. How well does 

it scale well with the number of cell types in the reference datasets? 

We thank the reviewer for this question. This is difficult to directly assess, since cell types can be 

defined at varying resolutions (e.g. fine-grained T cell subsets, rather than coarse-grained major 

cell types). For example, in the COVID-19 atlas (Supplementary Fig. 4), the authors defined 12 

broad cell types which consist of 64 fine-grained types. Rather than directly measuring runtime as 

a function of number of author-defined cell types, we tested the number of principal components 

(d) and the number of centroids (k), as these measure the biological complexity captured in the 

reference, and may be what the reviewer is interested in interrogating. 

To address this question, we kept the number of reference and query cells constant (at 50,000 

and 10,000, respectively) and varied the number of reference soft clusters used in the mixture 

model (k) and number of dimensions in the embedding (d). We find that the query mapping time 

scales well as we increase the complexity of the reference. Results are summarized in 

Supplementary Table 4 (reproduced below). 

Main Text:  
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 Effects of # reference centroids and # dimensions 

k (# centroids) d (# dimensions) 

 Reference building  

elapsed time (s) 

Query mapping  

elapsed time (s) 

 Effect of # centroids (keep everything else constant) 

25   20 58.94 0.693 

50   20 70.89 0.741 

100   20 139.38 0.805 

200   20 275.89 0.983 

400   20 1781.44 5.106 

          

  Effect of # dimensions (keep everything else constant) 

100 10 219.04
 0.753 100 20 142.43
 0.812 100 40 270.97
 1.581 100 80 176.37
 0.934 100 160 300.96
 1.132  

 

100 320 567.17 1.36 

50,000-cell reference (30 donors), 10,000-cell query (6 donors) for all experiments 

 

Importantly, Symphony mapping time does not depend on the number of cells or batches in the 

reference since the reference cells are modeled post-batch correction (Methods); however, it does 

depend on the reference complexity (number of centroids k and dimensions d) and number of query 

cells and batches (Supplementary Table 4) since the query mapping algorithm solves for the 

query batch coefficients for each of the reference-defined clusters. 

Reviewer #3, Comment #4: 

The runtime analysis only included Symphony reference building, query 

mapping, and Harmony de novo. How does this runtime fare against that 

of other methods (Seurat v4, scArches, SCN, scmap-cell, scmap-cluster, 

and SCINA)? 

We agree with the reviewer that benchmarking runtime against other methods would be 

informative. For this analysis, we benchmarked the Symphony reference building and mapping 

pipeline against scArches and Seurat v4, given that these methods (in contrast to SCN, scmap, 

and SCINA) fall under “true” reference mapping, which we define as placing query cells within the 

reference embedding (rather than assigning a hard label using supervised classification). We 

found that Symphony was the only method out of the three that was able to build references of 

>100,000 cells without excessive memory (>120 GB) or runtime (>24 hr) requirements. Note that 

in this analysis, we used Linux CPUs to run all jobs, whereas in practice, it would be preferable to 

use a GPU for neural-network-based methods such as scArches. We ran all three methods using 

CPUs (Linux machine) for comparability and because not all labs will necessarily have access to 

GPUs. We ran Symphony and Seurat using 4 cores. We recognized that scArches/trVAE would be 

better suited to have more computing, so we allotted it 48 cores instead of 4 cores. 
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 Reference mapping runtime comparison between Symphony, Seurat, and scArches, for building different 

sized references (runtime measured in mins) and mapping different sized queries onto a 50,000-cell 

reference (runtime measured in secs, plotted on log scale). Note that all methods were run on Linux 

CPUs (Symphony and Seurat were each allotted 4 cores, scArches was allotted 48 cores). All jobs were 

allocated a maximum of 120 GB of memory and 24 hrs of runtime. 

Added to Main Text:  

Compared to alternative reference mapping approaches Seurat and scArches, Symphony was 

the only method to scale to large datasets (>100,000 cells) without requiring prohibitive memory 

(>120 GB) or runtime (>24 hr) requirements (Fig. 3c). 

Added to Methods:  

To compare runtime against Seurat and scArches, we used the same different-sized benchmark 

datasets and ran reference building and mapping or the corresponding de novo integration method 

(anchor-based integration for Seurat or trVAE for scArches). All jobs were allocated a maximum of 

120 GB of memory and 24 hours of runtime (and automatically terminated if memory or runtime were 

exceeded). We measured reference building and mapping runtime and corresponding de novo 

integration runtime for each method as elapsed time starting from gene expression. All jobs were run 

on a Linux server: Symphony and Seurat were allotted 4 CPU cores, whereas scArches/trVAE was 

allotted 48 CPU cores to speed up runtime as it is a neural-net-based method. 

Reviewer #3, Comment #5: 

It wasn’t clear how the protein expression was inferred in Figure 6 

and how the parameters (50-NN) were chosen. 

We thank the reviewer for bringing up this confusing part. We tried three different values of k 

(5, 10, 50; results shown in Supplementary Fig. 12, reproduced below) and k=50 performed 

the best. We have clarified that the query protein expression was inferred using the protein 

measurements averaged across the 50 nearest reference neighbors (see Reviewer #2, Minor 

Comment #15 for revised Main Text). 
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Reviewer #3, Comment #6: 

What are some of the guiding principles for selecting a reference 

dataset? 

We thank the reviewer for this great question. We have added the following text to the 

Discussion to help frame some guiding principles for reference selection. 

Added to Discussion:  

Choosing which reference(s) to use is a key question in a reference-based analysis. When selecting 

a reference, one should consider (1) the relevance and comprehensiveness of the reference relative 

to the biological question of interest, (2) similarity of the cell-types being queried, (3) similarity of the 

technology used to assay the reference versus the query, (4) quality and resolution of cell-level 

annotations and any associated metadata, including the availability of additional modalities (e.g. 

CITE-seq), and (5) reference size (number of cells and samples included). For instance, a cell-type-

specific embedding like the memory T cell reference (Fig. 7) may be able to capture more variability 

within a given cell type compared to an unsorted PBMCs reference (Fig. 2), which may better capture 

variability across multiple immune populations. Similarly, a reference with only healthy individuals is 

useful for annotating normal cell types, while a reference with both healthy and diseased individuals 

is useful for annotating both physiologic and pathologic cell states. It may also be useful to map the 

query to several references and consider the results in aggregate. For example, one may first map 

cells to a comprehensive atlas for the tissue or context of interest for coarse-grained annotations, 

then remap cells from certain cell types onto cell-type-specific references (e.g. T cell-only) for more 

fine-grained annotations. 

Minor comments 

Reviewer #3, Minor Comment #1: 

To better demonstrate the accuracy of cell-type annotation, Fig.S3a 

should be included in the main figures. 

We thank the reviewer for the suggestion. We have now included this figure panel into the main 

figures as Fig. 3a. An update is that in the original analysis, we used Symphony to assign a label 

to every query cell, whereas the other methods were allowed to have a “rejection option” leaving 

cells unclassified. Some methods that performed well on this benchmark had a nontrivial number 

of unlabeled cells (including the previous top performer, SCINA), see Figure S9 reproduced from 

Abdelaal et al. [16], below. Hence, to make the comparison more fair, we added new results for 
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the k-NN classifier versions Symphony, in which Symphony did not assign labels to query cells 

predicted with 60% confidence or less (only assigned a label to cells with >3 of 5 reference 

neighbors with the winning vote). We found that, across 48 experiments, this led to unlabeled 

percentages of: 13.5% of query cells for the variable genes version, and 13.9% of query cells 

for the differentially expressed genes version. Both of these versions 

(Symphony_vargenes_kNN_predconf>0.6 and Symphony_DEGs_kNN_predconf>0.6) 

outperformed all other methods on this benchmark. We have also added the F1 scores for 

these 2 new versions to Supplementary Fig. 3. 

 

Fig. S9 from Abdelaal et al. (“A comparison of automatic cell identification methods for single-cell RNA-

sequencing data”), showing that other methods left some percentage of cells as unlabeled (i.e. not 

included in F1 score calculation). 
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Updated Fig. 3a:  

 

Figure 3. Symphony matches performance of top supervised classifiers and scales mapping to 

large references within seconds. (a) Following the cross-technology PBMC benchmarking experiment 

from Abdelaal et al. (2019)35, we ran a total of 48 train-test experiments per Symphony-based classifier. 

Two different versions of the Symphony feature embeddings were generated depending on variable gene 

selection method: top 2,000 variable genes (vargenes) or top 20 differentially genes (DEGs) expressed per 

cell type. Symphony embeddings were used to train 3 downstream classifiers: k-NN (k=5), SVM with radial 

kernel, and multinomial logistic regression (glmnet) with ridge. Symphony (orange) median cell-type F1 

score across 48 train-test experiments compared to supervised methods (green), demonstrating 

comparability to top supervised methods and stable performance regardless of downstream classification 

method. “predconf>0.6” indicates option where only cells with >60% prediction confidence were included (4 

or 5 out of 5 reference neighbors contributing to winning vote). Red dot indicates mean of median F1 

scores across 48 experiments (used for ordering the methods along the x-axis). [...] 

Added to Supplementary Fig. 3:  

50 



Updated Main Text:  

We used the resulting harmonized feature embedding to predict query cell types using three 

downstream models: 5-NN, SVM with radial kernel, and multinomial logistic regression. The 

Symphony-based classifiers achieve consistently high cell type F1-scores (average median F1 of 

0.79-0.87) comparable to the top three supervised classifiers for this benchmark (scmapcell, 

singleCellNet, and SCINA, average median F1 of 0.77-0.83; Fig. 3a, Supplementary Fig. 3). As 

discussed in Abdelaal et al.35, some classifiers (including SCINA) leave low-confidence cells as 

“unclassified.” Hence, for the Symphony-based k-NN model, we also enabled the option for 

Symphony to leave cells as unclassified based on a “prediction confidence score” (Methods), 

which measures the proportion of reference neighbors with the winning vote. For this option, we 

only assigned labels for cells with >60% confidence (which excluded ~14% of cells). Notably, a 

limitation of this benchmark is that the reference in each experiment consists of a single dataset 

(no reference integration involved). 

Updated Methods:  

Given the resulting Symphony joint feature embeddings, we used three downstream classifiers 

to predict query cell types: 5-NN, SVM with a radial kernel, and multinomial logistic regression 

(glm_net with ridge). We note that other methods in the original benchmark were permitted to 

have a “rejection option” (leave uncertain cells as “unclassified” and not included in F1 score 

calculation). Hence, we also added a version for each of the two Symphony 5-NN versions that 

only assigned a label if the cell had >0.6 prediction confidence (at least 4 or 5 neighbors with the 

winning vote). A total of 8 Symphony-based classifiers were tested (2 gene selection methods * 

3 downstream classifiers + 2 rejection option versions). 

Reviewer #3, Minor Comment #2: 

After line 102 “Symphony builds upon the linear mixture model 

framework first introduced by Harmony.”, the authors should emphasize 

the differences between the two algorithms. 

We thank the reviewer for the suggestion. We have updated the text to make the distinction 

between the two methods clearer. 

Modified Main Text:  

Symphony builds upon the linear mixture model framework first introduced by Harmony17. Briefly, in a 

low-dimensional embedding, such as principal component analysis (PCA), the model represents cell 

states as soft clusters, in which a cell’s identity is defined by probabilistic assignments across one or 

more clusters. For de novo integration of the reference datasets (using Harmony), cells are iteratively 

assigned soft cluster memberships, which serve as weights in a linear mixture model to remove 

unwanted covariate-dependent effects. Then, Symphony compresses the reference into a mappable 

entity, leveraging the reference-learned model parameters to add new query cells to the embedding. It 

maps cells into the reference without any iterative assignment and keeps reference cells stable. 
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<b>REVIEWERS' COMMENTS</b> 

Reviewer #1 (Remarks to the Author): 

I'd like to thank the authors for their incredibly detailed and thoughtful revision. All of my original 

comments have been addressed, and I recommend acceptance of the manuscript. 

Reviewer #2 (Remarks to the Author): 

The authors satisfyingly answered to all my comments, the new introduced features greatly improved 

the manuscript. 

Just 2 observations: in figure S14E it is not clear the separation between the barplots for the 3 groups. 

I think that an important detail reported at page 37 is that reference and query must be normalized in 

the same manner. Since the authors provided precomputed references, I suggest that they highlight the 

type of normalization adopted. This could also be saved in a slot inside the symphony object. 

Reviewer #3 (Remarks to the Author): 

I thank the authors for their thorough revision. All my questions and concerns have been sufficiently 

addressed. 
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Point-by-point response to reviewers

Reviewer #1 (Remarks to the Author):

I'd like to thank the authors for their incredibly detailed and
thoughtful revision. All of my original comments have been addressed,
and I recommend acceptance of the manuscript.

We thank the reviewer for their positive feedback.

Reviewer #2 (Remarks to the Author):

The authors satisfyingly answered to all my comments, the new
introduced features greatly improved the manuscript.

We thank the reviewer for their positive comments.

Reviewer #2, Comment #1:
Just 2 observations: in figure S14E it is not clear the separation
between the barplots for the 3 groups.

We thank the reviewer for noting this. We have updated Supplementary Fig. 14e by adding
dotted lines to make the separation between the 3 groups more clear.
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Reviewer #2, Comment #2:
I think that an important detail reported at page 37 is that reference
and query must be normalized in the same manner. Since the authors
provided precomputed references, I suggest that they highlight the
type of normalization adopted. This could also be saved in a slot
inside the symphony object.

We thank the reviewer for noting that it would be helpful to highlight the type of normalization
adopted in the reference so that the query can be normalized in the same way. We have updated
the GitHub tutorial for pre-built references to indicate the type of normalization used for each
reference; we have also updated the tutorial for how to build a reference to show how a user can
save this information as a custom slot inside the Symphony object.

Reviewer #3 (Remarks to the Author):

I thank the authors for their thorough revision. All my questions and
concerns have been sufficiently addressed.

We thank the reviewer for their positive feedback.
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