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ABSTRACT

Scanning fluorescence microscopes are now able to image large biological samples at high spatial and temporal resolution.
This comes at the expense of an increased light dose which is detrimental to fluorophore stability and cell physiology. To highly
reduce the light dose, we designed an adaptive scanning fluorescence microscope with a scanning scheme optimized for
the unsupervised imaging of cell sheets, which underly the shape of many embryos and organs. The surface of the tissue is
first delineated from the acquisition of a very small subset (∼ 0.1%) of sample space, using a robust estimation strategy. Two
alternative scanning strategies are then proposed to image the tissue with an improved photon budget, without loss in resolution.
The first strategy consists in scanning only a thin shell around the estimated surface of interest, allowing high reduction of light
dose when the tissue is curved. The second strategy applies when structures of interest lie at the cell periphery (e.g. adherens
junctions). An iterative approach is then used to propagate scanning along cell contours. We demonstrate the benefit of our
approach imaging live epithelia from Drosophila melanogaster. On the examples shown, both approaches yield more than a
20-fold reduction in light dose -and up to more than 80-fold- compared to a full scan of the volume. These smart-scanning
strategies can be easily implemented on most scanning fluorescent imaging modality. The dramatic reduction in light exposure
of the sample should allow prolonged imaging of the live processes under investigation.
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Figure S1. Scanning process. (a) Excitation foci illuminate the sample plane by plane. The shape of the shell can be guessed
from the 3 planes shown (out of typically 50). (b) In one plane of excitation, the pattern of foci is a hexagonal lattice masked by
the enveloppe of the shell at this plane. (c) To scan along the xy-plane, the excitation foci are moved by sequentially turning on
neighboring micromirrors of the DMD. (d) To retrieve sectioning, the small regions (red circle) near the point conjugated to the
excitation foci (cross) are kept, while the signal from the outer region is discarded.
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Figure S2. Estimation of a surface of interest of a wing imaginal disc epithelium, from a fractional sampling of 0.1% of the
space using the same data as figure 2a-c. (a) Intensity-histogram of the full stack image. (b) After correction of inhomogeneities
estimated using only 0.1% of the data, the histogram of full stack image collapses on a heavy-tailed Gaussian centered around 0
(dashed black line). Note that histograms of the full stack image are shown to validate the correction of inhomogeneities, but
cannot be used in the algorithm when only 0.1% of the points have been acquired. The inset provides a zoom on the heavy tail
(arrowhead) which corresponds to the bright points. These bright points are detected with a pure significance test where the
threshold T is set to have a pfa of 1%. (c) Drawing of the filters applied on the detected bright points. Two overlapping ransac
polynomial fits (here 1D for simplicity) are drawn in red and blue. Each ransac fit allows to classify bright points as inliers and
outliers, thus performing a first filter. In the overlapping region, we then only keep the bright points that are inliers for both
windows. (d) Detected bright points among the 0.1% pre-scanned points: Robust second order polynomial fits on overlapping
windows (based on RANSAC) allows to distribute bright points in two categories: the inliers -which are close to the surface of
interest- in red on the figure, and the outliers in blue on the figure. (e) The surface of interest is computed with a bi-cubic
harmonic spline interpolation of the inlier points. It is transformed into a volume of interest (shell) by defining a thickness.
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Figure S3. Particle Image velocimetry (PIV) analysis of movements in the hybrid scan acquisition. Two time points spaced
by 10 min were used to run a PIV algorithm (PIVlab toolbox40). (a) Computed displacement field (green arrows) superposed
with the first image used. (b) Correlation coefficient at each interrogation window between the two images used, once the
computed displacements have been compensated. (c) Height of the cross correlation peak at each interogation window. (d)
Distribution of velocities in the full scan and the shell scan regions.
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Figure S4. a,b: Percentage of epithelial ground truth bright voxels that are in the estimated thin volume Ŝ, obtained on the
same sample as in Fig. 4. (a) Evolution as a function of η = N0/N when α = 1/4 (dotted line), 1/2 (dash-dotted line), 3/4
(dashed line) and 1 (plain black line) and when no outlier removal is used (plain gray line). Results obtained for K = 3. (b)
Same but as a function of the number K of windows (with size Nx/K×Ny/K) when η = 10−3. Each curve has been obtained
with averaging these percentages for 50 realizations of the set Ω0 (the error bars correspond to the standard deviation of these
percentages). c,d: Robustness of the surface estimation step in the presence of non quadratic surfaces with abrupt transitions.
(c) Left: True surfaces generated for 2 values of the transition width between z = 10 and z = 50 (Top: 88% of the windows’
size, Bottom: 18%). The 3D images are composed of 1024×1024×60 voxels. The surfaces are then estimated from a set of
points, composed of 1000 inliers (in red) randomly distributed inside the 3µm-thickness shell around this surface (still
assuming a voxel size of 0.27µm×0.27µm×0.5µm, see Experimental set-up in the Method section) and of outliers (in blue)
randomly and uniformly distributed inside the whole image volume (in this example: 50% of points corresponds to outliers).
Right: Corresponding surface estimation results. (d) Evolution of the Root Mean Square Error (along z) between the true
surface and the estimated one, as a function of the width of the transition and for different amount of outliers (values averaged
on 10 trials). For these experiments, α = 1 and K = 3 (i.e. windows’ width in x,y of 341 pixels).
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(a) z=7 (b) z=28 (c) z=37 (d) z=49

(e) 100% scanned (f) 7.32% scanned (g) 1.78% scanned
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Figure S5. Emulation of shell-scan and propagative-scan on a 3D image of imaginal disc (1024×1024×64 voxels) acquired
with a spinning disc confocal microscope, using same parameter settings as in the examples shown in the article (η = 0.1%,
pfa = 1%, ε = 3µm, α = 1, K = 3). (a-d) Overlay of full-scan XY sections of the tissue (gray) with the estimated shell (green)
at 4 different z-planes. Imaginal cells are well encapsulated by the shell, while cells of the overlying peripodial membrane are
properly discarded. (e-g) Maximum intensity projections along z of intensities s(x,y,z) acquired with full-scan (e), and of
normalized intensities r̂[Ω0](x,y,z) acquired with shell-scan (f) and with propagative-scan with β = 5 pixels (g). Shell-scan:
7.32% of the volume scanned (11.7% of the tight bounding-box encapsulating only the imaginal disc). Propagative-scan:
1.78% of the volume scanned (2.85% of the tight bounding-box). (h) Surface estimated using the 0.1% pre-scanned points. Red
and blue dots correspond to points acquired in the pre-scan that have been detected bright, which have been classified either as
inliers (red) or outliers (blue). (i) Evolution of the number of acquisitions with the propagative-scan approach. Convergence is
reached in 29 iterations, while almost all acquisitions have been performed after only 15 iterations. (j) Histogram of the number
of acquisitions along z performed for each (x,y) location with the propagative-scan approach: For more than 40% of the (x,y),
no acquisitions have been performed, and only one acquisition has been done along z on 20% of the (x,y) locations.
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Figure S6. Emulation of shell-scan on a more complex 3D image of imaginal disc (1024×1024×85 voxels) that presents a
surface fold after mechanical tearing (blue arrow and dotted line) and acquired with a spinning disc confocal microscope. (a)
Maximum intensity projections along z of intensities s(x,y,z) acquired with full-scan. (b) Corresponding maximum intensity
projections along z of normalized intensities r̂[Ω0](x,y,z) acquired with shell-scan (same parameter settings as in Fig. S5). The
tear induced rapid variations of the surface that cannot be easily modeled with second order polynomials on windows of size
1024/K when K = 3. Consequently, a region of the tissue has not been properly captured (red dotted rectangle in b). A
solution can be to reduce the size of the windows, i.e. to increase K. (c) Same as (b) but for K = 7. The surface estimated is
now more complex, and captures the previously missing part of the tissue (red rectangle in c).
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(a) z=31 (b) z=43 (c) z=52 (d) z=67

(e) 100% scanned (f) 7.1% to scan 1st surface (g) 2% to scan 1st surface

(h) (j) +0.4% to scan 2nd surface(i) +8% to scan 2nd surface

Figure S7. Emulation of a recursive use of shell-scan or propagative-scan to image cell-contours that are located on two
different stacked surfaces, obtained on a 3D tissue (1024×1024×75 voxels) acquired with a spinning disc confocal
microscope. For that purpose, same parameter settings as in the previous example (Fig.S5) are used to estimate the first surface
(i.e. the most populated one) and to preform a shell-scan or a propagative-scan inside the corresponding shell. The surface
estimation step can then be re-employed to estimate a second surface above the first shell, without requiring other acquisitions
than the 0.1% performed during the pre-scan. This second surface being much less populated than the first one (due to larger
cell sizes), but with a simpler shape, we set K = 2 instead of 3. Shell-scan or propagative-scan can then be used once again to
image the corresponding shell. (a-d) Overlay of full-scan XY sections of the tissue (gray) with the two estimated shells (shell 1
in green, shell 2 in red) at 4 different z-planes. (e) Maximum intensity projections along z of intensities s(x,y,z) acquired with
full-scan: the cellular contours belonging to the 2 surfaces are mixed. (f,g,i,j) Maximum intensity projections along z of
normalized intensities r̂[Ω0](x,y,z) acquired with shell-scan inside shell 1 (f) and shell 2 (g) and with propagative-scan inside
shell 1 (i) and shell 2 (j). (h) 3D-visualisation of the normalized intensities acquired with using twice the propagative-scan.
Shell-scan: 7.1% of the volume scanned to image first shell, and 8.0% in addition to image second shell. Propagative-scan:
2.0% of the volume scanned for the first shell, and only 0.4% in addition for second shell.
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Supplementary text: Estimation of the surface of interest
Correction of spatial inhomogeneities
As previously mentioned, due mainly to variations of illumination in the sample, the signal s(x,y,z) measured at voxel of
coordinates (x,y,z) has to be corrected from inhomogeneities before detecting bright voxels. This correction has to be estimated
using only the few voxels acquired in the pre-scan (typically 0.1% of the volume). A simple model of inhomogeneities is thus
considered, which relies on a spatially varying multiplicative coefficient a(x,y,z) so that s(x,y,z) = a(x,y,z)s0(x,y,z) where
s0(x,y,z) is a signal with statistical properties that are constant over the sample space for background voxels (i.e. non-bright
voxels).

Thus, assuming a(x,y,z) is a function of x,y,z with slow x and y variations, the spatial averaging of s(x,y,z) on background
voxels in a xy-neighborhood should thus be equal to a(x,y,z) (up to a multiplicative constant). To be robust to the presence
of non-background bright voxels, instead of using spatial averaging, a(x,y,z) is estimated for each z-plane as the median of
s(x,y,z) using only the pre-scanned voxels (x′,y′,z′) with z′ = z and (x′,y′) falling inside a square window of size Wa×Wa
pixels centered on (x,y)1. To emphasize the dependency to the set Ω0, this estimator will be noted â[Ω0](x,y,z).

Since N0� N (with N = card[Ω] and N0 = card[Ω0]), the size Wa of the sliding window is mainly imposed by the typical
number of voxels of Ω0 that will fall inside a Wa×Wa pixel window. In this paper, we fixed Wa so that each sliding window
contains approximately 100 voxels when N0/N = 10−3, leading to Wa = 317 pixels.

As â[Ω0](x,y,z) is a slowly varying function of (x,y), one can estimate â[Ω0] only every Wa/Nskip voxels on x and y and
perform a (x,y)-2D cubic spline interpolation in between (Nskip = 5 throughout this paper). This reduces the number of calls to
the computationally intensive median function to shorten computational time.

On background voxels, s(x,y,z)/â[Ω0] should now be homogeneous and have a unit mean, and it will also be assumed to be
distributed according to a Gaussian probability density function (see histograms in Fig. S2b). The variance σ2 of this Gaussian
is then estimated using only the left side of the histogram, in order to be robust to the presence of bright points:

σ̂
2
[Ω0]

=
1

card(Ω−0 )
∑

(x,y,z)∈Ω
−
0

[
s(x,y,z)− â[Ω0](x,y,z)

â[Ω0](x,y,z)

]2

(2)

where Ω
−
0 = {(x,y,z) ∈Ω0 | s(x,y,z)≤ â[Ω0](x,y,z)} and card stands for the cardinal - the number of elements of an ensemble.

On background voxels, the normalized signal r̂[Ω0](x,y,z) introduced in equation (1) should thus be distributed according
to a Gaussian with zero mean and unit variance, allowing to detect bright points with the following pure-significance test
r̂[Ω0](x,y,z)> T where T is linked to the pfa35.

Estimation of the epithelial surface
Let us define ΩD

0 the subset of pre-scanned points Ω0 that are detected to be bright points. They will then be used to estimate
the epithelial surface since fluorophores are assumed to be mainly located around the epithelial surface. Nevertheless, the
coordinates of these bright points cannot be directly used to interpolate the epithelial surface, since it will be highly corrupted
by outliers due to false alarms or more difficult to fluorophores located outside the surface of interest, which can be due for
example to the presence of another less populated surface (see Fig. 1a and Fig. 2a-c).

In this paper, it is proposed to use a second order polynomial local averaging of the z-coordinates of the points of ΩD
0

combined with outlier removal before interpolating the epithelial surface. This allows us not only to automatically remove
points that are not on the surface of interest but also to denoise the z-coordinates of the interpolating points before interpolation,
which is all the more important that ΩD

0 contains few points.
The combined averaging and outlier removal approach relies on local RANSAC36 (RANdom Sample Consensus) second-

order 2D polynomial estimations that will be successively applied on overlapping windows. For an illustration, Fig. S2c
provides a drawing to describe 2 overlapping 1D polynomial estimations. More precisely, it will be assumed that the epithelial
surface Z(x,y) can be locally approximated with a 2D second order polynomial shape inside a (x,y) neighborhood of size
wx×wy pixels, with wx = Nx/K and wy = Ny/K, where K is an integer and where Nx, Ny, Nz are the sizes in voxels of the full
voxel-space Ω along the x, y, z directions (i.e. Ω = {(x,y,z) ∈ [1,Nx]× [1,Ny]× [1,Ny]}). In all this paper, we chose K = 3,
which means that the surface of interest can be approximated with a 2D second order polynomial shape at least on windows
with width a third of the image width. We then define (2K + 1)2 overlapping windows Wi, j with i and j in [0,1,2, . . . ,2K],
of size wx×wy and centered on the coordinate (x,y) = (i wx/2, j wy/2). Thus, each (x,y) ∈ [1,Nx]× [1,Ny] falls exactly in 4
different windows.

1 Note that if the measured signal s(x,y,z) presents an offset B (i.e. s(x,y,z) = a(x,y,z)s0(x,y,z)+B), this offset has to be removed before estimating
a(x,y,z).
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On each of these windows Wi, j, the coordinates (x,y,z) ∈ ΩD
0 so that (x,y) ∈Wi, j will then be used to estimate a local

polynomial fit, based on a robust RANSAC estimator. For that purpose, it is assumed that in Wi, j, Z(x,y) can be approximated
by a second order 2D polynomial

Fθi, j(x,y) = θ
(0)
i, j +θ

(1)
i, j x+θ

(2)
i, j y+θ

(3)
i, j xy+θ

(4)
i, j x2 +θ

(5)
i, j y2 (3)

with θθθ i, j = (θ
(0)
i, j ,θ

(1)
i, j , . . . ,θ

(5)
i, j )

T the unknown parameter vector of the polynomial fit in window Wi, j. To estimate θθθ i, j,
RANSAC estimation relies on the assumption that the epithelial surface we are interested in is the most populated surface. It
consists in determining the parameter θ̂θθ i, j of the surface that perfectly fits 6 points with coordinates (x,y,z) randomly chosen
among the sample ΩD

0 with (x,y) ∈Wi, j, and in counting the number of points inside ΩD
0 and Wi, j so that |z−F

θ̂θθ i, j
(x,y)|< ε/2.

Such points are considered to be inliers, and the other ones outliers. The parameter ε corresponds to the width of the epithelial
surface, which may be assumed known by the user and is fixed to ε = 3µm throughout this paper. This random process is then
iterated n times2, allowing one to select among these n trials, the estimated surface that provides the greatest set of inliers. Let
Ii, j be this set of inliers. The parameter θ̂θθ i, j can then be re-estimated in the Least Mean Square (LMS) sense, using all the
points inside Ii, j.

For each window Wi, j, using RANSAC estimator then allows one both to estimate a local polynomial fit F
θ̂θθ i, j

and a list of

inliers Ii, j. Since these windows overlap, each point of ΩD
0 has thus been classified between inlier and outlier on 4 windows

(the windows overlapping by half of their size). For an illustration of this, Fig. S2c provides a drawing describing 2 overlapping
1D polynomial estimations.

The 4 classifications being possibly different, we define a tolerance factor α , so that a point (x,y,z) ∈ΩD
0 is considered to

be an inlier, if among all the windows containing this point, it has been classified as inlier with a proportion greater than α , i.e.
if nI(x,y,z)/4≥ α with nI(x,y,z) the number of time the point of coordinates (x,y,z) ∈ΩD

0 has been classified as inliers (with
nI(x,y,z) ∈ {0,1,2,3,4}). This set of inliers will then be denoted I (see Fig. S2d, obtained with alpha=1). Choosing α = 1
means that I only contains points that have never been classified as outliers. On the contrary, with α = 1/4, a point is in I as
soon as it as been classified as inlier at least in one window. The influence of this factor α on the performance of this approach
will be studied below.

Thus, for each point (x,y,z) ∈ I, nI(x,y,z) polynomial denoised surfaces F
θ̂θθ i, j

(x,y) have been estimated (with (i, j) so that

(x,y,z) ∈ Ii, j). A refined z estimate ẑ(x,y) at this location (x,y) is then defined as the averaging of these nI(x,y,z) estimates
F

θ̂θθ i, j
(x,y), allowing in particular to smooth surfaces at window interfaces.

To summarize the steps of surface estimation so far, we have removed outliers and have denoised the z-coordinate of the
remaining bright points by replacing their (x,y,z) coordinates with (x,y, ẑ(x,y)), where ẑ(x,y) has been estimated using robust
polynomial fits and averaging among overlapping windows. A surface Ẑ(x,y) can then be estimated at every point of the
image using a simple 3D interpolation from the points (x,y, ẑ(x,y)), (x,y) ∈ I (see Fig. S2e). We use bi-cubic harmonic spline
interpolation37, but other choices could be envisaged.

This 3D fit ẑ allows one to define the set of voxels where the bright structure of interest lies, defined as

Ŝ =
{
(x,y,z) so that

∣∣∣z− Ẑ(x,y)
∣∣∣≤ ε/2

}
(4)

where ε still represents the width of the thin epithelial volume.

To complete the quantitative analysis shown on Fig. 4c, we study in Fig. S4a,b the influence of the parameters α and K on
the performance of this epithelial surface estimation approach. The full stack 3D image of this biological sample has been
acquired using the experimental setup of Fig. 1c, in order to determine the ground truth epithelial shell S0 (defined like Ŝ but
using the ground truth surface instead of the estimated one), and to emulate this surface estimation strategy with different
parameter settings. As in Fig. 4c, the quality of the surface estimation is quantified with the percentage of bright voxels in S0
that are effectively present in the estimated epithelial volume Ŝ. Each point on the graphs is the averaging of the percentages
obtained with 50 different pre-scans, each leading to a slightly different thin volume Ŝ.

Fig. S4.a shows the evolution of this percentage as a function of η = N0/N for different values of the tolerance factor α and
when no outlier removal is used (grey curve), and Fig. S4b as a function of the number K of windows used. This shows that the
use of a technique robust to the presence of outliers is a key point. Moreover, in Fig. S4a, using a tolerance factor α = 1 or
α = 3/4 leads to the best results (with almost same performance). It can also be noticed that, of course increasing η improves

2 Practically, n is set so that the probability that at least one trial among the n trials does not contain outlier, is greater than p36. In this paper, it has been
chosen p = 0.999.
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the quality of the results, but η = 0.1% leads to a good trade-off between quality of the results and number N0 of acquisitions
performed. Furthermore, it can also be seen in Fig. S4b that α = 1 highly increases the robustness to the choice of K. In all this
paper, one will thus use α = 1 and windows with width a third of the image width (i.e. K = 3).

As the surface estimation step relies on local second order polynomial estimations, its robustness to the presence of non
quadratic surfaces with abrupt transitions is investigated in Fig. S4 (second row). For that purpose, we generate a surface
composed of two horizontal surfaces, located at height z = 50 on the left part of the image and z = 10 on the right part (for a
total x,y,z volume of 1024×1024×60 voxels) and connected by a linear surface (see Fig. S4c). The surface is then estimated
from a set of points, composed of 1000 inliers randomly distributed inside the 3µm-thickness shell around this surface (still
assuming a voxel size of 0.27µm×0.27µm×0.5µm, see Experimental set-up in the Method section). Moreover, to assess also
for the robustness of the proposed approach to a high number of outliers, outliers randomly and uniformly distributed inside the
whole image volume are added to this initial set of inliers: simulations have then been performed when 1/3, 1/2, 2/3 and 3/4 of
the points in the volume corresponds to outliers. The evolution of the Root Mean Square Error (along z) between this surface
and the estimated one is then plotted on Fig. S4d as a function of the width of the transition between the two horizontal planes:
the more abrupt the transition, the less it can be modeled by second order polynomials. Since the capabilities to model this
transition mainly depends on the size of the windows used to locally estimate quadratic fits, the size of the transition along x is
expressed as a percentage of the window size (which corresponds to a third of the image in Fig. S4c and d, i.e. 341 pixels, since
K = 3).

On this example, the surface estimation step is relatively robust to such abrupt changes, provided the transition is smaller
that 60% of the window size. Moreover, increasing the number of outliers does not deteriorate the performance of the surface
estimation step, even when 2/3 of the points correspond to outliers. Performance begins to degrade only when 75% of the
points corresponds to outliers, which confirms the interest of this approach in presence of a high number of outliers.
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