Supplementary Information

The enpp4 ectonucleotidase regulates kidney patterning signalling networks in *Xenopus* embryos

by Karine Massé, Surinder Bhamra, Christian Paroissin, Lilly Maneta-Peyret, Eric Boué-Grabot and Elizabeth A. Jones

This PDF file includes: Supplementary Fig. 1 to 7, unedited gels and western blot are in Supplementary Figure 8 and 9 and Supplementary Tables 1 to 5.

Supplementary Fig. 1. Phenotypes caused by enpp4 mRNA injection (related to Fig. 1). (A) Ectopic pronephric tissues were only induced following *enpp4* mRNA injection into the V2 blastomere. Embryos injected with 2ng of *enpp4* and 250 pg of *LacZ* mRNAs into the V2, V1, D2 or D1 blastomere at 8-cell stage were examined by whole mount antibody staining 3G8/4A6 at stage 41. The black arrowhead indicates the ectopic 3G8 staining. (B- D) No change in *irx1* expression and in mesoderm formation caused by enpp4 overexpression. Embryos targeted with 2ng of *enpp4* and 250 pg of *LacZ* mRNAs were examined by whole mount *in situ* hybridization with the *irx1* (B), *myf4* (C) and *xbra* (D) probes at stages 14, 32 and 10.5 respectively. The asterisk denotes the uninjected side of each embryo. The black arrow in B indicates the pronephros. The white arrow in D indicates the injection site marked by the red-gal staining. The raw data and statistical analyses are provided in Supplementary Table 1.

Supplementary Fig. 2. Enpp4 MO1 and MO2 specificity and phenotypes caused by injection of enpp4 MO2 (related to Fig. 2). (A-C) enpp4 MO1 and 2 specifically inhibited Xenopus enpp4 translation. (A) Alignment of the 5'UTR of Xenopus (XI) and mouse (Mm) enpp4 sequences and position of enpp4 MO1 and 2 in relation to Xenopus enpp4 cDNA The ATG is indicated in bold and identical nucleotides (nt) by dots. Only 12 nt of enpp4 MO1 and 3 nt of enpp4 MO2 (located in the 5' UTR sequence) are conserved between the two species. (B) Xenopus enpp4 but not mouse enpp4 translation was blocked by enpp4 MO1 and 2. Autoradiograph of a 10% SDS-PAGE gel of in vitro translated ³⁵S-Methionine radiolabeled enpp4 proteins. Capped synthetic enpp4 RNA was translated in vitro in the Rabbit Reticulocyte Lysate System (Promega). Translation of Xenopus enpp4 mRNA (0.5 µg) (Lane 1) and mouse Enpp4 (Lane 2) produced a protein of 51 kDa. Xenopus enpp4, but not mouse Enpp4 (Lane 4 and 6), was almost abolished in presence of 10 µg of enpp4 MO1 or MO2 (Lane 3 and 5). (C) enpp4 MO1 is specific to enpp4 mRNA. Autoradiograph of 10% SDS-PAGE gel of in vitro translated ³⁵S-Methionine radiolabeled Xenopus enpp2 and 6 proteins. Xenopus enpp2 and 6 RNAs were translated in vitro in the Rabbit Reticulocyte Lysate System (Promega). Translation of Xenopus enpp2 mRNA (0.5 µg) produced a protein of 99 kDa (Lane 1) that is unaffected by the addition of 10 µg enpp4 MO1 (Lane 2). Translation of Xenopus enpp6 mRNA (0.5 µg) produced a protein of 51 kDa (Lane 3) that is unaffected by the enpp4 MO1 (Lane 4). Mm: Mus musculus; XI: Xenopus laevis. (D-E) Microinjection of enpp4 MO1 did not alter general mesoderm formation. Embryos injected with 10 ng of enpp4 MO1 at 8-cell stage were examined by whole mount in situ hybridization with the myf4 (D), myoD (D') and xbra (E) probes at stage 32, stage 39 and at stage 10.5 respectively. Asterisk denotes uninjected sides. The arrow in (E) indicates the site of injection marked by red-gal staining. (F-N) Microinjection of enpp4 MO2 resulted in similar phenotypes than those with enpp4 MO1. Embryos injected with 10 ng of enpp4 MO2 at 8-cell stage were examined by 3G8/4A6 antibody staining at stage 40 (F and G) or whole mount in situ hybridization with the following probes: slc5a1.1 (H), slc12a1 (I and J) at stage 37/38; Ihx1 at stage 28, 23 and 14 (K, L and M respectively) and pax8 at stage 14 (N). Embryo shown in (J) was co-injected with 2 ng of mouse Enpp4 mRNA for rescue experiment. Asterisk denotes uninjected sides. Arrowheads indicate ectopic slc12a1 staining. The raw data and statistical analyses are provided in Supplementary Table 2.

Supplementary Fig. 3. Phenotypes caused by the co-injection of the *enpp4* and *enpp6* MOs or *enpp4* MO and *enpp6* mRNA (related to Fig. 2). Injection of *enpp6* mRNA, but not *enpp6* MO, worsened the pronephric phenotypes caused by enpp4 knock-down. Injected embryos were analysed by 3G8/4A6 antibody staining at stage 41. (A) Embryo injected with 10 ng of *enpp4* MO2 and 20 ng of *enpp6* MO. (B) Embryo injected with 10 ng of *enpp4* MO2 and 20 ng of *enpp6* MO and 10 ng of control MO. (C) Embryo injected with 20 ng of *enpp6* MO and 10 ng of *enpp6* RNA and 10 ng of *enpp4* MO. (E) Embryo injected with 2 ng of *enpp6* mRNA and 10 ng of *enpp4* MO. (E) Embryo injected with 2 ng of *enpp6* RNA and 10 ng of *enpp4* MO. (E) Embryo injected with 2 ng of *enpp6* RNA and 10 ng of *enpp4* MO. (E) Embryo injected with 2 ng of *enpp6* RNA and 10 ng of *enpp4* MO. (E) Embryo injected with 2 ng of *enpp6* RNA and 10 ng of *enpp4* MO. (E) Embryo injected with 2 ng of *enpp6* RNA and 10 ng of *enpp4* MO. (E) Embryo injected with 2 ng of *enpp6* RNA and 10 ng of *enpp4* MO. (E) Embryo injected with 2 ng of *enpp6* RNA and 10 ng of *enpp4* MO. (E) Embryo injected with 2 ng of *enpp6* RNA and 10 ng of *enpp4* MO. (E) Embryo injected with 2 ng of *enpp6* RNA and 10 ng of *enpp4* MO. (E) Embryo injected with 2 ng of *enpp6* RNA and 10 ng of *enpp4* MO. (E) Embryo injected with 2 ng of *enpp6* RNA and 10 ng of *enpp4* MO. (E) Embryo injected with 2 ng of *enpp6* RNA and 10 ng of *enpp4* MO. (E) Embryo injected with 2 ng of *enpp6* RNA and 10 ng of *enpp6* RNA and *enpp6* RNA ang *enpp6* RNA and *enpp6* RNA and *enpp6* RNA and *enpp*

Supplementary Fig. 4. Enpp4 expressionis regulated by activin but not by retinoic acid in animal cap assay (related to Fig. 3). Animal cap were taken at blastula stage and cultured during 3 hours in the presence of activin (A), retinoic acid (RA) or activin + retinoic acid (A+RA) and total RNA extracted. RT-PCR was performed on treated and control (C) animal caps. The amplification of *odc* on samples with no reverse transcriptase (-RT) was carried out to control the purity of the RNAs.

Supplementary Fig. 5. Phenotypes caused by co-injection of enpp4 or rfng mRNA and MO (related to Fig.

4). Injection of *rfng* MO did not prevent ectopic pronephros formation caused by enpp4 over-expression whereas co-injection of *enpp4* MO and *rfng* mRNA altered ectopic and endogenous pronephros formation. Injected embryos were harvested at stage 40, and analysed by 3G8/4A6 antibody staining. (A) Embryo injected with 2 ng of *enpp4* mRNA and 20 ng of *rfng* MO. (B) Embryo injected with 2 ng of *enpp4* mRNA and 20 ng of *rfng* mRNA and 10 ng of *enpp4* MO2. (E) Embryo injected 2 ng of *rfng* mRNA and 10 ng of *enpp4* MO2. (E) Embryo injected 2 ng of *rfng* mRNA and 10 ng of *enpp4* MO2. (E) Embryo injected 3G8 ectopic staining and white arrowheads 4A6 ectopic staining. The raw data and statistical analyses are provided in Supplementary Table 3.

Supplementary Fig. 6. Phenotypes caused by injection of s1pr1, Ipar1.1 and p2yr10 mRNA and in vitro test of the s1pr5.L MO specificity (related to Fig. 6). (A-F) Microinjection of s1pr1, Ipar1.1 and p2yr10 mRNA did not induce ectopic pronephros even when co-injected with enpp4 mRNA. Injected embryos were harvested at stage 40, and analyzed by 3G8/4A6 antibody staining. (A) Embryo injected with 2 ng of s1pr1 mRNA and 1ng of enpp4 mRNA or (B) 2ng of s1pr1 mRNA alone. (C) Embryo injected with 2ng of Ipar1.1 mRNA and 1ng of enpp4 mRNA or (D) 2ng of *Ipar1.1* mRNA alone. (E) Embryo injected with 2ng of *p2yr10* mRNA and 1ng of *enpp*4 mRNA or (F) with 2ng of p2yr10 mRNA alone. Asterisk denotes uninjected sides. The raw data and statistical analyses are provided in Supplementary Table 5. (G-H) s1pr5.L MO specifically inhibited Xenopus s1pr5.L mRNA translation. (G) Alignment of the 5'UTR of Xenopus (XI) and mouse (Mm) s1pr5 sequences and position of s1pr5.L MO in relation to Xenopus s1pr5.L cDNA. The ATG is indicated in bold and identical nucleotides (nt) by dots. This alignment shows that only 8 nt of s1pr5.L MO sequence are conserved between the two species. (H) Xenopus s1pr5.L but not mouse S1pr5 translation was blocked by s1pr5.L MO; autoradiograph of a 10% SDS-PAGE gel of in vitro translated ³⁵S-Methionine radiolabeled s1pr5 proteins. Capped synthetic s1pr5 RNAs was translated in vitro in the Rabbit Reticulocyte Lysate System (Promega) according to manufacturer's protocol. Lane 1, Translation of Xenopus s1pr5.L mRNA (1μg) produced a protein of 43 kDa. Lane 2, Translation of mouse S1pr5 mRNA (1 μg) produced a protein of 42 kDa. Lane 3. Translation of Xenopus s1pr5.L mRNA was severely affected by the addition of 10 µg of s1pr5.L MO. Lane 4, Translation of mouse S1pr5 was unaffected by s1pr5.L MO. Mm: Mus musculus; XI: Xenopus laevis.

Supplementary Fig. 7. Expression profile of the sp1r5.S receptor gene, in vivo test of MO specificity and phenotypes caused by its knock-down (related to Fig. 6). (A) The s1pr5.S receptor displays a restricted expression profile in the adult frog and is expressed in the mesonephric tissue. Adult tissues were dissected and total RNAs from adult tissues were extracted using Trizol (Invitrogen) following the manufacturer's protocol. RT-PCR was performed along with negative control. (B) The novel s1pr5.S receptor is expressed in the kidney with an expression profile similar to its homelog, the s1pr5.L receptor. X.laevis embryos were dissected and total RNA extracted, RT-PCR was performed on dissected tissues and control whole embryos along with negative control. S1pr5.S was amplified using the following primers (forward primer, 5'- ggaggtctcgttgctgtctc -3' and the reverse primer, 5'- cggtagctcctcgtgtaacc -3') with the annealing temperature of 53°C and 32 cycles, Each RT-PCR product was sequenced to confirm the specificity of the amplifications. (C) Alignment of the 5'UTR of X.laevis s1pr5 homeologs sequences and position of s1pr5.L and s1pr5.S MOs. The ATG is indicated in red and identical nucleotides by dots. Only 4 nucleotides over the whole MOs sequences differ between the two genes. (D) Efficacy of the s1pr5.L and s1pr5.L MOs. Schematic representation of the GFP fusion proteins containing the 5'UTR and part of the coding region of s1pr5.L and s1pr5.S. The position of the s1pr5.L and s1pr5.s MO are indicated. Xenopus embryos were injected with the s1pr5.LGFP, s1pr5.S -GFP and GFP mRNAs at one cell stage followed by unilateral injections of s1pr5.L, s1pr5.S and control MOs in presence of LacZ mRNA at 2-cell stage. GFP⁺ positive embryos were sorted at stage 16 and stained for ß-galactosidase activity. The numbers of embryos GFP+ fluorescent on one side and LacZ⁺ on the opposite side and the percentage of efficiency of the different MOs to inhibit in vivo the translation of the different mRNAs are indicated in the table. (E) Microinjection of s1pr5.S MO induces a similar kidney phenotype than the microinjection of the s1pr5.L MO. Injected embryos analysed by 3G8/4A6 antibody staining at stage 41. (a) Embryo injected with 15ng of s1pr5.S MO (b) Embryo injected with 15ng of s1pr5.L MO. (c) Embryo injected with 15ng of control MO. Asterisk denotes uninjected sides. The raw data and statistical analyses are provided in Supplementary Table 5.

Supplementary Fig. 8. Enpp4 does not interact with bioactive lipids metabolized by enpp2, enpp6 and enpp7 (related to Fig. 7). ShingoStrips[™] was incubated with membrane protein extracts from (A) control pcDNA3.1 transfected CHO cells or (B) from enpp4 over-expressing CHO cells and the bound enpp4 protein detected with anti-Xlenpp4 serum. LPA, lysophosphatidic acid; LPC, lysophosphocholine; PC, phospatidylcholine; S1P, shingosine-1-phosphate; SPC, Shingosylphosphorylcholine.

Unedited gels and western blots

Supplementary Fig. 8. Unedited gels corresponding to markers (in the same order) illustrated in Figure 3. Smartladder 100-1000 (eurogentec) was used in all gels. Size are indicated on the first gel.

Control			е	npp	4		
wh	sb	mb	wh	sb	mb		
		1				1111	250 130 95 72 55
						-	36
			4. m. m. m.		. ,	-	25

Supplementary Fig. 9. Unedited western blot corresponding to Figure 5a. Size indicated are indicated in kDa.

Supplementary Table 1a

						Phenotypes			Total
Histological Analysis	Figure	Injection	Marker analysed	Normal	Enlarged	Reduced	Absent	Ectopic	number of scored embryos
1	1B-E	enpp4 mRNA 2ng	3G8	47 (52%)	16 (18%)	7 (8%)	0 (0%)	21 (23%)	91
2	1B-E	enpp4 mRNA 2ng	4A6	63 (69%)	18 (20%)	8 (9%)	0 (0%)	2 (2%)	91
3	S1A	enpp4 mRNA 2ng V2	3G8	19 (47.5%)	8 (20%)	5 (12.5%)	0 (0%)	8 (20%)	40
4	S1A	enpp4 mRNA 2ng V2	4A6	29 (72.5%)	6 (15%)	4 (10%)	0 (0%)	1 (2.5%)	40
5	S1A	enpp4 mRNA 2ng V1	3G8	30 (88%)	0 (0%)	4 (12%)	0 (0%)	0 (0%)	34
6	S1A	enpp4 mRNA 2ng V1	4A6	30 (88%)	0 (0%)	4 (12%)	0 (0%)	0 (0%)	34
7	S1A	enpp4 mRNA 2ng D2	3G8	25 (96%)	0 (0%)	1 (4%)	0 (0%)	0 (0%)	26
8	S1A	enpp4 mRNA 2ng D2	4A6	24 (92%)	0 (0%)	2 (8%)	0 (0%)	0 (0%)	26
9	S1A	enpp4 mRNA 2ng D1	3G8	22 (92%)	1 (4%)	1 (4%)	0 (0%)	0 (0%)	24
10	S1A	enpp4 mRNA 2ng D1	4A6	23 (96%)	0 (0%)	1 (4%)	0 (0%)	0 (0%)	24
11	1M	Mouse enpp4 mRNA 2ng	3G8	19 (30%)	0 (0%)	8 (13%)	1 (2%)	35 (56%)	63
12	1M	Mouse enpp4 mRNA 2ng	4A6	32 (51%)	12 (19%)	11 (17.5%)	1 (2%)	7 (11%)	63
13	1N	enpp4 T72S mRNA 2ng	3G8	50 (76%)	1 (1.5%)	15 (23%)	0 (0%)	0 (0%)	66
14	1N	enpp4 T72S mRNA 2ng	4A6	52 (79%)	0 (0%)	14 (21%)	0 (0%)	0 (0%)	66
15		enpp4 T72A mRNA 2ng	3G8	42 (68%)	1 (2%)	18 (29%)	0 (0%)	1 (1%)	62
16		enpp4 T72A mRNA 2ng	4A6	51 (82%)	0 (0%)	11 (18%)	0 (0%)	0 (0%)	62
17	10	enpp4 D36N mRNA 2ng	3G8	53 (77%)	6 (9%)	9 (13%)	0 (0%)	1 (1%)	69
18	10	enpp4 D36N mRNA 2ng	4A6	62 (90%)	1 (1%)	6 (9%)	0 (0%)	0 (0%)	69
19		enpp4 D189N mRNA 2ng	3G8	57 (75%)	2 (3%)	8 (10.5%)	4 (5%)	5 (7%)	76
20		enpp4 D189N mRNA 2ng	4A6	68 (89.5%)	1 (1%)	4 (5%)	3 (4%)	0 (0%)	76
21		LacZ mRNA 250pg	3G8	52 (91%)	0 (0%)	5 (9%)	0 (0%)	0 (0%)	57
22		LacZ mRNA 250pg	4A6	53 (93%)	0 (0%)	4 (7%)	0 (0%)	0 (0%)	57
23	1P	enpp4 mRNA 2ng	slc5a1.1	27 (47%)	8 (14%)	5 (9%)	0 (0%)	17 (30%)	57
24		LacZ mRNA 250pg	slc5a1.1	60 (94%)	0 (0%)	3 (5%)	1 (2%)	0 (0%)	64
25	1Q	enpp4 mRNA 2ng	slc12a1	30 (57%)	14 (25%)	3 (5%)	0 (0%)	10(17.5%)	57
26		LacZ mRNA 250pg	slc12a1	63 (98%)	0 (0%)	1 (2%)	0 (0%)	0 (0%)	64
27	1R	enpp4 mRNA 2ng	clcnkb	40 (69%)	11 (19%)	7 (12%)	0 (0%)	0 (0%)	58
28		LacZ mRNA 250pg	clcnkb	60 (94%)	0 (0%)	2 (3%)	2 (3%)	0 (0%)	64
29	1S	enpp4 mRNA 2ng	gata3	17 (39.5%)	1 (2%)	25 (58%)	0 (0%)	0 (0%)	43
30		LacZ mRNA 250pg	gata3	33 (89%)	0 (0%)	4 (11%)	0 (0%)	0 (0%)	37
31	1T	enpp4 mRNA 2ng	wt1	26 (44%)	20 (34%)	13 (22%)	0 (0%)	0 (0%)	59
32		LacZ mRNA 250pg	wt1	84 (95.5%)	1 (1%)	3 (3%)	0 (0%)	0 (0%)	88
33	1U	enpp4 mRNA 2ng	nphs1	32 (36%)	22 (25%)	30 (34%)	1 (1%)	3 (3%)	88
34		LacZ mRNA 250pg	nphs1	52 (96%)	0 (0%)	2 (4%)	0 (0%)	0 (0%)	54
35	1V	enpp4 mRNA 2ng	lhx1	20 (39%)	31 (61%)	0 (0%)	0 (0%)	0 (0%)	51
36		LacZ mRNA 250pg	lhx1	76 (96%)	1 (1%)	2 (2%)	0 (0%)	0 (0%)	79
37	1W	enpp4 mRNA 2ng	pax8	14 (28%)	35 (70%)	0 (0%)	0 (0%)	1 (2%)	50
38		LacZ mRNA 250pg	pax8	72 (97%)	0 (0%)	2 (3%)	0 (0%)	0 (0%)	74
39	1X	enpp4 mRNA 2ng	lhx1	30 (65%)	9 (20%)	7 (15%)	0 (0%)	0 (0%)	46
40		LacZ mRNA 250pg	lhx1	28 (67%)	4 (9%)	10 (24%)	0 (0%)	0 (0%)	42
41	1Y	enpp4 mRNA 2ng	pax8	20 (29%)	12 (17%)	24 (34%)	0 (0%)	15 (21%)	70
42		LacZ mRNA 250pg	pax8	34 (60%)	2 (3%)	21 (37%)	0 (0%)	0 (0%)	57
43	S1C	enpp4 mRNA 2ng	irx1	24(73%)	2 (6%)	7 (21%)	0 (0%)	0 (0%)	33

							Total		
Histological Analysis	Figure	Injection	Marker analysed	Normal	Enlarged	Reduced	Absent	Ectopic	number of scored embryos
44		LacZ RNA 250 pg	irx1	20 (95%)	0 (0%)	1 (5%)	0 (0%)	0 (0%)	21
45	S1D	enpp4 mRNA 2ng	myh4	55 (100%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	55
46		LacZ mRNA 250pg	myh4	53 (98%)	0 (0%)	0 (0%)	0 (0%)	1 (2%)	54
47	S1E	enpp4 mRNA 2ng	xbra	39 (85%)	0 (0%)	7 (15%)	0 (0%)	0 (0%)	46
48		LacZ mRNA 250pg	xbra	46 (88.5%)	0 (0%)	6 (11.5%)	0 (0%)	0 (0%)	52

Supplementary Table 1b

Histological analysis compared	Figures compared	Injections compared	Marker	Calculated p-value	Calculated p-value (with Bonferroni correction)	Standardized p- value (with Bonferroni correction)
1/21	1B	enpp4/LacZ	3G8	9.53E-09	1.19E-06	(0;0.001]
2/22	1B	enpp4/LacZ	4A6	1.57E-04	1.96E-02	(0.01;0.05)
11/21	1M	Enpp4(mouse)/LacZ	3G8	1.53E-14	1.91E-12	(0;0.001]
12/22	1M	Enpp4(mouse)/LacZ	4A6	3.15E-07	3.94E-05	(0;0.001]
5/1	1N/1C	enpp4T72S/enpp4	3G8	6.04E-09	7.55E-07	(0;0.001]
6/2	1N/1C	enpp4T72S/enpp4	4A6	2.10E-05	2.62E-03	(0.001;0.01)
7/1		enpp4T72A/ enpp4	3G8	5.89E-08	7.36E-06	(0;0.001]
8/2		enpp4T72A/ enpp4	4A6	7.79E-05	9.74E-03	(0.001;0.01)
9/1	10/1C	enpp4D36N/ enpp4	3G8	3.00E-05	3.76E-03	(0.001;0.01)
10/2	10/1C	enpp4D36N/ enpp4	4A6	4.83E-04	6.04E-02	NS
11/1		enpp4D189N/ enpp4	3G8	2.01E-05	2.51E-03	(0.001;0.01)
12/2		enpp4D189N/ enpp4	4A6	4.10E-05	5.13E-03	(0.001;0.01)
15/16	1P	enpp4/LacZ	slc5a1.1	6.36E-11	7.95E-09	(0;0.001]
17/18	1Q	enpp4/LacZ	sclc12a1	6.24E-11	7.81E-09	(0;0.001]
19/20	1R	enpp4/LacZ	clcnkb	1.06E-05	1.33E-03	(0.001;0.01)
21/22	1S	enpp4/LacZ	gata3	6.04E-06	7.55E-04	(0;0.001]
23/24	1T	enpp4/LacZ	wt1	3.89E-13	4.87E-11	(0;0.001]
25/26	1U	enpp4/LacZ	nphs1	9.66E-13	1.21E-10	(0;0.001]
27/28	1V	enpp4/LacZ	lhx1 (st28)	2.37E-15	2.96E-13	(0;0.001]
29/30	1W	enpp4/LacZ	pax8 (st28)	4.88E-20	6.10E-18	(0;0.001]
31/32	1X	enpp4/LacZ	lhx1 (neurula)	3.37E-01	1.00E+00	NS
33/34	1Y	enpp4/LacZ	pax8 (neurula)	3.13E-06	3.91E-04	(0;0.001]
43/41	S1A	enpp4V1/enpp4V2	3G8	6.57E-05	8.21E-03	(0.001;0.01)
44/42	S1A	enpp4V1/enpp4V2	4A6	5.79E-02	1.00E+00	NS
45/41	S1A	enpp4D2/enpp4V2	3G8	1.47E-04	1.84E-02	(0.01;0.05)
46/42	S1A	enpp4D2/enpp4V2	4A6	1.31E-01	1.00E+00	NS
47/41	S1A	enpp4D1/enpp4V2	3G8	2.31E-03	2.89E-01	NS
48/42	S1A	enpp4D1/enpp4V2	4A6	9.21E-02	1.00E+00	NS
35/36	S1C	enpp4/LacZ	irx1	1.00E-01	1.00E+00	NS
37/38	S1D	enpp4/LacZ	myh4	4.95E-01	1.00E+00	NS
39/40	S1E	enpp4/LacZ	xbra	7.67E-01	1.00E+00	NS

Supplementary Table 1. Scoring analysis of kidney phenotypes in embryos over-expressing enpp4 (related to Fig.1 and Supplementary Fig. 1). (1a) Results from immunohistochemistry and *in situ* hybridization of injected embryos. Embryos were injected with *enpp4* wild type or mutant RNA. Embryos were scored for differences between the injected side (identified by Blue or Red Gal staining) and uninjected side acting as contralateral control side. The numbers of embryos displaying renal phenotype are indicated. The corresponding percentages are indicated in bracket. Each histological analysis was numbered as reference for the statistical comparisons in Supplementary Table 1B. Only the pronephros phenotype on the injected side is indicated. (1b) Statistical analyses. Statistical comparisons between pairs of histological analysis listed in Supplementary Table 1A were carried out as indicated in the table. The Bonferroni multiple testing correction was applied to all Fisher's Exact Test. The calculated p value before and after correction and a standardized corrected p-value are given. NS: not significant.

Supplementary Table 2a

						Phenotypes			
Histolo									Total number
gical analysis	Figure	Injection	Marker analysed	Normal	Enlarged	Reduced	Absent	Ectopic	of scored embryos
1	2A. B	enpp4 MO1 10ng	3G8	37 (35%)	0 (0%)	70 (65%)	0 (0%)	0 (0%)	107
2	2A. B	enpp4 MO1 10ng	4A6	67 (63%)	0 (0%)	30 (28%)	10 (9%)	0 (0%)	107
3		cMO 10ng	3G8	27 (100%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	27
4		cMO 10ng	4A6	27 (100%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	27
5	2C	enpp4 MO1 10ng+MO2 10ng	3G8	2 (10%)	0 (0%)	18 (90%)	0 (0%)	0 (0%)	20
6	2C	enpp4 MO1 10ng+MO2 10ng	4A6	0 (0%)	0 (0%)	15 (75%)	5 (25%)	0 (0%)	20
7		enpp4 MO1 10ng + cMO 10ng	3G8	5 (33%)	0 (0%)	10 (67%)	0 (0%)	0 (0%)	15
8		enpp4 MO1 10ng + cMO 10ng	4A6	7 (47%)	0 (0%)	8 (53%)	0 (0%)	0 (0%)	15
9		enpp4 MO2 10ng + cMO 10ng	3G8	9 (56%)	0 (0%)	7 (44%)	0 (0%)	0 (0%)	16
10		enpp4 MO2 10ng + cMO 10ng	4A6	7 (44%)	0 (0%)	9 (56%)	0 (0%)	0 (0%)	16
11		cMO 20ng	3G8	10 (59%)	0 (0%)	7 (41%)	0 (0%)	0 (0%)	17
12		cMO 20ng	4A6	10 (53%)	0 (0%)	7 (47%)	0 (0%)	0 (0%)	17
13	2D	enpp4 MO1 10ng	slc5a1.1	27 (42%)	0 (0%)	37 (58%)	0 (0%)	0 (0%)	64
14		cMO 10ng	slc5a1.1	34 (100%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	34
15	2E	enpp4 MO1 10ng	slc12a1	33 (44%)	0 (0%)	42 (56%)	0 (0%)	0 (0%)	75
16	2F	<i>enpp4</i> MO1 10ng + <i>enpp4</i> mRNA 2ng	slc12a1	47 (65%)	0 (0%)	17 (24%)	0 (0%)	8 (11%)	72
17		cMO 10ng	slc12a1	39 (83%)	0 (0%)	8 (17%)	0 (0%)	0 (0%)	47
18	2G	enpp4 MO1 10ng	clcnkb	19(47.5%)	0 (0%)	21 (53.5%)	0 (0%)	0 (0%)	40
19		cMO 10ng	clcnkb	42 (76%)	0 (0%)	13 (24%)	0 (0%)	0 (0%)	55
20	2H	enpp4 MO1 10ng	gata3	29 (69%)	0 (0%)	13 (31%)	0 (0%)	0 (0%)	42
21		cMO 10ng	gata3	33 (89%)	0 (0%)	4 (11%)	0 (0%)	0 (0%)	37
22	21	enpp4 MO1 10ng	wt1	32 (94%)	1 (3%)	1 (3%)	0 (0%)	0 (0%)	34
23		cMO 10ng	wt1	32 (94%)	0 (0%)	2 (6%)	0 (0%)	0 (0%)	34
24	2J	enpp4 MO1 10ng	nphs1	34 (83%)	1 (2%)	6 (15%)	0 (0%)	0 (0%)	41
25		cMO 10ng	nphs1	45 (92%)	1 (2%)	3 (6%)	0 (0%)	0 (0%)	49
26	2K	enpp4 MO1 10ng	lhx1	15 (65%)	0 (0%)	8 (35%)	0 (0%)	0 (0%)	23
27		cMO 10ng	lhx1	21 (100%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	21
28	2L	enpp4 MO1 10ng	lhx1	5 (25%)	0 (0%)	15 (75%)	0 (0%)	0 (0%)	20
29		cMO 10ng	lhx1	14 (70%)	0 (0%)	6 (30%)	0 (0%)	0 (0%)	20
30	2M	enpp4 MO1 10ng + cMO 10ng	lhx1	14 (31%)	0 (0%)	17 (37%)	15 (31%)	0 (0%)	46
31	2N	enpp4 MO1 10ng+MO2 10ng	lhx1	5 (16%)	2 (6%)	18 (58%)	6 (19%)	0 (0%)	31
32		cMO 20ng	lhx1	30 (77%)	4 (10%)	5 (13%)	0 (0%)	0 (0%)	39
33	20	enpp4 MO1 10ng + cMO 10ng	pax8	20 (29%)	1 (1%)	49 (70%)	0 (0%)	0 (0%)	70
34		cMO 20ng	pax8	17 (63%)	4 (15%)	6 (22%)	0 (0%)	0 (0%)	27
35	S2D	enpp4 MO1 10ng	myh4	47 (100%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	47
36		cMO 10ng	myh4	59 (100%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	59
36		enpp4 MO1 10ng	myoD (Som)	35 (100%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	35
36		enpp4 MO1 10ng	myoD (HypM)	14 (40%)	0 (0%)	21 (60%)	0 (0%)	0 (0%)	35
36		cMO 10ng	myoD (Som)	42 (100%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	42
36		cMO 10ng	myoD(HypM)	39 (93%)	0 (0%)	3 (7%)	0 (0%)	0 (0%)	42

						Phenotypes			
Histolo gical			Marker						Total number of scored
analysis	Figure	Injection	analysed	Normal	Enlarged	Reduced	Absent	Ectopic	embryos
37	S2E	enpp4 MO1 10ng	xbra	16 (84%)	0 (0%)	3 (16%)	0 (0%)	0 (0%)	19
38		cMO 10ng	xbra	20 (95%)	0 (0%)	1 (5%)	0 (0%)	0 (0%)	21
39	S2F.G	enpp4 MO2 10ng	3G8	44 (51%)	0 (0%)	43 (49%)	0 (0%)	0 (0%)	87
40	S2F.G	enpp4 MO2 10ng	4A6	66 (76%)	0 (0%)	21 (24%)	0 (0%)	0 (0%)	87
41	S2H	enpp4 MO2 10ng	slc5a1.1	26 (68%)	0 (0%)	12 (32%)	0 (0%)	0 (0%)	38
42	S2I	enpp4 MO2 10ng	slc5a12a1	24 (86%)	0 (0%)	4 (14%)	0 (0%)	0 (0%)	28
43	S2J	+ enpp4 mRNA 2ng	slc5a12a1	14 (50%)	0 (0%)	0 (0%)	0 (0%)	14 (50%)	28
44	S2K	enpp4 MO2 10ng	lhx1	11 (55%)	3 (15%)	6 (30%)	0 (0%)	0 (0%)	20
45	S2L	enpp4 MO2 10ng	lhx1	9 (45%)	0 (0%)	11 (55%)	0 (0%)	0 (0%)	20
46	S2M	cMO 10ng	lhx1	19 (31%)	3 (5%)	39 (64%)	0 (0%)	0 (0%)	61
47	S2N	enpp4 MO2 10ng + cMO 10ng	pax8	4 (21%)	0 (0%)	11 (58%)	4 (21%)	0 (0%)	19
48	S3A	enpp4 MO2 10ng + enpp6 MO 20ng	3G8	25 (33%)	0 (0%)	49 (64%)	2 (3%)	0 (0%)	76
49		enpp6 MO 20ng	4A6	28 (37%)	0 (0%)	47 (62%)	1 (1%)	0 (0%)	76
50	S3B	enpp4 MO2 10ng +cMO 20ng	3G8	27 (40%)	0 (0%)	39 (62%)	2 (3%)	0 (0%)	68
51		enpp4 MO2 10ng +cMO 20ng	4A6	22 (32%)	0 (0%)	42 (62%)	4 (6%)	0 (0%)	68
52	S3C	enpp6 MO 20ng +cMO 10ng	3G8	31 (47%)	0 (0%)	34 (51%)	1 (2%)	0 (0%)	66
53		enpp6 MO2 20ng +cMO 10ng	4A6	23 (35%)	0 (0%)	42 (63%)	1 (2%)	0 (0%)	66
54		cMO 30ng	3G8	44 (70%)	0 (0%)	19 (30%)	0 (0%)	0 (0%)	63
55		cMO 30ng	4A6	54 (86%)	0 (0%)	9 (14%)	0 (0%)	0 (0%)	63
56	S3D	MO2 10ng	3G8	14 (20%)	0 (0%)	45 (63%)	12 (17%)	0 (0%)	71
57		MO2 10ng	4A6	24 (34%)	0 (0%)	28 (39%)	19 (27%)	0 (0%)	71
58		enpp4 MO2 10ng	3G8	23 (47%)	0 (0%)	25 (51%)	1 (2%)	0 (0%)	49
59		enpp4 MO2 10ng	4A6	28 (57%)	0 (0%)	21 (43%)	0 (0%)	0 (0%)	49
60	S3E	cMO 10ng	3G8	1 (3%)	0 (0%)	27 (79%)	6 (18%)	0 (0%)	34
61		cMO 10ng	4A6	4 (12%)	0 (0%)	22 (65%)	8 (23%)	0 (0%)	34

Supplementary Table 2b

Llistele sizel				Calaviatad	Calculated	Standardized
Histological	Figures		Mada	Calculated	p-value	p-value
analysis	compared	Injections compared	Marker	p-value	(with Bonferroni	(with Bonferroni
compared					correction)	correction)
1/3	2B	enpp4 MO1/cMO	3G8	5.67E-11	7.09E-09	(0;0.001]
2/4	2B	enpp4 MO1/ cMO	4A6	1.54E-04	1.92E-02	(0.01;0.05]
39/3	S2G	enpp4 MO2/ cMO	3G8	3.98E-07	4.97E-05	(0;0.001]
40/4	S2G	enpp4 MO2/ cMO	4A6	3.21E-03	4.01E-01	NS
5/7	2C/2B	enpp4 MO1+2/MO1	3G8	1.12E-01	1.00E+00	NS
6/8	2C/2B	enpp4 MO1+2/MO1	4A6	4.39E-04	5.48E-02	NS
5/9	2C/S2G	enpp4 MO1+2/MO2	3G8	4.17E-03	5.21E-01	NS
6/10	2C/S2G	enpp4 MO1+2/MO2	4A6	3.51E-04	4.39E-02	(0.01;0.05]
48/50	S3A/S3B	enpp6MO+enpp4 MO2/enpp4MO2	3G8	7.29E-01	1.00E+00	NS
49/51	S3A/S3B	enpp6MO+enpp4 MO2/enpp4MO2	4A6	3.21E-01	1.00E+00	NS
48/52	S3A/3C	enpp6MO+enpp4 MO2/enpp6MO	3G8	2.46E-01	1.00E+00	NS
49/53	S3A/3C	enpp6MO+enpp4 MO2/enpp6MO	4A6	9.30E-01	1.00E+00	NS
52/50	S3C	enpp6MO/enpp4MO2	3G8	6.10E-01	1.00E+00	NS
53/51	S3C	enpp6MO/enpp4MO2	4A6	5.13E-01	1.00E+00	NS
56/58	S3D/S3B	enpp6RNA+enpp4MO2/enpp4MO2	3G8	8.35E-04	1.04E-01	NS
57/59	S3D/S3B	enpp6RNA+enpp4MO2/enpp4MO2	4A6	3.32E-05	4.16E-03	(0.001;0.01]
56/60	S3D/S3E	enpp6RNA+enpp4MO2/enpp6RNA+cMO	3G8	5.58E-02	1.00E+00	NS
57/61	S3D/S3E	enpp6RNA+enpp4MO2/enpp6RNA+cMO	4A6	2.37E-02	1.00E+00	(NS
13/14	2D	enpp4 MO1/cMO	slc5a1.1	1.26E-09	1.57E-07	(0;0.001]
41/14	S2H	enpp4 MO2/cMO	slc5a1.1	2.12E-04	2.65E-02	(0.01;0.05]
15/17	2E	enpp4 MO1/cMO	sclc12a1	2.39E-05	2.98E-03	(0.001;0.01]
42/17	S2I	enpp4 MO2/cMO	sclc12a1	1.00E+00	1.00E+00	NS
40/45	05/05	enpp4 MO1+RNA/		0.475.00	4 405 00	(0.004.0.041
16/15	2F/2E	enpp4 MO1	scicizai	9.47E-06	1.18E-03	(0.001;0.01]
12/12	60 I/60H	enpp4 MO2+RNA/	00/01/201	2 015 06		(0:0.001)
43/42	32J/32H	enpp4 MO2	SCICTZAT	3.91E-00	4.09E-04	(0,0.001]
18/19	2G	enpp4 MO1/cMO	clcnkb	4.96E-03	6.19E-01	NS
20/21	2H	enpp4 MO1/cMO	gata3	5.28E-02	1.00E+00	NS
22/23	21	enpp4 MO1/cMO	wt1	1.00E+00	1.00E+00	NS
24/25	2J	enpp4 MO1/cMO	nphs1	4.36E-01	1.00E+00	NS
26/27	2K	enpp4 MO1/cMO	<i>lhx1</i> (st28)	3.91E-03	4.89E-01	NS
44/27	S2K	enpp4 MO2/cMO	<i>lhx1</i> (st28)	4.79E-04	5.99E-02	NS
28/29	2L	enpp4 MO1/cMO	lhx1 (st22)	1.04E-02	1.00E+00	(NS
45/29	S2L	enpp4 MO2/cMO	lhx1 (st22)	2.00E-01	1.00E+00	NS
30/32	2M	enpp4 MO1/cMO	lhx1 (neurula)	5.95E-08	7.44E-06	(0;0.001]
46/32	S2M	enpp4 MO2/cMO	lhx1 (neurula)	6.92E-07	8.65E-05	(0;0.001]
31/30	2N/2M	enpp4 MO1+2/MO1	lhx1 (neurula)	5.47E-02	1.00E+00	NS
31/46	2N/S2M	enpp4 MO1+2/MO2	lhx1 (neurula)	2.40E-03	3.00E-01	NS
33/34	20	enpp4 MO1/cMO	pax8(neurula)	2.23E-05	2.79E-03	(0.001;0.01]
47/34	S2N	enpp4 MO2/cMO	pax8(neurula)	3.31E-04	4.14E-02	(0.01;0.05]
35/36	S2D	enpp4 MO1/cMO	myh4	1.00E+00	1.00E+00	NS
37/38	S2E	enpp4 MO1/cMO	xbra	3.31E-01	1.00E+00	NS

Supplementary Table 2. Scoring analysis of kidney phenotypes in enpp4 morphants (related to Fig.2, supplementary Fig. 2 and 3). (2a) Results from immunohistochemistry and in situ hybridization of injected embryos. Embryos were injected with *enpp4* MO1 or MO2 alone or in combination. Embryos were scored for differences between the injected side (identified by Blue or Red Gal staining) and uninjected side acting as contralateral control side. The numbers of embryos displaying renal phenotype are indicated. The corresponding percentages are indicated in bracket. Each histological analysis was numbered as reference for the statistical comparisons in Supplementary Table 2B. Only the pronephros phenotype on the injected side is indicated. (Som: somites; HypM: hypaxial muscles). (2b) Statistical analyses. Statistical comparisons between pairs of histological analysis listed in Supplementary Table 2A were carried out as indicated in the table. The Bonferroni multiple testing correction was applied to all Fisher's Exact Test. The calculated p value before and after correction and a standardized corrected p-value are given. NS: not significant.

Supplementary Table 3a

						Phenotypes			Total number
Histological Analysis	Figure	Injection	Marker stained	Normal	Enlarged	Reduced	Absent	Ectopic	scored embryos
1	ЗA	enpp4 mRNA 2ng	raldh1a2	12 (32%)	8 (22%)	4 (11%)	0 (0%)	13 (35%)	37
2	3B	enpp4 mRNA 2ng	rdh10	18 (53%)	12 (35%)	0 (0%)	0 (0%)	4 (12%)	34
3	3C	enpp4 mRNA 2ng	cyp26a1	43 (98%)	1 (2%)	0 (0%)	0 (0%)	0 (0%)	44
4	3D	enpp4 mRNA 2ng	notch1	17 (23%)	40 (53%)	13 (17%)	0 (0%)	5 (7%)	75
5	3E	enpp4 mRNA 2ng	dll1	19 (23%)	19 (23%)	7 (9%)	3 (4%)	32 (40%)	81
6	3F	enpp4 mRNA 2ng	jag1	21 (26%)	35 (44%)	8 (10%)	0 (0%)	16 (20%)	81
7	3G	enpp4 mRNA 2ng	wnt4	10 (24%)	13 (32%)	11 (27%)	0 (0%)	7 (17%)	41
8	3H	enpp4 MO1 10ng	raldh1a2	25 (75%)	0 (0%)	8 (25%)	0 (0%)	0 (0%)	33
9		cMO 10ng	raldh1a2	34 (97%)	0 (0%)	1 (3%)	0 (0%)	0 (0%)	35
10	31	enpp4 MO1 10ng	rdh10	26 (79%)	0 (0%)	7 (21%)	0 (0%)	0 (0%)	33
11		cMO 10ng	rdh10	47(100%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	47
12	3J	enpp4 MO1 10ng	cyp26a1	37 (88%)	0 (0%)	5 (12%)	0 (0%)	0 (0%)	42
13		cMO 10ng	cyp26a1	43 (93%)	0 (0%)	3 (7%)	0 (0%)	0 (0%)	46
14	ЗK	enpp4 MO1 10ng	notch1	33 (80%)	4 (10%)	4 (10%)	0 (0%)	0 (0%)	41
15		cMO 10ng	notch1	39 (97%)	1 (3%)	0 (0%)	0 (0%)	0 (0%)	40
16	3L	enpp4 MO1 10ng	dll1	31 (67%)	0 (0%)	15 (33%)	0 (0%)	0 (0%)	46
17		cMO 10ng	dll1	34 (85%)	1 (3%)	5 (12%)	0 (0%)	0 (0%)	40
18	3M	enpp4 MO1 10ng	jag1	26 (62%)	0 (0%)	16 (38%)	0 (0%)	0 (0%)	42
19		cMO 10ng	jag1	39 (95%)	0 (0%)	2 (5%)	0 (0%)	0 (0%)	41
20	3N	enpp4 MO1 10ng	wnt4	4 (10%)	0 (0%)	32 (82%)	3 (8%)	0 (0%)	39
21		cMO 10ng	wnt4	28 (85%)	0 (0%)	5 (15%)	0 (0%)	0 (0%)	33
22	S4A	rfng MO 20ng	3G8	9 (24%)	1 (3%)	12 (32%)	0 (0%)	15 (41%)	37
23		<i>enpp4</i> mRNA 2ng +rfngMO 20ng	4A6	20 (54%)	0 (0%)	12 (32%)	0 (0%)	5 (14%)	37
24	S/B	enpp4 mRNA 2ng +	368	15 (48%)	2 (6%)	7 (23%)	0 (0%)	7 (23%)	31
24	540	enpp4 mRNA 2ng +	360	13 (40 %)	2 (0 /0)	7 (2378)	0 (0 %)	7 (2370)	51
25		cMO 20ng <i>rfng</i> mRNA 2ng +	4A6	21 (68%)	0 (0%)	7 (23%)	0 (0%)	3 (9%)	31
26	S4C.D	enpp4 MO2 10ng	3G8	3 (20%)	0 (0%)	6 (40%)	2(13%)	4 (27%)	15
27		enpp4 MO2 10ng	4A6	4 (27%)	0 (0%)	8 (53%)	1 (7%)	2 (13%)	15
28	S4E	<i>rfng</i> mRNA 2ng + cMO 10ng	3G8	8 (38%)	0 (0%)	4 (19%)	1 (5%)	8 (38%)	21
20		rfng mRNA 2ng +	446	0 (13%)	0 (0%)	8 (38%)	0 (0%)	1 (10%)	21
23		onno/ MO2 10ng	368	5 (28%)	0 (0%)	13 (72%)	0 (0%)	4 (19%)	18
31		enpp4 MO2 10ng	146	5 (20 %) 6 (33%)	0 (0%)	12 (67%)	0 (0%)	0 (0%)	18
32		rfna MO 20na	368	10 (53%)	0 (0%)	9 (48%)	0 (0%)	0 (0%)	19
33		rfng MO 20ng	446	16 (84%)	0 (0%)	3 (16%)	0 (0%)	0 (0%)	19
34		cMO 20ng	368	24 (78%)	0 (0%)	7 (22%)	0 (0%)	0 (0%)	31
35		cMO 20ng	4A6	24 (78%)	0 (0%)	7 (22%)	0 (0%)	0 (0%)	31

Histological analysis compared	Figures compared	Injections compared	marker	Calculated p-value	Calculated p-value (with Bonferroni correction)	Standardized p-value (with Bonferroni correction)
1/9	3A	enpp4/cMO+LacZ	raldh1a2	1.04E-09	1.30E-07	(0;0.001]
2/11	3B	enpp4/cMO+LacZ	rdh10	6.56E-08	8.20E-06	(0;0.001]
3/13	3C	enpp4/cMO+LacZ	cyp26a1	2.42E-01	1.00E+00	NS
4/15	3D	enpp4/cMO+LacZ	notch1	7.17E-15	8.96E-13	(0;0.001]
5/17	3E	enpp4/cMO+LacZ	dll1	7.66E-12	9.57E-10	(0;0.001]
6/19	3F	enpp4/cMO+LacZ	jag1	5.93E-14	7.41E-12	(0;0.001]
7/21	3G	enpp4/cMO+LacZ	wnt4	8.93E-08	1.12E-05	(0;0.001]
8/9	3H	enpp4MO/cMO	raldh1a2	1.21E-02	1.00E+00	NS
10/11	31	enpp4 MO/cMO	rdh10	1.34E-03	1.68E-01	NS
12/13	3J	enpp4 MO/cMO	cyp26a1	4.71E-01	1.00E+00	NS
14/15	3K	enpp4 MO/cMO	notch1	4.88E-02	1.00E+00	NS
16/17	3L	enpp4 MO/cMO	dll1	4.00E-02	1.00E+00	NS
18/19	3M	enpp4 MO/cMO	jag1	3.25E-04	4.06E-02	(0.01;0.05]
20/21	3N	enpp4 MO/cMO	wnt4	1.29E-10	1.61E-08	(0;0.001]
22/24	S4A/S4B	rfngMO+enpp4RNA/ cMO+ enpp4 RNA	3G8	1.16E-01	1.00E+00	NS
23/25	S4A/S4B	rfngMO+enpp4RNA/ cMO+ enpp4 RNA	4A6	5.61E-01	1.00E+00	NS
26/28	S4C.D/S4E	enpp4MO2+rnfgRNA/ cMO+rfng RNA	3G8	3.52E-01	1.00E+00	NS
27/29	S4C.D/S4E	enpp4MO2+rnfgRNA/ cMO+rfng RNA	4A6	5.05E-01	1.00E+00	NS

Supplementary Table 3. Scoring analysis of enpp4 mis-expression on RA. Notch and Wnt signalling pathways (related to Fig. 3 and Supplementary Fig. 4). (3a) Results from immunohistochemistry and *in situ* hybridization of *enpp4* mRNAs or MOs injected embryos. Embryos were injected with *enpp4* RNA or MO alone or in combination with *rfng* RNA or MO. Embryos were scored for differences between the injected side (identified by Blue or Red Gal staining) and uninjected side acting as contra-lateral control side. The numbers of embryos displaying renal phenotype are indicated. The corresponding percentages are indicated in bracket. Each histological analysis was numbered as reference for the statistical comparisons in Supplementary Table 3B. Only the pronephros phenotype on the injected side is indicated. (3b) Statistical analyses. Statistical comparisons between pairs of histological analysis listed in Supplementary Table 3A were carried out as indicated in the table. The Bonferroni multiple testing correction was applied to all Fisher's Exact Test. The calculated p value before and after correction and a standardized corrected p-value are given. NS: not significant

Supplementary Table 4a

Accession	Full F	I Protein name M							
	Hoat	chack protain 75 kDa, mitochondrial OS- M musculus GN- Tran1 DE-1 SV-1	80158.65						
	Coloir	m binding mitochondrial corrier protoin Aralari OS- M musculus GN- Tapi FE-1 SV-1	74522.04						
Q0DH39	Stroop	The billing mitochondrial carrier protein Aralar 105- M.musculus GN- Sic25a12 FE-1 SV-1	72402.94						
062167		-70 protein. Initiochondria OS- <i>M. musculus</i> GN- Hspa 3 PE-1 SV-2	73056 16						
P63017	Heat of	shock cognate 71 kDa protain OS= <i>M musculus</i> GN= Hena8, PE=1 SV=1	70827.34						
P29341	Polya	denvlate-binding protein OS= <i>M musculus</i> GN= Pabpc1 PE=1 SV=1	70598						
07TMK9	Hotor	$\frac{1}{2}$	69589.6						
	Fukarvotic translation initiation factor 4B OS= <i>M musculus</i> GN= Fif4b PE=1 SV=1								
Q91YQ5	Dolich	v-diphosphooligosaccharideprotein glycosyltransferase subunit QS= M musculus GN= Rpn1 PF=2 SV=1	68485.86						
P61222	ATP-h	pinding cassette sub-family F member OS= M musculus GN= Abce1 PF=2 SV=1	67271 14						
Q9Z0X1	Apopt	osis-inducing factor 1 OS= <i>M.musculus</i> GN= Aifm1 PE= 1 SV=1	66723.96						
070194	Fukar	votic translation initiation factor 3 subunit D OS= <i>M musculus</i> GN= Fif3d PF= 1 SV=2	63948.5						
Q97247	Peptic	tyl-prolyl cis-trans isomerase FKBP9 QS= <i>M musculus</i> GN= Fkbp9 PF=1 SV=1	62955 57						
Q7TMK9-2	Isofor	m 2 of Heterogeneous nuclear ribonucleoprotein Q OS= <i>M.musculus</i> GN= Syncrip	62633.38						
P14685	26S p	roteasome non-ATPase regulatory subunit 3 OS= <i>M.musculus</i> GN= Psmd3 PE= 2 SV=2	60661.43						
P80317	T-com	plex protein 1 subunit zeta OS= <i>M.musculus</i> GN= Cct6a PE=1 SV=3	57967.8						
Q6AX80	Ecton	ucleotide pyrophosphatase/phosphodiesterase family member 4 OS= X./aevis GN= enpp4 PE= 2 SV=1	51278.25						
P61979	Isofor	m 3 of Heterogeneous nuclear ribonucleoprotein K OS= <i>M.musculus</i> GN= Hnrnpk PE= 1 SV=1	50944.43						
Q99LC5	Electr	on transfer flavoprotein subunit alpha. mitochondrial OS= <i>M.musculus</i> GN= Etfa PE=1 SV=2	34987.51						
Supplemen	tarv T	able 4b	I						
Accession n	umber	Full Protein name	Mw						
Q9CQN1		Heat shock protein 75 kDa. mitochondrial OS= <i>M.musculus</i> GN= Trap1 PE=1 SV=1	80158.65						
Q8BH59		Calcium-binding mitochondrial carrier protein Aralar1 OS= <i>M.musculus</i> GN= SIc25a12 PE=1 SV=1	74522.94						
P38647		Stress-70 protein. mitochondrial OS= M.musculus GN= Hspa9 PE=1 SV=2	73484.8						
Q62167		ATP-dependent RNA helicase DDX3X OS= M.musculus GN= Ddx3x PE=1 SV=3	73056.16						
Q8K297		Procollagen galactosyltransferase 1 OS= M.musculus GN= Glt25d1 PE=1 SV=3	71015.15						
P63017		Heat shock cognate 71 kDa protein OS= M.musculus GN= Hspa8 PE=1 SV=2	70827.34						
Q99K51		Plastin-3 OS= M.musculus GN= Pls3 PE=1 SV=3	70697.33						
P29341		Polyadenylate-binding protein OS= M.musculus GN= Pabpc1 PE=1 SV=1	70598						
Q7TMK9		Heterogeneous nuclear ribonucleoprotein OS= <i>M.musculus</i> GN= Syncrip PE=1 SV=2	69589.6						
Q91YQ5		Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit OS= <i>M.musculus GN</i> = Rpn1 PE=2 SV=1	68485.86						
P61222		ATP-binding cassette sub-family E member OS= M.musculus GN= Abce1 PE=2 SV=1	67271.14						
Q9Z0X1		Apoptosis-inducing factor 1 OS= <i>M.musculus</i> GN= Aifm1 PE= 1 SV=1	66723.96						
O70194		Eukaryotic translation initiation factor 3 subunit D OS= M.musculus GN= Eif3d PE= 1 SV=2	63948.5						
Q9Z247		Peptidyl-prolyl cis-trans isomerase FKBP9 OS= <i>M.musculus</i> GN= Fkbp9 PE=1 SV=1	62955.57						
Q7TMK9-2		Isoform 2 of Heterogeneous nuclear ribonucleoprotein Q OS= M.musculus GN= Syncrip	62633.38						
P14685		26S proteasome non-ATPase regulatory subunit 3 OS= <i>M.musculus</i> GN= Psmd3 PE= 2 SV=2	60661.43						
P80317		T-complex protein 1 subunit zeta OS= <i>M.musculus GN</i> = Cct6a PE=1 SV=3	57967.8						
P27773		Protein disulfide-isomerase A3 OS= <i>M.musculus GN</i> = Pdia3 PE=1 SV=2	56642.78						
070475		UDP-glucose 6-dehydrogenase OS= <i>M.musculus GN</i> = Ugdh PE=1 SV=1	54797.35						
Q8R180		ERO1-like protein alpha OS= <i>M.musculus GN</i> = Ero1l PE=1 SV=2	54050.26						
P97855		Ras GTPase-activating protein-binding protein 1 member 4 OS= <i>M.musculus GN</i> = G3bp1 PE=1 SV=1	51796.96						
P61979		Isoform 3 of Heterogeneous nuclear ribonucleoprotein K OS= <i>M.musculus</i> GN= Hnrnpk PE= 1 SV=1	50944.43						
Q99LC5		Electron transfer flavoprotein subunit alpha. mitochondrial OS= <i>M.musculus</i> GN= Etfa PE=1 SV=2	34987.51						

Supplementary Table 4. Mass spectrometry analysis of membrane fractions (related to Fig. 4). Proteins of over-expressing *X.laevis* enpp4 protein (a) or control (b) CHO cells membrane fraction were extracted and separated on a polyacrylamide gel. The band labelled by the Xlenpp4 antibody from the transfected Xlenpp4-pCDNA3 lane and the molecular weight equivalent band from the control lane were cut and analysed by mass spectrometry.

Supplementary Table 5a

Histologic			Marker			Phenotypes			Total number of
analysis	Figure	Injection	stained	Normal	Enlarged	Reduced	Absent	Ectopic	embryos
1	6A.B	s1pr5 mRNA 2ng + enpp4 mRNA 1ng s1pr5 mRNA 2ng	3G8	29 (33%)	2 (2%)	23 (26%)	1 (1%)	34 (38%)	89
2	6A.B	+ enpp4 mRNA 1ng	4A6	39 (44%)	11 (12%)	30 (34%)	1 (1%)	8 (9%)	89
3	6C	s1pr5 mRNA 2ng	3G8	38 (73%)	1 (2%)	12 (23%)	1 (2%)	0 (0%)	52
4	6C	s1pr5 mRNA 2ng	4A6	42 (81%)	2 (4%)	7 (13.5%)	1 (2%)	0 (0%)	52
5	6D	enpp4 mRNA 1ng	3G8	64 (68%)	9 (10%)	14 (15%)	0 (0%)	7 (7%)	94
6	6D	enpp4 mRNA 1ng	4A6	68 (72%)	7 (7%)	14 (15%)	0 (0%)	5 (5%)	94
7	S5A	+ enpp4 mRNA 1ng	3G8	57 (64%)	12 (13.5%)	13 (15%)	0 (0%)	7 (8%)	89
8	S5A	+ enpp4 mRNA 1ng	4A6	56 (63%)	12 (13.5%)	20 (22.5%)	0 (0%)	1 (1%)	89
9	S5B	s1pr1 mRNA 2ng	3G8	52 (90%)	3 (5%)	2 (3%)	1 (2%)	0 (0%)	58
10	S5B	s1pr1 mRNA 2ng	4A6	53 (91%)	0 (0%)	5 (9%)	0 (0%)	0 (0%)	58
11	S5C	+ enpp4 mRNA 1ng	3G8	69 (65%)	15 (14%)	7 (7%)	2 (2%)	13(12%)	106
12	S5C	+ enpp4 mRNA 1ng	4A6	81 (76%)	12 (11%)	7 (7%)	2 (2%)	4 (4%)	106
13	S5D	lpar1.1 mRNA 2ng	3G8	53 (96%)	0 (0%)	2 (4%)	0 (0%)	0 (0%)	55
14	S5D	<i>lpar1.1</i> mRNA 2ng	4A6	53 (96%)	0 (0%)	2 (4%)	0 (0%)	0 (0%)	55
15	S5E	+ <i>enpp4</i> mRNA 2ng	3G8	40 (78%)	6 (12%)	2 (4%)	1 (2%)	2 (4%)	51
16	S5E	<i>p2yr10</i> mRNA 2ng + <i>enpp4</i> mRNA 1ng	4A6	45 (88%)	3 (6%)	1 (2%)	2 (4%)	0 (0%)	51
17	S5F	p2yr10 mRNA 2ng	3G8	49 (91%)	2 (4%)	3 (5%)	0 (0%)	0 (0%)	54
18	S5F	<i>p2yr10</i> mRNA 2ng	4A6	53 (98%)	0 (0%)	1 (2%)	0 (0%)	0 (0%)	54
19		LacZmRNA 250pg	3G8	54 (93%)	0 (0%)	4 (7%)	0 (0%)	0 (0%)	58
20		LacZmRNA 250pg	4A6	55 (95%)	0 (0%)	3 (5%)	0 (0%)	0 (0%)	58
21	6E.F	s1pr5.L MO 15ng	3G8	24 (56%)	2 (5%)	16 (37%)	0 (0%)	1 (2%)	43
22	6E.F	s1pr5.L MO 15ng	4A6	17(39.5%)	0 (0%)	26(60.5%)	0 (0%)	0 (0%)	43
23		cMO 15ng	3G8	55 (90%)	0 (0%)	6 (10%)	0 (0%)	0 (0%)	61
24		cMO 15ng s1pr5 / MO 7 5ng	4A6	53 (87%)	0 (0%)	8 (13%)	0 (0%)	0 (0%)	61
25	6G.H	+ <i>enpp4</i> MO 5ng s1pr5 / MO 7 5ng	3G8	11 (26%)	0 (0%)	31 (74%)	0 (0%)	0 (0%)	42
26	6G.H	+ <i>enpp4</i> MO 5ng	4A6	8 (19%)	0 (0%)	34 (81%)	0 (0%)	0 (0%)	42
27	61	+ Control MO 5ng	3G8	40 (78%)	0 (0%)	11 (22%)	0 (0%)	0 (0%)	51
28	61	+ Control MO 5ng	4A6	36 (71%)	0 (0%)	15 (29%)	0 (0%)	0 (0%)	51
29	6J	+ enpp4 MO 5ng	3G8	14 (35%)	0 (0%)	26 (65%)	0 (0%)	0 (0%)	40
30	6J	Control MO 7.5ng + <i>enpp4</i> MO 5ng	4A6	16 (40%)	0 (0%)	24 (60%)	0 (0%)	0 (0%)	40
31		cMO 12.5ng	3G8	41(93.5%)	2 (4.5%)	1 (2%)	0 (0%)	0 (0%)	44
32		cMO 12.5ng	4A6	42 (96%)	1 (2%)	1 (2%)	0 (0%)	0 (0%)	44
33	6K	enpp4 2ng mRNA + s1pr5.L MO 15ng	3G8	18(47.5%)	2 (7.5%)	13(42.5%)	0 (0%)	7(17.5%)	40
34		enpp4 2ng mRNA + s1pr5.L MO 15ng	4A6	22 (55%)	6 (15%)	12 (30%)	0 (0%)	0 (0%)	40
35		s1pr5.L MO 15ng	3G8	25 (71%)	2 (6%)	6 (26%)	0 (0%)	0 (0%)	35
36		s1pr5.L MO 15ng	4A6	19 (57%)	1 (3%)	15 (45%)	0 (0%)	0 (0%)	35
37	6L	enpp4 2ng mRNA + cMO 15ng	3G8	13 (50%)	6 (24%)	7 (25%)	0 (0%)	24 (48%)	50
38		enpp4 2ng mRNA + cMO 15ng	4A6	26 (64%)	7 (14%)	12 (24%)	0 (0%)	5 (10%)	50
39		cMO 15ng	3G8	22 (76%)	1 (3%)	6 (21%)	0 (0%)	0 (0%)	29

Histologic al analysis		Phenotypes									
	Figure	Injection	Marker stained	Normal	Enlarged	Reduced	Absent	Ectopic	scored embryos		
40		cMO 15ng	4A6	26 (90%)	1 (3%)	2 (7%)	0 (0%)	0 (0%)	29		
41	S6E	s1pr5.S MO 15ng	3G8	25 (38%)	0 (0%)	34 (51%)	7 (11%)	0 (0%)	66		
42		s1pr5.S MO 15ng	4A6	26 (39%)	0 (0%)	19 (29%)	21(32%)	0 (0%)	66		
43		s1pr5.L MO 15ng	3G8	12 (21%)	5 (9%)	28 (49%)	12(21%)	0 (0%)	57		
44		s1pr5.L MO 15ng	4A6	22 (39%)	0 (0%)	9 (16%)	26(45%)	0 (0%)	57		
45		cMO 15ng	3G8	48 (72%)	2 (3%)	14 (21%)	3 (4%)	0 (0%)	67		
46		cMO 15ng	4A6	45 (67%)	1 (1%)	12 (18%)	9 (14%)	0 (0%)	67		

Supplementary Table 5b

Histological Figure analysis compared compared		Injection compared	Marker	Calculated p-value	Calculated p-value (with Bonferroni correction)	Standardized p-value (with Bonferroni correction)
1/5	6A.B/6D	s1pr5 + enpp4/enpp4	3G8	1.08E-08	1.35E-06	(0;0.001]
2/6	6A.B/6D	s1pr5 + enpp4/enpp4	4A6	1.50E-03	1.87E-01	NS
1/3	6A.B/6C	s1pr5 + enpp4/s1pr5	3G8	8.80E-09	1.10E-06	(0;0.001]
2/4	6A.B/6C	s1pr5.a + enpp4/s1pr5	4A6	1.15E-04	1.44E-02	(0.01;0.05]
3/19	6C	s1pr5/ LacZ	3G8	7.66E-03	9.58E-01	NS
4/20	6C	s1pr5/ LacZ	4A6	7.89E-02	1.00E+00	NS
7/5	S5A/6D	s1pr1 + enpp4/enpp4	3G8	8.64E-01	1.00E+00	NS
8/6	S5A/6D	s1pr1 + enpp4/enpp4	4A6	1.17E-01	1.00E+00	NS
7/9	S5A/S5B	s1pr1 + enpp4/s1pr1	3G8	1.32E-03	1.65E-01	NS
8/10	S5A/S5B	s1pr1 + enpp4/s1pr1	4A6	1.62E-04	2.03E-02	(0.01;0.05]
9/19	S5B	s1pr1/LacZ	3G8	1.55E-01	1.00E+00	NS
10/20	S5B	s1pr1/LacZ	4A6	7.17E-01	1.00E+00	NS
11/5	S5C/6D	lpar1.1 + enpp4/enpp4	3G8	1.32E-01	1.00E+00	NS
12/6	S5C/6D	lpar1.1 + enpp4/enpp4	4A6	1.89E-01	1.00E+00	NS
11/13	S5C/S6D	lpar1.1 +enpp4/ lpar1.1	3G8	2.77E-05	3.47E-03	(0.001;0.01]
12/14	S5C/S6D	lpar1.1 + enpp4/ lpar1.1	4A6	8.39E-03	1.00E+00	NS
13/19	S5D	lpar1.1/LacZ	3G8	6.80E-01	1.00E+00	NS
14/20	S5D	lpar1.1/LacZ	4A6	1.00E+00	1.00E+00	NS
15/5	S5E/6D	p2y10 + enpp4/enpp4	3G8	1.28E-01	1.00E+00	NS
16/6	S5E/6D	p2y10 + enpp4/enpp4	4A6	6.73E-03	8.42E-01	NS
15/17	S5E/S5F	p2y10 + enpp4/p2y10	3G8	1.66E-01	1.00E+00	NS
16/18	S5E/S5F	p2y10 + enpp4/p2y10	4A6	8.43E-02	1.00E+00	NS
17/19	S5F	p2y10/ LacZ	3G8	4.05E-01	1.00E+00	NS
18/20	S5F	p2y10/ LacZ	4A6	6.19E-01	1.00E+00	NS
21/23	6E.F	s1pr5.LMO/cMO	3G8	1.22E-04	1.52E-02	(0.01;0.05]
22/24	6E.F	s1pr5.LMO/ cMO	4A6	5.39E-07	6.74E-05	(0;0.001]
41/45	S6E	s1pr5.SMO/ cMO	3G8	8.61E-05	1.08E-02	(0.01;0.05]
42/46	S6E	s1pr5.SMO/ cMO	4A6	3.22E-03	4.02E-01	NS
41/43	S6E/6F	s1pr5.SMO/ s1pr5.LMO	3G8	1.08E-02	1.00E+00	NS
42/44	S6E/6F	s1pr5.SMO/ s1pr5.LMO	4A6	1.57E-01	1.00E+00	NS
25/27	6G.H/6I	s1pr5.LMO + enpp4MO/ s1pr5.L MO + cMO	3G8	8.21E-07	1.03E-04	(0;0.001]
26/28	6G.H/6I	s1pr5.LMO + enpp4MO/ / s1pr5L MO + cMO	4A6	9.37E-07	1.17E-04	(0;0.001]
25/29	6G.H/6J	s1pr5.LMO + enpp4MO/enpp4 MO + cMO	3G8	4.74E-01	1.00E+00	NS
26/30	6G.H/6J	s1pr5.LMO + enpp4MO/enpp4 MO + cMO	4A6	5.21E-02	1.00E+00	NS
33/37	6K/6L	enpp4RNA + s1pr5.LMO /enpp4RNA + cMO	3G8	4.18E-03	5.23E-01	NS
34/38	6K/6L	enpp4RNA + s1pr5.LMO /enpp4RNA + cMO	4A6	2.37E-01	1.00E+00	NS

Supplementary Table 5. Scoring analyses of enpp4 and lipidic receptors mis-expression (related to Fig. 6. And Supplementary Fig. 6). (a) Results from immunohistochemistry of enpp4 and lipidic receptors mRNA and MO injected embryos. Embryos were either injected with *s1pr1.s1pr5.lpar1.1.p2y10* and *enpp4* mRNA alone or in combination or with *s1pr5.L s1pr5.s* and *enpp4* MO alone or in combination. Embryos were scored for differences between the injected side (identified by Blue Gal staining) and uninjected side acting as contra-lateral control side. The numbers of embryos displaying renal phenotype are indicated. The corresponding percentages

are indicated in bracket. Each histological analysis was numbered as reference for the statistical comparisons in Supplementary Table 5b. Only the pronephros phenotype on the injected side is indicated. **(b) Statistical analyses.** Statistical comparisons between pairs of histological analysis listed in Supplementary Table 5A were carried out as indicated in the table. The Bonferroni multiple testing correction was applied to all Fisher's Exact Test. The calculated p value before and after correction and a standardized corrected p-value are given. NS: not significant.