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Supplementary Text

Data and code availability
All network data, numerical results, and replication code related to this study are publicly available with
links provided in this document. The R code and the processed data for analyzing and visualizing the results
are publicly available on an OSF repository at https://doi.org/10.17605/OSF.IO/3QTFB.

Solving the graph optimization models
The proposed optimization models can be solved by mathematical programming solvers which supports 0/1
linear programming (binary linear) models. The code for both optimization models will be made available on
a GitHub repository at https://github.com/saref/clusterability-index once this paper
is published. In the GitHub repository, we provide Python code for using Gurobi solver (version 9.1) to solve
the proposed binary linear models and obtain optimal partitions of signed networks into internally cohesive
and mutually divisive clusters based on generalized balance theory.

An illustrative numerical example for the k-partitioning model
We provide a numerical example to illustrate how the mathematical programming model in Eq. 1 (in the
paper) works (and how it is solved by a branch and bound algorithm). Consider that the model in Eq. 1 is
given the example signed graph of Fig. 1 (in the paper) and a the pre-defined value of k = 3 for the number
of clusters.

The main role of the solver that solves this model is to explore the space of feasible solutions (feasible
ways of clustering the input signed graph into k clusters) and finding a feasible solution which is associated
with the minimum number of frustrated edges. Without loss of generality, we can consider one step of this
optimization process is evaluating the objective function value (the frustration count) for a given feasible
solution. The following numerical example explains how the solver handles the model to complete this step
and move forward if needed.

Consider that the optimization solver is to evaluate the frustration count of the partition illustrated in
Fig. 1 (B). The non-zero xic binary decision variables for this partition are as follows: x1,1 = 1, x2,1 = 1,
x3,1 = 1, x4,2 = 1, and x5,2 = 1. Every other xic variable has to be 0 for these variables to constitute a
feasible solution (due to the first set of constraints of the model

∑
c∈C xic = 1∀i ∈ V ).

The second and third sets of constraints allow the model to determine the frustration status of each
edge by quantifying all fij variables based on the values of the xic variables for the feasible solution under
evaluation.

For the positive edges (1, 3) and (2, 3), the second set of constraints (fij ≥ xic−xjc ∀(i, j) ∈ E+, ∀c ∈
C) is in place. These constraints for the feasible solution in Fig. 1 (B) lead to fi,j ≥ 0. Given the flexibility
for taking either binary value, the minimization pressure from the objective function sets the values for f1,3
and f2,3 to 0. This means that the edges (1, 3) and (2, 3) are not frustrated because they are positive and
have the same cluster membership on their endpoints.

For the negative edges (1, 4), (1, 5), (2, 5), and (3, 4), the third set of constraints (fij ≥ xic + xjc −
1 ∀(i, j) ∈ E−, ∀c ∈ C) is in place. These constraints for the feasible solution in Fig. 1 (B) lead to fi,j ≥ 0.
Given the flexibility for taking either binary value, the minimization pressure from the objective function
sets the values for f1,4, f1,5, f2,5, and f3,4 to 0. This means that the edges (1, 4), (1, 5), (2, 5), and (3, 4)
are not frustrated because they are negative and have different cluster memberships on their endpoints.
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For the edge (4, 5), the third set of constraints is in place because it is a negative edge. The constraint
associated with c = 2 leads to fi,j ≥ 1 for the feasible solution in Fig. 1 (B). Therefore, f4,5 takes the value
1. This means that the edge (4, 5) is frustrated because it is negative and has the same cluster membership
on its endpoints.

Accordingly, the objective function
∑

(i,j)∈E fij is evaluated by the model to 1 for the partition illus-
trated in Fig. 1 (B). As the linear programming relaxation of the model in Eq. 1 has a solution of 0 for the
signed graph in Fig. 1, the solver does not stop at this feasible solution and continues exploring other feasible
solutions.

At some point, it finds the feasible solution for the partition illustrated in Fig. 1 (C). The constraints
of the model and the pressure from the minimization objective function lead to all fi,j variables taking the
value 0. Therefore, the objective function evaluates to 0.

At this stage of the branch and bound process, the upper bound (objective function of the best feasible
solution found so far) and the lower bound (LP relaxation solution) reach each other and the solver stops
and reports the partition illustrated in Fig. 1 (C) as an optimal k-partition for the input signed graph and the
pre-defined parameter k = 3.

An illustrative numerical example for the partitioning model
We provide a numerical example to illustrate how the mathematical programming model in Eq. 2 (in the
paper) works (and how it is solved by a branch and bound algorithm). Consider that the model in Eq. 2 is
given the example signed graph of Fig. 1 (in the paper).

The main role of the solver that solves this model is to explore the space of feasible solutions (feasible
ways of clustering the input signed graph into any number of clusters) and finding a feasible solution which
is associated with the minimum number of frustrated edges. Without loss of generality, we can consider one
step of this optimization process is evaluating the objective function value (the frustration count) for a given
feasible solution. The following numerical example explains how the solver handles the model to complete
this step and move forward if needed.

Consider that the optimization solver is to evaluate the frustration count of the partition illustrated in
Fig. 1 (B). The non-zero yij binary decision variables for this partition are as follows: y1,2 = 1, y1,3 = 1,
y2,3 = 1, and y4,5 = 1. Every other yij is 0 because no other pairs of nodes are in the same cluster.

Note that the term in the objective function for a positive edge is 1 − yij because a positive edge is
frustrated when its endpoints are in different clusters. The term in the objective function for a negative edge
is yij because a negative is frustrated when its endpoints are in the same cluster.

Given the values of y1,3 = 1 and y2,3 = 1, the contribution of positive edges (1, 3) and (2, 3) to the
objective function is 0. This means that the positive edges (1, 3) and (2, 3) are not frustrated because they
have the same cluster membership on their endpoints in the partition illustrated in Fig. 1 (B).

Given the value of y4,5 = 1, the negative edge (4, 5) contributes 1 to the objective function. This means
that the negative edge (4, 5) is frustrated because it has the same cluster membership on its endpoints. The
contribution of all other negative edges is 0 because they all have different cluster memberships on their
endpoints in the partition illustrated in Fig. 1 (B).

Accordingly, the objective function
∑

(i,j)∈E aij((aij + 1)/2) − aijyij is evaluated by the model to 1
for the partition illustrated in Fig. 1 (B). As the linear programming relaxation of the model in Eq. 2 has a
solution of 0 for the signed graph in Fig. 2, the solver does not stop at this feasible solution and continues
exploring other feasible solutions.

At some point, it finds the feasible solution for the partition illustrated in Fig. 1 (C). The non-zero yij
binary decision variables for this partition are as follows: y1,2 = 1, y1,3 = 1, and y2,3 = 1. Every other yij
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is 0 because no other pairs of nodes are in the same cluster. The objective function evaluates to 0 because
all positive edges have the same cluster membership on their endpoints and all negative edges have different
cluster memberships on their endpoints.

At this stage of the branch and bound process, the upper bound (objective function of the best feasible
solution found so far) and the lower bound (LP relaxation solution) reach each other and the solver stops and
reports the partition illustrated in Fig. 1 (C) as an optimal partition for the input signed graph.

Using Gurobi for solving the proposed optimization models
Our proposed algorithms are developed in Python 3.8 based on the mathematical programming models
discussed in the paper which partition signed networks based on generalized balance into an optimal k-
partition or an optimal partition without specifying k.

These optimization algorithms are distributed under an Attribution-NonCommercial-ShareAlike 4.0 In-
ternational (CC BY-NC-SA 4.0) license. This means that one can use these algorithms for non-commercial
purposes provided that they provide proper attribution for them by citing the current article. Copies or
adaptations of the algorithms should be released under the similar license.

The following steps outline the process for academics to install the required software (Gurobi solver [1])
on their computer to be able to solve the optimization models:

1. Download and install Anaconda (Python 3.8 version) which allows you to run a Jupyter code. It can
be downloaded from https://anaconda.com/products/individual. Note that you must
select your operating system first and download the corresponding installer.

2. Register for an account on https://pages.gurobi.com/registration to get a free aca-
demic license for using Gurobi. Note that Gurobi is a commercial software, but it can be registered
with a free academic license if the user is affiliated with a recognized degree-granting academic in-
stitution. This involves creating an account on Gurobi website to be able to request a free academic
license in step 5.

3. Download and install Gurobi Optimizer (versions 9.1 and above are recommended) which can be
downloaded from https://www.gurobi.com/downloads/gurobi-optimizer-eula/
after reading and agreeing to Gurobi’s End User License Agreement.

4. Install Gurobi into Anaconda. You do this by first adding the Gurobi channel to your Anaconda
channels and then installing the Gurobi package from this channel.

From a terminal window issue the following command to add the Gurobi channel to your default
search list

conda config --add channels http://conda.anaconda.org/gurobi

Now issue the following command to install the Gurobi package

conda install gurobi

5. Request an academic license from
http://gurobi.com/downloads/end-user-license-agreement-academic/ and in-
stall the license on your computer following the instructions given on Gurobi license page.
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Completing these steps is explained in the following links (for version 9.1).
For Windows:
gurobi.com/documentation/9.1/quickstart_windows/index.html
For Linux:
gurobi.com/documentation/9.1/quickstart_linux/index.html
For Mac OS:
gurobi.com/documentation/9.1/quickstart_mac/index.html.
After following the instructions above, open Jupyter Notebook which takes you to an environment (a

new tab on your browser pops up on your screen) where you can open the main code in a Jupyter notebook
(which is a file with .ipynb extension).

Visualization of 3-partition coalitions in selected House networks (Figures S1 and S2)
Fig. S1 shows the 3-partition coalitions in the 101st, when the third coalition was dominated by highly
effective ideologically liberal legislators. Fig. S2 shows the 3-partition coalitions in the 108th, when the
third coalition was dominated by highly effective ideologically conservative legislators. In both cases, brown
(positive) and turquoise (negative) edges represent significantly many and significantly few co-sponsorships
respectively. Node color indicates the legislator’s ideology on a blue (liberal, Nokken-Poole = -1), purple
(moderate, 0), red (conservative, +1) spectrum. Node size indicates the legislator’s effectiveness. All nodes
are labeled with legislators’ names, which are visible when the figure is viewed at 400+% magnification.

5

gurobi.com/documentation/9.1/quickstart_windows/index.html
gurobi.com/documentation/9.1/quickstart_linux/index.html
gurobi.com/documentation/9.1/quickstart_mac/index.html


Session 101

Dickinson, W. 

Bevill, T. 

Flippo, R. 

Erdreich, B. 

Callahan, H. 

Harris, C. 

Browder, J. 

Young, D. 

Udall, M. 

Stump, R. 

Kolbe, J. 

Kyl, J. 

Rhodes, J. 

Hammerschmidt, J. 

Alexander, W. 

Anthony, B. 

Robinson, T. 

Brown, G. 

Edwards, W. 

Hawkins, A. 

Roybal, E. 

Anderson, G. 

Dellums, R. 

Moorhead, C. 

Stark, F. 

Lagomarsino, R. 

Miller, G. 

Mineta, N. 

Waxman, H. 

Beilenson, A. 

Dornan, R. 

Panetta, L. 

Coelho, A. 

Dannemeyer, W. 

Dixon, J. 

Fazio, V. 

Lewis, J. 

Matsui, R. 

Pashayan, C. 

Shumway, N. 

Thomas, W. 

Dreier, D. 

Dymally, M. 

Hunter, D. 

Lantos, T. 

Lowery, W. 

Martínez, M. 

Bates, J. 

Berman, H. 

Bosco, D. 

Boxer, B. 

Lehman, R. 

Levine, M. 

McCandless, A. 

Packard, R. 

Torres, E. 

Gallegly, E. 

Herger, W. 

Pelosi, N. 

Campbell, T. 

Cox, C. 

Rohrabacher, D. 

Condit, G. 

Schroeder, P. 

Brown, G. 

Schaefer, D. 

Campbell, B. 

Hefley, J. 

Skaggs, D. 

Gejdenson, S. 

Kennelly, B. 

Johnson, N. 

Morrison, B. 

Rowland, J. 

Shays, C. 

Carper, T. Bennett, C. 

Fascell, D. 

Pepper, C. Gibbons, S. 

Young, C. 

Lehman, W. 

Ireland, A. 

Hutto, E. 

Nelson, B. 

McCollum, B. 

Shaw, E. 

Bilirakis, M. 

Lewis, T. 

Smith, L. 

Grant, J. 

Goss, P. 

James, C. 

Johnston, H. 

Stearns, C. 

Ros−Lehtinen, I. 

Barnard, D. 

Jenkins, E. 

Gingrich, N. 

Hatcher, C. 

Ray, R. 

Rowland, J. 

Thomas, R. 

Darden, G. 

Lewis, J. 

Jones, B. 

Akaka, D. 

Saiki, P. 

Craig, L. 

Stallings, R. 

Michel, R. 

Rostenkowski, D. 

Yates, S. 

Annunzio, F. 

Crane, P. 

Madigan, E. 

Collins, C. 

Hyde, H. 

Russo, M. 

Porter, J. 

Martin, L. 

Savage, G. 

Durbin, R. 

Evans, L. 

Lipinski, W. 

Hayes, C. 

Bruce, T. 

Fawell, H. 

Hastert, J. 

Costello, J. 

Poshard, G. 

Sangmeister, G. 

Hamilton, L. 

Jacobs, A. 

Myers, J. 

Hiler, J. 

Burton, D. 

McCloskey, F. 

Visclosky, P. 

Jontz, J. 

Long Thompson, J. 

Smith, N. 

Leach, J. 
Tauke, T. 

Lightfoot, J. 

Grandy, F. 

Nagle, D. 

Glickman, D. 

Whittaker, R. Roberts, P. 

Slattery, J. 

Meyers, J. 

Natcher, W. 

Mazzoli, R. 

Hubbard, C. 

Hopkins, L. 

Rogers, H. 

Perkins, C. 

Bunning, J. 

Boggs, C. 

Huckaby, T. 

Livingston, R. 

Tauzin, W. 

Baker, R. 

Hayes, J. 

Holloway, C. 

McCrery, J. 

Snowe, O. 

Brennan, J. 

Byron, B. 

Dyson, R. 

Hoyer, S. 

Bentley, H. 

Cardin, B. 

McMillen, C. 

Mfume, K. 

Morella, C. 

Conte, S. 

Moakley, J. 

Studds, G. 

Early, J. 

Markey, E. 

Donnelly, B. 

Mavroules, N. 

Frank, B. 

Atkins, C. 

Kennedy, J. 

Neal, R. 

Broomfield, W. 

Dingell, J. 

Conyers, J. 

Ford, W. 

Vander Jagt, G. 

Traxler, J. 

Carr, M. 

Bonior, D. 

Kildee, D. 

Pursell, C. 

Davis, R. 

Wolpe, H. 

Crockett, G. 

Hertel, D. 

Levin, S. 

Henry, P. 

Schuette, B. 

Upton, F. 

Frenzel, W. 

Oberstar, J. 

Vento, B. 

Stangeland, A. 

Sabo, M. 

Weber, J. 

Penny, T. 

Sikorski, G. 

Whitten, J. 

Montgomery, G. 

Espy, A. 

Parker, M. 

Smith, L. 

Taylor, G. 

Clay, W. 

Coleman, E. 

Gephardt, R. 

Skelton, I. 

Volkmer, H. 

Emerson, N. 

Wheat, A. 

Buechner, J. 

Hancock, M. 

Marlenee, R. 

Williams, J. 

Smith, V. 

Bereuter, D. 

Hoagland, P. 

Vucanovich, B. 

Bilbray, J. 

Smith, R. 

Douglas, C. 

Roe, R. 

Rinaldo, M. 

Florio, J. 

Hughes, W. 

Courter, J. 

Guarini, F. 

Dwyer, B. 

Roukema, M. 

Smith, C. 

Torricelli, R. 

Gallo, D. 

Saxton, H. 

Pallone, F. 
Payne, D. 

Skeen, J. 

Richardson, W. 

Schiff, S. 

Horton, F. 

Scheuer, J. 

Fish, H. 

Lent, N. 

Rangel, C. 

Gilman, B. 

Downey, T. 

LaFalce, J. 

McHugh, M. 

Nowak, H. 

Solarz, S. 

Weiss, T. 

Garcia, R. 

Green, S. 

Solomon, G. 

Martin, D. 

McGrath, R. 

Molinari, G. 

Schumer, C. 

Ackerman, G. 

Boehlert, S. 

Mrazek, R. 

Owens, M. 

Towns, E. 

Manton, T. 

Flake, F. 
Hochbrueckner, G. 

Houghton, A. 

Slaughter, L. 

Engel, E. 

Lowey, N. 

McNulty, M. 

Paxon, L. 

Walsh, J. 

Molinari, S. 

Serrano, J. 

Jones, W. 

Rose, C. 

Hefner, W. 

Neal, S. 

Clarke, J. 

Valentine, I. 

Coble, H. 

McMillan, J. 

Ballenger, C. 

Lancaster, H. 

Price, D. 

Dorgan, B. 

Lukens, D. 

Miller, C. 

Wylie, C. 

Stokes, L. 

Regula, R. 

Luken, T. 

Gradison, W. 

Applegate, D. 

Oakar, M. 

Pease, D. 

Hall, T. 

Eckart, D. 

McEwen, B. 

Oxley, M. 

DeWine, M. 

Feighan, E. 

Kaptur, M. 

Kasich, J. 

Traficant, J. 

Sawyer, T. 

Gillmor, P. 

English, G. 

Edwards, M. 

Watkins, W. 

Synar, M. 

McCurdy, D. 

Inhofe, J. 

AuCoin, L. 

Smith, D. 

Wyden, R. 

Smith, R. 

DeFazio, P. 

McDade, J. 

Gaydos, J. 

Coughlin, R. 

Yatron, G. 

Shuster, E. 

Murtha, J. 

Schulze, R. 

Goodling, W. 

Kostmayer, P. 

Murphy, A. 

Walgren, D. 

Walker, R. 

Clinger, W. 

Gray, W. 

Ritter, D. 

Coyne, W. 

Foglietta, T. 

Borski, R. 

Gekas, G. 

Kolter, J. 

Ridge, T. 

Kanjorski, P. 

Weldon, W. 

Schneider, C. 

Machtley, R. 

Spence, F. 

Derrick, B. 

Spratt, J. 

Tallon, R. 

Patterson, E. 

Ravenel, A. 
Johnson, T. 

Quillen, J. 

Ford, H. 

Lloyd, M. 

Cooper, J. 

Sundquist, D. 

Gordon, B. 

Clement, R. 

Duncan, J. 

Tanner, J. 

Brooks, J. 

González, H. 

Pickle, J. 

de la Garza, E. 

Archer, B. 

Wilson, C. 

Frost, J. 

Leath, J. 

Leland, G. 

Stenholm, C. 

Fields, J. 

Hall, R. 

Andrews, M. 

Bartlett, H. 

Bryant, J. 

Coleman, R. 

Ortiz, S. 

Barton, J. 

Bustamante, A. 

Combest, L. 

DeLay, T. 

Armey, R. 

Chapman, J. 

Smith, L. 

Laughlin, G. 

Sarpalius, W. 

Geren, P. 

Washington, C. 

Owens, D. 

Hansen, J. 

Nielson, H. 

Smith, P. 

Parris, S. 

Bliley, T. 

Wolf, F. 

Bateman, H. 

Boucher, F. 

Olin, J. 

Sisisky, N. 

Slaughter, D. 

Pickett, O. 

Payne, L. 

Foley, T. 

Dicks, N. 

Swift, A. 

Morrison, S. 

Chandler, R. 

Miller, J. 

McDermott, J. 

Unsoeld, J. 

Rahall, N. 

Staggers, H. 

Wise, R. 

Mollohan, A. 

Kastenmeier, R. 

Obey, D. 

Aspin, L. 

Roth, T. 

Sensenbrenner, F. 

Petri, T. 

Gunderson, S. 

Moody, J. 

Kleczka, G. 

Thomas, C. 

Figure S1: The 3-partition coalitions in the 101st session of the House of Representatives

6



Session 108

Bonner, J. 

Rogers, M. 

Davis, A. 

Cramer, R. 

Everett, T. 

Bachus, S. 

Aderholt, R. 

Young, D. 

Kolbe, J. 

Flake, J. 

Renzi, R. 

Franks, T. 

Grijalva, R. 

Pastor, E. 

Shadegg, J. 

Hayworth, J. 

Boozman, J. 

Ross, M. 

Berry, R. 

Snyder, V. 

Stark, F. 

Miller, G. 
Waxman, H. 

Lewis, J. 

Matsui, R. 

Thomas, W. 

Dreier, D. 

Hunter, D. 

Lantos, T. 

Berman, H. 

Gallegly, E. 

Herger, W. 

Pelosi, N. 

Cox, C. 

Rohrabacher, D. 

Honda, M. 

Schiff, A. 

Solis, H. 

Watson, D. 

Issa, D. 

Davis, S. 

Cardoza, D. 

Nunes, D. 

Sánchez, L. 

Doolittle, J. 

Dooley, C. 

Waters, M. 

Cunningham, R. 

Woolsey, L. 

Pombo, R. 

Eshoo, A. 

Farr, S. 

McKeon, H. 

Becerra, X. 

Roybal−Allard, L. 

Harman, J. 

Royce, E. 

Calvert, K. 

Filner, B. 

Lofgren, Z. 

Radanovich, G. 

Millender−McDonald, J. 

Tauscher, E. 

Sherman, B. 

Sanchez, L. 

Capps, L. 

Bono Mack, M. 
Lee, B. 

Thompson, M. 

Ose, D. 

Napolitano, G. 

Miller, G. 

Baca, J. 

Hefley, J. 

Musgrave, M. 

Beauprez, B. 

McInnis, S. 

DeGette, D. 

Udall, M. 

Tancredo, T. 

Johnson, N. 

Shays, C. 

Simmons, R. 

DeLauro, R. 

Larson, J. 

Castle, M. 

Young, C. 

Shaw, E. 

Bilirakis, M. 

Goss, P. 

Stearns, C. 

Ros−Lehtinen, I. 

Miller, J. 

Crenshaw, A. 

Keller, R. 

Putnam, A. 

Brown−Waite, V. 

Harris, K. 

Feeney, T. 

Diaz−Balart, M. 

Meek, K. 

Brown, C. 

Mica, J. 

Deutsch, P. 

Diaz−Balart, L. 

Hastings, A. 

Weldon, D. 

Foley, M. 

Boyd, A. 
Davis, J. 

Wexler, R. 

Lewis, J. 

Marshall, J. 

Majette, D. 

Gingrey, P. 

Burns, M. 

Scott, D. 

Kingston, J. 

Bishop, S. 

Collins, M. 

Linder, J. 

Norwood, C. 

Isakson, J. 

Deal, N. 

Abercrombie, N. 

Case, E. 

Otter, C. 

Simpson, M. 

Crane, P. 

Hyde, H. 

Evans, L. 

Lipinski, W. 

Hastert, J. 

Costello, J. 

Kirk, M. 

Johnson, T. 

Emanuel, R. 

Rush, B. 

Gutiérrez, L. 

Manzullo, D. 

Weller, G. 

LaHood, R. 

Jackson, J. 

Davis, D. 

Shimkus, J. 

Schakowsky, J. 

Biggert, J. 

Burton, D. 

Visclosky, P. 

Pence, M. 

Chocola, C. 

Buyer, S. 

Souder, M. 

Hostettler, J. 

Carson, J. 

Hill, B. 

Leach, J. 

King, S. 

Nussle, J. 

Latham, T. 

Boswell, L. 

Tiahrt, T. 

Moran, J. 

Ryun, J. 

Moore, D. 

Rogers, H. 

Chandler, B. 

Lewis, R. 

Whitfield, E. 

Northup, A. 

Lucas, K. 

Fletcher, E. 

Baker, R. 

McCrery, J. 

Alexander, R. 

Jefferson, W. 

John, C. 

Vitter, D. 

Tauzin, W. 

Michaud, M. 
Allen, T. 

Hoyer, S. 

Cardin, B. 

Ruppersberger, C. Van Hollen, C. 

Wynn, A. 

Bartlett, R. 

Cummings, E. 

Markey, E. 

Frank, B. 

Neal, R. 

Lynch, S. 

Olver, J. 

Meehan, M. 

McGovern, J. 

Tierney, J. 

Delahunt, W. 

Capuano, M. 

Dingell, J. 

Conyers, J. 

Kildee, D. 

Levin, S. 

Upton, F. 

Rogers, M. 

Miller, C. 

McCotter, T. 

Camp, D. 

Stupak, B. 

Hoekstra, P. 
Ehlers, V. 

Smith, N. 

Knollenberg, J. 
Kilpatrick, C. 

Oberstar, J. 

Sabo, M. 

Kennedy, M. 

McCollum, B. 

Kline, J. 

Ramstad, J. 

Peterson, C. 

Gutknecht, G. 

Taylor, G. 

Thompson, B. 

Wicker, R. Pickering, C. 

Gephardt, R. 

Skelton, I. 

Akin, W. 

Graves, S. 

Clay, W. 

McCarthy, K. Blunt, R. 

Emerson, J. 

Hulshof, K. 

Rehberg, D. 

Bereuter, D. 

Osborne, T. 

Terry, L. 

Porter, J. 

Gibbons, J. 

Berkley, S. 

Bradley, J. 

Bass, C. 

Smith, C. 

Saxton, H. 

Pallone, F. 

Payne, D. 

Ferguson, M. 

Garrett, S. 

Andrews, R. 

Menéndez, R. 

LoBiondo, F. 

Frelinghuysen, R. 

Pascrell, B. 

Rothman, S. 

Holt, R. 

Pearce, S. 

Wilson, H. 

Udall, T. 

Rangel, C. 

Ackerman, G. 

Boehlert, S. 

Owens, M. 

Towns, E. 

Houghton, A. 

Slaughter, L. 

Engel, E. 

Lowey, N. 

McNulty, M. 

Walsh, J. 

Israel, S. 

Bishop, T. 

Serrano, J. 

King, P. 

Nadler, J. 

Velázquez, N. 

Maloney, C. 

Hinchey, M. 

Quinn, J. 

Kelly, S. 

McCarthy, C. 

Fossella, V. 

Meeks, G. 

Crowley, J. 

Weiner, A. 

Sweeney, J. 

Reynolds, T. 

McHugh, J. 

Coble, H. 

Ballenger, C. 

Price, D. 

Ballance, F. 

Butterfield, G. 

Miller, R. 

Taylor, C. 

Watt, M. 

Jones, W. 

Burr, R. 

Myrick, S. 

Etheridge, B. 

McIntyre, M. 

Hayes, R. 

Pomeroy, E. 

Regula, R. 

Oxley, M. 

Kaptur, M. 

Gillmor, P. 

Tiberi, P. 

Turner, M. 

Ryan, T. 

Hobson, D. 

Boehner, J. 

Portman, R. 

Brown, S. 

Pryce, D. Chabot, S. 

Ney, R. 

LaTourette, S. 

Strickland, T. 

Kucinich, D. 

Jones, S. 

Sullivan, J. 

Carson, B. 

Cole, T. 

Istook, E. 

Lucas, F. 

DeFazio, P. 

Blumenauer, E. 

Hooley, D. 

Wu, D. 

Walden, G. 

Murtha, J. 

Kanjorski, P. 
Weldon, W. 

Hart, M. 

Shuster, B. 

Platts, T. 

Gerlach, J. 

Murphy, T. 

Holden, T. 

Greenwood, J. 

Fattah, C. 

Doyle, M. 

English, P. 

Peterson, J. 

Pitts, J. 

Brady, R. 

Sherwood, D. 

Hoeffel, J. 

Toomey, P. 

Langevin, J. 

Kennedy, P. 

Spratt, J. 

Brown, H. 

Wilson, J. 

Barrett, J. 

DeMint, J. 

Clyburn, J. 

Janklow, W. 

Herseth Sandlin, S. 

Cooper, J. 

Gordon, B. 

Duncan, J. 

Tanner, J. 

Davis, L. 

Blackburn, M. 

Wamp, Z. 

Jenkins, W. 

Ford, H. 

Paul, R. 

Frost, J. 

Stenholm, C. 

Hall, R. 

Ortiz, S. 

Barton, J. 

Combest, L. 

DeLay, T. 

Smith, L. 

Culberson, J. 

Hensarling, J. 

Neugebauer, R. 

Bell, C. 

Burgess, M. 

Carter, J. 

Johnson, S. 

Edwards, T. 

Doggett, L. 

Thornberry, M. 

Jackson Lee, S. 

Sandlin, M. 

Turner, J. 

Sessions, P. 

Brady, K. 

Lampson, N. 

Granger, K. 

Hinojosa, R. 

Reyes, S. 

Rodriguez, C. 

Gonzalez, C. 

Bonilla, H. 

Green, G. 

Johnson, E. 

Matheson, J. 

Bishop, R. 

Cannon, C. 

Sanders, B. 

Wolf, F. 

Boucher, F. 

Davis, J. 

Schrock, E. 

Forbes, J. 

Cantor, E. 

Moran, J. 

Davis, T. 

Scott, R. 

Goodlatte, B. 

Goode, V. 

Dicks, N. 

McDermott, J. 

Larsen, R. 

Hastings, D. 

Nethercutt, G. 

Smith, A. 

Inslee, J. 

Baird, B. 

Dunn, J. 

Rahall, N. 

Mollohan, A. 

Capito, S. 

Obey, D. 

Sensenbrenner, F. 

Petri, T. 

Kleczka, G. 

Kind, R. 

Ryan, P. 

Baldwin, T. 

Green, M. 

Cubin, B. 

Figure S2: The 3-partition coalitions in the 108th session of the House of Representatives
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Significance, generalizability, and limitations of our computational methods
The computational results we provided have broad relevance because they demonstrate the practical feasibil-
ity of solving fundamental NP-hard signed graph partitioning problems. Solving these partitioning problems
are essential for exact evaluations of the structure of signed networks which go beyond the political science
application we have demonstrated and have use cases in other fields from biology and physics [2, 3, 4, 5, 6, 7]
to social sciences [8, 9, 10, 11, 12, 13, 14, 15, 16]. Specifically, our methods for partitioning a signed graph
according to generalized balance improve upon heuristic methods that are fast but do not generally yield
optimal partitions [17, 18, 19]. Additionally, our methods also improve upon existing methods for obtaining
optimal partitions that are only capable of handling small graphs with n ≤ 40 [20, 21]. The correctness of
our methods for partitioning signed networks is guaranteed by the branch and bound algorithm of Gurobi
[1] which is an exact method for solving binary linear programming models to global optimality.

The sizes of real-world instances we have solved to global optimality are considerable and therefore
suggest that our proposed models can be used for a wide variety of other applications with networks of
similar and smaller sizes. For example, the network of the 115th session has n = 448 nodes, m = 31, 936
edges, and |T | = 14, 885, 696 connected triads. Obtaining an optimal 7-partition using Eq. 1 leads to an
optimization model with nk + m = 35, 072 binary variables and mk + n = 224, 000 constraints, which
takes Gurobi, 1.66 hours to solve. Moreover, obtaining an optimal partition (without specifying k) using
Eq. 2 leads to an optimization model with n(n− 1)/2 = 100, 128 binary variables and 3|T | = 44, 657, 088
constraints, which takes Gurobi only 5.28 hours to solve. While obtaining these partitions requires a few
hours, the resulting partition is guaranteed to be globally optimal, which is essential for an exact evaluation
of the structure of the signed networks under analysis.

As expected from the NP-hardness of the problems, the main limitation of the models in Eqs. 1–2 (in
the manuscript) is the size of the network they can handle in a reasonable time. We have demonstrated the
practicability of these models for real-world political networks with up to ∼ 30, 000 edges considering that
a few hours is worth finding a globally optimal solution for the exact evaluation of the structure of these
network. From a practical standpoint, two factors are relevant for determining whether these computation-
ally intensive models are suitable for a different use case: network properties and processing capabilities.
Previous studies suggest that some properties of the input graph like degree heterogeneity could be deter-
minant factors of solve time in similar problems [22]. Also, structural regularities in networks constructed
from empirical data often make them easier to solve compared to synthetic networks (like random graphs)
[22]. As Gurobi solver makes use of multiple processing threads to explore the feasible space in parallel,
the processing capabilities of the computer that runs the optimization solver could also make an impact.
Therefore, our experiments do not guarantee that every network with up to 30, 000 edges can be optimally
partitioned based on generalized balance within the solve times that we have observed for our real-world
instances of US House signed networks.

The computing processor configuration we have used (32 Intel Xeon CPU E7-8890 v3 @ 2.50 GHz
processors) and the size of the real networks we have analyzed (m ∼ 30, 000) have led to solve times
of roughly a few hours per instance. One could speculate that larger networks on the same hardware or the
same networks on less powerful hardware is expected to take longer. In such cases, one may consider using a
non-zero optimality gap tolerance (MIPGap as a Gurobi parameter [1]) to find solutions within a guaranteed
proximity of optimality to reduce the solve time.

Multiplicity of optimal solutions
There are symmetries in the mathematical formulations for the two models in Eqs. 1–2 (in the manuscript).
For example, in Eq. 1, a given 2-partition can be expressed by different feasible solutions (sets of values for
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decision variables). This is because the clusters are treated indifferently and could be swapped while the
partition remains virtually unchanged. As another example, in Eq. 2, a feasible solution does not necessarily
represent a unique partition. This is due to the original formulation [23] in which a pair of non-adjacent nodes
a and i may have no decision variables indicating they belong to the same cluster with any of their neighbours
(denoted by b and j respectively ∀b, j : aab 6= 0, aij 6= 0), i.e., all the decision variables associated with a
and i take the value zero. In that case, the same feasible solution could lead to two partitions (with identical
fitness) depending on whether nodes a and i are placed in the same or different clusters. Another source of
symmetry is the existence of isolate nodes whose optimal cluster membership is random and therefore not
meaningful. When characterizing the composition of clusters in our analyses, we have ignored isolates.

Due to the symmetries outlined above, both optimization models in Eqs. 1–2 generally have multiplicity
in their optimal solutions. Finding all optimal solutions to such computationally intensive problems are
not practically feasible for large instances. For small instances, however, previous studies have looked at
multiplicity of optimal solutions in similar partitioning problems [15, 24]. Although optimal 2-partitions can
be unique in some small real-world signed networks [15], more often multiple optimal solutions exist [15,
their Fig. S1]. Also, in the case of small complete random signed graphs, multiple optimal solutions may
exist [24]. Due to the practical complexity of these problems and the size of empirical networks we consider,
although we cannot find and analyze all optimal partitions, it is certain that the optimal partitions are not
unique. Future work is needed to find practical methods for finding and analyzing all optimal partitions of
such large networks.

Oppositional ties of the splinter coalition
Members of the third coalition have 21.18 negative ties for every positive tie which is substantially different
from the members of traditional coalitions who have on average 2.68 negative ties for every positive tie. This
distinction in oppositional ties deserves more attention and we look at the fraction of each type of edge by
coalition, taking into account the party of legislator at the other endpoint of the edge.

Figure S3 illustrates the fractions of positive and negative edges with co-partisans (members of the same
party) for each of the coalitions based on the optimal 3-partitions. Fractions of positive (negative) edges
are shown by solid (dashed) lines. The red, blue, and green lines represent the conservative coalition, the
liberal coalition, and the splinter coalition respectively. It can be seen in Figure S3 that the three coalitions
are similar based on the fraction of positive edges with co-partisans: members of all coalitions mainly col-
laborate (i.e. have a positive edge with) members of their own party. For the fraction of negative edges with
co-partisans, however, the splinter coalition shifts away from the main liberal and conservative coalition.
From the 104th session, this quantity has generally increased for the splinter coalition reaching values close
to 0.4. This means that legislators in the splinter coalitions have a considerable proportion (nearly 40%) of
their negative edges with members of the own party. Given this distinctive feature in oppositional ties, one
may conclude that the members of the third coalition are distinctively more willing to push back against
their own party.
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Additional numerical results (Tables S1 to S2)
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Movie: Slideshow of the 3-partition coalitions of the signed US House networks
A slideshow of optimal 3-partition coalitions is available online at https://saref.github.io/SI/
AN2021/House_coalitions.mp4 which includes all 19 House networks. Green and red edges repre-
sent significantly many and significantly few co-sponsorships respectively. Node color indicates the legisla-
tor’s ideology on a blue (liberal, Nokken-Poole = -1), purple (moderate, 0), red (conservative, +1) spectrum.
Node size indicates the legislator’s effectiveness. Looking at the colors and positions of edges we can see
that the large majority of edges are intra-cluster positive or inter-cluster negative. In these networks, only
0.05%–2.5% of the edges are frustrated under the optimal 3-partitions which indicate the closeness of the
networks to the assertions of the generalized balance theory [25]. If we look at the colors of the nodes, we
see the ideological divide between the members of different coalitions. The splinter coalition is the smallest
cluster of the nodes which usually has several large nodes (highly effective legislators).

Dataset: frustrated legislators.RData and frustrated legislators.R on OSF
The file ‘frustrated legislators.RData’ is an R workspace which includes a dataframe object ‘data’ that con-
tains details about each legislator in each session (e.g. ideology, effectiveness, cluster membership in op-
timal k-partitions), and 19 igraph objects ‘H###’ that contain signed networks for each session. The file
‘frustrated legislators.R’ in the same repository contains the R code to replicate all substantive analyses re-
ported in the manuscript using these data. Both files are publicly available at https://doi.org/10.
17605/OSF.IO/3QTFB. The data are distributed under a CC-BY 4.0 license, which means that they can
be used provided they are properly attributed by citing [12, 26] and the current article.

Dataset: clusters-house.csv
The results on globally optimal solutions to the optimization model for k-partitioning House networks are
available in comma-separated values format at saref.github.io/SI/AN2021/clusters-house.
csv. The first and second columns contain session numbers and legislator name as indicated by the head-
ers. Each row is a legislator-session combination. The other columns are the cluster assignments based on
optimal k-partitions for k ∈ {2, 3, . . . , 7} as indicated by the column header. The entries represent the clus-
ter assignment of the node associated to the row (the legislator-session combination) based on an optimal
solution of the k-partition associated to the column.
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