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Evaluating the regional climatic changes in Russia using observational data. 

Modern climatic changes in Russia are not uniform across space and through the seasons. 

Warming is more pronounced in the Russian Arctic and subarctic, including the permafrost 

regions, where the mean annual temperature is rising by 0.5–0.9°C per decade. The rate of 

warming differs by season and is the highest in the spring and in the summer (up to 1.0–1.2°C 

per decade in the North of Siberia) and moderate in the fall (0.4–0.6°C per decade with the least 

pronounced regional differences). Winter temperature changes have a complex regional pattern 

and range from a rise by 0.4–0.8°C per decade in Central and Northern Siberia, Yakutia and the 

Russian Far East, to a decline of 0.2–0.6°C per decade in southern Siberia and Chukotka. Annual 

sums of precipitation in the past four decades rose in most Russian regions at the average rate of 

0.8 mm/month per decade with large interannual and regional variations.  

We used data from the full set of Roshydromet weather stations to construct the large-

scale pattern of modern climatic changes in different Russian regions. To minimize the 

stochastic component, which is present in the individual station records, we combined the 

records into groups and developed a climatic regionalization based on the coherence of the 

temperature variations. We tested several classifications consisting of different numbers of 

regions using data for different periods. The regional delineations were all based on the analysis 

of bio-climatic and topographic conditions. The optimal classification for the modern period is 

shown in Figure S1 and consists of 17 regions, 14 of which are in the Russian Federation, and 

the other are in the neighboring states. Five regions, (1, 7, 10, 11, and 12 in Fig. S1) span the 

permafrost zone. Figure S2 illustrates temperature variations in each region. 

 



 

 

 

 

Fig. S1. Regions with coherent contemporaneous temperature changes.  

 

 

 

 

 

 



 

 

Fig. S2. Temperature variations at individual stations (thin blue lines) and regional-mean MAAT 

(red lines) smoothed with an 11-year running filter. 

 

 

Optimal ensemble climate projection for Russian permafrost regions 

Following our earlier study (Anisimov and Kokorev 2017), we constructed the optimal 

climate projection for the Russian permafrost region. The projection is based on results from the 

so-called CMIP5 generation of the Earth System Models (ESMs), which were used in the Fifth 

IPCC report. Climate Models Intercomparison Project (CMIP5) was detailed in (Taylor et al. 

2011). CMIP5 computations include historical (for the period 1850 – 2005) and predictive (for 



 

the period 2006 – 2100) runs. Results from different ESMs differ in details, and regional 

uncertainties in climate projections remain high (Flato et al. 2013). 

 

Global climate models have a typical horizontal resolution of about 2° by latitude and 

longitude, which corresponds to a spatial unit with a size of 200-250 km. Complicating the 

problem, the results of any individual model for any single grid node are not robust, and the 

entire pattern contains many unreliable small-scale details, often interpreted as if it is affected by 

stochastic “noise” (Raisanen and Ylhaisi 2011). This imposes limitations for projecting climatic 

changes at specific locations, such as individual cities. Similar to observations at individual 

stations, “noise” may be reduced by averaging several neighboring grids (spatial smoothing), or 

by applying the same procedure to several models. The ensemble approach is used to minimize 

the uncertainty of the climate projections. While early studies postulated decreasing uncertainty 

with the increase in the number of models in the ensemble, more recent papers suggest 

eliminating outliers, i.e. GCMs that demonstrate poor performance in comparison with 

observations. Model discrimination and construction of optimal ensemble projections for 

regional studies could be based on the consistency with observations of the specific climatic 

parameters. 

We used results from 36 CMIP5 climate models and evaluated each model’s accuracy by 

comparing calculated trends in the climatic characteristics with observations in the 14 Russian 

regions. Tests have been performed using the 1976-2005 data for the seasonal and annual 

temperatures and sums of precipitation. Original data have been harmonized by subtracting the 

“baseline” values averaged over the 1961-1990 period individually for each model. This 

procedure eliminates systematic biases, which individual models are prone to. Results were 

averaged over the grid nodes that fall over each of the regions in Fig. S1, and compared with the 

regional observations. Ultimately, models were ranked according to their capability.  

 

 



 

Model Pfrost 1 7 9 10 11 12 13 

ACCESS1.3 –1.5 –2.1 0.4 –3.4 –1.7 0.1 0.8 –1.8 

ACCESS1–0 0.4 2.6 2.4 –1.7 0.1 0.0 2.5 –1.7 

bcc–csm1–1 4.5 7.3 8.0 –2.1 3.9 1.5 –0.6 –0.7 

bcc–csm1–1–m –0.5 –2.4 –0.5 –2.9 0.2 2.8 5.0 2.7 

BNU–ESM 0.4 –4.0 0.1 1.0 1.1 2.3 4.4 2.1 

CanCM4 –0.2 2.8 2.3 –5.2 –1.2 –0.8 –0.2 –2.1 

CanESM2 2.1 0.7 2.3 –1.3 1.1 1.0 3.4 1.0 

CESM1–CAM5 –4.4 –5.1 –3.6 –2.8 –3.7 –2.3 –3.9 –3.9 

CESM1–FASTCHEM 1.1 0.0 4.4 –2.9 3.8 1.9 –1.2 –1.6 

CMCC–CESM –2.7 –1.0 1.2 –4.7 –0.5 –2.8 –3.9 –5.8 

CMCC–CM 1.4 2.3 4.1 4.0 3.3 1.0 –3.3 0.5 

CMCC–CMS –3.6 –5.6 –2.9 –1.2 –3.1 –2.3 –2.0 –1.8 

CNRM–CM5 4.4 5.0 7.7 1.4 6.7 4.1 6.7 2.0 

CSIRO–Mk3–6–0 0.2 –0.6 2.6 –1.4 1.6 –0.7 –0.8 0.2 

EC–EARTH 1.6 –1.7 3.3 –0.9 3.2 0.7 0.6 2.1 

FIO–ESM –0.6 –3.6 2.8 –1.8 2.5 –0.1 –0.2 –2.4 

GFDL–CM3 –3.2 –6.5 –1.2 –3.2 –2.9 –3.2 4.0 –1.7 

GFDL–ESM2G 1.7 1.6 4.8 –1.4 3.3 3.6 7.4 1.5 

GFDL–ESM2M –1.0 –5.8 –0.6 –0.7 0.6 –0.3 –1.8 –0.8 

GISS–E2–H 0.3 3.1 2.5 –4.2 0.1 –0.2 –1.3 0.0 

GISS–E2–R 0.3 –0.7 2.2 –1.7 2.5 1.7 0.8 –0.7 

HadCM3 1.3 3.0 2.3 –3.0 –0.2 4.1 2.6 0.9 

HadGEM2–AO 2.0 1.3 5.3 1.4 5.8 3.4 1.1 0.6 

HadGEM2–CC 1.5 –0.3 3.6 –3.0 1.1 1.0 2.3 0.7 

HadGEM2–ES 3.0 1.8 2.8 0.4 2.9 3.9 3.9 2.3 

inmcm4 –3.3 –5.6 –1.1 –5.3 –2.6 –3.9 –4.0 –4.6 

IPSL–CM5A–LR –1.0 –1.6 1.0 –0.1 –0.6 0.0 0.1 0.9 

MIROC4h –2.7 –3.5 –1.0 –1.8 –1.1 –0.5 –0.2 –2.8 

MIROC–ESM –2.4 –3.3 –0.4 –1.4 –0.6 –0.9 0.2 –0.6 

MIROC–ESM–CHEM 0.4 0.5 2.8 –4.2 0.2 –1.9 –1.0 –2.6 

MPI–ESM–LR –3.8 –8.0 –2.7 –4.1 –3.4 –0.9 0.0 –0.5 

MPI–ESM–MR –0.3 –0.3 1.8 –2.1 0.2 0.9 2.5 –2.5 

MPI–ESM–P –1.1 –2.0 2.7 0.4 2.6 0.1 –1.3 –2.3 

MRI–CGCM3 –4.6 –5.7 –3.6 –5.9 –3.6 –3.0 –1.4 –4.2 

NorESM1–M 0.8 2.4 3.0 0.3 0.7 –0.3 3.8 0.0 

NorESM1–ME –2.9 0.7 1.5 –5.3 –3.8 –6.8 –3.9 –5.4 

Table S1. Differences between the modeled MAAT trends and observations in the 1976-2005 

period for selected regions in the Russian North, °C/100 years. Based on data from CMIP5 

historical runs. 

 

 

 



 

 

 

Fig. S3. Regional-mean MAAT projections from individual CMIP5 models (blue curves), 

ensemble of all 36 models (black curve), and optimal ensemble of models with the best regional 

skills (red curve).  

 

 

Table S1 illustrates the disparity between the modeled MAAT trends and observations in 

the 1976-2005 period for selected regions in the Russian North and in the areas underlain by 

permafrost. Although not shown in the table, similar results were obtained for other climatic 

parameters and indexes. Models are classified by their relative errors, defined as the ratio of the 

difference between the calculated and observed trends of any given climatic parameter to their 

sum. The threshold for the relative error is set at 0.25 to distinguish between the highly accurate  

models and those that poorly represent observed regional trends. We eliminated outliers and 

combined the remaining twenty-nine “best” models into an “optimal ensemble.” 



 

Some questions remain open, such as how to treat models that demonstrate a high 

accuracy with respect to certain climatic parameters in one region but perform poorly when other 

parameters in other regions are considered. These instances are displayed as grey cells in Table 

S2, which indicate that the relative model error is above the prescribed threshold for at least one 

of all tested parameters in the corresponding region.  

Plots in Figure S3 show the variety of regional-mean MAAT projections from individual 

CMIP5 models (light blue curves), the ensemble of all 36 models (black curve), and the optimal 

ensemble of models with the best regional accuracy (red curve) for selected regions in the 

Russian North, including the areas underlain by permafrost. Hereafter, predictive CMIP5 model 

runs have been used for the 21
st
 century under the high greenhouse gas emission scenarios likely 

to result from the developing world economy (RCP-8.5). Interestingly, except for Western 

Siberia (region 7), the optimal ensemble predicts higher rates of warming than the average over 

all models. Although the differences between the ensemble-means are small, the optimal 

ensemble has an added value in narrowing the range of uncertainty in climate projections by 

eliminating those based on ESMs with poor regional accuracy. 

To further reduce the uncertainty, we eliminated the biases of individual models by 

combining their results with observations. We used each of the ESM results to calculate 

differences between the climatic indexes averaged over the 2036--2065 and 1961--1990 periods, 

and overlaid these differences with the baseline (1961--1990 mean) values calculated from the 

CRU TS3.10 gridded dataset. 

 

 

Mathematical formalism of the SHI dynamical permafrost  model 

 

The dynamical permafrost model is based on the heat balance equation of the soil 

surface, heat transfer equation in snow and soil, and water balance equation:  
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The following designations are used in (1) – (3): L – latent heat (j g
-1

); Т -  soil temperature 

(°С); W,P – volumetric soil moisture and soil porosity (%); Wl(T)– unfrozen soil water content (g 

m
-3

);  - soil moisture potential (m); K, λ– soil water conductivity (m s
-1

) and thermal 

conductivity (w m
-1

 °С
-1

) почвы; сe – effective heat capacity of soil (j g
-1

 °С
-1

); сw,сi, сs and w, 

i, s,  – heat capacity (j g
-1

 °С
-1

) and density (g m
-3

) of water, ice, and dry soil;  - binary 

coefficient;  t, z – time (s) and depth (m).  

The heat transfer equation (1) accounts for the unfrozen water in soil pore space.  
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