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Figure S1: Related to Figure 2B. (A) Illustration of the camera parameter
initialization procedure. We build a graph with each camera as a node and edge
weights computed by the number of frames the calibration board is simultaneously
detected by pairs of cameras. To initialize the camera calibration, we trim this
graph to be a minimal, fully connected tree using a greedy approach. (B) On
calibration videos from the fly dataset, bundle adjustment improves the initial
calibration estimate, as measured by a reduction in reprojection error. (C)
Reprojection error as a function of outlier threshold for bundle adjustment with
Huber and soft L1 losses.



ChArUco Mouse Fly Human

Training frames 1200 2200 6632 636724
Test frames 1200 400 1200 159181
Num cameras 6 2 6 4
Pixel scale (mm) 0.0075 0.0897 0.0075 4.79

2D filter
score threshold 0.05 0.05
n_back 3 3
medfilt 13 13
offset_threshold 15 30
spline true true

3D filter
score_threshold 0.3 0.3 0.3 0.3
reproj_error_threshold 5 5
scale_length 3 1.5
scale_length_weak 0.5 0.5
scale_smooth 2 4
n_deriv_smooth 3 2

Table S1: Anipose configuration parameters used in this paper. Related to
Figures 4 and 5.

number of cameras filter type mean joint angle error (deg) mean joint position error (mm)

2 No filters 11.5 84.3
Viterbi filter 10.6 76.9
Spatiotemporal reg. + Viterbi filter 12.0 98.8

3 No filters 7.5 42.6
Viterbi filter 7.3 41.7
Spatiotemporal reg. + Viterbi filter 7.1 40.2

4 No filters 6.9 37.0
Viterbi filter 6.7 36.8
Spatiotemporal reg. + Viterbi filter 6.4 33.1

Table S2: Estimates of error with different number of cameras for the human
dataset. Related to Figure 5.



View with keypoint detections
removed by autoencoder
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Figure S2: An autoencoder corrects 3D tracking by removing bad keypoint
detections. Related to Figure 4. On the left is one view where the autoencoder
lowered the confidences for particularly bad detections, thus removing them from
the 3D triangulation. On the right are the 3D positions of the keypoints before
and after the removal.
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Figure S3: Related to Figure 5. (A) Example traces of the tracked hind-leg femur
tibia flexion angle, before and after filtering. (B) Estimation of tibia length
over time, before and after filtering. Adding spatial regularization leads to a
more stable estimate of the tibia length across frames. (C) Comparison of angle
estimates before and after filtering. The mean difference and confidence intervals
are plotted as in C. Spatial and temporal regularization improve angle estimation
above 2D filters on both datasets (p < 0.001, paired t-test). The 3D median
filter improves angle estimation on the human dataset (p < 0.001, paired t-test)
but not on the fly dataset (p > 0.8, paired t-test). RANSAC triangulation does
not improve angle estimation for either dataset. (D) Comparison of methods
for estimating tibia length. Spatial regularization most closely matches the
distribution of tibia lengths based on manual annotations. The plots show the
distribution of tibia lengths for one fly, extending the example shown in Figure 5B,
for different filtering strategies (top) and manual annotations (bottom).
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Figure S4: Minimizing higher order derivatives preserves high frequency dynamics
and leads to lower reconstruction error. Related to Figure 5. (A) An example
simulated trajectory along with its reconstructions using temporal regularization
with different derivatives minimized. Each column shows reconstructions with
different smoothing factors. (B) We synthesized 30 different trajectories with
the procedure in A and compared the average power spectral density between
the true, corrupted, and reconstructed trajectories with different derivatives
minimized. At any smoothing factor, minimizing higher derivatives preserves
more power at high frequencies. (C) The average root-mean squared error
(RMSE) of reconstruction for the 30 simulated trajectories. The minimum error
for a median filter (over all possible filter widths) is shown as a dashed line, for
reference. Dotted lines indicate the smoothing factors shown in A and B. Note
that minimizing higher derivatives is more robust to smoothing factor choice, as
a wider range of factors give lower RMSE than a median filter. The best RMSE
over all possible smoothing factors is lower when minimizing the 3rd derivative
than 2nd or 1st.
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Figure S5: An example of the Anipose file structure. This structure enables
visualization of arbitrary datasets, as shown in Figure 6. (A) The input file
structure consists of folders nested to arbitrary depths (e.g. “experiment/2019-
03-03/trial 1”) with a folder for raw videos at each leaf of the directory tree.
The calibration folder may be placed anywhere and will apply recursively to all
folders adjacent to it. (B) When the user runs Anipose, it will create a folder
for each step of processing. New folders created include “pose-2d” and “videos-
labeled” which contain the unfiltered keypoint detections and visualizations of
those, “pose-2d-filtered” and “videos-labeled-filtered” which contain the filtered
keypoint detections and visualizations, “pose-3d” and “videos-3d” which contain
the triangulated 3D keypoint detections and visualizations of these, and finally
“angles” which contains angles computed based on the 3D keypoint detections.
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Figure S6: Related to Figure 7. (A) Probability density functions of all joint
angles and derivatives for 39 wild type flies during walking, extending the subset
of angles presented in Figure 7B. (B) UMAP embeddding of fly walking, as in
Figure 7C, colored by each of the joint angles. The colormap is normalized to
the angle within each plot. (C) Confusion matrix for the behavior classifier used
to isolate walking bouts for Figure 7.
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Figure S7: Related to Figure 7. 3D tracking with Anipose reveals common
structure of mouse reaches. (A) 3D trajectories of example reaches of each type.
The pellet holder is indicated as a black dot. (B) Mean distance to pellet holder
as a function of time, for each mouse. Shaded areas are 95% confidence intervals.
When reaches are aligned to grasp attempt (0 ms), the hand is farther from the
pellet on miss trials compared to hit or bump trials.



Left leg

Right leg

E

40 20 0 20 40

Hip rotation angle (deg)

100 120 140 160 180

Knee flexion angle (deg)

25 0 25 50 75

hip flexion angle (deg)

0.00

0.01

0.02

0.03

100 0 100

hip rotation angle (deg)

0.00

0.01

0.02

100 120 140 160 180

knee flexion angle (deg)

0.00

0.01

0.02

0.03

0.04

P
D

F

160°

knee flexion

0°

hip rotation

0°

hip flexion

160°
0° 0°

20 0 20

Hip flexion angle (deg)

Left leg

Right leg

30°

10 seconds

D

C

Figure S7: (Continued from previous page). 3D tracking of human walking
enables quantification of leg angles and comparison across individuals. (C)
Representative traces of knee flexion, hip rotation, and hip flexion from a
walking human, tracked with Anipose. Data is from the Human 3.6M dataset.
The median angle value is indicated at left as a reference point. (D) Probability
distribution functions of knee flexion, hip rotation, and hip flexion angles from 7
humans. Only sessions that include walking are included. Note the asymmetry
in the distributions of knee flexion and hip flexion, revealing the known non-
sinusoidal pattern of knee and hip flexion during walking. (E) UMAP embedding
of knee flexion, hip rotation, and hip flexion angles across all legs, and their
derivatives. The UMAP embedding is colored by knee flexion and hip rotation for
each leg. Coloring by knee flexion angle reveals the common phase alignment of
the circles across subjects. From this phase alignment, we see that the trajectory
of hip rotation for each subject is markedly different.


