
Resource
Anipose: A toolkit for robu
st markerless 3D pose
estimation
Graphical abstract
Highlights
d Open-source Python toolkit for 3D animal pose estimation,

with DeepLabCut support

d Enables camera calibration, filtering of trajectories, and

visualization of tracked data

d Tracking evaluation on calibration board, fly, mouse, and

human datasets

d Identifies a role for joint rotation inmotor control of flywalking
Karashchuk et al., 2021, Cell Reports 36, 109730
September 28, 2021 ª 2021 The Author(s).
https://doi.org/10.1016/j.celrep.2021.109730
Authors

Pierre Karashchuk, Katie L. Rupp,

Evyn S. Dickinson, ..., Eiman Azim,

Bingni W. Brunton, John C. Tuthill

Correspondence
bbrunton@uw.edu (B.W.B.),
tuthill@uw.edu (J.C.T.)

In brief

Karashchuk et al. introduce Anipose, a

Python toolkit that enables researchers to

track animal poses in 3D. Anipose

performs 3D calibration, filters tracked

keypoints, and visualizes resulting pose

data. This open-source software and

accompanying tutorials facilitate the

analysis of 3D animal behavior and the

biology that underlies it.
ll

mailto:bbrunton@uw.edu
mailto:tuthill@uw.edu
https://doi.org/10.1016/j.celrep.2021.109730
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2021.109730&domain=pdf

OPEN ACCESS

ll
Resource

Anipose: A toolkit for robust
markerless 3D pose estimation
Pierre Karashchuk,1 Katie L. Rupp,2 Evyn S. Dickinson,2 Sarah Walling-Bell,2 Elischa Sanders,4 Eiman Azim,4

Bingni W. Brunton,3,5,* and John C. Tuthill2,5,6,*
1Neuroscience Graduate Program, University of Washington, Seattle, WA, USA
2Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
3Department of Biology, University of Washington, Seattle, WA, USA
4Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
5Senior author
6Lead contact

*Correspondence: bbrunton@uw.edu (B.W.B.), tuthill@uw.edu (J.C.T.)
https://doi.org/10.1016/j.celrep.2021.109730
SUMMARY
Quantifyingmovement is critical for understanding animal behavior. Advances in computer vision now enable
markerless tracking from 2D video, but most animals move in 3D. Here, we introduce Anipose, an open-
source toolkit for robust markerless 3D pose estimation. Anipose is built on the 2D tracking method Deep-
LabCut, so users can expand their existing experimental setups to obtain accurate 3D tracking. It consists
of four components: (1) a 3D calibration module, (2) filters to resolve 2D tracking errors, (3) a triangulation
module that integrates temporal and spatial regularization, and (4) a pipeline to structure processing of large
numbers of videos. We evaluate Anipose on a calibration board as well as mice, flies, and humans. By
analyzing 3D leg kinematics tracked with Anipose, we identify a key role for joint rotation in motor control
of fly walking. To help users get started with 3D tracking, we provide tutorials and documentation at
http://anipose.org/.
INTRODUCTION

Tracking body kinematics is key to answering questions in many

scientific disciplines. For example, neuroscientists quantify ani-

mal movement to relate it to brain dynamics (Mathis and Mathis,

2020; Seethapathi et al., 2019), biomechanists quantify the

movement of specific body structures to understand their

mechanical properties (Alexander, 2017; Bender et al., 2010),

social scientists quantify the motion of multiple individuals to un-

derstand their interactions (Schwager et al., 2008; Halberstadt

et al., 2016), and rehabilitation scientists quantify body move-

ment to diagnose and treat disorders (Souza, 2016; Chiba

et al., 2005; Rinehart et al., 2006). In all of these disciplines,

achieving rapid and accurate quantification of animal pose is a

major bottleneck to scientific progress.

While it is possible for human observers to recognize body

movements, scoring behaviors by eye is laborious and often fails

to detect differences in the rapid, fine-scale movements that

characterize many behaviors. Methods for automated tracking

of body kinematics from video have existed for many years,

but they typically rely on the addition of markers to identify and

disambiguate body parts. Although such methods can achieve

very precise pose estimation (Marshall et al., 2021), the use of

markers is often impractical, particularly when studying natural

behaviors in complex environments, tracking multiple body

parts, or studying small animals. Thus, there is a pressing need
Cel
This is an open access article und
for methods that perform automated, markerless tracking of

body kinematics.

Recent advances in computer vision and machine learning

have dramatically improved the speed and accuracy of marker-

less body-pose estimation (Mathis and Mathis, 2020). There are

now a number of tools that apply these methods to track animal

movement from 2D videos, such as DeepLabCut (Mathis et al.,

2018), SLEAP (Pereira et al., 2020), DeepPoseKit (Graving

et al., 2019), among others (Cao et al., 2021; Machado et al.,

2015; https://github.com/kristinbranson/APT). These software

packages allow users to label keypoints, train convolutional neu-

ral networks, and apply them to identify keypoints from videos;

several toolkits also include auxiliary tools, such as visualizing

and filtering the tracked keypoints. Among them, DeepLabCut

is the most widely used (Mathis et al., 2020).

While tracking of animal movement from 2D video is useful for

monitoring specific body parts, full body-pose estimation, and

measurement of complex or subtle behaviors require tracking

in three dimensions. Multiple tools have emerged for 3D tracking

and body-pose estimation, including DANNCE (Dunn et al.,

2021), FreiPose (Zimmermann et al., 2020), DeepFly3D (G€unel

et al., 2019), and OpenMonkeyStudio (Bala et al., 2020). Howev-

er, these tools use fundamentally distinct network architectures,

workflows, and user interfaces from popular 2D tracking

methods. Out of the existing 2D tracking tools, only DeepLabCut

(Nath et al., 2019) supports triangulation with up to 2 cameras.
l Reports 36, 109730, September 28, 2021 ª 2021 The Author(s). 1
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).

mailto:bbrunton@uw.edu
mailto:tuthill@uw.edu
https://doi.org/10.1016/j.celrep.2021.109730
http://anipose.org/
https://github.com/kristinbranson/APT
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2021.109730&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Resource
ll

OPEN ACCESS
However, three or more cameras are often required to resolve

pose ambiguities, such as when one body part occludes

another. Thus, there is a need for additional tools that allow users

to extend their existing 2D tracking setups to achieve robust 3D

pose estimation while preserving their established workflows.

Here, we introduce Anipose (a portmanteau of ‘‘animal’’ and

‘‘pose’’), a toolkit to quantify 3D body kinematics by integrating

DeepLabCut tracking frommultiple camera views. Anipose con-

sists of a robust calibrationmodule, filters to further refine 2D and

3D tracking, and an interface to visualize and annotate tracked

videos (link to example here). These features allow users to

analyze 3D animal movement by extracting behavior and kine-

matics from videos in a unified software framework. Below, we

demonstrate the value of 3D tracking with Anipose for analysis

of mice, fly, and human body kinematics (Figure 1). Applying

3D tracking to estimate joint angles of walking Drosophila, we

find that flies move their middle legs primarily by rotating their

coxa and femur, whereas the front and rear legs are driven pri-

marily by femur-tibia flexion. We then show how Anipose can

be used to quantify differences between successful and unsuc-

cessful trajectories in a mouse reaching task. Finally, we visu-

alize how specific leg joint angles map onto a manifold of human

walking.

We designed Anipose to make 3D tracking accessible for a

broadcommunityof scientists.Because it is built onDeepLabCut,

Anipose allows users to easily upgrade from2D to 3D tracking, as

well as take advantage of theDeepLabCut community, documen-

tation, and continued support. To help users get started, we pro-

vide in-depth tutorials and documentation at http://anipose.org.

The release of Anipose as free and open-source Python software

facilitates adoption, promotes ongoing contributions by commu-

nity developers, and supports open science.

RESULTS

We implement 3D tracking in a series of steps: estimation of

calibration parameters from calibration videos, detection and

refinement of 2D joint keypoints, triangulation and refinement

of keypoints to obtain 3D joint positions, and computation of joint

angles (Figure 2). In addition to the processing pipeline, the key

innovations of Anipose are a robust 3D calibration module,

spatiotemporal filters that refine pose estimation in both 2D

and 3D, and a visualization incorporating videos, tracked key-

points, and behavioral annotations in one interface. We evalu-

ated the calibration and triangulation modules without filters by

testing their ability to accurately estimate lengths and angles of

a calibration board with known dimensions (Figure 1A) and to

track the hand of a mouse reaching for a food pellet (Figure 1B).

We then evaluated how filtering improves estimation in 3D of

position and time derivative of walking flies (Figure 1C) and

humans (Figure 1D). Representative examples of tracking from

each dataset are shown in Video S1.

Robust calibration of multiple camera views
An essential step in accurate 3D pose estimation is precise cam-

era calibration, which determines the relative location and pa-

rameters of each camera (i.e., the focal length and distortions).

We implemented an automated procedure that calibrates the
2 Cell Reports 36, 109730, September 28, 2021
cameras from simultaneously acquired videos of a standard cali-

bration board (e.g., checkerboard or ChArUco board) moved by

hand through the cameras’ fields of view (Figure 2A). We recom-

mend the ChArUco board because its keypoints may be

detected even with partial occlusion, and its rotation can be

determined uniquely from multiple views. The pipeline starts by

detecting keypoints on the calibration board automatically using

OpenCV (Bradski, 2000), based on the board’s geometric regu-

larities (e.g., checkerboard grid pattern, specific black and white

markers). These board detections are used first to initialize cam-

era calibration parameters from arbitrary positions through a

greedy algorithm that adds edges between cameras one by

one until it reaches a fully connected tree (Figure S1A).

Although some tracking tools (e.g., Cao et al., 2021; Dunn et al.,

2021) stop at the initial estimate of camera parameters based on

estimated calibration board orientation from different cameras,

we found that this is often not sufficient to obtain accurate camera

calibrations, especially when there are few frameswith a detected

board. To resolve this issue, we implemented procedures that

optimize the camera calibration parameters tominimize the repro-

jection error of the calibration board keypoints, referred to as

bundle adjustment in the camera registration literature (Triggs

et al., 2000). We implemented bundle adjustment with standard

(least-squares) as well as robust losses (Huber and soft L1).

Furthermore, we developed an iterative procedure we term

‘‘iterative bundle adjustment,’’ which performs bundle adjustment

in multiple stages, using only a random subsample of detected

keypoints points in each stage (see STAR Methods for a detailed

description). This procedure automatically tunes the outlier

thresholds andminimizes the impact of erroneous keypoint detec-

tions and bad camera initialization. Each of these bundle adjust-

ment procedures improves the reprojection error from the initial

estimate (Figure S1B). Iterative bundle adjustment produced

marginally better results, but with no parameter tuning, so we

use this as the default in Anipose.

Accurate reconstruction of physical lengths and angles
in 3D
An important test of any calibration method is whether it can

accurately reconstruct an object with known dimensions. We

evaluated the Anipose calibration and triangulation toolkit by

asking whether it could estimate the lengths and angles of a pre-

cisely manufactured ChArUco board (Garrido-Jurado et al.,

2014).

We first compared the accuracy of tracking the 9 corners of

the ChArUco board (Figure 3A) with three methods: manual

annotation, neural network detections, and OpenCV detections

(example detections in Figure 3B). Although manual annotations

are typically assumed to be the ground truth in tracking animal

kinematics, we started by assessing the reliability of manual

annotations relative to high-precision, sub-pixel resolution key-

point detection based on the geometry of the ChArUco board

with OpenCV (Bradski, 2000; Garrido-Jurado et al., 2014). Rela-

tive to the OpenCV points, the manual keypoint annotations had

a mean error of (0.52, –0.75) pixels and standard deviation of

(2.57, 2.39) pixels, in the (x, y) directions, respectively (Figure 3C).

These observations provide a useful baseline of manual annota-

tion accuracy.

https://faculty.washington.edu/tuthill/aniposeviz.html
http://anipose.org

A

B

C

D

Figure 1. Four experimental datasets were used for evaluating 3D calibration and tracking with Anipose

(A) To evaluate tracking errors, a 232mmprecisionmanufactured ChArUco boardwas simultaneously filmed from 6 cameras focused on the same point in space.

We manually annotated and tracked 9 keypoints on the ChArUco board, a subset of the points that can be detected automatically with OpenCV.

(B) Adult mice were trained to reach for food pellets through an opening in a clear acrylic box. After training, reach attempts were captured from 2 cameras. To

quantify reach kinematics, we labeled and tracked 3 keypoints on each hand.

(C) Fruit flies were tethered and positioned on a spherical treadmill, where they were able to walk, groom, etc. Fly behavior was filmed from 6 cameras evenly

distributed around the treadmill. We labeled and tracked 5 keypoints on each of the 6 legs, one keypoint for each of the major leg joints.

(D) As part of the Human 3.6M dataset, professional actors performing a range of actions were filmed from 4 cameras. We tracked 17 joints on each human,

covering the major joints of the human body.

Resource
ll

OPEN ACCESS
We evaluated the accuracy of reconstructing ChArUco board

lengths and angles as estimated by three methods: manual key-

point annotations, OpenCV keypoint detections, and neural
network keypoint detections (see STARMethods for detailed de-

scriptions). As our ground-truth dataset, we chose the known

physical lengths and angles between all pairs of 9 corners on
Cell Reports 36, 109730, September 28, 2021 3

Figure 2. Overview of the Anipose 3D tracking pipeline

(A) The user collects simultaneous video of a calibration board from multiple cameras.

(B) Calibration board keypoints are detected from calibration videos and processed to calculate intrinsic and extrinsic parameters for each camera using iterative

bundle adjustment (see Figure S1).

(C) With the same hardware setup as in (A), the user collects behavior videos.

(D) Behavior videos are processed by a neural network (e.g., DeepLabCut) to detect 2D keypoints.

(E) 2D keypoints are refined with 2D filters to obtain refined 2D detections (Figure 4).

(F) The filtered 2D keypoints are triangulated to estimate 3D poses.

(G) The estimated 3D poses are passed through an additional spatiotemporal filtering step to obtain refined 3D poses (Figure 5).

(H) Joint angles are extracted from the refined 3D poses for further analysis.

4 Cell Reports 36, 109730, September 28, 2021

Resource
ll

OPEN ACCESS

A B C

D

E

F

G

Figure 3. Anipose can consistently esti-

mate positions and angles of keypoints

across four different datasets

(A) We identified 9 corners as keypoints on the

ChArUco board in 200 frames from each of 6

cameras.

(B) For comparison, we usedmanual annotation of

the same ChArUco board dataset to train a neural

network. We then compared tracking errors of the

manual annotations, the neural network, and

OpenCV.

(C) Error in manually annotated keypoints relative

to the sub-pixel precision of OpenCV detections.

Manually annotated keypoints had a mean error of

(0.52, �0.75) pixels and standard deviation of

(2.57, 2.39) pixels.

(D) Lengths between all possible pairs of keypoints

were computed and compared to the physical

lengths. Similarly, all possible angles between

triplets of keypoints were computed and

compared to known physical angles. OpenCV

keypoints provided the most reliable estimates,

followed by neural network predictions, then

manual annotations. Note that OpenCV generally

detected only a small fraction of the keypoints

detected by the neural network or through manual

annotation (19.3% of frames had keypoints de-

tected by OpenCV, compared to 78.1% by the

neural network and 75% by manual annotations).

(E) At this stage, prior to filtering, outlier and

missing keypoint detections are apparent. Shown

at left is an example trace of the tracked 3D

position of the base of the mouse hand, projected onto the direction of the reach. On the right, we quantified the distribution of errors when estimating all joint

positions and angles, relative to manual annotations. For the mouse dataset, 1 pixel corresponds to approximately 0.09 mm.

(F) Same layout as (A), but for 3D position of the fly hind-leg tibia-tarsus joint, projected onto the longitudinal axis of the fruit fly. For the fly dataset, 1 pixel z

.0075 mm.

(G) Same layout as (A), but for tracked 3D position of a humanwrist, projected onto an arbitrary axis. Note that the human (and their wrist) is moving throughout the

room. For the human dataset, 1 pixel z4.8 mm.

Resource
ll

OPEN ACCESS
the ChArUco board. The ChArUco board was manufactured with

precise tolerance (<2 mm), which allowed us to evaluate the accu-

racy of lengths and angles frommanual keypoint annotations and

OpenCVkeypointdetections,whicharecommonly taken tobe the

ground truth. As expected, OpenCV detections had the lowest

error in length and angle, as they leveraged prior knowledge of

the ChArUco board geometry tomake high-precision corner esti-

mates (Figure 3D). Surprisingly, neural network (trained with

DeepLabCut) predictions had a lower error than manual annota-

tions, despite the network itself being trained on manual annota-

tions.More than 90%of poses estimated by Anipose had an error

of less than 20 mm in length and 1 degree in angle, relative to the

true dimensions of the ChArUco board (Figure 3D). These results

demonstrate the efficacy of camera calibration with Anipose and

serve as useful bounds of expected performance.

Animal tracking in 3D
We evaluated the triangulation of markerless tracking on three

different animal datasets (Figures 3E–3G). For each dataset,

we computed the error of estimated joint positions and angles

on labeled animals withheld from the training data. The error in

estimated joint angles was <16� in over 90% of frames, and

<10� in over 75% of frames. Furthermore, the error in the esti-

mated joint position was <18 pixels (approximately 1.6, 0.14,
and 86 mm for mouse, fly, and human datasets, respectively)

in over 90% of frames and <12 pixels (approximately 1, 0.09,

and 57 mm for mouse, fly, and human datasets, respectively)

in over 75% of frames. Importantly, the position error in units

of camera pixels is roughly comparable across these three data-

sets, spanning more than 3 orders of magnitude in spatial scale.

Therefore, we believe these errors are representative of what can

currently be expected for accuracy of 3D markerless tracking.

Although triangulation usually resulted in accurate estimates

of joint positions and angles, there were still some frames where

it failed due to missing keypoint detections (as in Figure 3E). In

other cases, incorrect keypoint detections led to erroneous 3D

joint position estimates (as in Figure 3F). Even though these is-

sues occurred in a small minority of frames, tracking errors are

especially problematic for analyzing movement trajectories.

For instance, missing estimates complicate the estimation of

derivatives, whereas erroneous estimates bias the distribution

of summary statistics. To minimize these issues, we leveraged

complementary temporal and spatial information within each

dataset to refine tracking performance in 3D.

Addition of filters to improve tracking accuracy
Naturally behaving animals present unique challenges for 3D

pose estimation. Animals can contort their bodies into many
Cell Reports 36, 109730, September 28, 2021 5

A

B

C

Figure 4. 2D filters improve accuracy of 2D

pose estimation by taking advantage of

the temporal structure of animal behavior

(A) An example trace of the x coordinate of the 2D

position of a fly’s tibia-tarsus joint before and after

each step in filtering. Filtering reduces spurious

jumps while preserving correct keypoint de-

tections. See Figure S2 for a demonstration of the

autoencoder filter.

(B) Comparison of error in joint position before and

after filtering. The mean difference in error for the

same tracked points is plotted, alongwith the 95%

confidence interval. Viterbi and autoencoder filters

significantly improved the estimation of joint po-

sition in flies (p< 0:001, paired t test). The Viterbi

filter significantly improved estimation of joint po-

sition in humans (p< 0:001, paired t test). For the

fly dataset, 1 pixel z.0075 mm. For the human

dataset, 1 pixel z4.8 mm. The absolute error

values are indicated in parentheses above the

0 tick mark for each dataset.

(C) Comparison of angle estimates before and

after filtering. The mean difference is plotted as in

(B). Viterbi and autoencoder filters significantly

improved the estimation of angles in flies and

humans (p< 0:001, paired t test).

The results in (B) and (C) are evaluated on a vali-

dation dataset withheld from the training (1,200

frames for the fly, 8,608 frames for the humans).

See Table S1 for filter parameters.

Resource
ll

OPEN ACCESS
different configurations, which means that each behavioral ses-

sion may include unique poses that have not been previously

encountered, even across multiple animals. Our approach to

tackling these challenges is to leverage prior knowledge that

animal movements are usually smooth and continuous, and

that rigid limbs do not change in length over short timescales.

In particular, we developed and implemented a set of 2D and

3D filters that refine keypoints, remove errors in keypoint detec-

tions, and constrain the set of reconstructed kinematic trajec-

tories. We demonstrate that both sets of filters work together

to significantly improve pose estimation. Here, we focus on

detailed quantification of these filters in tracking flies and

humans, where our datasets included keypoints at every limb

joint tracked with at least 4 camera views.

Refining keypoints in 2D

We implemented three distinct algorithms to remove or correct

errors in 2D keypoint detection: a median filter, a Viterbi filter,

and an autoencoder filter. The median and Viterbi filters operate

on each tracked joint across frames, and the autoencoder filter

refines keypoints using learned correlates among all joints. The

median filter removes any point that deviates from a median

filtered trajectory of user-specified length and then interpolates

the missing data. The Viterbi filter finds the most likely path of

keypoint detections for each joint across frames from a set of

top (e.g., 20) detections per frame, given the expected standard

deviation of joint movement in pixels as a prior. Finally, the au-

toencoder filter corrects the estimated score of each joint based

on the scores of the other joints, with no parameters set by the

user. Where errors in tracking cannot be corrected by filtering,

the keypoint is removed altogether, since the missing joint can

be inferred from other camera views, but an erroneous keypoint
6 Cell Reports 36, 109730, September 28, 2021
can produce large discrepancies in triangulation. We document

the parameters we used to produce results across the paper in

Table S1. Anipose users are encouraged to evaluate the effect

these filtering parameters may have on their analyses. Depend-

ing on the particulars of the experimental setup, including the

spatial and temporal resolution of the videos, the parameters

may need to be adjusted.

The addition of each filtering step noticeably improved the

tracking of fly leg joints (Figure 4A). The median and Viterbi filters

both reduced spurious jumps in keypoint position, which may

occur if the neural network detects a similar keypoint on a

different limb or at another location in the frame. The Viterbi filter

is able to remove small erroneous jumps in detected keypoint

trajectories while also preserving high-frequency dynamics,

whereas the median filter may mistakenly identify fast move-

ments as an error and remove them. The autoencoder filter

removed detections for keypoints that were typically not visible

from a given view, which improved 3D position estimates after

triangulation (Figure S2).

For each of the 2D filters, we quantified the performance

improvement of estimating the joint position and angle on manu-

ally annotated validation datasets. The 2D median filter signifi-

cantly reduced error in joint position and angle estimation on

the human dataset (t = �14.8, p < 0.001 for position, t = �7.7,

p < 0.001, paired t test) but not on the fly dataset (t = �1.2, p =

0.2 for position, t = �0.98, p = 0.3, paired t test). The Viterbi filter

reduced error on both fly and human datasets (t = �4.4 and t =

�4.1 for fly position and angle, t = �10.9 and t = �8.7 for human

position, with p < 0.001 for all, paired t test). The autoencoder

filter also reduced error in joint positions and angles on the fly da-

taset (t = �5.4, p < 0.001 for positions, t = �2.16, p = 0.03 for

Resource
ll

OPEN ACCESS
angles, paired t test). We did not apply the autoencoder filter to

human tracking, since all occluded points are annotated in the

training dataset. In the fly dataset, applying the autoencoder filter

after the Viterbi filter further improved the joint position and angle

estimates above the autoencoder (t = �3.97, p < 0.001 for posi-

tions, t = �3.44, p < 0.001 for angles, paired t test). In summary,

we found the addition of these three filters improved the ability of

Anipose to accurately estimate joint positions and angles.

Refining poses and trajectories in 3D

To further refine joint position and angle estimates in 3D, we

developed a triangulation optimization that takes advantage of

the spatiotemporal structure of animal pose and behavior.

Specifically, our optimization produces pose estimates that are

smooth in time using temporal regularization, and limbs demar-

cated by adjacent keypoints that are constant in length with

spatial regularization. The length for each limb is automatically

estimated in the optimization. The relative strengths of the tem-

poral and spatial regularization terms may be balanced and

tuned independently. As with the 2D filters, we empirically deter-

mined default strengths that worked across multiple datasets. A

complete description of each filter, along with all the parameters,

is detailed in the STAR Methods. For illustration, we compared

the performance of these filters (Figure 5A) to other commonly

used methods from the literature (random sample consensus,

or RANSAC, triangulation and 3D median filter) on the walking

fly dataset. We applied the 3D filters on kinematic trajectories

partially corrected with 2D filtering (Viterbi then autoencoder

filters for the fly dataset, and Viterbi filter only for the human data-

set), to evaluate howmuch the 3D filters improved the accuracy.

Spatiotemporal regularization substantially improved pose esti-

mation. The temporal regularization noticeably reduced jitter in

the trajectory (Figure 5A), while the spatial regularization stabi-

lized the estimate of limb length (Figure S3B). These improve-

ments are also obvious in example videos of reconstructed

pose before and after filtering (Video S2).

For each of the 3D filters, we quantified the improvement in

position and angle error relative to tracking with 2D filters alone

(Figures 5C and S3C). We found that RANSAC triangulation did

not improve position and angle error. The 3D median filter signif-

icantly reduced position and angle errors relative to only 2D fil-

ters for the human dataset (t = � 11:8 for position, t = � 7:3 for

angle, p < 0.001 for both, paired t test), but not for the fly dataset.

Spatial and temporal regularization applied together provided

the largest reduction in tracking error (t = � 18:7 and t = � 6:1

for human positions and angles, t = � 10:8 and t = 5:8 for fly

positions and angles, p < 0.001 for all, paired t test). Overall,

we find that the 3D filters implemented in Anipose significantly

improve pose estimation.

Improving estimation of derivatives

In addition to tracking body pose, it is often valuable to track the

speed of body movements. We compared the temporal deriva-

tive of 3D joint positions estimated with Anipose to the derivative

computed from manual annotations (Figures 5B and 5D) and

found both qualitative and quantitative improvements to estima-

tion of body-movement speed.

Filtered trajectories produced smoother derivatives, due to

the fact that tracking errors are corrected through 2D and 3D

filtering, and the temporal regularization explicitly penalizes
deviations from smoothness (Figure 5B). It is challenging to

evaluate the accuracy of Anipose derivative estimates because

computing finite difference derivatives of manual annotations

amplifies known errors in these annotations. Given that manual

annotations deviate from the ground truth tracking with a stan-

dard deviation of at most 3.5 pixels in distance (Figure 3C), we

expect computing the finite difference derivative of such anno-

tations to produce derivatives with error of 4.95 pixels (about

0.037 mm corresponding to 11.1 mm/s over one frame in the

fly dataset). Therefore, the manual annotations (dark-green

trace in Figure 5B) do not represent the true derivative but

rather a noisy approximation of the true derivative. The tempo-

rally regularized trajectory resembles this estimate of the

derivative but is more smooth because of temporal regulariza-

tion. The strength of this regularization, and the subsequent

smoothness of the tracked keypoints, is a parameter that

users may fine-tune (see van Breugel et al., 2020 for a system-

atic way to tune this parameter). We suggest some default

values and provide guidance on choosing parameters in the

Discussion.

We found that the 2D filters (Viterbi and autoencoder in fly, only

Viterbi in human) improved the error in derivative by 2.78 mm/s

for the fly dataset (t = �9.4, p < 0.001, paired t test) and by

30.0 mm/s on the human dataset (t = �28.0, p < 0.001, paired

t test) relative to no filters. The 3Dmedian filter improved the error

in derivative by 1.65 mm/s in the fly dataset (t = �4.8, p < 0.001,

paired t test) and by 177.3 mm/s in the human dataset (t =�324,

p � 0.001, paired t test). RANSAC improved error in the deriva-

tive estimate by 2.16mm/s in the fly dataset (t =�7.07, p < 0.001,

paired t test) but did not improve the error in the human dataset.

The spatiotemporal regularization improved the error in deriva-

tive by an additional 0.67 mm/s for the fly dataset (t = �4.10,

p < 0.001, paired t test) and by 217.7mm/s on the human dataset

(t = �213, p � 0.001, paired t test) relative to the 2D filters.

Overall, we found that the filters implemented in Anipose signif-

icantly improved the estimation of body movement in the fly and

human datasets.

Structured processing of videos
Animal behavior experiments are often high throughput, mean-

ing that large numbers of videos are recorded over many

repeated sessions with different experimental conditions. To

make the process of 3D tracking scalable to large datasets, we

designed a specific file structure (Figure S5) to organize and pro-

cess behavior videos, configuration files, and calibration data.

This file structure also facilitates scalable analysis of body kine-

matics across individual animals and experimental conditions.

For example, the command "anipose analyze" detects keypoints

for each video in the project folder, and "anipose calibrate" ob-

tains calibration parameters for all the cameras in all calibration

folders. Each command operates on all videos in the project,

circumventing the need to process each video individually. In

addition, this design allows the user to easily reanalyze the

same dataset using different filtering parameters or with different

2D tracking libraries (e.g., to compare DeepLabCut and SLEAP).

For the users that prefer to set up their own pipelines, we also

package the calibration, triangulation, and filtering functions in

a separate library called aniposelib.
Cell Reports 36, 109730, September 28, 2021 7

A

B

C

D

Figure 5. Spatiotemporal filters further improve 3D pose estimation

See Figure S3 for example angle and segment length traces with different filters. See Figure S4 for detailed evaluation of temporal regularization on a synthetic

dataset.

(A) An example trace of the tracked 3D position of the fly tibia-tarsus joint, before and after filtering. To plot a single illustrative position value, the 3D x-y-z

coordinate is projected onto the longitudinal axis of the fly. Also included are comparisons with standard 3D filtering algorithms RANSAC and a 3D median filter,

along with manual annotations. Filtering leads to reduction of sudden jumps and keypoint jitters, even compared to 2D filters alone.

(B) An example trace of the derivative of the 3D position of the fly tibia-tarsus joint, before and after filtering. To plot a single illustrative derivative value, the 3D

x-y-z joint coordinates is projected onto the longitudinal axis of the fly. Spatiotemporal regularization produces smooth derivative estimates, which are closer to

the manual annotations compared to other filtering approaches.

(C) Comparison of error in joint position before and after filtering. The mean difference in error for the same tracked points is plotted, along with the 95%

confidence interval. The absolute error values are indicated in parentheses above the 0 tick mark for each dataset. The 2D filters are the Viterbi filter followed by

the autoencoder for the fly dataset and Viterbi filter alone for the human dataset. Spatiotemporal regularization improves the estimation of joint position

significantly above 2D filters in both datasets (p ¸ 0.001, paired t test). The 3Dmedian filter improves pose estimation on the human dataset (p ¸ 0.001, paired t test)

but not on the fly dataset. RANSAC triangulation does not improve pose estimation for either dataset. For the fly dataset, 1 pixel corresponds to 0.0075 mm. For

the human dataset, 1 pixel corresponds to 4.8 mm.

(D) Comparison of error in joint position derivative before and after filtering. Themean difference in error for the same tracked points is plotted, along with the 95%

confidence interval. The absolute error values are indicated in parentheses above the 0 tick mark for each dataset. The 2D filters are the Viterbi filter followed by

the autoencoder for the fly dataset and Viterbi filter alone for the human dataset. For the human dataset, due to the large number of labeled points, the confidence

intervals are smaller than the size of the points. Adding filters significantly improves the estimate of the derivative.

8 Cell Reports 36, 109730, September 28, 2021

Resource
ll

OPEN ACCESS

Figure 6. A web tool for visualizing 3D kinematics tracked with Anipose, taking advantage of the Anipose file structure shown in Figure S5

The videos from all views are displayed synchronously, with overlaid projections of 3D keypoints from Anipose. To the right of the videos, a dynamic 3D visu-

alization allows the user to interact with the 3D keypoints by rotating or zooming in. Above the videos, the user can alter the playback speed or jump to different

time points in the video. The user can also annotate the behavior of the animal for further analysis. Menus at the top allow the user to select specific recording

dates, experimental trials, or filter trials by a specific behavior.

Resource
ll

OPEN ACCESS
Visualization of tracking
The large number of videos and keypoints tracked in many

behavior experiments make it challenging to visualize the re-

sulting data. In addition, the large files created with high-speed

video often make it impractical to store and visualize an entire

dataset on a laptop. To facilitate evaluation and interpretation

of data tracked with Anipose, we developed a web-based visu-

alization tool (Figure 6). The tool shows, for a given trial, each

camera view, 3D tracking, and 2D projections of the tracked

keypoints. The user can speed up and slow down the speed

at which the videos play and rotate the tracked keypoints in

3D. By taking advantage of the standardized file structure,

the interface provides a dropdown menu to navigate between

trials and sessions. The interface also allows the user to anno-

tate the behaviors in each video, which is particularly useful for

isolating specific behaviors for further analysis. As this tool is

web based, it may be run on a server, allowing users to preview

videos and inspect tracking from any computer. Furthermore, if

the server is public, users may easily share links to particular

trials with collaborators to point out specific behaviors (link to

example here).

3D tracking with Anipose provides insights into motor
control of Drosophila walking
We first used 3D tracking with Anipose to analyze the leg joint ki-

nematics of fruit flies walking on a spherical treadmill. Although

fly walking has been studied in great detail from a 2D perspective

(DeAngelis et al., 2019; Mendes et al., 2013; Berendes et al.,

2016), 3D joint kinematics of walking flies have not previously

been analyzed. Thus, it was not clear how fly leg joints move dur-

ing walking. Specifically, we sought to understand the relative

contributions of leg joint flexion and rotation.

Some limb joints are not restricted to movement in a single

plane but can also rotate around the long axis of a limb segment.

Whereas the importance of rotation angles has long been recog-

nized for human gait analysis (Roberts et al., 2017), rotation an-

gles have been comparatively understudied in other animals.
This gap exists largely because estimating rotation angles re-

quires precise tracking of joint kinematics in 3D.

The fly leg consists of five segments, whose movements are

defined by 8 angles (1 abduction, 3 rotation, 4 flexion). We

observed significant rotations between the coxa and femur seg-

ments during walking. Figure 7A shows trajectories of coxa

rotation, femur rotation, and femur-tibia flexion angles for one

walking bout.

Interestingly, the magnitude of joint rotation varied across

different legs. Although the femur-tibia flexion angle has a high

range of motion in the front and back legs, the femur-tibia flexion

angle has a comparatively smaller range of motion in the middle

legs (Figure 7B). In contrast, the middle legs are primarily driven

by coxa and femur rotation. Furthermore, the coxa joints of

contralateral legs rotate in opposing directions. These results

suggest that the circuitry that coordinates walking (e.g., the cen-

tral pattern generator) cannot be the same for all six legs. Rather,

walking circuits must control different motor neurons and mus-

cles to generate unique joint kinematics for each leg.

In addition to comparing joint angle distributions across legs,

we analyzed trajectories of 3D leg kinematics across flies. We

used the UMAP nonlinear embedding method (McInnes et al.,

2018) to embed coxa rotation, femur rotation, and femur-tibia

flexion angles and their derivatives of all legs (Figure 7C). The

three-dimensional embedding of joint kinematics formed a

mushroom-shaped manifold. Individual flies reside at specific

regions of the manifold, but, for all flies, step phase is distrib-

uted along the circumference of the cap (Figure 7D). These re-

sults are consistent with the existence of a continuum of

walking gaits across flies (DeAngelis et al., 2019) but also sug-

gest that different flies have slightly distinct walking kinematics.

This analysis also demonstrates how 3D tracking can be used

to dissect the contributions of specific joints to complex motor

behaviors. Visualizing a manifold of 3D joint kinematics pro-

vides a means to understand how joint kinematics vary within

the high-dimensional space of a motor control task (Figure 7E;

Figure S6B).
Cell Reports 36, 109730, September 28, 2021 9

https://faculty.washington.edu/tuthill/aniposeviz.html

A

B

C D E

F H I

G
J K

Figure 7. 3D tracking of fly walking reveals difference in rotation and flexion angles across legs

3D tracking enables quantification of fly, mouse, and human joint position and angles to reveal structure in behavior.

(A–E) 3D tracking of fly walking reveals difference in rotation and flexion angles across legs. See Figure S6 for analyses across all angles.

(A) Representative traces of coxa rotation, femur rotation, and femur-tibia flexion angles from tethered-walking flies. The median angle value is indicated for each

angle as a reference point.

(B) Probability distribution functions of coxa rotation, femur rotation, and femur-tibia flexion angles from 39 flies (1,480 total seconds of walking). Only walking

bouts are included. The distribution of femur-tibia flexion angles is broader for the front and rear legs, whereas the distribution of femur rotation angles is broader

for the middle legs.

(C) UMAP embedding of coxa rotation, femur rotation, femur-tibia flexion angles across all legs, and their derivatives. Axis units are arbitrary. Although each fly

has a characteristic gait, there is a continuum across most flies, with some flies offset from the rest.

(D) UMAP embedding as in (C), colored by the phase of the step cycle, revealing the match between the circular structure of the embedding and the step phase.

(E) UMAP embedding as in (C), colored by front-right leg femur-tibia flexion and femur rotation, andmiddle right leg femur-tibia flexion and femur rotation. Across

multiple flies, the dynamics of the middle legs are dominated by femur rotation, whereas the dynamics of the front legs are dominated by femur-tibia flexion.

(F) Example 3D trajectories of a mouse reaching for a food pellet. The pellet is indicated as a black dot.

(legend continued on next page)

10 Cell Reports 36, 109730, September 28, 2021

Resource
ll

OPEN ACCESS

Resource
ll

OPEN ACCESS
Analysis of 3D mouse reaching and human walking
kinematics
To illustrate the value of 3D tracking with Anipose for studying

other animal species, we analyzed data from reaching mice

and walking humans. Joint positions and angles have long

been used to quantify movement in both healthy and impaired

animals (Koch et al., 2017; Balbinot et al., 2018; Fukuchi et al.,

2018). However, previous quantification has relied primarily on

laborious manual tracking or marker-based tracking with exten-

sive manual corrections. Here, we demonstrate analysis of

mouse and human behavior using fully automated 3D tracking

with the Anipose toolkit.

We first analyzed 3D hand trajectories from mice trained to

reach for and grasp a pellet. This task has been extensively

used to study neural circuits for sensorimotor control underlying

skilled limb movements (Azim et al., 2014; Becker and Person,

2019; Guo et al., 2015; Low et al., 2018; Farr and Whishaw,

2002; Esposito et al., 2014). Using the Anipose visualization

tool, we labeled the reach outcome and start/end frame for

each trial. We labeled the trial a ‘‘hit’’ if the mouse successfully

grasped the pellet, a ‘‘miss’’ if the mouse missed the pellet

holder, and a ‘‘bump’’ if the mouse bumped into the pellet holder

or the pellet but failed to grasp the pellet. Each of the four mice in

the dataset had multiple instances of each outcome. Figure 7F

shows example 3D reaching trajectories, which demonstrate

that reaching movements vary significantly from trial to trial

(see also Figure S7A). Although reaching is a challenging

behavior to track due to its speed and variability, Anipose was

able to accurately reconstruct forelimb reaching trajectories.

The trajectory of each movement was variable, but plotting the

distance to the pellet holder as a function of time to contact re-

vealed that each reach type has a stereotyped trajectory (Figures

7G and S7B). Interestingly, the hit/bump and miss trajectories

diverged around 50 ms prior to pellet contact, suggesting that

mice are unable to correct their reaching trajectories in this

period.

We next analyzed 3D walking kinematics reconstructed from

the human dataset using methods similar to our analysis of fly

walking. We extracted knee flexion, hip rotation, and hip flexion

angles from 3D joint positions tracked with Anipose (Figures 7H

and S7C). The distributions of these joint angles are symmetric

across the two legs (Figures 7I and S7D) and match previous

characterizations of human gait (Fukuchi et al., 2018). To char-

acterize the structure of walking across the subjects, we used

the UMAP nonlinear embedding method (McInnes et al.,

2018) to embed knee flexion, hip rotation, hip flexion, and their

derivatives into a 3D space, as for the fly dataset above. The

UMAP embedding reveals a manifold of angle coordination
(G) Mean distance to pellet holder as a function of time across all 4 mice (88 hit

reaches are aligned to the grasp attempt (0 ms), the hand is farther from the pellet

reveals a clear difference between reach types.

(H) Representative trace of knee flexion from awalking human, tracked with Anipo

at left as a reference point.

(I) Probability distribution function of knee flexion angle from 7 humans. Only ses

(J) UMAP embedding of knee flexion, hip rotation, and hip flexion angles across

subject has a characteristic gait, most of the walking patterns map onto a comm

(K) UMAP embedding as in (E) but colored by knee flexion for each leg. Coloring b

subjects. See also Figures S6 and S7.
across subjects (Figure 7J). The manifold forms a cylindrical

structure with the knee flexion angle mapping circularly along

the cylinder (Figure 7K). The two trials that are to the left

outside the main cylinder have lower variation of left leg hip

rotation (Figure S7E). These examples illustrate the ease and

utility of tracking and analyzing human walking behavior with

Anipose. In the future, this approach could be used to automat-

ically identify individuals with distinct walking gaits or other

motor patterns.

DISCUSSION

In this paper, we introduce Anipose, an open-source toolkit to

accurately track animal movement in 3D. Anipose is designed

to augment DeepLabCut, a toolkit for 2D markerless tracking

(Mathis et al., 2018), with calibration, filters, and a visualization

tool to facilitate robust 3D tracking and analysis. Current users

of DeepLabCut can easily upgrade to 3D tracking with Anipose

by adding and calibrating additional cameras to an existing

behavioral setup. We validated each optimization module and

the full pipeline against ground truth data from four different

experimental datasets and three organisms, demonstrating ac-

curate reconstruction of 3D joint positions and angles. To help

users get started, we developed detailed tutorials for both the

Anipose pipeline and aniposelib at anipose.org.

The Anipose tracking pipeline is designed to streamline struc-

tured processing of videos recorded in high-throughput experi-

ments. Users do not need to know Python to use the Anipose

pipeline. All that is required to get started is editing a small

configuration file and running the provided commands from a

terminal. Although we designed Anipose to leverage 2D tracking

with DeepLabCut (Mathis et al., 2018), it can be made compat-

ible with other 2D markerless tracking methods, including

SLEAP (Pereira et al., 2020) and DeepPoseKit (Graving et al.,

2019) by modifying a single file. Users with programming expe-

rience can convert their 2D tracked data to the Anipose structure

(see Figure S5) to take advantage of the calibration, filters, and

visualization tools. We also provide access to individual func-

tions via a separate library, aniposelib.

Impact of robust markerless 3D tracking
A key technical advantage of tracking with Anipose is the ability

to interpret and analyze movement speed from 3D pose trajec-

tories that are smooth in space and time, due to filtering and

interpolation frommultiple camera views. The resulting improve-

ments in tracking smoothnessmake it easier to analyze pose and

movement dynamics. Specifically, interpolated data enable the

user to obtain better estimates of behavior statistics, such as
s, 69 bumps, 28 misses). Shaded areas are 95% confidence intervals. When

holder on miss trials compared to hit or bump trials. Averaging across all mice

se. Data are from the Human 3.6M dataset. Themedian angle value is indicated

sions that include walking are included.

all legs, and their derivatives. Axis units are arbitrary. Although each human

on cylinder manifold.

y knee flexion angle reveals the common phase alignment of the circles across

Cell Reports 36, 109730, September 28, 2021 11

http://anipose.org

Resource
ll

OPEN ACCESS
mean and variance, and to perform dimensionality reduction

techniques, such as principal-component analysis (PCA).

Additionally, temporal regularization reduces noise in the first

derivative and thus enables the user to obtain more precise

estimates of movement speed (Figures 5D and S4).

This ability to analyze 3D pose trajectories may open up op-

portunities for behavioral neuroscience, where key insights

have been gained through carefully controlled behavioral

paradigms. In particular, experiments are often designed to

accommodate the practical limitations of movement tracking,

recording neural activity, and perturbing the animal in real

time (e.g., Tzschentke, 2007; D’Hooge and De Deyn, 2001;

Olton, 1979; Branson et al., 2009; Berman et al., 2014). Recent

advances in experimental technologies (e.g., high-density

extracellular recording probes [Jun et al., 2017], optical imaging

of fluorescent reporters [Dana et al., 2019; Abdelfattah et al.,

2019], and optogenetics [Bernstein et al., 2012]) have made

it feasible to precisely record and perturb neural activity

from animals behaving freely in three dimensions. Comple-

menting these technologies, a comprehensive toolbox for

high-throughput 3D tracking will not only enable deeper anal-

ysis of current experiments but also make it possible to study

more natural behaviors.

A robust 3D markerless tracking solution could also greatly

expand the accessibility of quantitative movement analysis

in humans. Many neurological disorders, including some

commonly thought of as cognitive disorders, affect walking

gait (Stolze et al., 2005; Wittwer et al., 2010) and upper-limb

coordination (Solaro et al., 2007; Tippett et al., 2007). Many clini-

cians and basic researchers currently rely on qualitative evalua-

tions or expensive clinical systems to diagnose motor disorders

and assess recovery after treatment. While clinical approaches

are commercially available (Windolf et al., 2008), they are costly,

require proprietary hardware, rely on the addition of markers to

the patient, and cannot assess walking gait in natural contexts

such as a patient’s home. Anipose could be used as a tool in

the diagnosis, assessment, and rehabilitative treatment of move-

ment and neurodegenerative disorders.

Insights into the motor control of Drosophila walking
By analyzing 3D joint kinematics of tethered walking Drosophila,

we found that each leg has a unique set of joint angle distribu-

tions. One valuable insight, which was not evident from 2D

tracking alone, is that the movement of the middle legs is driven

primarily by femur rotation, in contrast to the front and hind legs,

which are driven primarily by femur-tibia flexion. We also

observed small differences in femur-tibia flexion and femur rota-

tion distributions between front and hind legs (Figure 7B). Thus,

the neural circuits that move each leg during walking must be

specialized for controlling joints with distinct forces and dy-

namics within each leg. Previous models of Drosophila walking

have used an identical control architecture for intra-leg joint co-

ordination for all six legs (Aminzare et al., 2018; Goldsmith et al.,

2020). Our results provide a framework for constructing more

biologically plausible neuromechanical models using distinct ar-

chitectures for controlling different joints within each leg.

Inter-leg differences in joint kinematics also raise questions

about limb proprioception. Proprioceptors in the fly femoral
12 Cell Reports 36, 109730, September 28, 2021
chordotonal organ (FeCO) encode femur-tibia flexion and move-

ment (Mamiya et al., 2018). Does the role of the FeCO differ for

the middle legs, for which the femur-tibia generally does not

flex in a rhythmic pattern during walking? Which proprioceptors,

if any, are used to sense femur and coxa rotation of the middle

legs? Answering these questions will be facilitated by combining

Anipose with in vivo measurements and perturbations of propri-

oceptive neural circuits (Dallmann et al., 2021).

Rythmic motor behaviors, such as walking, are thought to be

controlled by central pattern generators (CPGs): neural circuits

that generate intrinsic rhythmic activity (Bidaye et al., 2018). If

fly walking is controlled by CPGs, our results suggest that the

CPG for each leg must control different muscles. For example,

we would predict that a walking CPG for the front legs would

connect to motor neurons that control the tibia flexor and

extensor muscles in the femur (Azevedo et al., 2020). In contrast,

a CPG for the middle legs might connect to motor neurons inner-

vating muscles in the trochanter that control femur rotation.

These insights will be useful in guiding ongoing efforts to trace

motor control circuits using connectomic reconstruction of the

Drosophila ventral nerve cord (Maniates-Selvin et al., 2020)

and leg (Kuan et al., 2020).

Femur rotation is also likely to be important for walking in other

insect species. Fransevich andWang tested the passive rotation

of the trochanter-femur articulation in 23 insect species and

found rotation ranges from 10� to 120�, depending on the spe-

cies (Frantsevich and Wang, 2009). Our estimate for the physio-

logical range for walking Drosophila is about 70� (Figure 7B),

which falls within the trochanter-femur articulation range

observed in other insects. Thus, it is plausible that articulation

of the trochanter-femur joint is sufficient to account for the femur

rotation we measured during walking, and that other insects rely

on femur rotation during walking as well. As an example, Bender

et al. reported different kinematics across legs in walking cock-

roaches, with larger femur rotation and smaller femur-tibia

flexion in the middle legs relative to the hind legs (Bender

et al., 2010). The application of Anipose to track 3D joint kine-

matics in other species will enable further comparative studies

of the biomechanics and neural control of walking.

Potential for future improvement based on related work
Camera calibration has long been a rich topic in computer vision

research. The most commonly used calibration code, based on

Zhang’s work (Zhang, 2000) and part of OpenCV (Bradski, 2000),

can calibrate up to 2 cameras using images of checkerboards

from multiple angles. Although this method can be used to cali-

brate 3 or more cameras by calibrating pairs of cameras, in prac-

tice, precise calibration requires an additional optimization step

called bundle adjustment (Triggs et al., 2000). Bundle adjustment

has been a key part of structure from motion toolkits (Agarwal

et al., 2011; Schönberger, 2018), but the method has received

comparatively little attention as a solution to camera calibration

for markerless tracking. An exception is DeepFly3D, which sup-

ports calibration based on animal keypoints but not based on a

calibration board, which hinders its ability to handle setups

with arbitrary camera positions (G€unel et al., 2019). Our key inno-

vation is to provide an open-source implementation of sparse

bundle adjustment targeted for camera calibration for motion

Resource
ll

OPEN ACCESS
tracking. Our current implementation could eventually benefit

from incorporating other methods from the literature. For

instance, using a neural network to detect the calibration board

may yield more detected keypoints and lead to more robust

calibration under difficult conditions (Hu et al., 2018). Currently,

Anipose requires a calibration board to initialize camera param-

eters (even with animal calibration), but it may be possible to

initialize camera parameters based on commonly detected

points, as is commonly done in the structure from motion litera-

ture (Agarwal et al., 2011; Schönberger, 2018), or perhaps by

using a neural network directly (Ummenhofer et al., 2017).

Bundle adjustment itself may be made more robust by incorpo-

rating gauge constraints in the optimization function, further

reducing the number of parameters (Triggs et al., 2000). Finally,

the calibration process itself may be streamlined if it were made

interactive (Richardson et al., 2013).

There has been extensive recent work to improve markerless

tracking based on deep learning approaches. One common

approach has been to improve the neural network architecture

for training. For instance, this approach has been used to

induce priors in the neural network based on occlusions (Sárándi

et al., 2018; Cheng et al., 2019), multi-view geometry (Iskakov

et al., 2019; Zimmermann et al., 2020; Dunn et al., 2021;

Yao et al., 2019), limb lengths (Zhou et al., 2017), or time (Núñez

et al., 2019). We note that this approach is complementary to our

work, as the Anipose filters could be used with keypoint detec-

tion by any neural network. Another approach is to resolve

tracking by using pictorial structures to add priors on limb

lengths (Yang et al., 2016; Amin et al., 2013; G€unel et al., 2019)

ormotion (Wu et al., 2020) or both (Zhang et al., 2021). The Viterbi

filter used in Anipose is analogous to the motion based pictorial

structures and could be further extended to handle priors on limb

lengths based on insights from these papers. Beyond tracking

single animals, toolboxes like SLEAP (Pereira et al., 2019), Open-

Pose (Cao et al., 2021), and DeepLabCut (Nath et al., 2019) have

some support for multi-animal pose estimation in 2D. For

tracking multiple animals in 3D, a promising approach is to

build correspondences based on geometry and appearance

(Dong et al., 2019) across multiple views. As automated, high-

throughput tracking of animal behavior grows in scale, new

methods for data analysis, visualization, and modeling will also

be needed to gain insight into the neural control of dynamic

behavior (York et al., 2020; Marshall et al., 2021; Berman et al.,

2014; Dallmann et al., 2021).

Limitations and practical recommendations
There are several common scenarios under which Anipose may

fail to produce accurate 3D tracking. Below, we enumerate some

of the scenarios we have encountered in applying Anipose

on different datasets and suggest practical strategies for

troubleshooting.

As is the case for any tracking system, the ability of Anipose to

track and estimate body pose is fundamentally limited by the

quality of the underlying data. High-quality videos are well illumi-

nated, contain minimal motion blur, and provide coverage of

each keypoint from different views. A common failure mode we

encountered was when the neural network misplaced 2D key-

points in some frames. If the errors are uncorrelated across
camera views, then the Anipose filters can compensate and still

produce accurate tracking in 3D. But in some cases, multiple

views have correlated errors or these errors persist in time.

These type of errors most commonly arise when the neural

network has not been trained on a subset of rare behaviors, so

that the animal adopts poses unseen by the trained network.

One solution to reducing the frequency of such errors involves

systematically identifying outlier frames, manually relabeling

them, then retraining the network. Anipose supports this func-

tionality, as do other tracking toolboxes (Mathis et al., 2018; Per-

eira et al., 2019; Graving et al., 2019; G€unel et al., 2019).

Poor multi-camera calibration also results in tracking errors. A

good calibration should have an average reprojection error of

less than 3 pixels, and ideally less than 1 pixel. To obtain a quality

calibration, the calibration videos should be recorded so that the

board is clearly visible from multiple angles and locations on

each camera. If it is not possible to achieve this, we suggest

exploring a preliminary calibration module in Anipose that refines

an initial calibration based on the detected points on the animal

itself. This module was inspired by the animal based calibration

in DeepFly3D (G€unel et al., 2019), but our implementation uses

the initial calibration from a calibration board as a starting guess,

permitting generalization in different setups. It also takes

advantage of our iterative calibration procedure to yield robust

calibration even with errors in tracking.

An effective experimental setup needs to have an appropriate

number of cameras to track all keypoints across possible pose

configurations. In particular, each joint must be visible from at

least 2 cameras at all times. Thus, for tracking multiple limbs or

body parts, we recommend at least 3 equally spaced cameras,

so that half of the body is visible from any single camera. We

evaluated this quantitatively in the human dataset (Table S2),

where there is a dramatic reduction in error from 2 to 3 cameras.

The mouse reaching dataset is one example where tracking

was reasonably accurate without filters, but filters did not further

improve tracking accuracy. There are several potential explana-

tions for this result. The reaches are very short (about 40–100

frames or 200–500 ms), and the hand is hard to see when it is

on the ground, so temporal filters such as the Viterbi filter or tem-

poral regularization lack the information to resolve tracking

errors. There are very few keypoints (only 3 per hand), and these

can change in distance relative to each other, so the spatial reg-

ularization cannot impose strong constraints. With only 2 cam-

eras, the spatiotemporal regularization cannot fully leverage

multiple views to remove outliers (Table S2), and the autoen-

coder has limited utility. In this situation, using basic linear

least-squares triangulation works well enough for analysis (Fig-

ures 7F and 7G). The accuracy of tracking mouse reaching might

be improved by labeling more keypoints on each hand,

increasing the camera frame rate, and adding more cameras.

As a practical starting point, we recommend users start with

no filters to first evaluate the quality of the tracking. If outliers

or missing data impede data analysis, then we recommend

enabling the default filter parameters in Anipose, which we

have found to produce good tracking results across multiple

datasets. In some cases, some additional tuning of parameters

may be required, especially on datasets with unique constraints

or when studying behaviors with unusual dynamics. If any joints
Cell Reports 36, 109730, September 28, 2021 13

Resource
ll

OPEN ACCESS
are not visible for an extended period of time in certain videos,

we recommend disabling the spatiotemporal optimization, as it

can hallucinate trajectories, increasing overall error (as in Table

S2). We provide suggestions for tuning parameters in our docu-

mentation at anipose.org.

Outlook
We designed Anipose to make markerless 3D tracking simple

and broadly accessible for the scientific community. With this

goal in mind, we built Anipose on DeepLabCut, a widely used

2D tracking toolkit. As many labs develop machine learning tools

for behavior tracking and analysis, we advocate for pooling

efforts around common frameworks that emphasize usability

(Kane et al., 2020; Saunders and Wehr, 2019). In particular, we

suggest that tools be built in a modular way, so that code can

be extended and reused in other frameworks. We hope that

the Anipose toolkit contributes to these community efforts. We

welcome contributions to improve and extend the Anipose tool-

kit and conversely are ready to contribute the ideas and code

from Anipose to other toolkits.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
14
B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

B Mouse

B Fly

B Human

d METHOD DETAILS

B ChArUco dataset

B Mouse dataset

B Fly dataset

B Human dataset

B Manual annotation of datasets

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Neural network keypoint detections

B Filtering of 2D keypoint detections

B Camera model

B Initial estimate of camera parameters

B Bundle adjustment

B Iterative bundle adjustment

B Triangulation and 3D filtering

B Linear least-squares triangulation

B Median-filtered least-squares triangulation

B RANSAC triangulation

B Spatiotemporally regularized triangulation

B Estimating joint angles

B Comparison of bundle adjustment algorithms

B Evaluation against physical ground truth

B Evaluation of 3D tracking error for different filters

B Evaluation of derivative error for different filters
Cell Reports 36, 109730, September 28, 2021
B Evaluation of 3D tracking error for different number of

cameras

B Evaluation of temporal regularization on synthetic da-

taset

B Analysis of fly walking kinematics

B Analysis of mouse reaching kinematics

B Analysis of human walking kinematics
SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

celrep.2021.109730.

ACKNOWLEDGMENTS

We thank Su-Yee Lee and Chris Dallmann for help with annotating keypoints

on flies, John So for help with annotating keypoints on the ChArUco board,

and Sam Mak for help with annotating mice keypoints and fly behavior. We

thank Stephen Huston for loan of his calibration board and Julian Pitney for

contributing code to check calibration board detections to Anipose. Finally,

we thank the Tuthill and Brunton labs and Mackenzie and Alexander Mathis

for support, suggestions, and feedback on the manuscript. P.K. was sup-

ported by a National Science Foundation Graduate Research Fellowship.

K.L.R. was supported by fellowships from the University of Washington’s Insti-

tute for Neuroengineering (UWIN) and Center for Neurotechnology (CNT).

E.S.D. was supported by a fellowship fromUniversity of Washington’s Institute

for Neuroengineering. E.S. was supported by the National Institutes of Health

(F31NS115477). E.A. was supported by the National Institutes of Health (R00

NS088193, DP2NS105555, R01NS111479, and U19NS112959), the Searle

Scholars Program, The Pew Charitable Trusts, and the McKnight Foundation.

B.W.B. was supported by a Sloan Research Fellowship and the Washington

Research Foundation. J.C.T. was supported by the Searle Scholar Program,

the Pew Biomedical Scholar Program, the McKnight Foundation, and National

Institute of Health grants R01NS102333 and U19NS104655. J.C.T. is a New

York Stem Cell Foundation - Robertson Investigator.

AUTHOR CONTRIBUTIONS

P.K., B.W.B., and J.C.T. conceived the project. P.K. designed, implemented,

and evaluated the Anipose toolkit. K.L.R. wrote the Anipose documentation,

contributed Tensorpack data augmentation to DeepLabCut, and wrote key

parts of the Anipose visualizer. E.S.D. and S.W.-B. collected the ChArUco

and fly datasets. E.S. and E.A. collected the mouse dataset. P.K., B.W.B.,

and J.C.T. wrote the paper, with input from K.R., E.S.D., S.W.-B., E.S., and

E.A.

DECLARATION OF INTERESTS

P.K. is a founder and the Chief Science Officer of Evolution Devices, a com-

pany that uses motion tracking to help people with walking disorders.

INCLUSION AND DIVERSITY

One or more of the authors of this paper self-identifies as an underrepresented

ethnic minority in science. One or more of the authors of this paper self-iden-

tifies as a member of the LGBTQ+ community.

Received: December 2, 2020

Revised: June 15, 2021

Accepted: August 27, 2021

Published: September 28, 2021

REFERENCES

Abdelfattah, A.S., Kawashima, T., Singh, A., Novak, O., Liu, H., Shuai, Y.,

Huang, Y.-C., Campagnola, L., Seeman, S.C., Yu, J., et al. (2019). Bright

http://anipose.org
https://doi.org/10.1016/j.celrep.2021.109730
https://doi.org/10.1016/j.celrep.2021.109730
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref1
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref1

Resource
ll

OPEN ACCESS
and photostable chemigenetic indicators for extended in vivo voltage imaging.

Science 365, 699–704.

Agarwal, S., Furukawa, Y., Snavely, N., Simon, I., Curless, B., Seitz, S.M., and

Szeliski, R. (2011). Building Rome in a day. Commun. ACM 54, 105–112.

Alexander, D.E. (2017). Nature’s Machines: An Introduction to Organismal

Biomechanics, First Edition (Academic Press).

Amin, S., Andriluka,M., Rohrbach, M., and Schiele, B. (2013). Multi-view Picto-

rial Structures for 3D Human Pose Estimation. In Proceedings of the British

Machine Vision Conference 2013 (British Machine Vision Association, Bristol),

45.1–45.11.

Aminzare, Z., Srivastava, V., and Holmes, P. (2018). Gait Transitions in a Phase

Oscillator Model of an Insect Central Pattern Generator. SIAM J. Appl. Dyn.

Syst. 17, 626–671.

Azevedo, A.W., Dickinson, E.S., Gurung, P., Venkatasubramanian, L., Mann,

R.S., and Tuthill, J.C. (2020). A size principle for recruitment of Drosophila

leg motor neurons. eLife 9, e56754.

Azim, E., Jiang, J., Alstermark, B., and Jessell, T.M. (2014). Skilled reaching re-

lies on a V2a propriospinal internal copy circuit. Nature 508, 357–363.

Bala, P.C., Eisenreich, B.R., Yoo, S.B.M., Hayden, B.Y., Park, H.S., and Zim-

mermann, J. (2020). Automated markerless pose estimation in freely moving

macaques with OpenMonkeyStudio. Nat. Commun. 11, 4560.

Balbinot, G., Schuch, C.P., Jeffers, M.S., McDonald, M.W., Livingston-

Thomas, J.M., and Corbett, D. (2018). Post-stroke kinematic analysis in rats

reveals similar reaching abnormalities as humans. Sci. Rep. 8, 8738.

Becker, M.I., and Person, A.L. (2019). Cerebellar Control of Reach Kinematics

for Endpoint Precision. Neuron 103, 335–348.

Bender, J.A., Simpson, E.M., and Ritzmann, R.E. (2010). Computer-assisted

3D kinematic analysis of all leg joints in walking insects. PLoS ONE 5, e13617.

Berendes, V., Zill, S.N., B€uschges, A., and Bockem€uhl, T. (2016). Speed-

dependent interplay between local pattern-generating activity and sensory

signals during walking in Drosophila. J. Exp. Biol. 219, 3781–3793.

Berman, G.J., Choi, D.M., Bialek, W., and Shaevitz, J.W. (2014). Mapping the

stereotyped behaviour of freely moving fruit flies. J. R. Soc. Interface 11,

20140672.

Bernstein, J.G., Garrity, P.A., and Boyden, E.S. (2012). Optogenetics and ther-

mogenetics: technologies for controlling the activity of targeted cells within

intact neural circuits. Curr. Opin. Neurobiol. 22, 61–71.

Bidaye, S.S., Bockem€uhl, T., and B€uschges, A. (2018). Six-legged walking in

insects: howCPGs, peripheral feedback, and descending signals generate co-

ordinated and adaptive motor rhythms. J. Neurophysiol. 119, 459–475.

Bradski, G. (2000). The OpenCV Library. Dr. Dobbs J. Softw. Tools Prof. Pro-

gram.

Branch, M.A., Coleman, T.F., and Li, Y. (1999). A subspace, interior, and con-

jugate gradient method for large-scale bound-constrained minimization prob-

lems. SIAM J. Sci. Comput. 21, 1–23.

Branson, K., Robie, A.A., Bender, J., Perona, P., and Dickinson, M.H. (2009).

High-throughput ethomics in large groups of Drosophila. Nat. Methods 6,

451–457.

Buchner, E. (1976). Elementary movement detectors in an insect visual sys-

tem. Biological Cybernetics 24, 85–101.

Byrd, R.H., Schnabel, R.B., and Shultz, G.A. (1988). Approximate solution of

the trust region problem by minimization over two-dimensional subspaces.

Math. Program. 40, 247–263.

Cao, Z., Hidalgo, G., Simon, T., Wei, S.E., and Sheikh, Y. (2021). OpenPose:

Realtime Multi-Person 2D Pose Estimation Using Part Affinity Fields. IEEE

Trans. Pattern Anal. Mach. Intell 43, 172–186.

Cheng, Y., Yang, B., Wang, B., Wending, Y., and Tan, R. (Oct. 2019). Occlu-

sion-Aware Networks for 3D Human Pose Estimation in Video. ICCV, 723–732.

Chiba, H., Ebihara, S., Tomita, N., Sasaki, H., and Butler, J.P. (2005). Differen-

tial gait kinematics between fallers and non-fallers in community-dwelling

elderly people. Geriatr. Gerontol. Int 5, 127–134.
D’Hooge, R., and De Deyn, P.P. (2001). Applications of the Morris water maze

in the study of learning and memory. Brain Res. Brain Res. Rev 36, 60–90.

Dallmann, C.J., Karashchuk, P., Brunton, B.W., and Tuthill, J.C. (2021). A leg to

stand on: Computational models of proprioception. Curr. Opin. Physiol. 21,

100426.

Dana, H., Sun, Y., Mohar, B., Hulse, B.K., Kerlin, A.M., Hasseman, J.P., Tse-

gaye, G., Tsang, A., Wong, A., Patel, R., et al. (2019). High-performance cal-

cium sensors for imaging activity in neuronal populations and microcompart-

ments. Nat. Methods 16, 649–657.

DeAngelis, B.D., Zavatone-Veth, J.A., and Clark, D.A. (2019). The manifold

structure of limb coordination in walking Drosophila. eLife 8, e46409.

Dong, J., Jiang, W., Huang, Q., Bao, H., and Zhou, X. (2019). Fast and Robust

Multi-Person 3D Pose Estimation from Multiple Views. arXiv, 1901.04111.

Dunn, T.W., Marshall, J.D., Severson, K.S., Aldarondo, D.E., Hildebrand,

D.G.C., Chettih, S.N., Wang, W.L., Gellis, A.J., Carlson, D.E., Aronov, D.,

et al. (2021). Geometric deep learning enables 3D kinematic profiling across

species and environments. Nat. Methods 18, 564–573.

Dutta, A., and Zisserman, A. (2019). The VIA annotation software for images,

audio and video. Proceedings of the 27th ACM International Conference on

Multimedia. MM ’19. (ACM).

Dutta, A., Gupta, A., and Zissermann, A. (2016). VGG image annotator (VIA).

https://www.robots.ox.ac.uk/�vgg/software/via/.

Esposito, M.S., Capelli, P., and Arber, S. (2014). Brainstem nucleus MdV me-

diates skilled forelimb motor tasks. Nature 508, 351–356.

Farr, T.D., and Whishaw, I.Q. (2002). Quantitative and qualitative impairments

in skilled reaching in the mouse (Mus musculus) after a focal motor cortex

stroke. Stroke 33, 1869–1875.

Forney, D.G. (1973). The viterbi algorithm. Proc. IEEE 61, 268–278.

Frantsevich, L., and Wang, W. (2009). Gimbals in the insect leg. Arthropod

Struct. Dev. 38, 16–30.

Fukuchi, C.A., Fukuchi, R.K., and Duarte, M. (2018). A public dataset of over-

ground and treadmill walking kinematics and kinetics in healthy individuals.

PeerJ 6, e4640.

Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., and Marı́n-Jimé-

nez, M.J. (2014). Automatic generation and detection of highly reliable fiducial

markers under occlusion. Pattern Recognit. 47, 2280–2292.

Goldsmith, C.A., Szczecinski, N.S., and Quinn, R.D. (2020). Neurodynamic

modeling of the fruit fly Drosophila melanogaster. Bioinspir. Biomim. 15,

065003.

Götz, K.G. (1973). Visual control of locomotion in the walking fruitfly

Drosophila. J. Comp. Physiol. 85, 235–266.

Graving, J.M., Chae, D., Naik, H., Li, L., Koger, B., Costelloe, B.R., and Couzin,

I.D.((2019). Deepposekit, a software toolkit for fast and robust animal pose

estimation using deep learning. eLife 8, e47994.

G€unel, S., Rhodin, H., Morales, D., Campagnolo, J., Ramdya, P., and Fua, P.

(2019). Deepfly3d, a deep learning-based approach for 3d limb and

appendage tracking in tethered, adult Drosophila. eLife 8, e48571.

Guo, J.-Z., Graves, A.R., Guo, W.W., Zheng, J., Lee, A., Rodrı́guez-González,

J., Li, N., Macklin, J.J., Phillips, J.W., Mensh, B.D., et al. (2015). Cortex com-

mands the performance of skilled movement. eLife 4, e10774.

Halberstadt, J., Jackson, J.C., Bilkey, D., Jong, J., Whitehouse, H., McNaugh-

ton, C., and Zollmann, S. (2016). Incipient Social Groups: An Analysis via In-

Vivo Behavioral Tracking. PLoS ONE 11, e0149880.

Hartley, R.I., and Sturm, P. (1997). Triangulation. Comput. Vis. Image Underst.

68, 146–157.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep Residual Learning for Im-

age Recognition. arXiv,, 1512.03385.

Hu, D., DeTone, D., Chauhan, V., Spivak, I., and Malisiewicz, T. (Dec. 2018).

Deep ChArUco: Dark ChArUco Marker Pose Estimation. arXiv, 1812.03247.

Insafutdinov, E., Pishchulin, L., Andres, B., Andriluka, M., and Schiele, B.

(2016). Deepercut: A deeper, stronger, and faster multi-person pose estima-

tion model. arXiv, 1605.03170.
Cell Reports 36, 109730, September 28, 2021 15

http://refhub.elsevier.com/S2211-1247(21)01179-7/sref1
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref1
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref2
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref2
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref3
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref3
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref4
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref4
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref4
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref4
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref5
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref5
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref5
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref6
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref6
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref6
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref7
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref7
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref8
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref8
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref8
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref9
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref9
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref9
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref10
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref10
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref11
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref11
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref12
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref12
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref12
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref12
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref12
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref13
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref13
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref13
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref14
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref14
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref14
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref15
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref15
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref15
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref15
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref15
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref16
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref16
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref17
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref17
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref17
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref18
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref18
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref18
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref19
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref19
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref20
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref20
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref20
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref21
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref21
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref21
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref22
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref22
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref23
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref23
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref23
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref24
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref24
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref25
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref25
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref25
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref26
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref26
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref26
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref26
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref27
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref27
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref28
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref28
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref29
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref29
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref29
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref29
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref30
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref30
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref30
https://www.robots.ox.ac.uk/%7Evgg/software/via/
https://www.robots.ox.ac.uk/%7Evgg/software/via/
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref32
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref32
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref33
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref33
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref33
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref34
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref35
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref35
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref36
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref36
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref36
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref37
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref37
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref37
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref38
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref38
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref38
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref39
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref39
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref40
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref40
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref40
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref41
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref41
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref41
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref41
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref42
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref42
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref42
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref43
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref43
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref43
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref44
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref44
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref45
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref45
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref46
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref46
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref47
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref47
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref47

Resource
ll

OPEN ACCESS
Ionescu, C., Li, F., and Sminchisescu, C. (2011). Latent structured models for

human pose estimation. In: International Conference on Computer Vision.

https://doi.org/10.1109/ICCV.2011.6126500.

Ionescu, C., Papava, D., Olaru, V., and Sminchisescu, C. (2014). Human3.6m:

Large scale datasets and predictive methods for 3d human sensing in natural

environments. IEEE Trans. Pattern Anal. Mach. Intell. 36, 1325–1339.

Iskakov, K., Burkov, E., Lempitsky, V., and Malkov, Y. (2019). Learnable trian-

gulation of human pose. In: International Conference on Computer Vision.

https://doi.org/10.1109/ICCV.2019.00781.

Jun, J.J., Steinmetz, N.A., Siegle, J.H., Denman, D.J., Bauza, M., Barbarits, B.,

Lee, A.K., Anastassiou, C.A., Andrei, A., Aydın, Ç., et al. (2017). Fully integrated
silicon probes for high-density recording of neural activity. Nature 551,

232–236.

Kane, G.A., Lopes, G., Saunders, J.L., Mathis, A., and Mathis, M.W. (2020).

Real-time, low-latency closed-loop feedback using markerless posture

tracking. eLife 9, e61909.

Kingma, D.P., and Ba, J. (Jan. 2017). Adam: A Method for Stochastic Optimi-

zation. arXiv, 1412.6980.

Koch, S.C., Del Barrio, M.G., Dalet, A., Gatto, G., G€unther, T., Zhang, J., Seid-

ler, B., Saur, D., Sch€ule, R., and Goulding, M. (2017). RORb spinal interneurons

gate sensory transmission during locomotion to secure a fluid walking gait.

Neuron 96, 1419–1431.

Kuan, A.T., Phelps, J.S., Thomas, L.A., Nguyen, T.M., Han, J., Chen, C.-L.,

Azevedo, A.W., Tuthill, J.C., Funke, J., Cloetens, P., et al. (2020). Dense

neuronal reconstruction through X-ray holographic nano-tomography. Nat.

Neurosci. 23, 1637–1643.

Low, A.Y.T., Thanawalla, A.R., Yip, A.K.K., Kim, J., Wong, K.L.L., Tantra, M.,

Augustine, G.J., and Chen, A.I. (2018). Precision of Discrete and Rhythmic

Forelimb Movements Requires a Distinct Neuronal Subpopulation in the Inter-

posed Anterior Nucleus. Cell Rep. 22, 2322–2333.

Machado, A.S., Darmohray, D.M., Fayad, J., Marques, H.G., and Carey, M.R.

(2015). A quantitative framework for whole-body coordination reveals specific

deficits in freely walking ataxic mice. eLife, e07892.

Mamiya, A., Gurung, P., and Tuthill, J.C. (2018). Neural Coding of Leg Propri-

oception in Drosophila. Neuron 100, 636–650.

Maniates-Selvin, J.T., Hildebrand, D.G.C., Graham, B.J., Kuan, A.T., Thomas,

L.A., Nguyen, T., Buhmann, J., Azevedo, A.W., Shanny, B.L., Funke, J., et al.

(2020). Reconstruction of motor control circuits in adult Drosophila using auto-

mated transmission electron microscopy. bioRxiv, 2020.01.10.902478.

Marshall, J.D., Aldarondo, D.E., Dunn, T.W., Wang, W.L., Berman, G.J., and

Ölveczky, B.P. (2021). Continuous whole-body 3d kinematic recordings

across the rodent behavioral repertoire. Neuron 109, 420–437.

Martinez, J., Hossain, R., Romero, J., and Little, J.J. (2017). A simple yet effec-

tive baseline for 3d human pose estimation. In International Conference on

Computer Vision. https://doi.org/10.1109/ICCV.2017.288.

Mathis, M.W., and Mathis, A. (2020). Deep learning tools for the measurement

of animal behavior in neuroscience. Curr. Opin. Neurobiol. 60, 1–11.

Mathis, A., Mamidanna, P., Cury, K.M., Abe, T., Murthy, V.N., Mathis, M.W.,

and Bethge, M. (2018). DeepLabCut: markerless pose estimation of user-

defined body parts with deep learning. Nat. Neurosci. 21, 1281–1289.

Mathis, A., Schneider, S., Lauer, J., and Mathis, M.W. (2020). A Primer on Mo-

tion Capture with Deep Learning: Principles, Pitfalls, and Perspectives. Neuron

108, 44–65.

McInnes, L., Healy, J., Saul, N., and Grossberger, L. (2018). Umap: Uniform

manifold approximation and projection. J. Open Source Softw. 3, 861.

Mendes, C.S., Bartos, I., Akay, T., Márka, S., and Mann, R.S. (2013). Quantifi-

cation of gait parameters in freely walking wild type and sensory deprived

Drosophila melanogaster. eLife 2, e00231.

Murphy, D. (2019). Markerless 3d pose estimation from RGB data. Bachelor’s

thesis (Brown University).
16 Cell Reports 36, 109730, September 28, 2021
Nath, T., Mathis, A., Chen, A.C., Patel, A., Bethge, M., and Mathis, M.W.

(2019). Using DeepLabCut for 3D markerless pose estimation across species

and behaviors. Nat. Protoc. 14, 2152–2176.

Núñez, J.C., Cabido, R., Vélez, J.F., Montemayor, A.S., and Pantrigo, J.J.

(2019). Multiview 3D human pose estimation using improved least-squares

and LSTM networks. Neurocomputing 323, 335–343.

Olton, D.S. (1979). Mazes, maps, and memory. Am. Psychol. 34, 583–596.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,

Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al. (2011). Scikit-learn:

Machine Learning in Python. J. Mach. Learn. Res. 12, 2825–2830.

Pereira, T.D., Aldarondo, D.E., Willmore, L., Kislin, M., Wang, S.S.-H., Murthy,

M., and Shaevitz, J.W. (2019). Fast animal pose estimation using deep neural

networks. Nat. Methods 16, 117–125.

Pereira, T.D., Tabris, N., Li, J., Ravindranath, S., Papadoyannis, E.S., Wang,

Z.Y., Turner, D.M., McKenzie-Smith, G., Kocher, S.D., Falkner, A.L., et al.

(Sep. 2020). SLEAP: Multi-animal pose tracking. bioRxiv, 2020.08.31.276246.

Richardson, A., Strom, J., and Olson, E. (2013). AprilCal: Assisted and repeat-

able camera calibration. In 2013 IEEE/RSJ International Conference on Intelli-

gent Robots and Systems. (IEEE, Tokyo), pp. 1814–1821.

Rinehart, N.J., Bellgrove, M.A., Tonge, B.J., Brereton, A.V., Howells-Rankin,

D., and Bradshaw, J.L. (2006). An Examination of Movement Kinematics in

Young People with High-functioning Autism and Asperger’s Disorder: Further

Evidence for a Motor Planning Deficit. J. Autism Dev. Disord. Disorders 36,

757–767.

Roberts, M., Mongeon, D., and Prince, F. (2017). Biomechanical parameters

for gait analysis: A systematic review of healthy human gait. Phys. Ther. Reha-

bil. 4, 6.

Sárándi, I., Linder, T., Arras, K.O., and Leibe, B. (2018). Synthetic Occlusion

Augmentation with Volumetric Heatmaps for the 2018 ECCV PoseTrack Chal-

lenge on 3D Human Pose Estimation. arXiv, 1809.04987.

Saunders, J.L., and Wehr, M. (2019). Autopilot: Automating behavioral exper-

iments with lots of raspberry pis. bioRxiv. https://doi.org/10.1101/807693.

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch,

T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., et al. (2012). Fiji: an

open-source platform for biological-image analysis. Nat. Methods 9, 676–682.

Schönberger, J.L. (2018). Robust Methods for Accurate and Efficient 3D

Modeling from Unstructured Imagery. Doctoral Thesis (ETH Zurich).

Schwager, M., Detweiler, C., Vasilescu, I., Anderson, D.M., and Rus, D. (2008).

Data-driven identification of group dynamics for motion prediction and control.

J. Field Robot. 25, 305–324.

Seethapathi, N., Wang, S., Saluja, R., Blohm, G., and Kording, K.P. (2019).

Movement science needs different pose tracking algorithms. arXiv,

1907.10226.

Solaro, C., Brichetto, G., Casadio, M., Roccatagliata, L., Ruggiu, P., Mancardi,

G.L., Morasso, P.G., Tanganelli, P., and Sanguineti, V. (2007). Subtle upper

limb impairment in asymptomatic multiple sclerosis subjects. Mult. Scler. 13,

428–432.

Souza, R.B. (2016). An Evidence-Based Videotaped Running Biomechanics

Analysis. Phys. Med. Rehabil. Clin. N. Am. 27, 217–236.

Stolze, H., Klebe, S., Baecker, C., Zechlin, C., Friege, L., Pohle, S., and

Deuschl, G. (2005). Prevalence of gait disorders in hospitalized neurological

patients. Mov. Disord. 20, 89–94.

Tippett, W.J., Krajewski, A., and Sergio, L.E. (2007). Visuomotor integration is

compromised in Alzheimer’s disease patients reaching for remembered tar-

gets. Eur. Neurol. 58, 1–11.

Triggs, B., McLauchlan, P.F., Hartley, R.I., and Fitzgibbon, A.W. (2000). Bundle

adjustment — a modern synthesis. In Vision Algorithms: Theory and Practice.

Vol. 1883, B. Triggs, A. Zisserman, and R. Szeliski, eds., eds. (Springer),

pp. 298–372.

Tzschentke, T.M. (2007). Measuring reward with the conditioned place prefer-

ence (CPP) paradigm: update of the last decade. Addict. Biol. 12, 227–462.

https://doi.org/10.1109/ICCV.2011.6126500
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref49
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref49
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref49
https://doi.org/10.1109/ICCV.2019.00781
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref51
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref51
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref51
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref51
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref52
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref52
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref52
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref53
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref53
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref54
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref54
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref54
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref54
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref54
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref54
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref55
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref55
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref55
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref55
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref56
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref56
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref56
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref56
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref57
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref57
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref57
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref58
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref58
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref59
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref59
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref59
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref59
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref60
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref60
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref60
https://doi.org/10.1109/ICCV.2017.288
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref62
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref62
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref63
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref63
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref63
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref64
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref64
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref64
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref65
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref65
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref66
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref66
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref66
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref67
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref67
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref68
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref68
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref68
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref69
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref69
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref69
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref70
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref71
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref71
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref71
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref72
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref72
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref72
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref73
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref73
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref73
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref74
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref74
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref74
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref75
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref75
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref75
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref75
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref75
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref76
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref76
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref76
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref77
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref77
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref77
https://doi.org/10.1101/807693
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref79
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref79
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref79
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref80
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref80
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref81
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref81
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref81
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref82
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref82
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref82
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref83
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref83
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref83
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref83
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref84
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref84
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref85
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref85
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref85
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref86
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref86
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref86
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref87
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref87
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref87
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref87
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref88
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref88

Resource
ll

OPEN ACCESS
Ummenhofer, B., Zhou, H., Uhrig, J., Mayer, N., Ilg, E., Dosovitskiy, A., and

Brox, T. (Jul. 2017). DeMoN: Depth and Motion Network for Learning Monoc-

ular Stereo. 2017 IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), pp. 5622–5631. https://doi.org/10.1109/CVPR.2017.596.

van Breugel, F., Kutz, J.N., and Brunton, B.W. (2020). Numerical differentiation

of noisy data: A unifying multi-objective optimization framework. IEEE Access

8, 196865–196877.

Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Courna-

peau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., et al.; SciPy 1.0

Contributors (2020). SciPy 1.0: fundamental algorithms for scientific

computing in Python. Nat. Methods 17, 261–272.

Windolf, M., Götzen, N., andMorlock, M. (2008). Systematic accuracy and pre-

cision analysis of video motion capturing systems–exemplified on the Vicon-

460 system. J. Biomech. 41, 2776–2780.

Wittwer, J.E., Webster, K.E., and Menz, H.B. (2010). A longitudinal study of

measures of walking in people with Alzheimer’s Disease. Gait Posture 32,

113–117.

Wu, Y., et al. (2016). Tensorpack. https://github.com/tensorpack/.

Wu, A., Buchanan, E.K., Whiteway, M.R., Schartner, M., Meijer, G., Noel, J.-P.,

Rodriguez, E., Everett, C., Norovich, A., Schaffer, E., et al. (Oct. 2020). Deep

Graph Pose: A semi-supervised deep graphical model for improved animal

pose tracking. bioRxiv, 2020.08.20.259705.
Yang, W., Ouyang, W., Li, H., and Wang, X. (Jun. 2016). End-to-End Learning

of Deformable Mixture of Parts and Deep Convolutional Neural Networks for

Human Pose Estimation. (CVPR), pp. 3073–3082.

Yao, Y., Jafarian, Y., and Park, H.S. (2019). MONET: Multiview semi-super-

vised keypoint detection via epipolar divergence. In International Conference

on Computer Vision (ICCV). https://doi.org/10.1109/ICCV.2019.00084.

York, R.A., Giocomo, L.M., and Clandinin, T.R. (2020). TREBLE: A generaliz-

able framework for high-throughput behavioral analysis. bioRxiv,

2020.09.30.321406.

Zhang, Z. (2000). A flexible new technique for camera calibration. IEEE Trans.

Pattern Anal. Mach. Intell. 22, 1330–1334.

Zhang, L., Dunn, T., Marshall, J., Olveczky, B., and Linderman, S. (2021). An-

imal pose estimation from video data with a hierarchical von Mises-Fisher-

Gaussian model. In International Conference on Artificial Intelligence and Sta-

tistics (PMLR), pp. 2800–2808.

Zhou, Q.-Y., Park, J., and Koltun, V. (2016). Fast global registration. https://

link.springer.com/10.1007/978-3-319-46475-6_47.

Zhou, X., Huang, Q., Sun, X., Xue, X., and Wei, Y. (2017). Towards 3D Human

Pose Estimation in the Wild: A Weakly-supervised Approach. arXiv,

1704.02447.

Zimmermann, C., Schneider, A., Alyahyay, M., Brox, T., and Diester, I. (2020).

FreiPose: A Deep Learning Framework for Precise Animal Motion Capture in

3D Spaces. bioRxiv. https://doi.org/10.1101/2020.02.27.967620.
Cell Reports 36, 109730, September 28, 2021 17

https://doi.org/10.1109/CVPR.2017.596
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref90
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref90
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref90
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref91
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref91
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref91
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref91
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref92
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref92
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref92
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref93
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref93
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref93
https://github.com/tensorpack/
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref95
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref95
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref95
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref95
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref96
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref96
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref96
https://doi.org/10.1109/ICCV.2019.00084
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref98
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref98
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref98
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref99
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref99
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref100
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref100
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref100
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref100
https://link.springer.com/10.1007/978-3-319-46475-6_47
https://link.springer.com/10.1007/978-3-319-46475-6_47
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref102
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref102
http://refhub.elsevier.com/S2211-1247(21)01179-7/sref102
https://doi.org/10.1101/2020.02.27.967620

Resource
ll

OPEN ACCESS
STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Raw and analyzed data This paper https://doi.org/10.5061/dryad.nzs7h44s4

Human 3.6M dataset Ionescu et al., 2014 http://vision.imar.ro/human3.6m/description.php

Experimental models: Organisms/strains

Mouse: C57BL/6 mice The Jackson Laboratory JAX: 000664; RRID:IMSR_JAX:000664

D. melanogaster: Berlin K Bloomington RRID:BDSC_8522

Software and algorithms

Anipose This paper https://doi.org/10.5281/zenodo.5224213
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, John Tuthill (tuthill@uw.

edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability

d Data has been deposited at https://doi.org/10.5061/dryad.nzs7h44s4 and are publicly available as of the date of publication.

DOIs are listed in the key resources table.

d All original code has been deposited at https://zenodo.org/record/5224213. Documentation for the software is available at

anipose.org. DOIs are listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mouse
Reaching data were obtained from four adult C57BL/6 mice (JAX:000664, �8-12 weeks old, two male and two female) trained to

reach for a pellet. Procedures performed in this study were conducted according to US National Institutes of Health guidelines for

animal research and were approved by the Institutional Animal Care and Use Committee of The Salk Institute for Biological Studies.

Fly
Male and female Berlin wild-type Drosophila melanogaster (RRID:BDSC_8522), 4 days post-eclosion, were used for all experiments.

Flies were reared on standard cornmeal agar food on a 14 hr/10 hr light-dark cycle at 25
�
C in 70% relative humidity.

Human
We evaluated 3D tracking with Anipose on the Human 3.6M dataset (Ionescu et al., 2014; Catalin Ionescu, 2011). The Human 3.6M

dataset contains data from 5 subjects as a training dataset (2 female and 3male), 2 subjects as a validation dataset, and 4 subjects as

a testing dataset (2 female and 2 male).

METHOD DETAILS

ChArUco dataset
To evaluate the performance of Anipose compared to physical ground truth, we collected videos of a precision-manufactured

ChArUco board (Garrido-Jurado et al., 2014). The ChArUco board was manufactured by Applied Image Inc (Rochester, NY) with

a tolerance of 2 mm in length and 2
�
in angle. It is a 2 mm 3 2 mm etching of opal and blue chrome, on a 5 mm 3 5 mm board.
e1 Cell Reports 36, 109730, September 28, 2021

mailto:tuthill@uw.edu
mailto:tuthill@uw.edu
https://doi.org/10.5061/dryad.nzs7h44s4
https://zenodo.org/record/5224213
http://anipose.org
https://doi.org/10.5061/dryad.nzs7h44s4
http://vision.imar.ro/human3.6m/description.php
https://doi.org/10.5281/zenodo.5224213

Resource
ll

OPEN ACCESS
The ChArUco pattern itself has 63 6 squares, with 4 bit markers and a dictionary size of 50 markers. With these parameters, the size

of each marker is 0.375 mm and the size of each square is 0.5 mm. We filmed the ChArUco board from 6 cameras (Basler acA800-

510mm) evenly distributed around the board (Figure 1A), at 30Hz and with a resolution of 8323 632 pixels, for 2-3 minutes each day

over 2 separate days. While filming, we manually rotated the ChArUco board within the field of view of the cameras. These videos

were used as calibration videos for both the ChArUco dataset and the fly dataset detailed below.

We chose 9 of the corners as keypoints for manual annotation and detection (Figures 1A and 3A). We extracted and manually

annotated 200 frames from each camera from day 1, and an additional 200 cameras per camera from day 2 (1200 frames per

day, 2400 frames total). We used the frames for day 1 for training the neural network and the frames from day 2 for evaluation of

all methods.

Mouse dataset
The reaching task is described in detail elsewhere (Azim et al., 2014). Briefly, the training protocol consisted of placing the mouse in a

20 cm tall3 8.5 cmwide3 19.5 cm long clear acrylic box with an opening in the front of the boxmeasuring 0.9 cmwide and 9 cm tall.

A 3D-printed, 1.8 cm tall pedestal designed to hold a food pellet (20 mg, 3 mm diameter; Bio-Serv) was placed 1 cm away from the

front of the box opening and displaced to one side by 0.5 cm (to encouragemice to use their preferred forelimb), and food pellets were

placed on top as the reaching target (Figure 1B). Mice were food deprived to�85% of their original body weight and trained to reach

for food pellets for either 20 minutes or until 20 successful reaches (defined as pellet retrieval) were accomplished. Mice were trained

in this setup for 14 consecutive days before reaches were captured with 2 cameras (Sentech STC-MBS241U3V with Tamron

M112FM16 16mm lens) placed in front and to the side of the mouse (� 85+ apart). Videos were acquired at a frame rate of

200 Hz at a resolution of 1024 3 768 pixels.

We chose 6 points on the mouse hands as keypoints (Figure 1B). On each mouse hand, we labeled 3 points: the dorsal wrist, the

base of digit 5, and the proximal end of digit 3. In total, we manually labeled 2200 frames (1100 frames per camera) for training the

neural network from 2 mice. For test data to evaluate the post estimation performance, we labeled an additional 400 frames

(200 frames per camera) taken from videos of 2 mice that were not in the training set.

Fly dataset
We next evaluated 3D tracking with Anipose on walking fruit flies. The flies’ wings were clipped 24-48 hours prior to the experiment in

order to increase walking and prevent visual obstruction of the legs and thorax. For all experiments, a tungsten wire was tethered to

the dorsal thorax of a cold-anesthetized fly with UV cured glue. Flies were starved with access to water for 2–15 hours before they

were tethered. After 20 minutes of recovery, tethered flies were positioned on a frictionless spherical treadmill (Buchner, 1976; Götz,

1973) (hand-milled foam ball, density: 7.3mg/mm3, diameter: 9.46mm) suspended on a stream of compressed air (5 L/min). Six cam-

eras (imaging at 300 Hz, Basler acA800-510 mm with Computar zoom lens MLM3X-MP) were evenly distributed around the fly,

providing full video coverage of all six legs (Figure 1C). Fly behavior was recorded in 2 s trials, capturing a range of behaviors

such as walking, turning, grooming, and pushing against the ball. The recording region of each video was cropped slightly so that

the fly filled the frame and the camera was able to acquire at 300Hz. For all training and test evaluation data, the interval between

trials was 25 s. For some of the flies in the larger walking dataset used in Figure 7, the interval between trials was set to 9 s.

We selected 30 points on the fly as keypoints (Figure 1C). On each fly leg, we labeled 5 points: the body-coxa, coxa-femur, femur-

tibia, and tibia-tarsus joints, as well as the tip of the tarsus. In total, wemanually labeled 6632 frames (about 1105 frames per camera)

for training the neural network. For test data to evaluate the post estimation performance, we labeled an additional 1200 frames

(200 frames per camera) taken from videos of 5 flies that were not in the training set. For analyzing flexion and rotation of angles during

walking in Figure 7, we used a larger dataset of videos from 39 flies, all collected with the methods described above.

Human dataset
We evaluated 3D tracking with Anipose on the Human 3.6M dataset (Ionescu et al., 2011, 2014). Because this dataset has been used

extensively for human pose estimation, it provides a useful comparison to existing computer vision methods. It consists of 11 pro-

fessional actors performing a range of actions, including greeting, posing, sitting, and smoking. The actors were filmed in a 4m3 3m

space with 4 video cameras (Basler piA1000) at a resolution of 10003 1000 pixels at 50Hz (Figure 1D). To gather ground-truth pose

data, the actors were also outfitted with reflective body markers and tracked with a separate motion capture system, using 10 Vicon

cameras at 200 Hz. Leveraging these recordings, the authors derived the precise 3D positions of 32 body joints and their 2D projec-

tions onto the videos. For camera calibration, we used the camera parameters from the Human 3.6M dataset, converted by Martinez

et al. (Martinez et al., 2017).

To compare the performance of Anipose against previousmethods, we used a protocol from the literature (Iskakov et al., 2019).We

used frames from the training dataset to train the network and evaluated the predictions on the validation dataset. We also removed

frames from the training dataset in which the subject did not move relative to the previous frame (<40mmmovement of all joints from

the previous frame). We evaluated the tracked human dataset on every 64th frame. We used 17 of the 32 provided joints as keypoints

(Figure 1D). Iskakov et al. (Iskakov et al., 2019) showed that some scenes from the S9 validation actor (parts of the Greeting,

SittingDown, and Waiting actions) have ground-truth shifted in global coordinates compared to the actual position (Iskakov et al.,

2019), so we exclude these scenes from the evaluation set. Furthermore, for subject S11, one of the videos is corrupted (part of
Cell Reports 36, 109730, September 28, 2021 e2

Resource
ll

OPEN ACCESS
the ’’Directions’’ action), so we exclude this from the dataset as well. In total, we obtained 636,724 frames (159,181 per camera) for

training the neural network, and 8608 frames (2152 per camera) frames for evaluation.

Manual annotation of datasets
To produce neural network training data, we annotated the fly dataset using Fiji (Schindelin et al., 2012) and the VGG Image Annotator

(VIA) (Dutta et al., 2016; Dutta and Zisserman, 2019). All the images in the fly test set were annotated with VIA. We annotated all the

images in the ChArUco dataset and mouse dataset with VIA.

QUANTIFICATION AND STATISTICAL ANALYSIS

Neural network keypoint detections
Detection of keypoints in each of the datasets was performed with DeepLabCut 2.1.4 (Nath et al., 2019). Briefly, to produce training

data, we used k-means clustering to pick out unique frames from each of the views, then manually annotated the keypoints in each

frame. We trained a single Resnet-50 (He et al., 2016) network for all camera views for each of the fly, mouse, and ChArUco datasets,

starting from a network pretrained on Imagenet. For the human dataset, we started with a Resnet-101 network pretrained on theMPII

human pose dataset (Insafutdinov et al., 2016). During training, we augmented the training dataset with cropping, rotation, bright-

ness, blur, and scaling augmentations using Tensorpack (Wu et al., 2016). We then used the Anipose pipeline to run the network

on each video. For each keypoint, the network produced a list of predicted positions, each associated with a confidence score

(between 0 and 1). We saved the top-n most likely predictions of each joint location for each frame for use in Viterbi filtering of likely

keypoints in 2D, as described below.

Filtering of 2D keypoint detections
The raw keypoint detections obtained with DeepLabCut were often noisy or erroneous (Figure 4). Thus, filtering the detections from

each camera was necessary before triangulating the points. Anipose contains 3 main algorithms to filter keypoint detections; we

elaborate on each algorithm below. Example applications of these filters and results are compared in Figure 4.

Median filter

The first algorithm identifies outlier keypoint detections by comparing the raw detected trajectories to median filtered trajectories for

each joint. We started by computing a median filter on the detected trajectory for each joint’s x and y positions, which smooths the

trajectory estimate.We then compared the offset of each point in the raw trajectory to themedian filtered trajectory. If a point deviated

by some threshold number of pixels, then we denoted this point as an outlier and removed it from the data. The missing points were

then interpolated by fitting a cubic spline to the neighboring points. Themedian filter is simple and intuitive, but it cannot correct errors

spanning multiple frames.

Viterbi filter

To correct for errors that persist over multiple frames, we implemented the Viterbi algorithm to obtain a single most consistent path in

time from the top-n predicted keypoints in each frame for each joint. To be specific, we expressed this problem as a hidden Markov

model for each joint, wherein the possible values at each frame are the multiple possible detections of this keypoint. To obtain a

cleaner model, we removed duplicate detections (within 7 pixels of each other) within each frame. To compensate for missed

detected keypoints over many frames, we augmented the possible values at each frame with all detections up to F previous frames,

weighted in time elapsed bymultiplying their probability 2�F . We then identified the best path through the hiddenMarkovmodel using

the Viterbi algorithm (Forney, 1973). This procedure estimates a consistent path, even with missed detections of up to F frames.

Autoencoder filter

We found that the network would often try to predict a joint location even when the joint was occluded in that view. This type of error is

particularly problematic when used in subsequent 3D triangulation. The convolutional neural network confidence scores associated

with these predictions can be high, making them difficult to distinguish from correct, high-confidence predictions. To remove these

errors, inspired by (Murphy, 2019), we implemented a neural network that takes in a set of confidence scores from all keypoints in one

frame, and outputs a corrected set of confidence scores. To generate a training set, we made use of the fact that human annotators

do not label occluded joints but label all of the visible joints in each frame. Thus, we generated artificial scores from biased distribu-

tions to mimic what the convolutional neural network might predict for each frame, with visible joints given a higher probability on

average. Specifically, we sample the scores from a normal distribution, with standard deviation of 0.3 and mean 0 for invisible

and 1 for visible joints, clipped to be between 0 and 1. To mimic false positive or false negative detections, we flip 5% of the scores

ðx/1 � xÞat random. The task of the network is to predict a high score for each joint that is truly visible in that frame and a low score

for any occluded joint. The network is a multilayer perceptron network with a single hidden layer and tanh activation units to perform

this task. The size of the hidden layer is the number of joints (e.g., if there are 10 joint scores to predict, we set the hidden layer to

10 units). We trained the network using the Adam optimizer (Kingma and Ba, 2017) implemented in the scikit-learn library (Pedregosa

et al., 2011)
e3 Cell Reports 36, 109730, September 28, 2021

Resource
ll

OPEN ACCESS
Camera model
A camera captures 2D images of light reflecting from 3D objects; thus, we can think of each camera as a projection, transforming 3D

vectors to 2D vectors. To establish our notation, for a point p= ðx; y; zÞT or u = ðx; yÞT , we use a tilde to denote that point in

homogeneous coordinates (with a 1 at the end), so that ~p= ðx; y; z; 1ÞT or ~u = ðx; y; 1ÞT .
A camera model specifies a transformation from a 3D point ~p to a 2D point ~u. We use the camera model described by Zhang

(Zhang, 2000), which consists of a product of an intrinsics matrix A, an extrinsics matrix P, and a distortion function D.

The extrinsics matrix P˛R433 describes how the camera is positioned relative to the world. We represent P as the product of a

rotation matrix and a translation matrix. Both rotations and translations may be fully specified with 3 parameters each, for 6

parameters total in P.

The intrinsics matrix A˛R333 describes the internal coordinate system of the camera. It is often modeled using 5 parameters: focal

length terms fx and fy, offset terms cx and cy, and a skew parameter s:

A =

2
664
fx s cx

0 fy cy

0 0 1

3
775:

In practice, we found that we obtain a more robust calibration by reducing the number of parameters, setting f = fx = fy, s = 0, and

ðcx; cyÞ to be at the center of the image, so that we need to estimate only the focal length parameter f for the intrinsics matrix.

Thedistortion functionmodels nonlinear distortions in thecamerapixel grid. Thisdistortion is typicallymodeledwith 3parameters as

Dð½x; y�Þ =

2
4 x + x

�
k1
�
x2 + y2

�
+ k2

�
x2 + y2

�2
+ k3

�
x2 + y2

�4�
y + y

�
k1
�
x2 + y2

�
+ k2

�
x2 + y2

�2
+ k3

�
x2 + y2

�4�
3
5:

In practice, we found that the higher-order distortion terms k2 and k3 are often small for modern cameras, so we assume k2 = k3 = 0

and only estimate a single parameter k1.

Thus, the full mapping may be written as

~u = DðAP~pÞ:

In total, the camera model involves estimating 8 parameters per camera: 6 for extrinsics, 1 for intrinsics, and 1 for distortion.

For the camera calibration and triangulation methods described below, we define the projection T from ~p to ~u as

T ð~p; qcÞ = ~u=DðAP~pÞ;

where qc are the 8 parameters for the camera model of camera c.

Initial estimate of camera parameters
In order to calibrate the cameras and estimate parameters of the camera models, we start by obtaining an initial estimate of the

camera parameters. We detected calibration board keypoints in videos simultaneously captured from all cameras.We then initialized

intrinsics based on these detections following the algorithm from Zhang (Zhang, 2000). We initialized the distortion coefficients to

zero.

We developed the followingmethod to initialize camera extrinsics from arbitrary locations. For each pair of cameras, the number of

frames in which the board is seen simultaneously is counted and used to build a graph of cameras. To be specific, each node is a

camera, and edges represent pairs of cameras whose relation we will use to seed the initialization.

The greedy graph construction algorithm is as follows. Starting with the pair of cameras for which the number of frames the board is

simultaneously detected is the largest, connect the two camera nodeswith an edge. Next, proceedwith iterations in decreasing order

of the number of boards simultaneously detected. At each iteration, if the two nodes (cameras) are not already connected through

some path, connect them with an edge. Processing iteratively through all pairs of cameras in this manner, a graph of camera

connectivity is produced. Full 3D calibration is possible if and only if the graph is fully connected.

To initialize the extrinsics using this graph, we start with any camera and set its rotation and translation to zero. Then, we initialize its

neighbors from the estimated relative pose of the calibration board between them using the initial intrinsics. This procedure is

continued recursively until all cameras are initialized. A diagram of the camera initialization for an example dataset is provided in

Figure S1A.

Bundle adjustment
To refine the camera parameters from initial estimates, we performed a bundle adjustment by implementing a nonlinear least-squares

optimization to minimize the reprojection error (Triggs et al., 2000). Given all ~uc;j;t, the detected jth keypoints from the calibration
Cell Reports 36, 109730, September 28, 2021 e4

Resource
ll

OPEN ACCESS
board at cameras c in frames t, we solve for the best camera parameters qc and 3D points ~pj;t such that the reprojection loss L is

minimized:

L =
X
c

X
j

X
t

E
�
~uc;j;t �T

�
~pj;t; qc

��
:

Here, Eð $Þ denotes the norm using which the error is computed. This normmay be the least-squares norm, but in practice, we used a

robust norm, such as the Huber or soft [1 norm, to minimize the influence of outliers.

This optimization is nonlinear because the camera projection function T is nonlinear. We recognized that it is a nonlinear least-

squares problem with a sparse Jacobian and thus solved it efficiently using the Trust Region Reflective algorithm (Byrd et al.,

1988; Branch et al., 1999), as implemented in SciPy (Virtanen et al., 2020).

Iterative bundle adjustment
When calibrating cameras, we found that outliers have an outsized impact on calibration results, even when using robust losses such

as the Huber loss or soft [1 loss. Thus, we designed an iterative calibration algorithm, inspired by the fast global registration algorithm

from Zhou et al. (Zhou et al., 2016), which solves a minimization with a robust loss efficiently through an alternating optimization

scheme.

We approximate this alternating optimization in the camera calibration setting through an iterative threshold scheme. In our

algorithm, at each iteration, a reprojection error threshold is defined and the subset of points uc;i with reprojection error below

this threshold is chosen. Bundle adjustment is then performed on these points alone. The threshold decreases exponentially with

each iteration, to refine the points to be calibrated. The pseudocode for the algorithm is listed in Algorithm 1.
Algorithm 1. Iterative bundle adjustment

Input:

Initial camera parameters q

Keypoint detections u from multiple cameras

Starting and ending thresholds mstart and mend

1: for i)1 to Niter do

2: ueval) sample(u)

3: errorseval) reprojection_errors(ueval;q)

4: low)percentileðerrorseval;15%Þ
5: high)percentileðerrorseval;75%Þ

6: mi)

�
mend

mstart

�i=Niter

7: mi)maxðlow;minðmi;highÞÞ
8: mpicked) points from ueval for which reprojection error is below mi

9: q) bundle_adjust(q, upicked)

10: end for

11: return q
Triangulation and 3D filtering
The 3D triangulation task seeks 3D points pj;t for joint j at frame t, given a set of detected 2D points uc;j;t from cameras c with camera

parameters qc. There are several common methods for solving this triangulation task. Below, we describe 3 of these methods, then

describe our method for spatiotemporally constrained triangulation. For illustration, a comparison of the performance of these

methods is shown on an example dataset in Figure 5.

Linear least-squares triangulation
The first method triangulates 3D points by using linear least-squares (Hartley and Sturm, 1997). Linear least-squares is the fastest

method for multi-camera triangulation, but it may lead to poor results when the 2D inputs contain noisy or inaccurate keypoint de-

tections. To be specific, we start with a cameramodel with parameters estimated from the calibration procedure described above, so

that the extrinsics matrix Pc, intrinsics matrix Ac, and distortion functionDc are known for each camera c. By rearranging the camera

model, we may write the following relationship:

D�1
c ð~uc;j;tÞ = AcPc~pj;t:

We solved this linear system of equations using the singular value decomposition (SVD) of the product AcPc to approximate the

solutions for the unknown ~pj;t (Hartley and Sturm, 1997).
e5 Cell Reports 36, 109730, September 28, 2021

Resource
ll

OPEN ACCESS
Median-filtered least-squares triangulation
As a simple extension of least-square triangulation to correct some of the noisy detections, we applied a median filter to the resulting

3D points tracked across frames. This filtering improves the tracking, but at the cost of losing high frequency dynamics. Furthermore,

a median filter does not improve triangulation if the original tracking is consistently poor.

RANSAC triangulation
Random sample consensus (RANSAC) triangulation aims to reduce the influence of outlier 2D keypoint detections on the triangulated

3D point, by finding the subset of keypoint detections that minimizes the reprojection error. We implemented RANSAC triangulation

by triangulating all possible pairs of keypoints detected from multiple views and picking the resulting 3D point with the smallest

reprojection error.

Formally, let ~pa;b
j;t be the triangulated 3D point for keypoint j at frame t computed using the 2D keypoint detections from cameras a

and b, then our algorithm finds ~pjt using the following relation:

~pj;t = arg min
~pa;b
j;t

������T �
~p
a;b
j;t ; qa

�
� ~ua;j;t

������
2
+

T ~p
a;b
j;t ; qb

� �
� ~ub;j;t

��� ������ ���
2
:

Spatiotemporally regularized triangulation
We formulated triangulation as an optimization problem, which allowed us to specify soft spatiotemporal constraints (i.e., regulari-

zation) on the triangulated points. We propose that the points must satisfy three soft constraints: (1) the projection of the 3D points

onto each camera should be close to the tracked 2D points, (2) the 3D points should be smooth in time, and (3) the lengths of specified

limbs in 3D should not vary too much. Each of these constraints may be formulated as a regularization in the full objective function.

First, the reprojection loss is written as

Lproj =
X
c

X
j

X
t

E
�
T
�
~pj;t; qc

�
� ~uc;j;t

�
:

Here, Eð $Þ is a robust norm function such as the Huber or soft-[1 norm, to minimize the influence of outlier detections.

Second, the temporal loss is formulated as follows:

Ltime =
X
j

X
t

~pj;t � ~pj; t�1ð Þ
�� ���� ��

2

We extend this penalty to minimize higher-order (e.g., 2nd or 3rd) finite-difference derivatives, which produces smoother trajectories

but has less impact on important high frequency dynamics (see Figure S4).

Third, the limb loss may be formulated by adding an additional parameter dl for each limb l, defined to consist of joints j1 and j2:

Llimb =
X

l;j1 ;j2˛limbs

X
t

�����~pj1 ;t
� ~pj2 ;t

����
2
� dl

dl

�2

:

The limb error is normalized relative to the limb length so that each limb contributes equally to the error.

Given each of the losses above, the overall objective function to minimize may be written as:

L = Lproj +atimeLtime +alimbLlimb:

We solve this sparse nonlinear least-squares problem efficiently using the Trust Region Reflective algorithm (Byrd et al., 1988; Branch

et al., 1999), as implemented in SciPy (Virtanen et al., 2020), similarly to the bundle adjustment optimization. To initialize the

optimization, we use linear least-squares triangulation. When formulated as a sparse nonlinear least-squares problem, the time

and memory requirements of the optimization scale linearly relative to the number of input time points.

The parameters atime and alimb may be tuned to adjust the strength of the temporal or limb loss, respectively. Note, however, that

the temporal loss is in units of distance, which may vary substantially across datasets. Thus, to standardize these parameters, we

break down the parameter atime in terms of a user-tunable parameter btime and an automatically computed scale g such that

atime = btimeg:

We compute the scale g as

g=
NP

j

P
t
~pj;t � ~pj; t�1ð Þ
�� ���� ��

2

;

Cell Reports 36, 109730, September 28, 2021 e6

Resource
ll

OPEN ACCESS
where ~pj;t is an initial estimate obtained from linear least-squares triangulation. We found that the parameters btime = 2 and alimb = 2

work well across a variety of datasets, and we used these parameters for tracking all four datasets in this manuscript. The user may

additionally specify weaker constraints for the lengths of certain limbs to allow for some flexibility, such as the shoulder length in

humans or the length of the tarsus in flies.

Estimating joint angles
We estimated joint angles from the tracked 3D positions. To compute the flexion angle defined by the three 3D points surrounding the

joint ðpi;pj;pkÞ, where point pj lies at the joint, the angle fj is

fj = arccos
��
pi �pj

�
$
�
pk �pj

��
:

To estimate rotation and abduction angles, we solve an inverse kinematics problem treating the set of limb joints as a kinematic chain.

When estimating limb angles from 3D coordinates of joints, the rotation of a joint is indistinguishable from the abduction of the next

joint in the chain. We observed that fly and human limbs can be approximated to only have abduction at the joint closest to the body,

so we resolve this ambiguity by assuming that only the first (most proximal) joint may abduct and the last (most distal) joint may not

rotate.

The solution proceeds in two stages. In the first stage, we estimate the absolute rotation of each joint based on its {x, y, z} coor-

dinate axes. The axes of the first joint match the coordinate system for the body. For other joints, the z axis is in the direction of the

limb segment pointing from that joint away from the body, the x axis is in direction of proximal limb segment (toward the body) orthog-

onalized to the z axis, and the y axis is the cross product of the z axis with the x axis. In the second stage, the relative rotation between

joints is computed and transformed to an Euler angle with an order of {z, y, x} for axis rotations. The rotations about the {z, y, x} axis

represent rotation, flexion, and abduction angles, respectively. For more details of the implementation, see the accompanying code.

Comparison of bundle adjustment algorithms
To evaluate the different bundle adjustment algorithms (Figures S1B and S1C), we ran the algorithms with different parameters on the

calibration videos from the fly setup. There were 4475 frames where the calibration board was detected in 2 or more cameras. To

demonstrate the usefulness of our iterative bundle adjustment procedure with lower number of detections, we evaluated all bundle

adjustment algorithms after subsampling the frames with board detections to 313 (7%) and 4475 (100%). At each of these frame

counts, we initialized the camera parameters and then ran our iterative bundle adjustment procedure, as well as traditional bundle

adjustment with a linear least-squares loss, a Huber loss, and soft L1 loss. As the Huber and soft L1 losses are sensitive to the outlier

threshold parameter, we evaluated them at multiple outlier thresholds on our dataset (Figure S1C). We picked the loss with the best

outlier threshold, as evaluated by the reprojection error at the 75th percentile, to plot in themain calibration figure. The iterative bundle

adjustment procedure was run with the default parameters in Anipose: Niter = 12;mstart = 15;mend = 1.

Evaluation against physical ground truth
To evaluate the calibration and triangulation, we compared the accuracy of manual keypoint annotations, neural network keypoint

detections, and OpenCV keypoint detections (Figure 3). The ground truth was considered to be known physical length and angles

of the ChArUco board. The physical lengths were calculated between all pairs of keypoints by taking the length between the known

positions of pairs of corners. Similarly, the physical angles were estimated between all triplets of non-collinear keypoints. The sub-

pixel OpenCV detections were done using the Arucomodule (Garrido-Jurado et al., 2014). Themanual annotation and neural network

methods are detailed above. Given the keypoint detections from each method, we used linear least-squares triangulation to obtain

3D points and computed angles using the dot product method detailed above. If a keypoint was detected in fewer than 2 cameras at

any time, we could not triangulate it and therefore did not estimate the error at that frame.

Evaluation of 3D tracking error for different filters
To evaluate the contribution of 2D and 3D filters, we applied each filter and measured the reduction in error. For the 2D filters, we

applied each of the filters (2D median filter, Viterbi filter, and autoencoder filter) and computed the 3D position using linear least-

squares triangulation. We could not train the autoencoder filter on the human dataset, as the filter relies on occluded keypoints

not being present in the annotated dataset and, due to the nature of the human dataset, all keypoints are annotated from every

view at every frame. When applying the spatiotemporal regularization, we assumed a low variance in length of the coxa, femur,

and tibia in flies and of the arm, the forearm, pelvis, femur, and tibia in the human.We assumed a slightly higher variance for the length

of the tarsus in each fly and of the neck and shoulders in each human, because these body segments are more flexible. The param-

eters for each filter are listed in Table S1.Wemeasured the error in joint positions and angles relative to those computed frommanual

annotations, using the [2 norm. To evaluate the effect of the filter addition, as there was a lot of variance in error across points, we

computed the difference in error for each point tracked. We treated points with reprojection error above 20 pixels as missing. The

procedure for evaluating the 3D filters was similar, except that we compared the error in joint position and angle relative to the error

from 3D points obtained with a Viterbi filter and autoencoder filter with linear least-squares triangulation.
e7 Cell Reports 36, 109730, September 28, 2021

Resource
ll

OPEN ACCESS
Evaluation of derivative error for different filters
To evaluate the contribution of different 2D and 3D filters to the error in derivative estimation, we applied each filter to the 3D trajectory

of each joint and estimated the derivative by using the finite differencemethod. For each joint, each frame, and each filter, we obtain a

3D vector representing a derivative. We compare the error between this derivative vector and the true derivative vector frommanual

annotations by using the [2 norm, as in the previous section.

Evaluation of 3D tracking error for different number of cameras
To evaluate how the number of cameras contributes to the estimate of error, we ran Anipose on all combinations of 2, 3, and 4

cameras for the human dataset. We measured the error in joint position and angles relative to manual annotations as described

above. We plotted the mean error across all joint positions or angles and across all possible combinations of cameras (Table S2)

at each number of cameras.

Evaluation of temporal regularization on synthetic dataset
To evaluate how minimizing higher order derivatives affects tracking of high frequency movement dynamics, we evaluated the tem-

poral regularization on a synthetic dataset (Figure S4). We synthesized 30 ground-truth keypoint trajectories, each of length 500, by

applying a low-pass filter with a cutoff of 0.12 cycles/sample on white noise. We then corrupted these trajectories by adding white

noise and removing 10% of the points, simulating observed triangulated points (for example, as in the ’’No filters’’ trace in Figure 5A).

We reconstructed the signal using temporal regularization and minimizing the 1st, 2nd, or 3rd derivative across different levels of

smoothing factor btime. We estimated the power spectrum of the ground truth, corrupted, and reconstructed signals by taking the

average power spectral density at each frequency across all 30 simulated trajectories.We estimated the power spectral density using

theWelch’s method as implemented in SciPy (Virtanen et al., 2020). We computed the root mean squared error (RMSE) between the

ground truth and reconstructed signals for each derivative minimized at different levels of smoothing. We evaluated the RMSE of

median filters with window size of 3 to 25 samples on the same trajectories, and found the median filter with a window size of 9

samples to have the lowest RMSE, which we plot as a reference.

Analysis of fly walking kinematics
For the analysis in Figure 7, we used data from 39 wild-type Berlin flies on a spherical treadmill (details of experimental setup above).

We tracked the flies using Anipose with spatiotemporal regularization and Viterbi and autoencoder filters. We confirmed by visual

inspection and by checking reprojection errors that all flies were well tracked.

To restrict the data to only walking, we manually labeled fly behavior for a random subset of videos using the VGG Image

Annotation tool (Dutta and Zisserman, 2019). The categories of behaviors labeled were abdomen grooming, antennae grooming,

ball push, ball tapping, eye grooming, head grooming, standing, t1 grooming, t3 grooming, walking. To detect walking behavior

across the entire dataset, we fit a logistic classifier to predict the type of behavior. The input data to the classifier for each time point

was a chunk of 24 samples around that time of 3D joint positions and angles and the Fourier transform of the 24 samples of each

variable. The confusion matrix for the classifier on a test set is shown in Figure S6C. The false negative rate was 0%, whereas the

false positive rate was about 3%. To detect bouts of walking, we used the classifier to predict a walking probability for each sample

in a video, applied a mean filter with a window of 16 samples to the probability, then kept bouts where the probability was above 0.5

for at least 40 consecutive samples. To further reduce spurious walking bout detections, we removed any bout where the femur-tibia

flexion of the left front and hind legs varied less than 10 degrees over the full bout. We confirmed with visual inspection that all bouts

removed in this way did not include walking.

To perform the UMAP embeddings, we followed a procedure inspired by DeAngelis et al. (DeAngelis et al., 2019), which mapped

the manifold structure of Drosophila walking from 2D tracking data. We took chunks of 32 samples, advancing by 8 samples, of the

coxa rotation, femur rotation, and femur-tibia flexion angles and their derivatives. Thus, we obtained a set of vectors of size 1152 (32

samples * 6 legs * 3 angles * 2 raw & derivatives), which we standardized by subtracting the mean and dividing by the standard de-

viation along each dimension.We embedded this set of vectors in 3 dimensions using theUMAP algorithm (McInnes et al., 2018), with

effective minimum distance of 0.4 and 30 neighbors as parameters. To compute the phase of the step cycle, we applied a band-pass

filter (1st order Butterworth over 3–60Hz) to front left leg femur-tibia flexion and estimated the phase from the analytic signal obtained

using the Hilbert transform.

Analysis of mouse reaching kinematics
In Figures 7 and S7, we analyzed videos from 4mice recorded over 2 different days (details of experimental setup above). We tracked

3 keypoints on the hand for each mouse using Anipose with no filters. To obtain accurate 3D tracking for all trajectories, we removed

all points with reprojection error above 10 pixels, then filled inmissing data (about 11%of the data) using linear interpolation.We used

the proximal end of digit 3 as a marker for the overall hand position. Mice 1 and 3 reached with their left hand, whereas mice 2 and 4

reached with their right hand. Accordingly, we quantified the movement of the hand each mouse reached with. We labeled the start

and end of each reach, along with the reach type using the Anipose visualizer (Figure 6). To obtain the 3D position of the pellet holder,
Cell Reports 36, 109730, September 28, 2021 e8

Resource
ll

OPEN ACCESS
we labeled the pellet holder for each mouse and day from both views using the VGG Image Annotation tool (Dutta and Zisserman,

2019), then triangulated the labeled points for each pair of views using aniposelib. We measured the distance of the hand (proximal

end of digit 3) to the pellet holder by using the [2 norm.

Analysis of human walking kinematics
In Figures 7 and S7, we analyzed videos from all 7 publicly available subjects in the Human 3.6M dataset (dataset described above).

We tracked 17 keypoints for each human using Anipose with spatiotemporal regularization and Viterbi filters.

To focus on walking, we restricted our analysis on the ‘‘Walking-1,’’ ‘‘Walking-2,’’ ‘‘WalkingTogether-1,’’ and ‘‘WalkingTogether-2’’

actions in the dataset. We estimated the knee flexion, hip flexion, and hip rotation angles as described in the ‘‘Estimating joint angles’’

section above. For the UMAP embedding, we followed a procedure similar to our analysis of fly kinematics. Specifically, we took

chunks of 24 samples, advancing by 8 samples, of the knee flexion, hip rotation, and hip flexion angles and their derivatives.

Thus, we obtained a set of vectors of size 288 (24 samples * 2 legs * 3 angles * 2 raw & derivatives), which we standardized by sub-

tracting the mean and dividing by the standard deviation along each dimension. We embedded this set of vectors in 3 dimensions

using the UMAP algorithm (McInnes et al., 2018), with effective minimum distance of 0.4 and 30 neighbors as parameters.
e9 Cell Reports 36, 109730, September 28, 2021

Cell Reports, Volume 36
Supplemental information
Anipose: A toolkit for robust

markerless 3D pose estimation

Pierre Karashchuk, Katie L. Rupp, Evyn S. Dickinson, Sarah Walling-Bell, Elischa
Sanders, Eiman Azim, Bingni W. Brunton, and John C. Tuthill

0.00

0.25

0.50

0.75

1.00

C
D

F

313 frames 4475 frames

10 pixels

50 pixels

100 pixels

200 pixels
300 pixels

0 10 20 30 40 50
Reprojection error (pixels)

0.00

0.25

0.50

0.75

1.00

C
D

F

10 pixels

50 pixels

100 pixels

200 pixels

300 pixels

0.00

0.25

0.50

0.75

1.00

C
D

F

Initial estimate

Bundle adjustment with linear loss
Bundle adjustment with Huber loss
Bundle adjustment with soft L1 loss
Iterative bundle adjustment (ours)

0 10 20 30 40 50
Reprojection error (pixels)

256

523

129

178

312

256

189

523

129

178

78

312

A Graph of cameras

Trim

B

C

Minimal graph used to initialize
camera extrinsics

simultaneously detected
calibration boards

Initial estimate
Bundle adjustment with linear loss

Bundle adjustment with Huber loss
Bundle adjustment with soft L1 loss

Iterative bundle adjustment

0 10 20 30 40
Reprojection error (pixels)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Figure S1: Related to Figure 2B. (A) Illustration of the camera parameter
initialization procedure. We build a graph with each camera as a node and edge
weights computed by the number of frames the calibration board is simultaneously
detected by pairs of cameras. To initialize the camera calibration, we trim this
graph to be a minimal, fully connected tree using a greedy approach. (B) On
calibration videos from the fly dataset, bundle adjustment improves the initial
calibration estimate, as measured by a reduction in reprojection error. (C)
Reprojection error as a function of outlier threshold for bundle adjustment with
Huber and soft L1 losses.

ChArUco Mouse Fly Human

Training frames 1200 2200 6632 636724
Test frames 1200 400 1200 159181
Num cameras 6 2 6 4
Pixel scale (mm) 0.0075 0.0897 0.0075 4.79

2D filter
score threshold 0.05 0.05
n_back 3 3
medfilt 13 13
offset_threshold 15 30
spline true true

3D filter
score_threshold 0.3 0.3 0.3 0.3
reproj_error_threshold 5 5
scale_length 3 1.5
scale_length_weak 0.5 0.5
scale_smooth 2 4
n_deriv_smooth 3 2

Table S1: Anipose configuration parameters used in this paper. Related to
Figures 4 and 5.

number of cameras filter type mean joint angle error (deg) mean joint position error (mm)

2 No filters 11.5 84.3
Viterbi filter 10.6 76.9
Spatiotemporal reg. + Viterbi filter 12.0 98.8

3 No filters 7.5 42.6
Viterbi filter 7.3 41.7
Spatiotemporal reg. + Viterbi filter 7.1 40.2

4 No filters 6.9 37.0
Viterbi filter 6.7 36.8
Spatiotemporal reg. + Viterbi filter 6.4 33.1

Table S2: Estimates of error with different number of cameras for the human
dataset. Related to Figure 5.

View with keypoint detections
removed by autoencoder

3D before 3D after

Figure S2: An autoencoder corrects 3D tracking by removing bad keypoint
detections. Related to Figure 4. On the left is one view where the autoencoder
lowered the confidences for particularly bad detections, thus removing them from
the 3D triangulation. On the right are the 3D positions of the keypoints before
and after the removal.

0.25 seconds

25°

2D median filter

Viterbi filter

Autoencoder filter

No filters

No filters

Main 2D filters (Viterbi + autoencoder)

RANSAC triangulation + 2D filters

3D median filter + 2D filters

Spatial regularization + 2D filters

Temporal regularization + 2D filters

Spatiotemporal regularization + 2D filters

Main 2D filters (Viterbi + autoencoder)

RANSAC triangulation + 2D filters

3D median filter + 2D filters

Spatial regularization + 2D filters

Temporal regularization + 2D filters

Spatiotemporal regularization + 2D filters

0

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0

2D filters (Viterbi + autoencoder)
RANSAC triangulation + 2D filters

3D median filter + 2D filters
Spatial regularization + 2D filters

Temporal regularization + 2D filters
Spatiotemporal regularization + 2D filters

No filters

P
ro

b
a
b
ili

ty
d
is

tr
ib

u
ti

o
n

fu
n
ct

io
n

P
ro

b
a
b
ili

ty
d
is

tr
ib

u
ti

o
n

fu
n
ct

io
n

Tibia length (mm)

Manual annotations

5

10

15

5

10

15

A

D

0.25 seconds

0.
5

m
m

Length of tibia

Femur-tibia
flexion

0.4 0.2 0.0 0.5 0.0 0.5 1.0

2D filters
RANSAC triangulation + 2D filters

3D median filter + 2D filters
Spatial regularization + 2D filters

Temporal regularization + 2D filters
Spatiotemporal regularization + 2D filters

Change in error in joint angle compared to no 3D filters (degrees)

B

C Fly Human

(5.96) (6.74)

Figure S3: Related to Figure 5. (A) Example traces of the tracked hind-leg femur
tibia flexion angle, before and after filtering. (B) Estimation of tibia length
over time, before and after filtering. Adding spatial regularization leads to a
more stable estimate of the tibia length across frames. (C) Comparison of angle
estimates before and after filtering. The mean difference and confidence intervals
are plotted as in C. Spatial and temporal regularization improve angle estimation
above 2D filters on both datasets (p < 0.001, paired t-test). The 3D median
filter improves angle estimation on the human dataset (p < 0.001, paired t-test)
but not on the fly dataset (p > 0.8, paired t-test). RANSAC triangulation does
not improve angle estimation for either dataset. (D) Comparison of methods
for estimating tibia length. Spatial regularization most closely matches the
distribution of tibia lengths based on manual annotations. The plots show the
distribution of tibia lengths for one fly, extending the example shown in Figure 5B,
for different filtering strategies (top) and manual annotations (bottom).

10 1 100 101 102 103

Smoothing factor

7.5

10.0

12.5

15.0

17.5

20.0

R
o
o
t

m
e
a
n
 s

q
u
a
re

d
 e

rr
o
r

(a
.u

.)
Corrupted

True

Minimize 3rd derivative
Minimize 2nd derivative
Minimize 1st derivative

Median filter

Low smoothing factor Medium smoothing factor High smoothing factor

0.00 0.02 0.04 0.06 0.08 0.10
Frequency (cycles/sample)

0.00 0.02 0.04 0.06 0.08 0.10
Frequency (cycles/sample)

0

2000

4000

6000

Po
w

e
r

sp
e
ct

ra
l

 d
e
n
si

ty
 (

a
.u

.)

0.00 0.02 0.04 0.06 0.08 0.10
Frequency (cycles/sample)

A

B

C

Figure S4: Minimizing higher order derivatives preserves high frequency dynamics
and leads to lower reconstruction error. Related to Figure 5. (A) An example
simulated trajectory along with its reconstructions using temporal regularization
with different derivatives minimized. Each column shows reconstructions with
different smoothing factors. (B) We synthesized 30 different trajectories with
the procedure in A and compared the average power spectral density between
the true, corrupted, and reconstructed trajectories with different derivatives
minimized. At any smoothing factor, minimizing higher derivatives preserves
more power at high frequencies. (C) The average root-mean squared error
(RMSE) of reconstruction for the 30 simulated trajectories. The minimum error
for a median filter (over all possible filter widths) is shown as a dashed line, for
reference. Dotted lines indicate the smoothing factors shown in A and B. Note
that minimizing higher derivatives is more robust to smoothing factor choice, as
a wider range of factors give lower RMSE than a median filter. The best RMSE
over all possible smoothing factors is lower when minimizing the 3rd derivative
than 2nd or 1st.

 config.toml

 calib-v01-camA.avi

 calib-v01-camB.avi

 calib-v01-camC.avi

 experiment 2019-03-03

 2019-05-23

 calibration

 2019-08-08

 trial 1

 trial 2

 trial 3

 t1-v01-camA.avi

 t1-v01-camB.avi

 t1-v01-camC.avi

 t1-v02-camA.avi

 t1-v02-camB.avi

 t1-v02-camC.avi

 videos-raw

 calib-v01-camA.avi

 calib-v01-camB.avi

 calib-v01-camC.avi

 calibration

 trial 1 videos-raw

 calibration.toml

 pose-2d

 pose-2d-filtered

 pose-3d

 angles

 videos-labeled

 videos-labeled-filtered

 videos-3d

A

B

Example input structure

Example after processing

walking

0.25 seconds

Figure S5: An example of the Anipose file structure. This structure enables
visualization of arbitrary datasets, as shown in Figure 6. (A) The input file
structure consists of folders nested to arbitrary depths (e.g. “experiment/2019-
03-03/trial 1”) with a folder for raw videos at each leaf of the directory tree.
The calibration folder may be placed anywhere and will apply recursively to all
folders adjacent to it. (B) When the user runs Anipose, it will create a folder
for each step of processing. New folders created include “pose-2d” and “videos-
labeled” which contain the unfiltered keypoint detections and visualizations of
those, “pose-2d-filtered” and “videos-labeled-filtered” which contain the filtered
keypoint detections and visualizations, “pose-3d” and “videos-3d” which contain
the triangulated 3D keypoint detections and visualizations of these, and finally
“angles” which contains angles computed based on the 3D keypoint detections.

60 40 20 0 20 40 60
0.00

0.05

80 60 40 20 0 20
0.0

0.1

200 150 100 50 0 50 100 150
0.00

0.05

20 40 60 80 100 120 140 160
0.00

0.05

60 40 20 0 20 40 60
0.00

0.05

0 25 50 75 100 125 150 175
0.00

0.02

30 20 10 0 10 20 30

angle (deg)

0.00

0.05

Angle distribution

1500 1000 500 0 500 1000 1500
0.0000

0.0025

1500 1000 500 0 500 1000 1500
0.000

0.005

1500 1000 500 0 500 1000 1500
0.000

0.002

1500 1000 500 0 500 1000 1500
0.000

0.001

1500 1000 500 0 500 1000 1500
0.000

0.001

1500 1000 500 0 500 1000 1500
0.000

0.001

1500 1000 500 0 500 1000 1500

angle velocity (deg / s)

0.000

0.002

L1

L2

L3

R1

R3

R2

femur-tibia
flexion

femur
rotation

coxa
rotation

body-coxa
flexion

tibia
rotation

coxa
abduction

coxa-femur
flexion

Angle velocity distribution

A

B C

Figure S6: Related to Figure 7. (A) Probability density functions of all joint
angles and derivatives for 39 wild type flies during walking, extending the subset
of angles presented in Figure 7B. (B) UMAP embeddding of fly walking, as in
Figure 7C, colored by each of the joint angles. The colormap is normalized to
the angle within each plot. (C) Confusion matrix for the behavior classifier used
to isolate walking bouts for Figure 7.

Mouse 1 Mouse 2 Mouse 3 Mouse 4

hit

miss

bump

5 mm

5 mm
5 mm

75 50 25 0 25

Time to pellet contact/miss (ms)

2

4

6

8

10

D
is

ta
n
ce

 t
o

p
e
lle

t
h
o
ld

e
r

(m
m

)

75 50 25 0 25 75 50 25 0 25 75 50 25 0 25

hit

miss

bump

A

B Mouse 1 Mouse 2 Mouse 3 Mouse 4

Figure S7: Related to Figure 7. 3D tracking with Anipose reveals common
structure of mouse reaches. (A) 3D trajectories of example reaches of each type.
The pellet holder is indicated as a black dot. (B) Mean distance to pellet holder
as a function of time, for each mouse. Shaded areas are 95% confidence intervals.
When reaches are aligned to grasp attempt (0 ms), the hand is farther from the
pellet on miss trials compared to hit or bump trials.

Left leg

Right leg

E

40 20 0 20 40

Hip rotation angle (deg)

100 120 140 160 180

Knee flexion angle (deg)

25 0 25 50 75

hip flexion angle (deg)

0.00

0.01

0.02

0.03

100 0 100

hip rotation angle (deg)

0.00

0.01

0.02

100 120 140 160 180

knee flexion angle (deg)

0.00

0.01

0.02

0.03

0.04

P
D

F

160°

knee flexion

0°

hip rotation

0°

hip flexion

160°
0° 0°

20 0 20

Hip flexion angle (deg)

Left leg

Right leg

30°

10 seconds

D

C

Figure S7: (Continued from previous page). 3D tracking of human walking
enables quantification of leg angles and comparison across individuals. (C)
Representative traces of knee flexion, hip rotation, and hip flexion from a
walking human, tracked with Anipose. Data is from the Human 3.6M dataset.
The median angle value is indicated at left as a reference point. (D) Probability
distribution functions of knee flexion, hip rotation, and hip flexion angles from 7
humans. Only sessions that include walking are included. Note the asymmetry
in the distributions of knee flexion and hip flexion, revealing the known non-
sinusoidal pattern of knee and hip flexion during walking. (E) UMAP embedding
of knee flexion, hip rotation, and hip flexion angles across all legs, and their
derivatives. The UMAP embedding is colored by knee flexion and hip rotation for
each leg. Coloring by knee flexion angle reveals the common phase alignment of
the circles across subjects. From this phase alignment, we see that the trajectory
of hip rotation for each subject is markedly different.

	CELREP109730_annotate_v36i13.pdf
	Anipose: A toolkit for robust markerless 3D pose estimation
	Introduction
	Results
	Robust calibration of multiple camera views
	Accurate reconstruction of physical lengths and angles in 3D
	Animal tracking in 3D
	Addition of filters to improve tracking accuracy
	Refining keypoints in 2D
	Refining poses and trajectories in 3D
	Improving estimation of derivatives

	Structured processing of videos
	Visualization of tracking
	3D tracking with Anipose provides insights into motor control of Drosophila walking
	Analysis of 3D mouse reaching and human walking kinematics

	Discussion
	Impact of robust markerless 3D tracking
	Insights into the motor control of Drosophila walking
	Potential for future improvement based on related work
	Limitations and practical recommendations
	Outlook

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	Acknowledgments
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental model and subject details
	Mouse
	Fly
	Human

	Method details
	ChArUco dataset
	Mouse dataset
	Fly dataset
	Human dataset
	Manual annotation of datasets

	Quantification and statistical analysis
	Neural network keypoint detections
	Filtering of 2D keypoint detections
	Median filter
	Viterbi filter
	Autoencoder filter

	Camera model
	Initial estimate of camera parameters
	Bundle adjustment
	Iterative bundle adjustment
	Triangulation and 3D filtering
	Linear least-squares triangulation
	Median-filtered least-squares triangulation
	RANSAC triangulation
	Spatiotemporally regularized triangulation
	Estimating joint angles
	Comparison of bundle adjustment algorithms
	Evaluation against physical ground truth
	Evaluation of 3D tracking error for different filters
	Evaluation of derivative error for different filters
	Evaluation of 3D tracking error for different number of cameras
	Evaluation of temporal regularization on synthetic dataset
	Analysis of fly walking kinematics
	Analysis of mouse reaching kinematics
	Analysis of human walking kinematics

