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Abstract

Eukaryotic transcription generally occurs in bursts of activity lasting minutes to
hours; however, state-of-the-art measurements have revealed that many of the molec-
ular processes that underlie bursting, such as transcription factor binding to DNA,
unfold on timescales of seconds. This temporal disconnect lies at the heart of a
broader challenge in physical biology of predicting transcriptional outcomes and cel-
lular decision-making from the dynamics of underlying molecular processes. Here,
we review how new dynamical information about the processes underlying transcrip-
tional control can be combined with theoretical models that predict not only averaged
transcriptional dynamics, but also their variability, to formulate testable hypotheses
about the molecular mechanisms underlying transcriptional bursting and control.
These We argue that a discourse between theory and experiment that goes beyond
understanding averaged will provide a powerful lens for extracting mechanistic in-
sights from live imaging data. will be critical to achieving a predictive understanding
of how individual molecular processes combine to generate transcriptional bursting
and to facilitate transcriptional control.
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Appendix A. Literature summary of timescales of transcriptional bursting
and associated molecular processes

In this section, we present a survey of timescales observed for transcriptional bursting
across a broad swath of organisms (Appendix Table A.1). Further, we review in vivo and
in vitro measurements that have revealed the timescales of the molecular transactions
underlying transcription and its control.

Recent technological advances such as single-molecule tracking, live-cell imaging, and
a variety of high-throughput sequencing methods, have revealed how eukaryotic tran-
scription is driven by a dizzying array of molecular processes that span a wide range of
timescales. The overview of these timescales presented in Figure 1E show how many of
these processes are significantly faster than transcriptional bursting.

Chromatin accessibility is a central control point for regulating transcription in eu-
karyotes [1, 2]. DNA wrapped around nucleosome restricts transcription factor access [2,
3]. Multiple studies have determined the timescales of spontaneous DNA unwrapping and
rewrapping to be around 0.01-5 s [4–6]. While unwrapping and rewrapping are probably
too fast to directly lead to long transcriptional bursts, DNA unwrapping might represent
a “foothold” by which factors transiently bind DNA and enact larger-scale, sustained
chromatin modifications [2].

Interestingly, nucleosome turnover occurs over a longer timescale compatible with
bursting, with multiple studies suggesting timescales of several minutes to hours [7–11].
Recent genome-wide studies have measured average nucleosome turnover time to be ap-
proximately 1 hour in the fly and in yeast [7, 8]. Further, histone modifications may
modulate nucleosomal occupancy [2, 12, 13], and the half-life as well as addition of these
modifications can also span a broad range of timescales compatible with bursting, from
several minutes to days [14–20].

Once the chromatin is open, enhancers, DNA stretches containing transcription factor
binding sites and capable of contacting promoters to control gene expression, become ac-
cessible. Transcription factor binding recruits co-factors and general transcription factors
to the promoter, triggering the biochemical cascade that ultimately initiates transcription
[21]. While the resulting bursts of RNAP initiation last from a few minutes to hours (Fig-
ure 1A-D), single-molecule live imaging has shown that transcription factor binding is a
highly transient process, with residence times of 0.5-15 s [22–30]. The vast majority of
transcription factors bind DNA for seconds, but it is worth noting that some transcription
factors and chromatin proteins can bind DNA for minutes [31, 32].

However, the binding of transcription factors, the general transcriptional machinery,
and RNAP to the DNA might be more complex than the simple cartoon picture of individ-
ual molecules engaging and disengaging from the DNA. For example, recent experiments
have revealed that both mediator and RNAP form transient clusters with relatively short
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lifetimes in mammalian nuclei of 5-13 s, 10 s, respectively [33–36]. In addition, it is
demonstrated that transcription factors can also form clusters in vivo [22, 23]. However,
how these cluster dynamics relate to transcriptional activity remains unclear.

Further, enhancers and promoters are often separated by kbp to even Mbp. The mech-
anism by which enhancers find their target loci from such a large distance, and how this
contact triggers transcription, remain uncertain and are reviewed in [37]. In vivo mea-
surements of enhancer-promoter separation in the Drosophila embryo have shown that
this distance fluctuates with a timescale of tens of seconds to several minutes [38–40]
—timescales strikingly similar to those of bursting. However, recent work has cast doubt
on the simple “lock and key” model of enhancer association (stable, direct contact be-
tween enhancers and promoters triggers transcription), suggesting instead that enhancers
may activate cognate loci from afar and, in some cases, may activate multiple target
loci simultaneously [37, 39–44]. Many important questions remain about the nature of
enhancer-driven activation and it remains to be seen whether enhancer association dy-
namics are generic aspect of eukaryotic transcriptional regulation, or whether they only
pertain to a subset of organisms and genes.

A single transcriptional burst generally consists of multiple RNAP initiation events
(∼10-100 at a rate of 1/6-1/3 s when the promoter is ON in Drosophila, for instance)
[45–48]. The transcriptional bursting cycle thus encompasses a smaller, faster biochem-
ical cycle in which RNAP molecules are repeatedly loaded and released by the general
transcription machinery. One interesting hypothesis for the molecular origin of transcrip-
tional bursting is that the OFF state between bursts is enacted by an RNAP molecule
that becomes paused at the promoter, effectively creating a traffic jam [49]. Live imaging
and genome-wide studies have shown that RNAP pausing before initiation is common in
eukaryotes [49–52] and that its half-life of up to 20 min can be consistent with transcrip-
tional bursting [53–60].

Although the dynamics of some of the molecular processes outlined above are com-
patible with the long timescales of transcriptional bursting, we still lack a holistic picture
of how these kinetics are integrated to realize transcriptional bursts and, ultimately, to
facilitate the regulation of gene expression by transcription factors.

We must also acknowledge that we still lie at the very beginning of a reckoning with
the dynamics of transcriptional processes as measurements for some molecular processes
results in a range of timescales that are difficult to reconcile. In particular, we still lack
solid dynamic measurements regarding the assembly of the transcription preinitiation
complex. Yet, perhaps more egregious than the lack of any individual dynamical mea-
surement is the lack of a comprehensive, quantitative, and predictive understanding of
how these molecular processes interact with one another in time and space to give rise to
transcriptional bursting.
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Table A.1: Literature summary of transcriptional bursting. We attempted to summarize the
duration of a single transcriptional burst from various organisms and genes. In the cases where the
single-cell data are not available, such as in data stemming from smFISH experiments, we used population
averaged TON and/or TOFF values instead to give a sense on the timescales.

System Method Bursting Timescale Reference

Bacteria

in vitro
single-molecule as-
say

5-8 minutes [61]

Tet system MS2
TON ≈ 6 minutes,
TOFF ≈ 37 minutes

[62]

Fruit fly embryo

even-skipped stripe 2 MS2 few minutes [45, 47]

even-skipped MS2 few minutes [63]

Notch signaling MS2 5-20 minutes [64]

snail, Krüpple MS2 5 minutes [41]

gap genes: hunchback, gi-
ant, Krüpple, knirps

smFISH
TON ≈ 3 minutes,
TOFF ≈ 6 minutes

[65]

hunchback MS2 few minutes [66]

even-skipped stripe 2 MS2 few minutes [47]

Nematode

Notch signaling MS2 10-70 minutes [67]

Human, Mouse

TGF-β signaling luciferase assay few hours [68]

TFF-1 signaling MS2 few hours [69]

liver genes smFISH
TON ≈ 30 minutes - 2
hours

[70]

mammalian genes luciferase assay few hours [71]

Amoeba

actin gene family RNA-seq few hours [72]

actin gene family MS2 10-15 minutes [73]
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Table A.2: Summary of measured timescales of underlying molecular processes associated with
transcription.5

System Organism Experimental method Timescale Reference

Nucleosomal DNA Wrapping/Unwrapping

Mononucleosomes In vitro reconstitution FRET 0.1-5 s [4]

Mononucleosomes In vitro reconstitution FRET 10-250 ms [5]

Mononucleosomes In vitro reconstitution
Photochemical crosslink-
ing

<1 s [6]

Nucleosome Turnover

Histone H3.3 Fruit fly cell Genome-wide profiling 1-1.5 h [7]

Histone H3 Yeast Genomic tiling arrays ∼1 h [8]

Histone H2B, H3, and H4
tagged with GFP

Human cell FRAP several minutes [9]

Histone H1 tagged with
GFP

Human cell FRAP several minutes [10]

Histone H3 Plant cell Isotope labeling several hours [11]

Histone Modification

dCas9 inducible recruit-
ment

Mammalian cell Single-cell imaging several hours to days [14]

rTetR inducible recruit-
ment

Mammalian cell Single-cell imaging several hours to days [15]

Chemical-mediated re-
cruitment

Mammalian cell Chromatin in vivo assay several days [16]

Histone H3 Human cell
Liquid chromatography,
mass spectrometer

several hours to days
(half-maximal time of
methylation)

[17]

Targeted recruitment Yeast ChIP

5-8min (reversal of tar-
geted deacetylation)
1.5 min(reversal of
targeted acetylation)

[18]

Histone H2a, H2b, H3, and
H4

Mammalian cell Isotope labeling
<15 min (acetylation
half-life)

[19]

Histone H2, H2a and H2b Mammalian cell Isotope labeling
∼3 min (acetylation
half-life)

[20]

5While the vast majority of transcription factors bind DNA for seconds, it is worth noting that some
transcription factors (e.g. TATA-binding protein) and chromatin proteins (e.g. CTCF, Cohesin) can bind DNA
for minutes. These outliers are not included in Figure 1.
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Transcription Factor Binding

Bicoid Fruit fly embryo SMT ∼2 s [22]

Bicoid Fruit fly embryo SMT ∼1 s [23]

Zelda Fruit fly embryo SMT ∼5 s [22]

Zelda Fruit fly embryo FRAP, FCS ∼2-3 s [24]

Sox2 Mammalian cell SMT ∼12-15 s [25]

p53 Mammalian cell SMT ∼3.5 s [26]

p53 Mammalian cell SMT, FRAP, FCS ∼1.8 s [28]

Glucocorticoid receptor Mammalian cell SMT ∼8.1 s [26]

Glucocorticoid receptor Mammalian cell SMT ∼1.45 s [27]

STAT1 Mammalian cell SMT ∼0.5 s [29]

TFIIB In vitro reconstitution SMT ∼1.5 s [30]

TATA-binding protein Mammalian cell SMT 1.5-2 min [31]

Chromatin Protein Binding

CTCF Mammalian cell SMT ∼1-2 min [32]

Cohesin Mammalian cell SMT ∼22 min [32]

RNAP Cluster Dynamics

RNAP tagged with Den-
dra2

Mammalian cell tcPALM
∼12.9 s (with small
fraction of stable
clusters)

[33]

RNAP tagged with Den-
dra2

Mammalian cell tcPALM ∼8.1 s [34]

RNAP tagged with Den-
dra2

Human cell Bayesian nanoscopy several seconds [35]

RNAP tagged with Den-
dra2

Human cell tcPALM ∼5.1 s [36]

Mediator Cluster Dynamics

Mediator tagged with Den-
dra2

Mammalian cell tcPALM ∼11.1 s [33]

Enhancer-Promoter Interaction

snail shadow enhancer Fruit fly embryo MS2, PP7 labeling
∼10-40 s (fluctuation
cycle interval)

[38]

snail enhancer Fruit fly embryo MS2, PP7 labeling several minutes [39]

endogenous even-skipped
locus with homie insulator

Fruit fly embryo MS2, PP7 labeling several minutes [40]
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Transcription Initiation

even-skipped stripe 2 en-
hancer

Fruit fly embryo MS2 labeling ∼3 s (promoter ON) [45]

HIV-1 promoter Mammalian cell MS2 labeling ∼4.1 s (promoter ON) [46]

hb P2 enhancer Fruit fly embryo MS2 labeling ∼6 s [48]

Promoter-Proximal Pausing

RNAP tagged with GFP Human cell FRAP ∼40 s [53]

RNAP (genome-wide) Fruit fly cell RNA sequencing ∼2-20 min [54]

RNAP (genome-wide) Fruit fly cell ChIP-nexus ∼5-20 min [55]

RNAP (genome-wide) Fruit fly cell Genome-wide footprinting ∼2.5-20 min [56]

RNAP tagged with GFP Fruit fly salivary glands Single-cell imaging ∼5 min [57]

RNAP (genome-wide) Mammalian cell GRO-seq ∼6.9 min (average) [58]

RNAP (genome-wide) Fruit fly cell scRNA-seq
15-20 min (at genes
with low activity)

[59]

LacO-tagged minimal
CMV promoter

Human cell MS2 labeling, FRAP ∼4 min [60]

SMT: Single-molecule tracking

FRAP: Fluorescence recovery after photobleaching

FCS: Fluorescence correlation spectroscopy

FRET: Fluorescence resonance energy transfer

ChIP: Chromatin immunoprecipitation

PALM: Photo-activated localization microscopy
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Appendix B. Two-state model calculations

As noted in the main text, the average initiation rate is equal to r times the
average fraction of time the promoter spends in this ON state pon,〈

initiation rate
〉

= r pon. (B.1)

To predict the effect of bursting on transcription initiation, it is necessary to deter-
mine how pon depends on the bursting parameters. In the mathematical realization of
the two-state model shown in Figure 2A, the temporal evolution of poff , the average
probability of being in the OFF state, and of pon is given by

dpoff
dt

= −kon poff + koff pon, (B.2)

and
dpon
dt

= kon poff − koff pon. (B.3)

To solve these equations, we make the simplifying assumption that our system is in
steady state such that these average probabilities of finding the system on the ON
and OFF states are constant in time. In this scenario, we can set the rates dpoff/dt
and dpon/dt to zero. We then solve for koff in terms of kon resulting in

koff =
kon poff
pon

. (B.4)

Plugging in the normalization condition pon + poff = 1 gives us

koff =
kon (1− pon)

pon
, (B.5)

which can be solved in terms of kon, koff , resulting in

pon =
kon

kon + koff
. (B.6)

Appendix C. Molecular model calculations

Here we provide a brief overview of the calculations relating to the three theoret-
ical models of transcription presented in Section 3: the independent binding model
(Figure 3C), the cooperative binding model (Figure 3E) and the rate-limiting step
model (Figure 3G). We also provide resources relating to the calculation of first-
passage time distributions discussed in section 4.
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Appendix C.1. Stochastic simulations

We make heavy use of stochastic simulations throughout this work. A custom-
written implementation of the Gillespie Algorithm [74] was used to simulate trajecto-
ries for the various models discussed in the main text. These simulated trajectories
were used to generate the activity trace plots in Figure 3D, F, and G, as well as
the first-passage time distributions in Figure 4B-D. All code related to this project
(including the Gillespie Algorithm implementation for stochastic activity trace gen-
eration) can be accessed on GitHub [75].

Appendix C.2. Independent binding model

All calculations in this section pertain to the independent binding model pre-
sented in Figure 3C.

Appendix C.2.1. Calculating state probabilities

Calculating the probability of each activity state is central to determining a sys-
tem’s overall transcriptional behavior. Because our mathematical model is a linear
chain with no cycles (see Figure 3B), we can make progress towards calculating the
steady state probabilities, pi, by imposing detailed balance, which gives

pnk+(n) = pn+1k−(n+ 1), (C.1)

where k+ and k− are the effective rates of adding and subtracting a single activator
molecule that we define in Figure 3B. Plugging in Equation C.34 and Equation 6
from the main text results in

pn(N − n)kn,n+1 = pn+1(n+ 1)kn+1,n, (C.2)

where, the rates kn,n+1 and kn+1,n are the microscopic binding and unbinding rates
defined in Figure 3A, respectively. Now we make use of the fact that there are only
two unique microscopic rates in the independent binding system: activator molecules
bind at a rate kn,n+1 = kb = kb0[A], with [A] being the activator concentration and kb0
the binding rate constant, and unbind at a rate kn,n−1 = ku. Plugging these values
into Equation C.2 and rearranging leads to

pn+1 =
(N − n
n+ 1

)( kb
ku

)
pn. (C.3)

To further simplify the expression in Equation C.3, we write ku

kb
as a dissociation

constant (Kd), resulting in

pn+1 =
(N − n
n+ 1

) pn
Kd

, (C.4)
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which has the form of a recursive formula for calculating state probabilities from
their predecessors. For instance, for the case where n = 0 we have

p1 = N
p0

Kd

. (C.5)

We can extend this logic to calculate the probability of any state, n, as a function of
p0, leading to

pn =
N !

(N − n)!n!

p0

Kn
d

=

(
N

n

)
p0

Kn
d

, (C.6)

where we have replaced the factorial terms with the binomial coefficient (
(
N
n

)
) on the

far right-hand side can be thought of as accounting for the fact that a given number of
activators bound, n, may correspond to multiple microscopic binding configurations
(compare Figure 3A and B). Note that

(
N
0

)
= 1, which means that Equation C.6 is

valid even when n = 0. Finally, we impose the normalization condition that the sum
of the state probabilities should be equal to 1, which leads to

pn =
p0

(
N
n

)
K−n
d

p0

∑N
i=0

(
N
i

)
K−i
d

. (C.7)

Canceling out the factors of p0 gives us our final expression for pn, namely

pn =

(
N
n

)
K−n
d∑N

i=0

(
N
i

)
K−i
d

=

(
N
n

)
K−n
d

Z
, (C.8)

where Z on the far righ-hand side indicates the sum of all state weights. Thus, given
values of the rates kb and ku, which define Kd, we can calculate the probability of the
system being in each binding state n. This probability is shown diagrammatically in
the shading of the different states in Figure 3C.

Appendix C.2.2. Independent binding cannot produce bimodal transcriptional output

A basic requirement for bimodal transcriptionl behavior is that p0 > p1 and
pN > pN−1, where N is the total number of binding sites. Couching this in terms of
Equation C.8 leads to

p0

p1

=
1

N
Kd > 1, (C.9)

which simplifies to
Kd > N (C.10)
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for the low activity regime and

pN
pN−1

=
1

N

1

Kd

> 1, (C.11)

leading to

Kd <
1

N
(C.12)

for the high activity regime. Since Kd is set by the ratio ku

kb
, which is constant for all

states in the independent binding model, it is not possible for it to be simultaneously
larger (Equation C.10) and smaller (Equation C.12) than the number of binding
sites N . We thus conclude that independent binding is incompatible with bimodal
transcription, regardless of the number of binding sites N .

Appendix C.2.3. Diffusion-limited binding

In the main text we state that we set kb = [A]kb0 to 0.5 s−1 for the simulations
shown in Figure 3C. This is convenient because it leads to a model where half the
available sites are bound, on average. This choice is also physically reasonable. Bicoid
concentrations in the anterior region of the embryo (where hunchback is expressed)
are on the order of 30 molecules per µm3 [76]. A kb of 0.5 s−1 thus implies that
kb0 ≈ 0.017 µm3s−1 per molecule. This falls below a recent estimate for the upper
limit on kb0 for Bicoid binding set by diffusion of ∼ 0.022 µm3s−1 per molecule [77].

We also note here that the largest binding rate in the cooperative binding model
(Figure 3E and F), kb = 58 s−1, implies a kb0 that is significantly above diffusion
limit diffusion limit for Bicoid estimated in [77]. This high binding rate implies that
cooperative binding interactions somehow facilitate the super-diffusive recruitment
of additional activator molecules to the gene locus. While speculative, we note that
the relatively small energies needed to realized this rapid recruitment in our model
(for the plots in Figure 3, the cooperativity factor ω equals 6.7, which corresponds
to protein-protein interactions with energies of 1.9kbT ), suggest that this kind of
behavior is at least physically plausible. Alternatively, a significant increase in the
concentration of activator molecules in the direct vicinity of the gene locus could
facilitate rapid activator binding without exceeding the limits set by diffusion. Recent
experiments provide evidence for this kind of local enrichment [22, 24], but it remains
to be seen whether this phenomenon plays a role in facilitating gene regulation and,
in particular, whether local transcription factor enrichment influences bursting.

Finally, we also note that the rate-limiting step model (Figure 3G and H) assumes
a binding rate in the ON state, kbon = 21 s−1, that likewise implies a kb0 that is
above Bicoid’s likely diffusion limit. This high binding rate was employed primarily
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for clarity of exposition, ensuring that the rate-limiting steps separated “ON” and
“OFF” activity regimes that were well resolved from one another. Our principal
conclusions do not depend on the precise value of kbon, though, naturally, inferring
the durations of OFF (and ON) periods as was done for the waiting time analyses in
Figure 4 becomes more difficult. Specifically, smaller values of kbon reduce the average
number of molecules bound when the system is in the ON state,

〈non〉 = N
kbon

kbon + kuon
, (C.13)

which leads to more overlap between the transcriptional activity corresponding to
the ON and OFF states. It is plausible that a kbon of this magnitude could be
realized by other activator molecules that (i) diffuse faster than Bicoid, (ii) have larger
binding target regions, or (iii) are expressed at higher concentrations endogenously.
Alternatively, Equation C.13 indicates that a rate-limiting step mechanism that alters
the rate of unbinding (ku) when switching between ON and OFF states instead of,
or in conjunction with, kb could lead to similarly well-resolved ON and OFF states
to those in Figure 3H at much lower values of kb.

Appendix C.3. Cooperative binding

All calculations in this section pertain to the independent binding model pre-
sented in Figure 3E.

Appendix C.3.1. Deriving state probabilities with cooperative binding

In Equation 7 of the main text we incorporated cooperativity to binding by adding
multiplicative weights, ω, giving

ki,i+1 = kbωi. (C.14)

This functional form follows from the assumption that each bound activator increases
kb by a constant factor ω ≥ 1. This leads the expression for k+(n)

kcoop+ (n) = (N − n)ωnkb, (C.15)

which is a nonlinear function of n. Now, in analogy to the calculations presented in
Appendix C.2.1, let’s re-derive our expressions for pn. To start, we have

pn+1 =
(N − n
n+ 1

)( kb
ku

)
ωnpn. (C.16)
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Again expressing ku

kb
as a dissociation constant (Kd), we obtain

pn+1 =
(N − n
n+ 1

)ωnpn
Kd

. (C.17)

We can also extend this logic to calculate the probability of any state, n, as a function
of p0, leading to

pn =
N !

(N − n)!n!

ω
n(n−1)

2 p0

Kn
d

=

(
N

n

)
ω

n(n−1)
2 p0

Kn
d

. (C.18)

Finally, by requiring that all state probabilities sum to one, we obtain

pn =

(
N
n

)
ω

n(n−1)
2 K−n

d

Z
, (C.19)

where Z again denotes the sum of all state weights as in Equation C.8. We have used
these expressions to calculate the probability of each state shown using the shading
in Figure 3E.

Appendix C.3.2. Cooperativity permits bimodal expression

Now, let’s use Equation C.18 to examine how the addition of the cooperativity
factor ω makes bimodal bursting possible. Recall that bimodal gene expression
requires that p0 > p1 and pN > pN−1. For the low activity regime, cooperativity is
not relevant because there are no already bound activators, and so the form of the
requirement remains the same, namely

p0

p1

=
1

N
Kd > 1. (C.20)

However, things change in the high activity regime. Here, we have

pN
pN−1

=
1

N

ωN−1

Kd

> 1. (C.21)

In stark contrast to the independent binding case, we see that the addition of ω makes
it possible to realize both conditions simultaneously, opening the door to bimodal
burst behaviors. Specifically, bimodality demands

Kd > N, (C.22)

and
ω > (NKd)

1
N−1 (C.23)
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to be true.
These requirements thus demonstrate that cooperativity is required to achieve

bimodal bursting in the context of this binding model. Indeed, the cooperative
binding system shown in Figure 3E and F meets these criteria, having Kd = 116 and
ω = 6.7, both of which are comfortably above the lower bounds described above for
a system with six binding sites (N = 6).

Appendix C.3.3. Cooperativity is necessary to simultaneously achieve kinetic trap-
ping at both ends of the chain

In the main text we introduced the concept of “kinetic trapping”; a phenomenon
in which large imbalances between between k+(n) and k−(n) cause a system to
get trapped in high and low activity states for periods of time that far exceed the
timescale of individual binding/unbinding events. Here, we show that cooperativity
(ω > 1) is needed in order to achieve this kind of trapping at both the high and low
ends of the binding chain shown in Figure 3B simultaneously.

To begin, we note that the relations k−(1) > k+(1) and k−(N − 1) < k+(N − 1)
are necessary to have traps at the low and high ends of the chain, respectively. Thus
both conditions must hold simultaneously for traps to exist at the low and high
ends simultaneously. We can use Equation C.15 and Equation 6 to express these
requirements in terms of system parameters. For the low activity regime, we have

k−(1)

k+(1)
=

Kd

(N − 1)ω
> 1, (C.24)

and for the higher regime we obtain

k+(N − 1)

k−(N − 1)
=

ωN−1

(N − 1)Kd
> 1. (C.25)

We can simplify these requirements to obtain upper and lower bounds on ω, namely[
Kd(N − 1)

] 1
N−1

< ω <
Kd

N − 1
. (C.26)

We see that Equation C.26 implies restrictions on the relationship between Kd and
N . Specifically, there must be a gap between the upper and lower bounds in Equa-
tion C.26 such that there exist viable ω values. This means that[

Kd(N − 1)
] 1

N−1
<

Kd

N − 1
, (C.27)
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must hold. Upon simplification, this gives

(N − 1)N < KN−2
d . (C.28)

(N − 1)2 < Kd. (C.29)

Equation C.29 tells us that the dissociation constant must be larger than one
(indeed, it must be larger than 25 for an N = 6 binding site system). This implies
that the expression for the lower ω bound on the left-hand side of Equation C.26 is
guaranteed to be greater than one as well because

Kd(N − 1) > 1, (C.30)

and therefore

1 <
[
Kd(N − 1)

] 1
N−1

< ω. (C.31)

This indicates that cooperative interactions are necessary to realize kinetic traps on
both ends of the chain, though it hints at the fact that increasing the number of
binding sites, N , should enable trapping with lower values of ω.

Appendix C.3.4. Off rate-mediated cooperativity can also generate transcriptional
bursting

It is straight-forward to adapt our discussion of on rate-mediated cooperativity to
capture the case where cooperative interactions act instead to stabilize bound factors
and thereby reduce the effective off rate. Indeed, the expressions are identical save for
the fact that the basal binding rate is divided by powers of ω, rather than multiplied.
Namely,

ki,i−1 =
ku

ωi
. (C.32)

This leads the expression for k−(n)

kcoop− (n) = n
ku

ωn
. (C.33)

Since activator binding is assumed to be independent, the expression for k+(n) is
identical to that for the independent binding model, namely,

k+(n) = (N − n)kn,n+1. (C.34)

These expressions lead to a model wherein the unbinding rate decreases signifi-
cantly as more and more activators become bound (Figure C.5A). From this point
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Figure C.5: Cooperative binding model with off rate-mediated cooperativity. (A) Co-
operative binding model in which stabilizing interactions between bound activators decreases the
unbinding rate. (B) Simulation reveals that off rate-mediated cooperativity can cause the sys-
tem to exhibit bimodal rates of transcription and slow fluctuations between effective ON and OFF
states that are comparable to those observed for on rate-mediated cooperativity (Figure 3E and F).
(C) The predicted distribution of unbinding times is well fit by a single exponential, despite the
presence of cooperative interactions. (D) However, this fit masks the presence of rare long-lived
binding events that are signatures of the cooperative effects that enable slow timescale bursting.
These events can be seen as a significant deviation between the empirical distribution of dwell times
(blue circles) from the exponential fit when we shift to looking at the data on a log-log scale. (E)
To examine the role these long-lived events play in bursting, we conducted simulations in which all
activator dwell events were capped to a maximum duration of 10 seconds; i.e. we forced all acti-
vators still bound after 10 seconds to unbind. These simulations revealed that removing long-lived
binding events abolishes all burst-like activity.
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forward, the expressions for state probabilities (starting with Equation C.16) have
precisely the same form as those for the on rate-mediated case.

With the off rate-mediated model thus defined, we are in a position to once
again employ stochastic simulations to explore the impact of cooperativity on tran-
scriptional dynamics. These reveal that stabilizing cooperative interactions amongst
bound activator molecules can also generate slow bimodal transcriptional fluctua-
tions (Figure C.5B). While this is perhaps not surprising given the close mathe-
matical parallels between the on and off rate-mediated cooperativity models, this
result emphasizes the bredth of potential molecular mechanisms that could lead to
transcriptional bursting.

Given these results, it is interesting to ask whether stabilizing cooperative in-
teractions should have a clear signature in experimental measurements of individual
activator residence times. Somewhat surprisingly, a distribution of single particle
unbinding events generated via stochastic simulations are well described by a single
exponential fit with a mean residence time of 0.23 s−1 (Figure C.5C), which is on
the same scale as the empirical measurements in [22]. Yet, this is no the full story.
A close inspection of the distribution of dwell times reveals a small (. 5%) fraction
of very long lived binding events that last for 10s to 100s of seconds (Figure C.5D).

Such events might very well be missed in an in vivo experiment due either to
how rare they are or to limitations on observation time imposed by the bleaching
of fluorescent proteins. To examine the role these events play in dictating burst
dynamics, we conducted simulations invoking parameters identical to those used to
generate the trace shown in Figure C.5B, with one important alteration: all activators
still bound after 10 seconds were forced to unbind. This effectively capped the
activator dwell time at 10 seconds, thereby abolishing all long-lived binding events.
Figure C.5E shows the result of this exercise, clearly indicating, that removing rare
long-lived binding events abolishes burst-like dynamics. These results thus indicate
that hard-to-detect long-lived binding events could play a key role in generating
slow burst dynamics, suggesting that it could be of interest to design experiments
explicitly aimed at searching for long-lived binding events in vivo. In closing, we
note that similar results relating to activator dwell time distributions in the presence
of cooperative interactions are discussed in [77]. We direct readers to this work for
an excellent, detailed discussion on this topic.

Appendix C.4. First-passage time calculations

In this review we used stochastic simulations (briefly outlined in Appendix C.1)
to arrive at expectations for the form of first-passage time distributions for the co-
operative binding and rate-limiting step models. All relevant scripts are available
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at GitHub. We also note that the functional forms for waiting time distributions
can be calculated using analytical methods such as Laplace Transforms. We do not
provide the details for this approach here, but point the reader to [78, 79], as well as
the sources cited therein, for more information.
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