1 Additional file 1:

2	
3	Krüppel-homolog 1 exerts anti-metamorphic and vitellogenic functions in insects
4	via phosphorylation-mediated recruitment of specific cofactors
5	
6	Zhongxia Wu, Libin Yang, Huihui Li, Shutang Zhou [*]
7	
8	State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School
9	of Life Sciences, Henan University, Kaifeng 475004, China
10	
11	
12	*Corresponding author:
13	Shutang Zhou, PhD, Professor
14	State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School
15	of Life Sciences, Henan University, Kaifeng 475004, China
16	Tel: +86-371-23886272
17	Email: <u>szhou@henu.edu.cn</u>
18	
19	

22 Additional file 1: Figure S1. Identification of Kr-h1 phosphorylation site. (A) Top 23 three Kr-h1 phosphorylation sites predicted by the DISPHOS (V1.3) software. (B) Immunoprecipitation (IP) and western blot (WB) showing the abundance of Kr-h1 and 24 phosphorylated Kr-h1 (p-Kr-h1) in the whole body of early (4E) and mid (4M) 25 penultimate 4th instar nymphs as well as the fat body of adult female locusts on day 0 26 (A0) and 3 (A3). α-pS, phospho-(Ser) antibody; α-Kr-h1, Kr-h1 antibody. (C) Western 27 blots with both anti-Kr-hland anti-p-Kr-hl antibodies (arrows) shown in full extent 28 with molecular weight markers (color bands). (D) Verification of phospho-Kr-h1 (Ser¹⁵⁴) 29 antibody specificity by western blots. Left panel: Flag-Kr-h1 and mutated Kr-h1^{S154A} 30 expressed in Drosophila S2 cells treated with 10 µM methoprene. Right panel: the 31 bacterially-expressed GST-tagged peptides of Kr-h1(aa1-290) and Kr-h1^{S154A}(aa1-290) 32 preincubated with PKCa. 33

Additional file 1: Figure S2. Identification of kinase triggering Kr-h1 36 phosphorylation. (A) Quantitative analysis of Kr-h1 and p-Kr-h1 band intensity in 37 western blots using protein extracts from the fat body of adult females injected with 38 dsPKCa vs. dsGFP controls (represented by Figure 1B right panel). **, P<0.01. n=4. 39 (B) Effect of *PKCn* knockdown on Kr-h1 phosphorylation. Left panel: *PKCn* 40 knockdown efficiency. Right panels: the levels of Kr-h1 and p-Kr-h1. Nymph, the 41 whole body of mid penultimate 4th instar nymphs. Adult, the fat body of 3-day-old adult 42 females. **, P<0.01. n=8. (C) LC-MS/MS analysis of mutated Kr-h1^{S154A}(aa125-159) 43 peptide preincubated with PKCa. m/z indicates the mass to charge ratio. 44 45

47 Additional file 1: Figure S3. Effect of 15-min exposure of methoprene on Kr-h1 48 phosphorylation. Quantitative analysis of p-Kr-h1 band intensity in western blots 49 using the whole body of mid 5th instar nymphs and the fat body from newly-emerged 50 adult females treated with 100 μ g methoprene for 15 min (represented by Figure 2B 51 and 2E, respectively). *, *P*<0.01; **, *P*<0.01; n=3. 52

54 Additional file 1: Figure S4. Effect of *E93* knockdown on locust metamorphosis.

(A) *E93* RNAi efficiency in the final instar nymphs. **, *P*<0.01. n=8. (B)
Representative phenotypes of delayed adult eclosion (super nymphs) after *E93*knockdown. Scale bar: black, 5 mm; white, 0.5 mm.

Additional file 1: Figure S5. Responsiveness of Kr-h1 phosphorylation to JH. (A) 60 Alignment of DNA sequences containing the core KBS motif in the upstream of Br-C, 61 E93 and Spo from the silkworm Bombyx mori (Bm), Spok from Drosophila 62 melanogaster (Dm) (references 13, 17 and 18), as well as E93 (GenBank: MT081312) 63 and RL36 (GenBank: MT081313) from Locusta migratoria (Lm). (B) Western blot 64 showing the expression of recombinant Flag-Kr-h1, Flag-Kr-h1^{S154A} and Flag-Kr-65 h1^{S154D} in *Drosophila* S2 cells with or without 10 µM methoprene treatment. p-Kr-h1, 66 phospho-Kr-h1 (Ser¹⁵⁴) antibody. Flag-Kr-h1, Kr-h1 antibody. 67 68

70 Additional file 1: Figure S6. Effect of *RL36* knockdown on locust reproduction. (A)

- 71 *RL36* RNAi efficiency in the fat body of 6-day-old adult females. **, *P*<0.01. n=8. (B)
- 72 Representative phenotypes of ovaries and primary oocytes after *RL36* knockdown.
- 73 Scale bar: black, 1 cm; white, 1 mm.

74

Additional file 1: Figure S7. Effect of CtBP or CBP knockdown on E93 or RL36 75 expression. (A) Developmental profiles of CtBP in the whole body of mid 4th (4M) and 76 5th (5M) instar nymphs as well as adult females on day 0 (A0), 3 (A3) and 6 (A6). 77 Means labeled with different letters indicate significant difference at P < 0.05. n=8. (B) 78 Effect of CtBP knockdown on the expression of E93 in mid 4th instar nymphs. *, P<0.05 79 and **, P<0.01. n=8. (C) Developmental dynamics of CBP in the fat body of 4M and 80 5M instar nymphs as well as A0, A3 and A6 adult females. Means labeled with different 81 letters indicate significant difference at P<0.05. n=8. (D) Effect of CBP knockdown on 82 the expression of *RL36* in the fat body of 3-day-old adult females. *, *P*<0.05. n=8. 83 84

А								*										
Aedes aegypti	196	FΕ	СE	FC	н	κN	ΛF	S	٧	KE	E N	L	2 ע	Н	RI	RI	Н	218
Apis mellifera	120	YQ	СE	YC	s	ĸs	S F	S	v	KE	E N	L٤	i v	Н	R	RI	н	142
Bactrocera cucurbitae	241	F K	СE	FC	н	κL	- F	S	v	KE	E N	LC	2 ע	Н	RI	RI	н	263
Bactrocera dorsalis	313	FΕ	СE	FC	н	κL	- F	S	v	KE	E N	L	ע ג	Н	RI	RI	н	335
Blattella germanica	153	YQ	СE	YC	s	ĸs	S F	s	٧	ΚE	E N	L٤	s v	Н	RI	RI	н	175
Bactrocera latifrons	231	FΕ	СE	FC	н	κL	- F	S	v	ΚE	E N	L	2 V	Н	RI	RI	н	253
Bombyx mori	66	FΕ	СE	YC	н	ĸN	ΛF	s	v	KE	E N	LC	2 V	Н	RI	RI	Н	88
Bombus terrestris	110	YQ	СE	YC	s	ĸs	S F	S	v	KE	E N	L٤	s v	Н	RI	RI	н	132
Ceratitis capitata	312	FΕ	СE	FC	н	κL	- F	s	v	KE	E N	LC	ΩV	Н	RI	RI	н	334
Cimex lectularius	160	YQ	СE	YC	Ν	ĸs	S F	s	v	KE	E N	L٤	i v	Н	RI	RI	Н	182
Drosophila busckii	179	FΕ	СE	FC	н	κL	. F	s	v	KE	E N	LC	ΩV	Н	RI	RI	н	201
Diaphorina citri	177	YQ	СE	YC	Ν	ĸs	S F	s	v	κE	E N	L٤	s v	Н	RI	RI	н	199
Drosophila melanogaster	245	FΕ	СE	FC	н	κL	. F	s	v	KE	E N	LC	<u>ז</u> ע	Н	R	RI	н	267
Helicoverpa armigera	79	FΕ	СE	YC	н	κN	ΛF	s	v	KE	E N	LC	2 V	Н	RI	RI	н	101
Leptinotarsa decemlineata	102	FR	СE	FC	Ν	ĸs	S F	s	v	KE	E N	L٤	s v	Н	RI	RI	н	124
Locusta migratoria	144	YQ	СE	FC	κ	ĸ	ΑF	s	v	KE	N	L٤	s v	Н	RI	RI	н	166
Nilaparvata lugens	162	YQ	СE	YC	κ	ĸs	S F	S	٧	KE	E N	L٤	s v	Н	RI	RI	н	184
Nasonia vitripennis	51	YQ	СE	FC	s	ĸs	S F	S	v	KE	E N	L٤	i v	Н	RI	RI	н	73
Pediculus humanus corporis	187	YQ	СE	YC	Ν	ĸs	S F	S	v	KE	E N	L٤	s v	Н	RI	RI	н	209
Reticulitermes speratus	137	YQ	СE	YC	s	ĸs	S F	s	v	ΚE	E N	L٤	i v	Н	RI	RI	н	159
Tribolium castaneum	114	FR	СE	FC	Ν	KF	۲ F	s	v	KE	E N	L٤	i v	Н	RI	RI	Н	136
Zeugodacus cucurbitae	324	FK	СE	FC	н	κL	- F	S	v	ΚE	E N	LC	ע ג	Н	RI	RI	н	346
Zootermopsis nevadensis	172	YQ	СE	YC	s	ĸs	S F	s	٧	KE	E N	L٤	i v	Н	RI	RI	н	194
						_	_	_	_	_								
В						_												
Bm <i>E93</i> -2844	CAA	CAC	ТС	SAC	СI	\mathbf{T}_{i}^{t}	ГC	T	CZ	A	-	28	2'	7				
Tc <i>E93</i> -50	CCA	CTT	тс	SAC	CЛ	A	ГC	C	CZ	A	_	33						
Dm <i>E93</i> -2095	CAC	AAA	ТС	GAC	СЛ	T	GA	A	GC	2	-	20	78	3				
Lm <i>E93</i> -623	стс	TTA	ТС	AC	CI	T?	rc	G	GG	3	_	60	6					
					~													
				KB	5													

Gene	Forward primer (5' to 3')	Reverse primer (5' to 3')						
Kr-h1	ATGGTGGGCTACTTCAACGG	TTACGAGGCGCCCGCGTAGT						
<i>Kr-h1</i> (aa1-290)	ATGGTGGGCTACTTCAACGG	GCTGCAGATGGTGCACTTGT						
<i>Kr-h1</i> (aa89-312)	TCCTTCTGCCAGAAGACGTT	GGGGTGCTGCTGCTCCGAGT						
<i>Kr-h1</i> (aa291-591)	GAGACGTTCGCCTCCAAGAA	TTACGAGGCGCCCGCGTAGT						
CtBP	ATGGACAAGCGCAAGATGCT	TTAATGTACTTCTGATGGCTC						
CBP	GATGGAGTGGATGTATGCTT	TTAACCAGGAGGATTTCCTTTC						
BmKr-h1	ATGGAATCATTACCTATTTT	CTATGATTCTGTAGCTGGCG						
DmKr-h1	ATGGTTTACTATTCCGCCA	CTAGGAGGCCTTGGCGAA						
TcKr-h1	ATGCCGGAAATGGTCGGT	ACGACGCTCCTGCATATTG						

Additional file 1: Table S1. Primers used for cloning and gene expression

Mutation	Primer sequence (5' to 3')
Kr-h1 ^{S154A} -F	AAGGCCTTC <u>GCC</u> GTCAAGGAGAACCTGAGCGTGCACCGGCG
Kr-h1 ^{S154A} -R	TCTCCTTGAC <u>GGC</u> GAAGGCCTTCTTGCAGAACTCGCACTGG
Kr-h1 ^{S371A} -F	GCCGGCGCCG <u>GCG</u> CCGGAGCCCCGCCTCGAACCCCGCCTCG
Kr-h1 ^{S371A} -R	GGGCTCCGG <u>CGC</u> CGGCGCGGCGGCGGAGGTAGGTGCTGTT
Kr-h1 ^{S554A} -F	CGCGACGCC <u>GCC</u> TCGCTGCCGCCCCGCAAGCGCTGCAAGG
Kr-h1 ^{S554A} -R	GGCAGCGA <u>GGC</u> GGCGTCGCGGCGGCGGCGACGCGGGGG
Kr-h1 ^{S154D} -F	AAGGCCTTC <u>GAC</u> GTCAAGGAGAACCTGAGCGTGCACCGGC
Kr-h1 ^{S154D} -R	TCTCCTTGAC <u>GTC</u> GAAGGCCTTCTTGCAGAACTCGCACTGGT
BmKr-h1 ^{S76A} -F	AAATGTTT <u>GCT</u> GTGAAAGAAAATTTGCAAGTACACCGTC
BmKr-h1 ^{S76A} -R	TCTTTCACAGCAAACATTTTATGGCAATATTCACATTCA
BmKr-h1 ^{S76D} -F	AAATGTTT <u>GAT</u> GTGAAAGAAAATTTGCAAGTACACCGTC
BmKr-h1 ^{S76D} -R	TCTTTCACATCAAACATTTTATGGCAATATTCACATTCA
DmKr-h1 ^{S255A} -F	CACAAGCTGTTC <u>GCC</u> GTGAAGGAGAACCTCCAGGTGCAC
DmKr-h1 ^{S255A} -R	CTTCAC <u>GGC</u> GAACAGCTTGTGGCAGAACTCGCACTCGAA
DmKr-h1 ^{S255D} -F	CACAAGCTGTTC <u>GAC</u> GTGAAGGAGAACCTCCAGGTGCAC
DmKr-h1 ^{S255D} -R	CTTCAC <u>GTC</u> GAACAGCTTGTGGCAGAACTCGCACTCGAA
TcKr-h1 ^{S124A} -F	AGCGATTC <u>GCC</u> GTTAAAGAAAACTTGAGCGTTCATCGAAGA
TcKr-h1 ^{S124A} -R	TCTTTAAC <u>GGC</u> GAATCGCTTATTGCAAAATTCGCAACGGAA
TcKr-h1 ^{S124D} -F	AGCGATTC <u>GAC</u> GTTAAAGAAAACTTGAGCGTTCATCGAAGA
TcKr-h1 ^{S124D} -R	TCTTTAACGTCGAATCGCTTATTGCAAAATTCGCAACGGAA

98 Additional file 1: Table S2. Primers used for site-directed mutagenesis

	Gene	Forward primer (5' to 3')	Reverse primer (5' to 3')
	Kr-h1	AGTGCCAGGTGTGCTCCAAGA	CGAACGACTTGCCGCAGATG
	E93	CAGGCTGGCGATGACAACA	AGTCCGATGGCGTGCTACT
	RL36	ACGAATGTGTGTGCCAAGC	CGTCCGTCAAGACTAAAGGG
	РКСа	AAGGCTCGGTTGTGGAACA	AGGAGGTTGGACTTCACGAT
qRT-	РКСη	AGCAACCAGCAACAAGAGGA	TCGTTCTGCCAGCATCACTT
PCR	CtBP	GCGGTTGGTGCCCTAATGTG	TGAGGCAAAGGGTGGTGTCT
	CBP	TGCGTGTCAATGCCGTGATG	CTGCTGAACCTGCTCCACCA
	Rp49	CGTAAACCGAAGGGAATTGA	GAAGAAACTGCATGGGCAAT
	Kr-h1	GTCAAGGAGAACCTGAGCGTGC	TGCTGCTGCTCCGAGTGGCT
	РКСа	CGTTCCTCCCTTAACCCTGT	AACCTTTCCAAAGCTGCCTT
	РКСη	GCAGGCGTGTCCATCAAGTA	GGAGGTGTGAGCTTGTCTGT
	E93	AGGCTGGCGATGACAACACT	GCTGCACGGCGAGTTCCTAA
RNAi	RL36	GAAGGGACACCGGACGACAA	GTGTGTGCCAAGCCTCCTCT
	CtBP	TGGTGAACACAGCACGAGGT	ACGGAGTGTGGCACTTGGTC
	CBP	TGCGTGTCAATGCCGTGATG	CTGCTGAACCTGCTCCACCA
	GFP	CACAAGTTCAGCGTGTCCG	GTTCACCTTGATGCCGTTC
	E93	CCGTGGCAAGCTCGTTTT	GCACTTGGGGCAAACTGT
ChIP	RL36	GGAGAGTCAGTAGTAACTG	CAGCAGCCAAACTCTCTT

100 Additional file 1: Table S3. Primers used for qRT-PCR, RNAi and ChIP