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Supplementary Note

Evaluate CNNC and DeepDRIM by three-fold cross-validation

We adopted three-fold cross-validation to assess the performance of CNNC and DeepDRIM. We kept balanced positive

and negative pairs for each TF and divided all the TFs into three partitions. For example, thirteen TFs are available

in ChIP-seq data of bone marrow-derived macrophages and we divided them into three partitions involving four, four

and five TFs. We carefully adjusted the assignment of TFs to make sure the numbers of TF-gene pairs are close among

partitions. For three-fold cross-validation, the model was trained using the TF-gene pairs from 2 partitions, and tested

on the ones from the remaining partition.

Combined model for causality prediction

We tried to generate a combined model to effectively remove the transitive interactions and infer their causalities

simultaneously. We changed the final prediction layer with ”softmax” function, and made label ”0” to represent no

interaction between genes ga and gb, label ”1” to represent ga regulates gb, and label 2 represent gb regulates ga. We

divided the prediction into two subtasks: 1. whether the label is ”0” (TF-gene has interaction or not); 2. whether the

label is ”1” or ”2” (infer the causality). The combined model uses DeepDRIM to deal with the subtask 1 and adopts

CNNC to predict the causality for the subtask 2.
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Supplementary Figures

Figure S1. An example of transitive interaction. Gene a and gene c strongly correlate with each other through an intermediate gene b.

Figure S2. The performance of CNNC with primary image and augmented image as inputs and DeepDRIM.
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Figure S3. Network structure of DeepDRIM.
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Figure S4. False positive rates of CNNC and DeepDRIM for the eight cell types. The false positive rates are calculated by considering the

interactions whose confidence scores are in top 10% of the corresponding algorithms. We excluded the TFs with less than 20 targets for

better capturing of false positive rates.
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Figure S5. The performance of DeepDRIM that trained and tested on the same and different cell types.

Figure S6. The performance of DeepDRIM by selecting neighbor genes with different strategies.
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Figure S7. The performance of CNNC and the combined model on bone marrow-derived macrophages by considering both the existences

and causalities of TF-gene interactions.

Figure S8. The network structure of DeepDRIM to consider sequence information. Network C would process the sequence information of

TF and its potential target genes by encoding them into matrix and concatenating it to the gene expression embedding.
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Supplementary Tables

Table S1. Median AUROC of the involved TFs for PCC, MI, GENIE3, CNNC, and DeepDRIM. The algorithms’ ranks are shown

in the parentheses.

bone

marrow-

derived

macrophages

mESC(1) dendritic

cells

hESC mESC(2) mHSC(E) mHSC(GM) mHSC(L)

PCC 0.628(4) 0.465(5) 0.626(4) 0.542(3) 0.538(4) 0.477(5) 0.561(4) 0.546(5)

MI 0.684(3) 0.642(3) 0.734(3) 0.539(4) 0.563(3) 0.575(3) 0.600(3) 0.592(3)

GENIE3 0.584(5) 0.495(4) 0.582(5) 0.516(5) 0.477(5) 0.532(4) 0.557(5) 0.558(4)

CNNC 0.724(2) 0.695(2) 0.736(2) 0.638(2) 0.676(2) 0.730(2) 0.724(2) 0.747(2)

DeepDRIM 0.786(1) 0.756(1) 0.748(1) 0.762(1) 0.724(1) 0.804(1) 0.834(1) 0.873(1)

Table S2. Median AUPRC of the involved TFs for PCC, MI, GENIE3, CNNC and DeepDRIM. The algorithms’ ranks are shown

in the parentheses.

bone

marrow-

derived

macrophages

mESC(1) dendritic hESC mESC(2) mHSC(E) mHSC(GM) mHSC(L)

PCC 0.644(4) 0.509(5) 0.638(4) 0.543(3) 0.562(4) 0.494(5) 0.540(4) 0.545(4)

MI 0.672(3) 0.613(4) 0.693(2) 0.534(4) 0.573(3) 0.550(3) 0.576(3) 0.584(3)

GENIE3 0.611(5) 0.615(3) 0.615(5) 0.528(5) 0.557(5) 0.511(4) 0.518(5) 0.525(5)

CNNC 0.700(2) 0.658(2) 0.686(3) 0.631(2) 0.625(2) 0.694(2) 0.665(2) 0.708(2)

DeepDRIM 0.775(1) 0.710(1) 0.709(1) 0.726(1) 0.661(1) 0.769(1) 0.802(1) 0.851(1)
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Table S3. Median AUROC of the involved TFs for PIDC, GENIE3, GRNBOOST2, SCODE, PPCOR, SINCERITIES, and

DeepDRIM. The algorithms’ ranks are shown in the parentheses.

hESC mESC(2) mHSC(E) mHSC(GM) mHSC(L)

PIDC 0.499(7) 0.641(2) 0.468(6) 0.490(7) 0.502(5)

GENIE3 0.626(2) 0.341(7) 0.547(2) 0.597(2) 0.544(2)

GRNBOOST2 0.615(3) 0.399(6) 0.529(3) 0.527(3) 0.534(3)

SCODE 0.500(5) 0.459(4) 0.506(5) 0.515(4) 0.477(7)

PPCOR 0.500(5) 0.495(3) - 0.499(5) 0.5(6)

SINCERITIES 0.538(4) 0.457(5) 0.507(4) 0.495(6) 0.520(4)

DeepDRIM 0.704(1) 0.875(1) 0.755(1) 0.793(1) 0.818(1)

PPCOR failed to run on mHSC(E) due to an unexpected matrix singularity error.

Table S4. Median AUPRC of the involved TFs for PIDC, GENIE3, GRNBOOST2, SCODE, PPCOR, SINCERITIES, and

DeepDRIM. The algorithms’ ranks are shown in the parentheses.

hESC mESC(2) mHSC(E) mHSC(GM) mHSC(L)

PIDC 0.599(5) 0.609(2) 0.604(6) 0.609(5) 0.644(4)

GENIE3 0.679(2) 0.376(7) 0.684(2) 0.651(2) 0.639(5)

GRNBOOST2 0.666(3) 0.436(6) 0.631(4) 0.631(3) 0.657(3)

SCODE 0.581(7) 0.444(5) 0.632(3) 0.631(3) 0.615(7)

PPCOR 0.589(6) 0.481(3) - 0.601(7) 0.632(6)

SINCERITIES 0.638(4) 0.471(4) 0.624(5) 0.606(6) 0.664(2)

DeepDRIM 0.750(1) 0.810(1) 0.800(1) 0.829(1) 0.856(1)

PPCOR failed to run on mHSC(E) due to an unexpected matrix singularity error.
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Table S5. AUROCs and AUPRCs of PCC, MI, GENIE3, CNNC, and DeepDRIM for each TF on bone marrow-derived

macrophages, dendritic cells, and mESC(1). Separate Excel file.

Table S6. AUROCs and AUPRCs of PCC, MI, GENIE3, CNNC, and DeepDRIM for each TF on hESC, mESC(2), mHSC(E),

mHSC(GM), and mHSC(L). Separate Excel file.

Table S7. AUROCs and AUPRCs of PIDC, GENIE3, GRNBOOST2, SCODE, PPCOR, SINCERITIES, and DeepDRIM for each

TF on hESC, mESC(2), mHSC(E), mHSC(GM), and mHSC(L). Separate Excel file.

Table S8. PageRank scores, degree and betweenness of the genes in the GRNs from the patients with severe COVID-19. Separate

Excel file.

Table S9. GO annotation for the genes in the GRNS from the patients with severe COVID-19. Separate Excel file.



10

Table S10 Descriptions for the genes with top PageRank scores in the unique GRNs from the patients with severe COVID-19. (Y

denote direct evidence and I denote indirect evidence)

gene

symbol

rank of

PageRank
value

keyword description enriched GO modules associated

with
COVID-19

citations

PMAIP 1 apoptosis PMAIP1 has also been recently
found to be related to COVID-19

[1, 2] by Apoptosis. According

to their studies, PMAIP1
promotes proteasomal degradation

of MCL1, where MCL1 and
PMAIP1 are found significantly

altered after SARS-CoV or

HCoV-229E infection.

GO:0036293 (response to
decreased oxygen level,

p-values=4.80E − 3).

GO:0030330 (DNA
damage response,

p-values=1.51E −
2). GO:0097193

intrinsic apoptotic

signaling pathway,
p-values=6.29E − 3)

Y (yes) [1, 2]

CASP3 1 apoptosis CASP3 play an important role

in the execution-phase of cell
apoptosis. CASP3 is also founded

as one of apoptosis-related genes

that have increase expression in
scRNA profiles in M1 phenotype

macrophages in the co-culture

model to study interaction among
macrophages, lung cells and

SARS-CoV-2 [3]. CASP3 is also

listed as a key target in the drug-
disease common targets when

exploring the pharmacology about
COVID-19 [4].

GO:0036293 (response

to decreased oxygen
level, p-values=4.80E −
3). GO:0097193

(intrinsic apoptotic
signaling pathway,

p-values=6.29E − 3)

Y [3, 4]

PIM3 1 apoptosis PIM3 is related to the pathway

of Apoptosis and Autophagy, and
can regulate AMPK’s activities,

while AMPK may decrease

ACE expression [5]. ACE’s novel
homolog angiotensin converting

enzyme 2 (ACE2) is known as the

co-receptor for the coronavirus
and plays an important role in

SARS-CoV-2 infection [6].

GO:0007346 (regulation

of mitotic cell cycle,
p-values=4.67E − 4)

I (indirect

association)

[5, 6]

GPX4 1 T cell GPX4 can protect T cell from
ferroptosis and support T cell

expansion, thus are associated
with primary T cell response to

viral and parasitic infection

GO:0055114 (oxidation-
reduction process,

p-values=1.23E − 3)

- -

DYNLB1 1 microtubule DYNLB1 is a member of the
roadblock dynein light chain

family. The encoded cytoplasmic
protein is capable of binding
intermediate chain proteins,
interacts with transforming

growth factor-beta, and has been
implicated in the regulation of

actin modulating. Several viruses
are known to interact with tubulin
or their molecular motors like
kinesin or dynein proteins.

GO:0005815 (microtubule
organizing center,

p-values=5.33E − 3)

- -
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PSMB3 1 remove

damaged
proteins

PSMB3 is a protein coding gene

which is related to removing
misfolded or damaged proteins,

and is identified as a gene in

the gene set for proteotoxic
stress which suggest the terminal

exhaustion [7], and the gene set
is found dominated in critical

COVID-19 compare to mild,

implying the inflammation-driven
terminal exhaustion and severe

dysregulation.

GO:0036293 (response to

decreased oxygen level,
p-values=4.80E − 3).

GO:0045930 (negative

regulation of mitotic cell
cycle, p-values=1.22E − 2)

Y [7]

DNMT1 2 ACE2 DNMT1 is related with ACE2,
thus affects SARS-CoV-2 infection

through DNA methylation and

chromatin silencing [8].

GO:0010638 (positive
regulation of

organelle organization,

p-values=1.40E − 3)

I [8]

SLA 3 T cell SLA negatively regulates T cell

receptor (TCR) signaling, where

TCR has recently found to be
correlated with COVID-19 [9].

GO:0050896 (response

to stimulus, p-

values=5.40E −
3)

I [9]

HNRNPU 4 microtubule HNRNPU are involved in the

formation of stable mitotic spindle
microtubules (MTs) attachment to

kinetochore, spindle organization
and chromosome congression [10].

GO:0005815 (microtubule

organizing center,
p-values=5.33E − 3)

- -

CCNB1 5 apoptosis

and P53
signaling,

microtubule

CCNB1, is a protein coding

gene and are involved in mitosis
as well as maturation-promoting

factor (MPF), is a necessary for the

control of G2/M transition phase
in cell cycle, and is identified as one

of the significantly altered genes

that enriched to the apoptosis
and P53 signaling [11], which

may be related to the reducing

of Lymphocytes in COVID-19
patients.

GO:0030330 (DNA

damage response, p-
values=1.51E − 2).

GO:0045930 (negative

regulation of mitotic cell
cycle, p-values=1.22E−2).

GO:0005815 (microtubule

organizing center,
p-values=5.33E − 3)

Y [11]

RPS27L 5 cell

apoptosis

RPS27L is related to cysteine-type

endopeptidase activator activity
involved in apoptotic process.

GO:0030330 (DNA

damage response, p-
values=1.51E − 2).

GO:0045930 (negative

regulation of mitotic cell
cycle, p-values=1.22E −
2), GO:0097193
(intrinsic apoptotic

signaling pathway,

p-values=6.29E − 3)

- -

HIST1H3B

(H3C2)

5 histones H3C2 is a Protein Coding gene

related to Histones, while

Histones are basic nuclear
proteins responsible for the
nucleosome structure. Therefore

it is important in transcription
regulation, DNA repair, DNA

replication and chromosomal

stability.

GO:0010608

(posttranscriptional

regulation of
gene expression,
p-values=2.98E − 3)

- -
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