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S1. Analytical calculation of the near-field distribution of propagating phonon polaritons 

(PhPs) in α-MoO3, and the focal distance of metallic nanoantennas used in this work. 

 

In this section, we present the analytical calculation of the near-field distribution of PhPs 

propagating in α-MoO3 biaxial slabs when disk or rod-like trapezoidal gold nanoantennas are used  

as excitation sources. The analytical expressions to extract the focal distance for each kind of 

nanoantenna are provided. Note that in this section x-axis and y-axis refer to directions [100] and 

[001] in α-MoO3, respectively. 

 

In these calculations, we make several assumptions: firstly, a thin-film approximation is used,  

under which the biaxial slab is treated as a 2D-conductivity layer (see below). Second, we assume 

that the exciting electric field is parallel to the out-of-plane axis (z-axis) and localized at the edges 

of the nanoantennas. This is reasonable since the skin depth for Au at this frequency is about 24 

nm. Therefore, we will consider only the z-component of the electric field in all our derivations. 

Finally, we assume that the focal distance is much larger than the wavelength of the polaritons.   

 

2D conductivity layer approximation 

We model the α-MoO3 slab as a 2D conductivity layer with zero thickness. This approximation 

avoids the calculation of the fields inside the slab and has been proven valid for α-MoO3 layers 

with a thickness that is much smaller than the polariton wavelength (21,36). The effective  

conductivity tensor 𝜎̂𝑒𝑓𝑓 for the α-MoO3 layer is related to the (2 × 2) permittivity tensor 𝜀̂ =

diag(𝜀𝑥𝑥, 𝜀𝑦𝑦) as follows: 𝜎̂𝑒𝑓𝑓 = (𝑐𝑑/2𝑖𝜆0)𝜀̂, where 𝑐 is the speed of light, 𝑑 is the thickness of 

the layer and 𝜆0 is the free-space wavelength. We will also introduce the normalized conductivity 

tensor 𝛼̂ = 2𝜋𝜎̂𝑒𝑓𝑓/𝑐 for convenience. 

  

Dyadic Green’s function for the 2D-conductive layer 

To calculate the distribution of the electric field created by an extended source, such as disks or 

rod-like nanoantennas (not a dipole point-like source), in general, we need to solve a non-

homogenous linear differential equation (non-homogeneous wave equation) of the symbolic form 

ℒ̂𝑓 = 𝑓0, where ℒ̂ is a linear differential operator, 𝑓0 is the “initial condition” (source), and 𝑓 is the  

variable (representing the electric field) to be calculated. To solve this non-homogeneous equation, 

we can make use of the Green’s function formalism (analogously to the Huygens principle in the 

case of propagating waves). To that end, we calculate the Green’s function, 𝐺(𝒓 − 𝒓′), for the 

linear differential operator and get an electric field distribution as the convolution of this function 

with the initial field: 𝑓(𝒓) =∭𝑑3𝒓′𝐺(𝒓 − 𝒓′)𝑓0(𝒓′). Note that the physical meaning of the  

Green´s function is the field created at the point with radius-vector 𝒓 by the point source placed at 

the point 𝒓′. The Green´s function is also related to the local density of photonic states (LDOS). 

Applying a Fourier transformation to the equation for 𝑓(𝒓), we obtain 𝑓(𝒌) = 𝐺(𝒌)𝑓0(𝒌), that 

means that 𝐺(𝒌) describes an efficiency of excitation of the mode with momentum 𝒌, and is also 

related to the density of optical states (DOS). As we deal with the vector field, we consider the  

generalization of the Green’s function, the dyadic Green’s function (DGF), 𝐺̂(𝒓 − 𝒓′), constructed 

for the vectorial wave equation. Using the DGF, the overall electric field of polaritons emitted by 

an antenna edge and propagating along the film can be calculated at any point near the film 

according to the Lippmann-Schwinger integral equation: 



 
 

𝑬(𝒓) = 𝑘0
2∫𝑑3𝒓′𝐺̂(𝒓 − 𝒓′) 𝑬𝟎(𝒓

′), (1) 

where 𝑬(𝒓) is the field created by the source at the point 𝒓, 𝑬𝟎(𝒓′) is the initial field (at the surface 

of the source), 𝑘0 = 𝜔/𝑐 is the wavevector in a vacuum, 𝜔 is an angular frequency of the waves, 

and 𝑐 is the speed of light. As we consider only z-components of the electric fields everywhere, 

we need only the zz-component of the DGF.  

 

Since the s-polarized plane wave in the dielectric medium has zero projection on the z-axis, we 

consider only the contribution of the p-polarized waves to the DGF, which we denote as 𝐺̂𝑝𝑝. The 

latter simply provides the p-polarized component of the electromagnetic wave excited by a p-

polarized point source. The DGF corresponding to the field "transmitted" through the layer is given 

by the following equation: 

 

𝐺̂𝑝𝑝(𝒓 − 𝒓
′) =

𝑖

8𝜋2
∫
𝑑2𝒌||

𝑘1𝑧
𝑒𝑖𝒌||∆𝒓||𝑇𝑝𝑝〈𝑟|𝑘2𝑝

− 〉〈𝑘1𝑝
− |𝑟′〉 𝑒𝑖(𝑘1𝑧𝑧

′−𝑘2𝑧𝑧)   (2) 

 

where 𝑘𝑖𝑧 = √𝑘0
2𝜀𝑖 − 𝑘||

2 are the z-components of the wavevector, 𝒌|| is the in-plane component 

of the wavevector, ∆𝒓||  is the in-plane component of 𝒓 − 𝒓′ , 𝜀𝑖 (𝑖 = 1,2)  is the dielectric 

permittivity of the surrounding media (being “1” the superstrate and “2” the substrate), 𝑇𝑝𝑝 is the 

Fresnel’s transmission coefficient, and |𝑘𝑖𝑝
− ⟩ is the basis vectors in Dirac notations for the electric 

field. In coordinate representation, we can write the basis vectors as follows: 

 

〈𝑟|𝑘𝑖𝑝
− 〉 =

𝑘𝑖𝑧

𝑘||𝑘0√𝜀𝑖
(

𝑘𝑥
𝑘𝑦
𝑘||
2

𝑘𝑖𝑧

) and 〈𝑘1𝑝
− |𝑟′〉 =

𝑘𝑖𝑧

𝑘||𝑘0√𝜀𝑖
(𝑘𝑥 𝑘𝑦

𝑘||
2

𝑘𝑖𝑧
)   (3) 

 

Consequently, 〈𝑟|𝑘2𝑝
− 〉〈𝑘1𝑝

− |𝑟′〉 is given by the following dyadic: 

 

〈𝑟|𝑘2𝑝
− 〉〈𝑘1𝑝

− |𝑟′〉 =
𝑘1𝑧𝑘2𝑧

𝑘||
2𝑘0
2
√𝜀1𝜀2

(

 
 
 
𝑘𝑥
2 𝑘𝑥𝑘𝑦

𝑘𝑥𝑘||
2

𝑘1𝑧

𝑘𝑥𝑘𝑦 𝑘𝑦
2 𝑘𝑦𝑘||

2

𝑘1𝑧

𝑘𝑥𝑘||
2

𝑘2𝑧

𝑘𝑦𝑘||
2

𝑘2𝑧

𝑘||
4

𝑘1𝑧𝑘2𝑧)

 
 
 

 (4)  

Thus, for zz-component we obtain: 

 

 

𝐺𝑧𝑧(𝒓, 𝒓
′) =

𝑖

8𝜋2𝑘0
2
√𝜀1𝜀2

∫𝑑2𝒌||𝐺𝑧𝑧(𝑘𝑥, 𝑘𝑦)𝑒
𝑖(𝑘1𝑧𝑧

′−𝑘2𝑧𝑧)𝑒𝑖𝒌||∆𝒓|| (5) 

  

where 

 



 
 

𝐺𝑧𝑧(𝑘𝑥, 𝑘𝑦) =
𝑘||
2

𝑘1𝑧
𝑇𝑝𝑝 (6) 

 

The Fresnel’s coefficients 𝑇𝑝𝑝 can be straightforwardly obtained from Maxwell’s equations. We 

can apply the following boundary conditions to match the in-plane components of the magnetic 

and electric fields at the interface between the upper medium (denoted by “1”) and the lower  

medium (denoted by “2”): 

 

𝑬1𝑡(𝑥, 𝑦, 0) =  𝑬2𝑡(𝑥, 𝑦, 0) (7) 

 

[𝒆𝑧 × (𝑯1𝑡(𝑥, 𝑦, 0) − 𝑯2𝑡(𝑥, 𝑦, 0))]𝑡 =
4𝜋

𝑐
𝜎̂𝑬𝑡(𝑥, 𝑦, 0)  (8)  

 

where 𝒆𝑧 is the unit vector along the z-axis, 𝜎̂ is the 2D-conductivity tensor, that could be defined 

as 𝜎̂ =
𝑘0𝑑𝜀̂

2𝑖
, where 𝜀̂ is the dielectric permittivity tensor restricted on the xy-plane, and 𝑑 is the 

thickness of the slab (36). 

  

The fields above and below the 2D layer are given by: 

 

𝑬1(𝑥, 𝑦, 0) =
𝑘1𝑧

𝑘0√𝜀1
(

𝑘𝑥
𝑘𝑦
𝑘||
2

𝑘1𝑧

)𝑒𝑖(𝑘𝑥𝑥+𝑘𝑦𝑦)+𝑅𝑠𝑝 (
−𝑘𝑦
𝑘𝑥
0

)𝑒𝑖(𝑘𝑥𝑥+𝑘𝑦𝑦)+𝑅𝑝𝑝
𝑘1𝑧

𝑘0√𝜀1
(

𝑘𝑥
𝑘𝑦

−
𝑘||
2

𝑘1𝑧

)𝑒𝑖(𝑘𝑥𝑥+𝑘𝑦𝑦) (9) 

𝑬2(𝑥, 𝑦, 0) = 𝑇
𝑠𝑝 (

−𝑘𝑦
𝑘𝑥
0

) 𝑒𝑖(𝑘𝑥𝑥+𝑘𝑦𝑦)+𝑇𝑝𝑝
𝑘2𝑧

𝑘0√𝜀2
(

𝑘𝑥
𝑘𝑦
𝑘||
2

𝑘2𝑧

)𝑒𝑖(𝑘𝑥𝑥+𝑘𝑦𝑦) (10) 

  

where 𝑅𝑠𝑝 and 𝑇𝑠𝑝 are the ratios of the amplitudes of the “reflected” and “transmitted” s-polarized 

waves respectively to the amplitude of the initial p-polarized wave; 𝑅𝑝𝑝 and 𝑇𝑝𝑝 are the ratios of 

the amplitudes of the reflected and transmitted p-polarized waves respectively to the amplitude of 

the initial p-polarized wave. Multiplying equation (7) by ⟨𝑠| ≡ (−𝑞𝑦 𝑞𝑥)𝑒−𝑖𝑘𝑥𝑥−𝑖𝑘𝑦𝑦, where 𝒒 =
𝒌/𝑘0, we obtain 𝑅𝑠𝑝 = 𝑇𝑠𝑝. Multiplying equation (7) by ⟨𝑝| ≡ (𝑞𝑥 𝑞𝑦)𝑒−𝑖𝑘𝑥𝑥−𝑖𝑘𝑦𝑦, we obtain  

1+𝑅𝑝𝑝 = 𝑇𝑝𝑝
𝑘2𝑧

𝑘1𝑧
√
𝜀1

𝜀2
. 

 

Substituting 𝑯 =
1

𝑘0
𝒌 × 𝑬 into the equation (8) we obtain: 

 

𝑬1𝑧𝒌1𝑡 − 𝑬1𝑡𝑘1𝑧 − 𝑬2𝑧𝒌2𝑡 + 𝑬2𝑡𝒌2𝑧 = 2𝛼̂𝑘0𝑬2𝑡 (11)  

 

where 𝛼̂ =
2𝜋

𝑐
𝜎̂ is the normalized conductivity tensor. Multiplying equation (11) by ⟨𝑠| we obtain: 

 

𝑇𝑠𝑝 = 𝑇𝑝𝑝
2𝑘𝑥𝑘𝑦𝑘2𝑧(𝛼𝑥−𝛼𝑦)

√𝜀2𝑘||
2(𝑘1𝑧+𝑘2𝑧+

2𝑘0

𝑘||
2 [𝛼𝑥𝑘𝑦

2+𝛼𝑦𝑘𝑥
2])

 (12) 

  



 
 

Finally, by multiplying equation (11) by ⟨𝑝| and after some algebraic transformations, we obtain 

the Fresnel’s coefficient 𝑇𝑝𝑝and 𝐺𝑧𝑧(𝑘𝑥, 𝑘𝑦) becomes: 

 

𝐺𝑧𝑧(𝑘𝑥, 𝑘𝑦) =
𝑘0𝑘||

4

𝑘1𝑧𝑘2𝑧

√𝜀1𝜀2(𝛼𝑥𝑘𝑦
2+𝛼𝑦𝑘𝑥

2+𝑘||
2𝑘1𝑧+𝑘2𝑧

2𝑘0
)

(𝛼𝑥𝑘𝑦
2+𝛼𝑦𝑘𝑥

2+𝑘||
2𝑘1𝑧+𝑘2𝑧

2𝑘0
)(𝛼𝑥𝑘𝑥

2+𝛼𝑦𝑘𝑦
2+

𝑘0𝑘||
2

2
[
𝜀1
𝑘1𝑧
+
𝜀2
𝑘2𝑧
])−𝑘𝑥

2𝑘𝑦
2(𝛼𝑥−𝛼𝑦)

2
        (13) 

 

Note that the poles of 𝐺𝑧𝑧(𝑘𝑥, 𝑘𝑦) in Eq. (13) provide the dispersion relation for polaritons in the 

2D-conductivity layer (21,36). 

 

Assuming that the point source and the “probing” point (at which we wish to know the value of 

the electromagnetic fields) are located in the same semi-infinite half-space, the “reflected” DGF 

must be used instead transmitted DGF. However, the electromagnetic fields of propagating 

polaritons (the eigenmodes supported by our 2D layer) are mainly determined by the poles of the 

Fresnel coefficients (and thus the poles of the DGF). Consequently, we can safely neglect the unity 

in the expression 1+𝑅𝑝𝑝 = 𝑇𝑝𝑝
𝑘2𝑧

𝑘1𝑧
√
𝜀1

𝜀2
, and therefore approximate 𝑅𝑝𝑝 ≈ 𝑇𝑝𝑝

𝑘2𝑧

𝑘1𝑧
√
𝜀1

𝜀2
 so that 

  

𝐺𝑅𝑧𝑧(𝒓, 𝒓′) ≈
−𝑖

8𝜋2𝑘0
2
√𝜀1𝜀2

∫𝑑2𝒌||
𝑘||
2

𝑘1𝑧
𝑇𝑝𝑝

𝑘2𝑧

𝑘1𝑧
𝑒𝑖(𝑘1𝑧𝑧

′+𝑘2𝑧𝑧)𝑒𝑖𝒌||∆𝒓|| (14) 

 

As can be seen, Eq. (14) is equivalent to 𝐺𝑧𝑧(𝒓, 𝒓′) given by equation (14) up to the sign, phase 

factor 𝑒2𝑖𝑘1𝑧𝑧
′
(≈ 1 for 𝑧′ = 0) and a factor 

𝑘2𝑧

𝑘1𝑧
 (which in our case is close to unity as shown in the 

next section). From here on we will suppose that 𝑧′ = 0 (as the thickness of antenna is very small),  

and 𝑧 = 𝐻 is the height over the 2D-conductive layer, where we are calculating the field. 

 

 Approximation for the Dyadic Green’s function 

 

Let us define 𝜑 as the angle between the 𝑘|| wavevector and the x-axis, so that 𝑘𝑥 = 𝑘||𝑐𝑜𝑠𝜑, 𝑘𝑦 = 

𝑘||𝑠𝑖𝑛𝜑, 𝑞 =
𝑘||

𝑘0
 and 𝜀 =

𝜀1+𝜀2

2
. Since in our case 𝛼𝑥,𝑦 =

𝑘0𝑑𝜀𝑥,𝑦

2𝑖
≪ 1  and 𝑘|| ≫ 𝑘0√𝜀𝑖  , the 

polaritons propagating along the layer are strongly confined and their wavelength is much smaller 

than the vacuum wavelength. Consequently, 𝑘1𝑧 ≈ 𝑘2𝑧 ≈ 𝑖𝑘|| . Equation (13) can be thus 

simplified as: 

  

𝐺𝑧𝑧(𝑘𝑥, 𝑘𝑦) =
−𝑘0√𝜀1𝜀2(𝛼𝑥𝑠𝑖𝑛

2𝜑+𝛼𝑦𝑐𝑜𝑠
2𝜑+𝑖𝑞)

(𝛼𝑥𝑠𝑖𝑛2𝜑+𝛼𝑦𝑐𝑜𝑠2𝜑+𝑖𝑞)(𝛼𝑥𝑐𝑜𝑠2𝜑+𝛼𝑦𝑠𝑖𝑛2𝜑+
𝜀1+𝜀2
2𝑖𝑞

)−𝑠𝑖𝑛2𝜑𝑐𝑜𝑠2𝜑(𝛼𝑥−𝛼𝑦)
2  (15) 

 

Taking into account that 𝑞 ≫ 1, the Green’s function can be further simplified: 

 

𝐺𝑧𝑧(𝑘𝑥, 𝑘𝑦) =
−𝑖𝑞𝑘0√𝜀1𝜀2

𝑖𝑞(𝛼𝑥𝑐𝑜𝑠2𝜑+𝛼𝑦𝑠𝑖𝑛2𝜑)+𝜀
  (16)  

 

This function is related to DOS of hyperbolic polaritons propagating along the layer. The absolute 

value of 𝐺𝑧𝑧(𝑘𝑥, 𝑘𝑦) is plotted in Fig. S1A as a function of 𝑘𝑥 and 𝑘𝑦. It is still not possible to 



 
 

calculate the Fourier transform from this expression explicitly. To simplify this expression, let us 

approximate the isofrequency curve (IFC) of polaritons, which is generally a quartic equation 

depending on the thickness of the layer and the permittivities of the different media (36), by a 

hyperbola, 
𝑞𝑥
2

𝜀𝑦 𝑒𝑓𝑓
+

𝑞𝑦
2

𝜀𝑥 𝑒𝑓𝑓
= 1. To that end, we match the asymptotes of the IFCs 

𝑞𝑥

𝑞𝑦
= √−

𝜀𝑦

𝜀𝑥
 and 

the vertices of the hyperbola and the curve defined by zeroing the denominator of the expression 

(16): 𝑞𝑥 =
2𝜀

𝑘0𝑑𝜀𝑥
, 𝑞𝑦 = 0 . As a result, we obtain expressions for 𝜀𝑥 𝑒𝑓𝑓 = (

2𝜀

𝑘0𝑑√𝜀𝑥𝜀𝑦
)
2

 and 

𝜀𝑦 𝑒𝑓𝑓 = (
2𝜀

𝑘0𝑑𝜀𝑥
)
2

, and an expression for the Dyadic Green’s function becomes integrable: 

 

𝐺𝑧𝑧(𝑘𝑥, 𝑘𝑦) =
−2𝑖𝑞2𝑘0√𝜀1𝜀2

𝑘0𝑑(𝜀𝑥𝑞𝑥
2+𝜀𝑦𝑞𝑦

2)−
4𝜀2

𝑘0𝑑𝜀𝑥

  (17) 

 

Using equations (5) and (17), we obtain the expression for the Green’s function in real space: 

 

𝐺𝑧𝑧(𝒓, 𝒓′) ≡ 𝐺𝑧𝑧(𝒓 − 𝒓′) = ∬
𝑑𝑞𝑥𝑑𝑞𝑦

(2𝜋)2
𝑞2𝑘0𝑒

−𝑞𝑘0𝐻𝑒
𝑖𝑘0(𝑞𝑥(𝑥−𝑥

′)−𝑞𝑦(𝑦−𝑦
′))

𝑘0𝑑(𝜀𝑥𝑞𝑥
2+𝜀𝑦𝑞𝑦

2)−
4𝜀2

𝑘0𝑑𝜀𝑥

  (18) 

 

 We further assume that Re[𝜀𝑥] < 0 and Re[𝜀𝑦] > 0, which is the case of MoO3 (in the parametric 

region of our interest), therefore, for each 𝑞𝑦 the integrand (18) has a pole at some 𝑞𝑥, and the 

integral over 𝑞𝑥 can be calculated using the Cauchy integral theorem and calculating residues: 

 

𝐺𝑧𝑧(𝒓 − 𝒓′) =
𝑖

𝑑
∫
𝑑𝑞𝑦

2𝜋

(
2𝜀

𝑘0𝑑𝜀𝑥
)
2
−
𝜀𝑦

𝜀𝑥
𝑞𝑦
2+𝑞𝑦

2

2𝜀𝑥√(
2𝜀

𝑘0𝑑𝜀𝑥
)
2
−
𝜀𝑦

𝜀𝑥
𝑞𝑦
2

𝑒−𝑞𝑘0𝐻𝑒
𝑖𝑘0(∆𝑥√(

2𝜀

𝑘0𝑑𝜀𝑥
)
2
−
𝜀𝑦

𝜀𝑥
𝑞𝑦
2−𝑞𝑦∆𝑦)

 (19) 

 

where ∆𝑥 = 𝑥 − 𝑥′, ∆𝑦 =  𝑦 − 𝑦′, and 𝑞 = √(
2𝜀

𝑘0𝑑𝜀𝑥
)
2

−
𝜀𝑦

𝜀𝑥
𝑞𝑦2 + 𝑞𝑦2. 

 

The integral in expression (19) could be estimated by the stationary phase approximation, for this 

we expand the exponent power in a series up to the second order near the point with zero derivative, 

that is given by 

 

𝑞𝑦 =
−2𝜀∆𝑦

√𝜀𝑦𝑘0𝑑√𝜀𝑥∆𝑦2+𝜀𝑦∆𝑥2
  (20) 

 

and 

  

𝑞 =
−2𝜀√𝜀𝑥

2∆𝑦2+𝜀𝑦
2∆𝑥2

𝜀𝑥√𝜀𝑦𝑘0𝑑√𝜀𝑥∆𝑦2+𝜀𝑦∆𝑥2
  (21) 

 



  

 
 

Calculating the Gaussian integral, we obtain the DGF in the real space 

 

𝐺𝑧𝑧(𝒓 − 𝒓′) =
𝜀
3
2

√𝜋𝑑

(𝜀𝑥
2∆𝑦2+𝜀𝑦

2∆𝑥2)𝑒−𝑞𝑘0𝐻

𝜀𝑥
2𝜀𝑦
5/4(𝑘0𝑑)2(𝜀𝑥∆𝑦2+𝜀𝑦∆𝑥2)

5/4 𝑒
𝑖(
2𝜀√𝜀𝑥∆𝑦

2+𝜀𝑦∆𝑥
2

𝜀𝑥√𝜀𝑦𝑑
−
𝜋

4
)

  (22) 

 

where 𝑞 is given by Eq. (21).  

 

In Fig. S1A we plot the absolute value of 𝐺𝑧𝑧(𝒓 − 𝒓′) (yellow dashed line), given by the expression 

(22), as a function of the polar angle at the distance 𝑟0  (2.5 µm) from the dipole, and at the 

illuminating wavelength 0 =11.05 µm for a thickness 𝑑 = 165 nm. Note that, according to the 

definition of the DGF, 𝐺𝑧𝑧(𝒓 − 𝒓′), it represents the distribution of the z-component of the electric  

field emitted by a point electric dipole polarized along the z-direction. The polar distribution is 

superimposed on the color-plot plotted by Eq. 16, representing the hyperbolic IFC in the 

momentum space. The corresponding in-plane dielectric constants for α-MoO3, taken from ref. 

(22,35), are xx=-4.13+0.34i and yy=1.12+0.08i (see Section S5). Interestingly, we find that the 

near-field intensity shows a maximum DOS at an angle 𝜃𝑐 with respect to the [100] crystalline  

direction. As expected in hyperbolic media, such directions (yellow dashed lines in Fig. S1A) with 

maximum DOS are close to the asymptotes of the IFC (black dashed lines in Fig. S1A). Moreover, 

due to their large density, PhPs with high-|𝑘⃗ | wavevectors (denoted by 𝑘⃗ 𝐻 in the main text) along 

such directions are dominant. Fig. S1B shows the full-wave simulation of the electric |𝐸𝑧| excited 

by a point electric dipole placed above the α-MoO3 slab together with the polar distribution of the  

electric field in real space. As expected, the direction along which there is a maximum of the 

electric field intensity for PhPs with 𝑘⃗ 𝐻 coincides with the direction where a maximum |𝐸𝑧| 
appears in the numerical simulation. 

 

  

 
 

Fig. S1.- Calculation of the in-plane density of electromagnetic modes in α-MoO3. (A) Color 

plot: Analytical calculation of the Green’s function 𝐺𝑧𝑧(𝑘𝑥, 𝑘𝑦) in momentum k-space, according 

to Eq. (16), for a 165-nm-thick α-MoO3 slab at 0=11.05 µm. The polaritonic IFC contour is shown 

as maxima in the color plot. The yellow dashed line corresponds to the field intensity (absolute 

value of 𝐺𝑧𝑧(𝒓 − 𝒓′)) as a function of the polar angle at the distance 𝑟0 from the dipole source. The 

white and green dashed arrows are the Poynting vector 𝑆  and 𝑘𝐻⃗⃗ ⃗⃗   wavevectors of PhPs propagating 



 

 
 

 

Calculation of the field distribution around a metallic disk nanoantenna and the focal distance 

 

As before, we will assume that the exciting electric field is polarized along the z-axis and deeply 

confined to the disk edge. This assumption mimics the excitation by a metal disk nanoantenna  

placed on an α-MoO3 slab (approximated by a 2D layer). Hence, the electric field at any point 
(𝑥, 𝑦) is given by Eq. (1) and the z-component of this field reads: 

 

𝐸𝑧(𝑥, 𝑦) = 𝑘0
2 ∫ 𝑑𝑥′𝑑𝑦′𝐺𝑧𝑧(𝑥 − 𝑥

′, 𝑦 − 𝑦′)𝐸0𝑑𝑅𝛿(𝑥
′ −√𝑅2 − 𝑦′2) (23) 

  

where 𝛿(𝑥) is the Dirac delta function and R is the radius of the disk. By changing to polar 

coordinates (𝑥′, 𝑦′) → (𝑟′, 𝜃) we obtain: 

 

𝐸𝑧(𝑥, 𝑦) =
𝐸0𝑅

2𝜀
3
2

𝜀𝑥
2𝜀𝑦
5/4
𝑑
∫𝑑𝜃

(𝜀𝑥
2(𝑦−𝑅 sin𝜃)2+𝜀𝑦

2(𝑥−𝑅 cos𝜃)2)𝑒−𝑞𝑘0𝐻

√𝜋𝑑(𝜀𝑥(𝑦−𝑅 sin𝜃)2+𝜀𝑦(𝑥−𝑅 cos𝜃)2)
5/4 𝑒

𝑖(
2𝜀√𝜀𝑥(𝑦−𝑅sin𝜃)

2+𝜀𝑦(𝑥−𝑅cos𝜃)
2

𝜀𝑥√𝜀𝑦𝑑
−
𝜋

4
)

(24) 

  

where  

 

𝑞 =
−2𝜀√𝜀𝑥

2(𝑦−𝑅 sin𝜃)2+𝜀𝑦
2(𝑥−𝑅 cos𝜃)2

𝜀𝑥√𝜀𝑦𝑘0𝑑√𝜀𝑥(𝑦−𝑅 sin𝜃)2+𝜀𝑦(𝑥−𝑅 cos𝜃)2
  (25) 

 

Equation (24) approximates the total electric field at the point (𝑥, 𝑦, 𝐻) created by polaritons  

excited from the edge of the disk. The integral in (24) adds the contribution of point-like electric 

dipoles located along the disk edge at points (𝑥′, 𝑦′) with radius-vectors forming an angle 𝜃 with 

the x-axis ([100] crystal direction of α-MoO3). From equation (24), using stationary phase 

approximation, we calculate the field distribution along the x-axis: 

  

𝐸𝑧(𝑥, 𝑦) = 𝐸0
2𝜀𝑅3

𝜀𝑥𝜀𝑦𝑑
√

𝜀𝑥

𝜀𝑥−𝜀𝑦

1

𝑅2−
𝜀𝑦

𝜀𝑦−𝜀𝑥
𝑥2
exp(𝑖

2𝜀√𝑅2−
𝜀𝑦

𝜀𝑦−𝜀𝑥
𝑥2

𝑑√𝜀𝑥𝜀𝑦
+

2𝜀𝑅𝐻

𝑑√𝜀𝑥𝜀𝑦√𝑅2−
𝜀𝑦

𝜀𝑦−𝜀𝑥
𝑥2
) (26) 

 

Using Eq. (24), we immediately obtain the following expression for the position of the focus (focal 

distance 𝑥𝑓) with respect to the edge of the disk: 

  

𝑥𝑓 ≈ 𝑅√1 −
𝜀𝑥
′

𝜀𝑦
′    (27) 

along in-plane directions closely aligned with the asymptote of the hyperbolic IFC. The near-field 

intensity shows a maximum DOS at an angle 𝜃𝑐 with respect to the [100] crystal direction. The in-

plane components of the α-MoO3 dielectric permittivity are 𝑥𝑥 = −4.13 + 0.34𝑖  and 𝑦𝑦 =

1.12 + 0.08𝑖. (B) Numerical simulation of the electric |𝐸𝑧| (color plot) excited by a point electric 

dipole placed above the α-MoO3 slab together with the polar distribution of the electric field in real 

space (yellow dashed lines) shown in (A). 

 



 

 
 

 

where 𝜀𝑥,𝑦
′  is the real part of the complex-valued dielectric function 𝜀𝑥,𝑦. 

 

 

Calculation of the focal distance for rod-like trapezoidal nanoantennas  

 

The geometry of the rod-like trapezoidal nanoantennas (see Fig. 3 of the main manuscript) has 

been optimized (see section S3) to avoid scattering and/or absorption of the excited polaritons with 

the edges of the antennas, thus enhancing the near-field intensity at the focal spot marked with a 

dashed red circle in Fig. S2. For this, the angle between the x-axis and the edges of the antenna  

should be bigger than the angle between the x-axis and the direction along which the radiation 

intensity is maximum,  so that the relationship 
𝑦2−𝑦1

𝑥1
> Re[tan(𝜃𝑐)] ≈ √−

𝜀𝑦
′

𝜀𝑥
′  is fulfilled. The focal 

spot is therefore formed exactly at the intersection of the rays coming from the extreme points of 

the antenna edges, at the point with coordinates (𝑥𝑓 , 0), as shown in Fig. S2, and with 𝑥𝑓 given by: 

  

𝑥𝑓 ≈
1

2
(𝑥1 + 𝑦1√−

𝜀𝑥
′

𝜀𝑦
′ + 𝑥2 + 𝑦2√−

𝜀𝑥
′

𝜀𝑦
′ ) ≈

𝑥1

2
+
𝑦1+𝑦2

2
√−

𝜀𝑥
′

𝜀𝑦
′  (28) 

 
 

 
 

Fig. S2.- Understanding the focusing of in-plane PhPs in α-MoO3 employing rod-like 

trapezoidal nanoantennas. Focusing of PhPs excited by four electric point dipoles placed along 

the sidewall of rod-like trapezoidal nanoantennas on an α-MoO3 slab. The black dashed arrows 

represent the Poynting vector of polaritons with wavevectors 𝑘𝐻⃗⃗ ⃗⃗  . The interference of polaritons 

gives rise to a focal spot marked by a red dashed circle. The x-axis and y-axis correspond to the 

[100] and [001] crystalline directions in α-MoO3, respectively. 

 



  

 
 

S2. Demonstration of the negligible contribution of low-𝒌⃗⃗  hyperbolic PhPs to the formation 

of a focal spot. 

 

Fig. S3A shows the simulated near-field distribution, Re(𝐸𝑧) , excited by an Au disk-like 

nanoantenna on a 165-nm-thick α-MoO3 slab (0=10.85 µm). As mentioned in the main 

manuscript, we obtain a convex wavefront confined within a triangular region in which a focusing 

spot is formed at its apex due to the interference of PhPs with 𝑘⃗ 𝐻 . Additionally, a concave 

wavefront is found centred along the [100] crystalline direction, attributed to propagating PhPs 

with low-𝑘⃗  wavevectors (within the sector defined by the IFC asymptotes). 

 

To unambiguously verify that the formation of the convex interference fringes (including the focal 

spot) is due to a major contribution of PhPs with 𝑘⃗ 𝐻, while the contribution of polaritons with low-

𝑘⃗  wavevectors is minor, we plot a profile of the near-field image along the [100] direction (black 

dashed line) and analyze the periodicity of the convex interference fringes in Fig. S3B. In 

agreement with our claims, a shorter periodicity is found for the convex wavefronts (green colored 

area, fringes ~ 540 nm), in comparison with the concave wavefronts (pink colored area, p ~ 610 

nm), the latter being the characteristic wavelength for propagating low-𝑘 ⃗⃗⃗  PhPs in α-MoO3 along 

the [100] direction (22,35). 

 

 
 

Fig. S3.- Focusing of in-plane PhPs in α-MoO3 employing a Au disk nanoantenna. (A) 

Simulated near-field image, Real(Ez), on an Au disk nanoantenna fabricated on a 165-nm-thick -

MoO3 slab under illumination at 0=10.85 µm. (B) Profile along the dashed black line marked in 

(a). The convex fringes attributed to the interference of PhPs with 𝑘⃗ 𝐻 present a periodicity 

fringes=540 nm (green area), whereas concave fringes attributed to propagating low-𝑘⃗  PhPs show a 

characteristic polariton’s wavelength p=610 nm along the [100] direction (pink area). 

  

 



  

 
 

S3. Optimizing the geometry of rod-like trapezoidal nanoantennas for an enhanced PhPs 

focusing.  

 

As discussed in sections S1 and S2, the focal spot is due to the interference of PhPs with 

𝑘⃗ 𝐻wavevectors propagating on the surface of the -MoO3 slab along a direction closely aligned 

with the asymptotes of the IFC. To maximize the near-field intensity at the focus position, we 

designed rod-like trapezoidal nanoantennas with flat extremities that form an angle θant with 

respect to the [100] crystalline direction (Fig. S4). This angle is optimized for an illuminating 

wavelength 0=11.05 µm with the use of full-wave numerical simulations. This geometry favors 

both an increase of the density of PhPs with high-𝑘⃗   wavevectors excited from the contour of the 

antenna’s flat edge at the focal spot and a null contribution of PhPs with low-𝑘⃗  wavevectors. In 

particular, we calculate the total power dissipation inside a 165-nm-thick -MoO3 slab in a 

cylindrical volume (circular base with diameter 225 nm – FWHM value of the focal spot – and 

height equal to the slab’s thickness 165 nm, shadowed green area in Fig. S4A-C) and the total 

electric field |E|2 above the surface of the slab in a cylindrical volume (circular base with diameter  

225 nm – FWHM value of the focal spot – and height 80 nm, shadowed green area in Fig. S4a-

c). The result as a function of the angle θant of the trapezoidal rod-like nanoantennas is shown in 

Fig. S4D. We find an optimal value of θant 44º, for which both the power dissipation and the 

electric field intensity are clearly enhanced. This angle is the one used for the fabrication of the 

rod-like trapezoidal antennas shown in this work.  

 



  

 
 

 
 

Fig. S4.- Optimization of the extremities of rod-like trapezoidal Au nanoantennas. (A-C) 

Simulated, Re(Ez), near-field image on Au rod-like trapezoidal nanoantennas fabricated on a 165-

nm-thick -MoO3 slab at 0=11.05 µm for angles θant= 34º, 44º and 54º. (D) Normalized integrated 

field intensity, |E|2, (red dots) above the slab and power dissipation density (blue dots) within the 

slab in a cylindrical volume at the focal spot (shadowed green area in a-c) as a function of the angle 

θant between the [100] crystalline direction and nanoantennas’ edge. 

 

S4. Tunability of the focal distance f by varying the distance between rod-like trapezoidal 

nanoantennas  

 

As discussed in the main manuscript, the focal distance can be tuned by varying the incident 

wavelength 0. Alternatively, it can be also changed by varying the distance between the individual 

rod-like trapezoidal nanoantennas d. The simulated near-field images in Fig. S5 show that the focal 

distance can be tuned from ~ 770 nm to ~1050 nm when the d varies from 320 nm to 620 nm, 

respectively. A slope angle θant= 44º is used in the design of the antennas based on our findings 

presented in section S3. 

 

 

 



  

 
 

 
 

Fig. S5.- Tuning of the focal distance employing rod-like trapezoidal Au nanoantennas. 

Simulated real-space field distribution, Re(Ez), on rod-like trapezoidal nanoantennas’ extremities 

(0=11.05 µm) for different separation distances d between them: (A) d1=320 nm and (B) d2=620 

nm. The focal distance can be tuned by varying the nanoantennas separation from f1=770 nm in (a) 

to f2= 1050 nm in (b). The sidewalls of the nanoantenna at both extremities present an angle of 

about 44º with respect to the [100] direction. 
 

 

S5. Dielectric permittivity of α-MoO3 and SiO2 

 

The dielectric function of α-MoO3 is obtained from correlative far- and near-field measurements,  

as reported in (35), while the real part of the dielectric function of SiO2 used throughout the work 

is adjusted by comparing the experimental dispersion of PhPs propagating in α-MoO3 slabs on top 

of SiO2 with that obtained from analytical and transfer-matrix calculations, and full-wave 

numerical simulations. In particular, the analytical dispersion of propagating PhPs in α-MoO3 slabs 

with thickness 𝑑 on SiO2 substrates is given by (36):  

 

𝑘 =
𝜌

𝑑
[arctan (

𝜌𝜀1

𝜀𝑧
) + arctan (

𝜌𝜀2

𝜀𝑧
) + 𝜋𝑙] ,        𝑙 = 0, 1, 2…,                 (29) 

 

where 𝑘  is the in-plane component of the wavevector, with 𝑘2 = 𝑘𝑥
2 + 𝑘𝑦

2 , 𝜌 =

𝑖√𝜀𝑧/(𝜀𝑥 𝑐𝑜𝑠
2 𝛼 + 𝜀𝑦 𝑠𝑖𝑛

2 𝛼), being 𝛼  the angle between the x axis and 𝒌. 𝜀1  and 𝜀2  are the  

permittivities of the air superstrate (𝜀1 = 1) and SiO2 substrate, respectively, and 𝑙 is the mode 

index. 

 

The real part of the permittivity value of SiO2 is adjusted by comparing the experimental PhPs 

dispersion obtained by scattering-type scanning near-field optical microscopy (s-SNOM)  

measurements on α-MoO3/SiO2 along the [100] crystalline direction of α-MoO3 with that obtained 

from the analytical dispersion from Eq. (27) and transfer-matrix calculations (37), in which the 

imaginary part of the Fresnel reflection coefficient of the system, Im[𝑟𝑝(𝑘, 𝜔)] is computed, being 



  

 
 

𝜔 the incident frequency. As shown in Fig. S6, we find a perfect agreement between the calculated 

analytical dispersion (dashed red lines), transfer-matrix calculations (false color plot), and the 

values extracted from numerical simulations (black dots) and s-SNOM measurements (white dots) 

in α-MoO3 slabs with different thicknesses, namely 166 nm, 142 nm, and 250 nm. We highlight 

that the successful fitting of the polaritonic response in α-MoO3 flakes with different thicknesses  

further validates the obtained dielectric function values for the SiO2 substrate, especially 

considering the strong thickness dependence of hyperbolic polaritons. We also note that we 

neglected the optical losses in the SiO2 substrate. The resulting real part of the dielectric 

permittivity of SiO2 for the whole wavelength range of interest is shown in Fig. S7 (38). 

  

 

 
 

Fig. S6.- Comparison between experimental/theoretical dispersion curves of in-plane PhPs 

in α-MoO3 on SiO2 substrates. False color plot of the imaginary part of the Fresnel reflection  

coefficient, 𝐼𝑚[𝑟𝑝(𝑘, 𝜔)], together with the calculated analytical dispersion from Eq. (1) (dashed 

red lines) and values extracted from s-SNOM measurements (white dots) and full-wave numerical 

simulations (black dots), for α-MoO3 flakes of different thicknesses: 166 nm, 142 nm, and 250 nm. 

 

  
 

Fig. S7.- Infrared dielectric permittivity of SiO2. Real-part of the infrared dielectric 

permittivity of SiO2 used in this work. 



  

 
 

 

S6. Comparison of PhPs launched by an Au disk-like nanoantenna in in-plane isotropic 

and in-plane hyperbolic media. 

 

Fig. S8 shows the near-field full-wave numerical simulations of PhPs launched by a disk-like Au  

nanoantenna on a 165-nm-thick -MoO3 slab with in-plane hyperbolicity (Fig. S8A, with εxx = -

4.13+0.34i; εyy = 1.12+0.08i; εzz = 9.04+0.06i) and an in-plane isotropic medium (Fig. S8B, with 

xx=yy=-4.13+0.34i; εzz = 9.04+0.06i) at an illuminating wavelength 0=11.05 µm. In the in-plane 

isotropic medium, PhPs propagate in all in-plane directions (k wavevectors and Poynting vectors 

S are collinear) leading to a circular wavefront parallel to the nanoantenna’s edges (Fig. S8B). In  

stark contrast, highly anisotropic propagation of PhPs with concave wavefronts is obtained in in-

plane hyperbolic -MoO3 (Fig. S8A), where k wavevectors and Poynting vectors S are generally 

not collinear. Highly directional PhPs in -MoO3 with Poynting vector 𝑆  and wavevectors (𝑘⃗ 𝐻) 

closely aligned along the asymptote of the IFC (see Fig. 1A in the main text), are depicted in Fig. 

S8A with black and green dashed arrows, respectively.  

 

 

 
 

Fig. S8.- Propagation of PhPs launched by a Au disk nanoantenna along the surface of in- 

plane hyperbolic and isotropic media. Simulated near-field distribution, Re(Ez), on disk-like Au 

nanoantennas at incident wavelength 0=11.05 µm in (A) in-plane hyperbolic -MoO3 medium, 

and (B) in-plane isotropic medium. 
 

  

 

 

 



  

 
 

S7. Understanding the focusing of in-plane hyperbolic PhPs using disk-like nanoantennas in 

hyperbolic α-MoO3 

 

As mentioned in the main text of the manuscript, the in-plane focusing of PhPs in a hyperbolic 

medium (-MoO3) by employing a disk-like Au nanoantenna can be understood by considering 

the Huygens’ principle. In this regard, the nanoantenna with in-plane circular geometry can be 

seen as an extended source composed by an infinite number of point-like dipoles situated along its 

edge. Such dipoles launch PhPs in the hyperbolic medium and their wavefronts interfere. The 

resulting near-field interference pattern exhibits convex fringes with large near-field amplitude 

within a triangular region, and a focusing spot is formed at its apex (yellow dashed circle in Fig.  

S9). 

 

To find out the origin of such interference pattern, we perform full-wave numerical simulations 

where a discrete number of point electric dipoles, situated on an α-MoO3 slab along part of a 

semicircle, thus mimicking the nanoantenna’s periphery, are used for the excitation of PhPs. In a  

first approximation, we only consider the bottom part of the nanoantenna from where PhPs can be 

excited by placing point dipoles along its contour. As it can be seen in Fig. S9A-C, the near-field 

distribution observed when a disk-like nanoantenna is employed can be well reproduced by 

considering the interference of highly directional PhPs excited by the point dipoles with Poynting 

vector 𝑆  (black dashed arrows), and wavenumbers 𝑘⃗ 𝐻 (green dashed arrows) closely aligned along  

the asymptote of the IFC (see Fig. 1A in the main text). We note that increasing the number of 

point electric dipoles along the semicircle mimicking the half nanoantenna’s edge does not 

introduce noticeable differences in the interference pattern, as shown in Fig. S9C and Fig. S10. 

Hence, a negligible contribution of PhPs stemming from distant regions at the edges of the 

nanoantenna can be concluded.  

 



  

 
 

 
Fig. S9.- Focusing of in-plane PhPs in α-MoO3 employing Au disk nanoantennas. (A-C) Full-

wave numerical simulations of the near-field distribution, Re(Ez), for a varying number of point 

electric dipoles (launchers of in-plane PhPs) situated above a 165-nm-thick α-MoO3 slab’s surface, 

and along a circle that mimics the in-plane circular periphery of a disk-like Au nanoantenna. (D)  

Same as (a) for the case where a disk-like Au nanoantenna is employed for the excitation of the 

PhPs where a focal spot is marked with a yellow dashed line. An incident wavelength 0=11.05 

µm is used in both cases. 

 



  

 
 

 
 

Fig. S10.- Modelling the focusing of in-plane PhPs in α-MoO3 by employing a discrete 

distribution of point dipoles. Full-wave numerical simulations of the near-field distribution, 

Re(Ez), for a distribution of point electric dipoles (launchers of in-plane PhPs) situated above a  

165-nm-thick α-MoO3 slab’s surface, and along a semicircle that mimics the in-plane circular 

periphery of a disk-like Au nanoantenna. An incident wavelength 0=11.05 µm is used. 

 

S8. Optimizing metal rod-like nanoatennas with concave extremities for the focusing of PhPs 

in in-plane isotropic media.  

 

The optimal nanoantenna’s geometry for the excitation and focusing of PhPs in an in-plane 

isotropic medium is given by a rod-like antenna with a concave circular geometry at its extremity. 

The concave shape is justified by considering that the incident wavelength (11.05 µm) is much 

larger than the lateral dimensions of the metal antenna ( 3 µm). Therefore, following the  

Huygen’s principle, the PhPs launched at the antenna’s extremity are all in phase and interfere 

constructively as they propagate yielding an overall circular wavefront. Hence, the ideal shape of 

the antenna’s extremity must be circular to ensure that the excited PhPs are interfering 

constructively at the focal spot ensuring a minimal FWHM value. 

On the other hand, the radius of the circular shape of the antenna’s extremity is optimized as shown  

in Fig. S11, where full-wave numerical simulations of the near-field, Re(Ez), on rod-like 

nanoantennas with a concave circular extremity of varying radius are depicted. As it can be seen, 

no clear and well-defined focal spot is obtained for a radius value below 0.6 µm. The optimal 

radius value is found to be 1 µm so that a minimal FWHM value of the focal spot is obtained as 

shown in Fig. S12. Additionally, we note that obtained focal distance (0.9 µm) is the shortest  



  

 
 

possible thus ensuring a minimum damping in the propagation of the interfering PhPs at the focal 

spot. 

 

Fig. S11.- Optimization of rod-like Au nanoantennas to focus PhPs in in-plane isotropic 

media. Full-wave numerical simulations of the near-field distribution, Re(Ez), for a rod-like Au 

nanoantenna with a concave circular extremity on top of a 165-nm-thick slab. The radius of the 

circular extremity is varied: (A) 0.2 µm; (B) 0.4 µm; (C) 0.6 µm; (D) 0.8 µm; (E) 1 µm; (F) 1.2 

µm; (G) 1.4 µm; (H) 1.6 µm; (I) 1.8 µm; (J) 2 µm; (K) 2.2 µm; (L) 2.4 µm. The profiles along 

the dashed lines in (A-H) are shown in Fig. S12. 

 

 

 

 



  

 
 

 
 

Fig. S12.- Optimization of the concave extremity’s curvature in rod-like Au nanoantennas in 

in-plane isotropic media. (A) Near-field profiles, Re(Ez), along the dashed lines marked on the 

full-wave numerical simulations shown in Fig. S11. The profiles are shown for several radius  

values of the circular concave extremity of the rod-like nanoantenna. (B) FWHM values of the 

focal spots identified on each of the profiles shown in (A). A minimum FWHM value is found for 

a radius value of 1 µm. 

 

S9. Propagation of in-plane hyperbolic PhPs in α-MoO3. 

 

The in-plane hyperbolic IFC - a slice of the polariton dispersion in the momentum-frequency space 

defined by a plane of constant frequency (ω) – for PhPs in a α-MoO3 slab at infrared frequencies 

(illuminating wavelength 0=11.05 µm) is shown in Fig. S13A. According to this IFC, the 

propagation of PhPs in α-MoO3 is only allowed along specific directions laying within the sectors 

|tan(kx/ky)| < √−εy/εx between the asymptotes of the hyperbola in the (kx, ky) space (x and y 

corresponding to the α-MoO3 [001] and [100] crystalline directions, respectively). Furthermore, 

the Poynting vector 𝑆 , which determines the propagation direction of PhPs in real space and is 

perpendicular to the IFC, is generally non-collinear with the wavevector 𝑘⃗ . This is in stark contrast 

to the propagation of waves in in-plane isotropic media where 𝑆  and 𝑘⃗  are collinear, and thus leads  

to exotic and non-intuitive optical phenomena. Remarkably, when approaching the two asymptotes 

of the IFC, the number of available wavevectors of PhPs largely increases (high-|𝑘⃗ | wavevectors, 

denoted by 𝑘⃗ 𝐻), which yields a highly directional ray-like propagation as shown in Fig. S13A. 

Additionally, the latter leads to the existence of concave wavefronts centered along the y-axis, as 

demonstrated in Fig. S13B, where the real part of the full-wave simulated near-field distribution,  

𝑅𝑒(𝐸𝑧(𝑥, 𝑦)), of a vertical point dipole in close proximity to α-MoO3 is represented (PhPs with 

𝑘⃗ 𝐻  wavevectors are marked with black dashed arrows). For comparison, the case of PhPs 

propagating in a conventional in-plane isotropic medium is shown in the inset to Fig. S13B, where 

divergent PhPs propagation with convex wavefronts is instead observed. 

  



  

 
 

 
 

Fig. S13.- In-plane propagation of PhPs in -MoO3. (A) IFC of in-plane hyperbolic PhPs in a 

165-nm-thick -MoO3 crystal at an illuminating wavelength 0=11.05 µm. PhPs with high-|𝑘⃗ | 

wavevectors propagating closely along the asymptote of the hyperbola are indicated by 𝑘⃗ 𝐻 ,  

together with their Poynting vector 𝑆 . (B) Simulated real part of the near-field distribution, Re(Ez), 

of propagating PhPs excited by a vertically-oriented electric point dipole situated over the surface 

of the -MoO3 crystal. The inset shows the case for an in-plane isotropic medium. 
 

  

S10. Hyperbolic in-plane PhPs focusing in α-MoO3 employing rod-like trapezoidal metal 

nanoantennas: electric field profiles, Re(3), along [100] and [001] crystalline directions at 

the focus. 

 

Fig. S14A shows the experimental near-field image, Re(3), on rod-like trapezoidal Au  

nanoantennas on a 165-nm-thick α-MoO3. A deep-subwavelength focal spot with a FWHM value 

of 225 nm is obtained upon the interference of in-plane high-𝑘⃗  polaritons. The profiles along both 

[001] and [100] in-plane crystalline directions at the focal spot are depicted in Fig. S14B. A similar 

FWHM value is obtained along both directions. 

  

 



  

 
 

 
 

Fig. S14.- Focal spot dimensions along [100] and [001] orthogonal directions in -MoO3. (A) 

Experimental near-field image, Re(3), of rod-like trapezoidal nanoantennas (d=320 nm) on a 165-

nm-thick -MoO3 slab for an illuminating wavelength 0=11.05 µm. (B) Profiles on the near-field  

image in (A) along the crystalline directions [100] (red dashed line in (A)) and [001] (black dashed 

line in (A)). The inset shows a 3D plot of the focal spot in (A). 

 

S11. Optimizing the length of resonant metal Au nanoantennas. 

  

Fig. S15A and S15B show the normalized near-field intensity, |Ez|, on top of a rod-like trapezoidal 

nanoantenna (the antenna is placed on a in-plane hyperbolic -MoO3 slab oriented along the [100] 

crystalline direction in -MoO3) and a rod-like nanoantenna with a concave circular extremity (the 

antenna is placed on a in-plane isotropic slab), respectively, as a function of the rod nanoantennas’ 

length. The thickness of the slabs is set to 165 nm. A resonant rod’s length value of L3 µm and  

L3.2 µm is found for the rod-like trapezoidal nanoantenna and the rod-like nanoantenna with a 

concave circular extremity, respectively. 

 

 
  

Fig. S15.- Optimization of the length of rod-like nanoantennas. (A) Normalized near-field 

intensity, |Ez|, as a function of the length of a rod-like trapezoidal nanoantenna (L) on a 165-nm-



  

 
 

thick in-plane hyperbolic -MoO3 slab for an illuminating wavelength 0=11.05 µm (εxx=-

4.1323+0.3456i; εyy=1.1205+0.0814i; εzz=9.045+0.0644i). The resonance is found for a value L3 

µm. (B) Normalized near-field intensity, |Ez|, as a function of the length of a rod-like nanoantenna 

with a concave circular extremity on a 165-nm-thick in-plane isotropic slab for an illuminating 

wavelength 0=11.05 µm (εxx=εyy=-4.1323+0.3456i; εzz=9.045+0.0644i). The resonance is found 

for a value L3.2 µm. 

 

S12. Calculation of the limiting values for the formation of a focal spot. 

 

In this section, we study the minimum and maximum achievable focal distances for in-plane high-

𝑘⃗  polaritons as a function of the incident wavelength 0 for most of the in-plane hyperbolic 

Reststrahlen band (from 10.5 µm to 11.6 µm). To do that, we perform numerical simulations 

employing a simple model based on two point dipoles separated by a distance d on a 165-nm-thick 

α-MoO3 slab on a SiO2 substrate. The dipoles act as launchers of in-plane polaritons with Poynting 

vector 𝑆  yielding a focal spot upon their constructive interference (see inset to Fig. S16A). The 

wavelength-dependent focal distance (F) is eventually dictated by the wavelength-dependent angle 

of the propagating in-plane high-𝑘⃗  polaritons with respect to the [100] direction in α-MoO3 (θ), 

along which the density of propagating polaritonic modes is maximum (see section S1). On the 

other hand, the length from the dipoles to the focal spot can be easily calculated as 𝐿 =
𝑑

2∙𝑠𝑖𝑛𝜃
, and 

the total propagation length of the highly directional polaritons is defined as 𝐿𝑇 = 𝐿𝑃 ∙ 𝑒, being 𝐿𝑃  

the propagation length of the polaritons (see section S13). In order to obtain a focal spot the 

condition 𝐿𝑇 ≥ 𝐿 must be satisfied. 

 

In Fig. S16A, we represent the values of 𝐿 and 𝐿𝑇 as a function of the illuminating wavelength 0 

for different distances d between the point dipoles. Interestingly, whereas focusing can be obtained  

in the whole wavelengths range for a distance d=0.1 µm (black solid line in Fig. S16A), we find 

the respective minimum wavelengths threshold for the cases of d>0.1 µm (dashed black circles in 

Fig. S16A). As it meets the condition 𝐿𝑇 ≥ 𝐿, we can obtain a focal spot of polaritons in the 

wavelengths range marked with a shaded grey region in Fig. S16A. We note that the higher 

threshold for all d values is given by the TO phonon resonance delimiting the higher limit of the  

Reststrahlen band. 

 

In Fig. S16B, we represent the minimum achievable focal distance 𝐹𝑚𝑖𝑛 as a function of d, being 

the focal distances calculated as 𝐹 =
𝑑

2∙𝑡𝑎𝑛𝜃
. We highlight that a value as low as around 30 nm can 

be obtained for d=0.1 µm.  

 



  

 
 

 
Fig. S16.- Achievable focal distances in -MoO3 employing two point dipoles as launchers of 

in-plane PhPs. (A) Length 𝐿 as a function of the illuminating wavelength 0 (spanning the in-

plane hyperbolic Reststrahlen band) for different separation distances d between two point dipoles 

launching in-plane high- 𝑘⃗  polaritons with Poynting vector (𝑆 ). The total propagation of the 

polaritons, 𝐿𝑇 , is represented by the dashed black curve. The inset shows the geometrical 

relationship between the distance 𝐿 from each of the dipoles to the focal spot (red dashed circle), 

the focal distance 𝐹 and propagation direction of the polaritons forming an angle θ with respect to 

the [100] direction in α-MoO3. The shadowed region marks the wavelengths range for which 

focusing of polaritons is obtained where 𝐿𝑇 ≥ 𝐿 (threshold wavelengths are marked with a dashed 

black circle). (B) Minimum achievable focal distance 𝐹𝑚𝑖𝑛 as a function of the inter-distance d 

between the two point dipoles. The inset shows a zoom for d values up to 1 µm. 

 

S13. Calculation of the propagation length of high-𝒌⃗⃗  polaritons in α-MoO3. 

 

The wavevector 𝑘⃗  and propagation length 𝐿𝑝 of polaritons in α-MoO3 are highly dependent on the 

direction of propagation. Here we calculate the propagation length 𝐿𝑝 of high-𝑘⃗  polaritons in α-

MoO3 along the in-plane direction which features the maximal density of optical states (see Fig. 

S1). To do so, we first assume that the imaginary part of the wavevector is parallel to the Poynting 

vector  𝑆 , i.e., is given by the vector (𝑆𝑥, 𝑆𝑦) which in turn is perpendicular to the IFC, given by 

the real part of the wavevector Re(𝑘). This assumption is reasonable, since the imaginary part of 

the wavevector is related to the decay of polaritons, which happens along its direction of 

propagation, given by the Poynting vector. 

On the other hand, the polaritonic wavevector in a hyperbolic slab is given by Eq. 29: 

 

𝑘(𝜔) =
𝜌

𝑘0𝑑
[arctan (

𝜀1𝜌

𝜀𝑧
) + arctan (

𝜀2𝜌

𝜀𝑧
) + 𝜋𝑙] ,        𝑙 = 0, 1, 2…,                   

 

where 𝑘 is the in-plane wavevector (𝑘2 = 𝑘𝑥
2 + 𝑘𝑦

2), 𝑙 is the counting number of the mode, ε1 and 

ε2 are the permittivities of the superstrate (air) and substrate (SiO2), respectively, d is the thickness 

of the slab and 𝜌 = 𝑖√𝜀𝑧/(𝜀𝑥 cos2 𝜑 + 𝜀𝑦 sin2𝜑). In the latter, 𝜑 is the angle between the x-axis  



  

 
 

([001] direction in α-MoO3) and the in-plane wavevector. By sweeping 𝜑 between 0 and 2, we can 

calculate the polaritonic IFC, which has a hyperbola-like shape in the studied frequency range that 

can be approximated by the expression: 

 

 
𝑞𝑥
2

𝜀𝑦 𝑒𝑓𝑓
+

𝑞𝑦
2

𝜀𝑥 𝑒𝑓𝑓
= 1  (30)  

 

Applying simple geometrical arguments, we can calculate the normal vectors to the hyperbola 

given by Eq. (30). Hence, we can easily find the angle 𝜃 between the propagation direction of the 

high-𝑘⃗  polaritons (Poynting vector) with respect to the x-axis ([100] crystalline direction in α-

MoO3), which is given by:  

 

cot 𝜃 =
𝑆𝑥

𝑆𝑦
=
𝜀𝑥

𝜀𝑦

𝑘𝑥

𝑘𝑦
=
𝜀𝑥

𝜀𝑦
cot𝜑  (31)  

 

The real and imaginary parts of the wavevector can be calculated from the dispersion relation, 
𝑞𝑥
2

𝜀𝑦𝑒𝑓𝑓
+

𝑞𝑦
2

𝜀𝑥 𝑒𝑓𝑓
= 1 (see definitions of 𝜀x𝑒𝑓𝑓 and 𝜀𝑦𝑒𝑓𝑓 in page 6, section S1). In case of small losses  

(𝜀𝑖
′′ ≪ 𝜀𝑖

′, being 𝜀𝑖
′′ and 𝜀𝑖

′the imaginary and real parts, respectively), the real and imaginary parts 

of the wavevector could be found as: 

 

Re[𝑞] =
2𝜀

𝑘0𝑑𝜀𝑥

1

√cos2𝜑−
𝜀𝑦
′

𝜀𝑥
′ sin

2𝜑

, (32) 

  

Im[𝑞] = −Re[𝑞]

𝜀𝑥
′′

𝜀𝑥
′ cos

2 𝜃−
𝜀𝑦
′

2𝜀𝑥
′ (
𝜀𝑥
′′

𝜀𝑥
′ +

𝜀𝑦
′′

𝜀𝑦
′ )sin

2 𝜃

cos𝜃 cos𝜑+
𝜀𝑦
′

𝜀𝑥
′ sin𝜃 sin𝜑

,  (33) 

 

where 𝑞 is the normalized wavevector 𝑞 = 𝑘/𝑘0, with 𝑘0 = 𝜔/𝑐 the free-space light wavevector, 

and 𝜀 =
𝜀1+𝜀2

2
. Finally, the propagation length can be calculated as 𝐿𝑝  =  1/Im[𝑞]. 
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