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S1 Supplementary Notes of "Low case numbers enable long-term
stable pandemic control without lockdowns"
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Supplementary Figure S1: In the stable and metastable regimes, daily new cases approach an equilibrium value
N̂obs
∞ that depends on the level of contacts kt and an external influx of new cases Φt. A: The equilibrium value

N̂obs
∞ increases steeply with higher kt and then destabilizes when surpassing a critical value kcrit

t . Thus, contact reduction has to
be sufficiently strong to keep the case numbers within TTI capacity. A certain degree of external influx Φt can be compensated,
but in general, Φt can put stability at risk. Φt = 1 one daily new case per million is our default parameter for the influx. B: The
N̂obs
∞ is below 10 for a large fraction of combinations of kt and Φt, thus well below the capacity limit of TTI. C: The critical

value kcrit
t , which marks the transition between stable and (meta)stable spread; thus kcrit

t displays the maximal level of contacts
that is allowed while controlling the spread (and stabilize case numbers). If case numbers are below the TTI capacity limit,
a contact level of at most kcrit

t = 61 % is allowed for stabilization (blue). If case numbers, however, are above the TTI limit,
stronger contact reduction is necessary for stabilization, thus allowing a lower level of contacts (kcrit

t = 42 %, gray). Confidence
intervals originate from error propagation of the uncertainty of the underlying model parameters. All model parameters are
listed in Supplementary Table S1 and the full uncertainty analysis is in Fig. S2.

S1.1 Strategies to face COVID-19 differ among countries.
Several South- and East-Asian countries and Australia, and New Zealand have achieved very low case numbers
and even local eradication. These countries reached very low values below one daily new case per million
(median 0.5, Fig. 6 C). If local eradication is successful, these countries can profit from the absorbing state
of zero SARS-CoV-2 infections, i.e. after local eradication, new infection chains are only started if a virus
is de novo carried into the country (67,68). However, the local eradication is constantly put at risk by the
undetected influx of new viruses from abroad, requiring rigorous quarantine for international travel, and –
once the spread got out of control – decisive action to completely stop all infection chains. However, the
more countries adhere to this strategy successfully, the closer one may get to global eradication.

In many European countries over the summer, case numbers were relatively low, typically around ten daily
new cases per million (Fig. 6 B). During that time, contacts were only mildly or moderately restricted, and
containment was complemented by hygiene, masks, and other preventive measures. However, in summer and
autumn, most European countries developed a second wave Fig. S5. The causes are undoubtedly diverse, from
increasing contact rates to seasonal effects and travel-related influx. Seasonal effects alone cannot explain the
second wave, as neighboring countries like Portugal versus Spain or Finland versus Sweden show remarkably
different dynamics (see (35)). Hence, it seems to be possible to maintain an equilibrium at relatively low case
numbers. However, that equilibrium is fragile at high case numbers, and novel waves can emerge at any time.

Sustained high levels of case numbers have been observed in several countries such that TTI probably
could not be performed effectively. Around 130 daily new cases per million have been observed, e.g. in many
(but not all) American countries (median 129.54, Fig. 6 A). It shows that high levels of daily new infections



can be maintained in principle. However the stringency of interventions is similar or higher compared to
other countries (see (36)), and even with these high numbers it will probably take about 200 000/150 = 1333
to 700 000/150 = 4666 days, thus several years, until 20 to 70 % of the population is infected and population
immunity reached – assuming the duration of individual immunity is long enough. That high level of new
infections leads to a considerable death toll, as currently about 1.5 % of the infected individuals would die
(depending on age structure (2,16)). Moreover, containment measures like quarantine become unsustainable
because, if implemented, each one of the 200 daily new infected cases would require the quarantine of 5-50
people (their high-risk contacts) for about ten days, causing 1 - 10 % of the population being in quarantine at
any given day. Therefore the alleged economic and social benefits of such a strategy (3,7) may be questionable.

S1.2 Linear stability analysis and uncertainty propagation
For analyzing the stability of the governing differential equations, namely, whether an outbreak could be
controlled, we studied the linear stability of the system. Moreover, we consider that, within the time-
frame considered for stability purposes, the fraction S

M would remain somewhat constant, we consider the
linearized version of equations (3)– (7), defining a system of delay differential equations for the variables
x(t) =

[
EQ(t); EH(t); IQ(t); IH(t); IH,s(t)

]
. We define matrices A and B as:

A =


−ρ 0 νγR0 0 0
0 −ρ εγR0 γktR0 0
ρ 0 −γ λr λs
0 ρ 0 −γ − λr −λs
0 (1−ξ) ρ 0 0 −γ − λr − λs

 (1)

B =


0 0 0 λeff

r χτ λeff
s χτ

0 0 0 −λeff
r χτ −λeff

s χτ
0 0 0 λeff

r (ξχr + (1−ξ)χs,r) λeff
s (ξχr + (1−ξ)χs,r)

0 0 0 −λeff
r (ξχr + (1−ξ)χs,r) −λeff

s (ξχr + (1−ξ)χs,r)
0 0 0 −λeff

r (1−ξ)χs,r −λeff
s (1−ξ)χs,r

 ηktR0, (2)

where

λeff
r = γλr

λr + γ
, λeff

s = γ

(
λs + λr

γ + λs + λr
− λr
λr + γ

)
. (3)

The equations governing the dynamics for vector x(t) are then presented in their matrix form:

x′(t) = Ax(t) +Bx(t− τ). (4)

We determine the maximum –critical– level of contacts kcrit
t , for which exponential solutions would be

asymptotically stable. Eigenvalues were determined by systematically solving the nonlinear eigenvalues
problem for stability (61), where the solution operation was approximated with a Chebyshev differentiation
matrix (62). Eigenvalues, in this sense, would be solutions of the scalar equation

det
(
−sI +A+ e−sτB

)
= 0 (5)

Noting thatA andB explicitly depend on the model parameters, we numerically explore which combinations
would result in stable, metastable, or unstable case numbers. Concretely, we studied the maximum –critical–
level of contacts allowed for stability kcrit

t in two scenarios; i) low case numbers, and TTI fully operative
(both testing and contact tracing), and ii) high case numbers, above the TTI limit, where testing would be
inefficient and solely symptom driven (λs = λ′s, η = λr = λ′r = 0).



To explore the uni-variate impact different signature parameters have on kcrit
t , we studied the zeros of (5)

as a function of kt using the @fzero MATLAB function (Fig. S2A). Using the same routines and a random
sampling procedure, we propagate uncertainties in the values of these parameters, uni-variate (Fig. S2B), and
multivariate (Fig. S2C).

Supplementary Table S1: Parameter uncertainty propagation. α and β are the shape parameters of the beta distribution.

Parameter Meaning Median 95% CI α β Dist. Units

ξ Asymptomatic ratio 0.32 0.23–0.42 27.5 27.8 beta −
λs Symptom-driven test rate 0.25 0.20–0.31 56 168 beta days−1

ν Registered contacts (quaran-
tined)

0.07 0.03–0.13 8.25 101.8 beta −

η Tracing efficiency 0.66 0.59–0.73 117.9 60.7 beta −
ε Lost contacts (quarantined) 0.05 0.01–0.11 3.8 71.25 beta −

kcrit
t

∣∣∣
TTI

Maximum –critical– level of con-
tacts allowed for stability (with
TTI)

61 % 47–76 % − − − −

kcrit
t

∣∣∣
no TTI

Maximum –critical– level of con-
tacts allowed for stability (with-
out TTI)

42 % 38–47 % − − − −

Supplementary Table S2: Linearly-derived correspondence between contact reduction and the observed reproduction number

kt R̂obs
t (with TTI) R̂obs

t (without TTI)

0.8 1.08 1.26
0.6 0.99 1.13
0.4 0.91 0.98
0.25 0.86 0.88
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Supplementary Figure S2: Propagation of TTI-parameter uncertainties to the critical level of contacts allowed for
stability. As the different parameters involved in our model play different roles, the way their variability propagates to kcrit

t

differs, even when their variability profiles look similar. A: Impact of single-parameter variation on the critical (maximal,
allowed) level of contagious contacts kcrit

t . To evaluate the monotony (direction) of their impact on kcrit
t , we scan their entire

definition range, ignoring the practical feasibility of achieving such values. The solid red line shows the default critical level of
contacts allowed for stability. B: Univariate uncertainties of TTI parameters modeled by beta distributions centered on their
default value, and the resulting distribution of critical fraction of contagious contacts kcrit

t (right column). Results are shown
assuming testing only (light colors) or testing and tracing (dark colors). Solid red lines represent the default value of kcrit

t in
the regime of available TTI capacity. C: Distribution of the critical fraction of contacts arising from multivariate uncertainty
propagation given by the joint of the distributions shown in (A) for testing only (light colors) or testing and tracing (dark colors).
Solid red lines represent the default value of kcrit

t in the regime of available TTI capacity. Results show averages of 100 000
realizations.

S1.3 On the contact reduction required for achieving early population immu-
nity.

In Supplementary Section S1.2, we derived a methodology for obtaining the minimal, critical contact reduction
kcrit
t for which the linear system is asymptotically stable. Such values, however, assume a fully susceptible

population, as we ignore the scaling factor S
M .

The population immunity threshold % represents the fraction of the population that needs to be immunized
for controlling the spread of an infectious disease. It can be expressed in terms of the effective reproduction
number Rt:

% = 1− 1
Rt
. (6)

In the context of our model, Rt can be expressed in terms of the fraction of contagious contacts kt and the
basic reproduction number R0; Rt = ktR0. However, in further stages of an ongoing outbreak, the fraction of
people no longer susceptible would affect the spread. Thus we include also the scaling factor S

M :

Rt = kt
S

M
R0. (7)



Combining both equation (6) and (7), we can express % as

% = 1− 1
kt (1− f)R0

, (8)

assuming a quasi-stationary dynamics for S, and defining f = 1− S
M . Suppose we study the case in which

no major behavioral changes take place. Thus the population immunity threshold % would remain the same.
On the other hand, because of the sole fact of having a progressively increasing immunization among the
population (because of vaccination or post-infection immunity), the maximal allowed level of contacts kcrit

t

will increase. Assuming critical conditions, we use kt = kcrit
t in equation (8):

% = 1− 1
kcrit
t (1− f)R0

, (9)

As we assumed that no behavioral change is taking place, we obtain the population immunity threshold
by only evaluating equation (9) at f = 0.

% = 1− 1
kcrit,0R0

, (10)

where kcrit,0 represents the critical level of contacts allowed in a fully susceptible population, and can be
calculated directly from the linear stability analysis described in S1.2. Subtracting (9) and (10) we obtain an
expression for kcrit

t (f)

kcrit
t (f) = kcrit,0

1− f . (11)

Finally, this expression only depends on the remaining susceptible population (1− f), and on the critical
level of contacts when f = 0. Note that this equation can return values of kcrit

t (f) larger than one, should f
be close enough to one. Following our interpretation of kcrit

t (f), that would mean reaching the population
immunity level, as individuals would be allowed to have even higher levels of contacts than those they had
before COVID-19.

S1.4 Calculating the increase in the level of contacts allowed with increased
immunity

In the previous section, we demonstrated that with increased immunity (acquired by vaccination or post-
infection), the maximum –critical– level of contacts kcrit

t allowed for stability would increase. We also discussed
that, as a first-order approach, the level at which the system is stabilized (namely, N̂obs

∞ ) is determined by
the influx Φt and the distance between the current level of contacts kt and kcrit

t according to the formula

N̂obs
∞ = Φt

kcrit
t − kt

. (12)

We can re-write equation (12) as:

kt = kcrit,0

1− f −
Φt
N̂obs
∞

, (13)

where kt represents the allowed level of contagious contacts so that the distance to the singularity (reached if
kt = kcrit

t ) is kept constant. According to equation (13), increasing levels of immunity will lead to higher
critical level of contacts, thus allowing individuals to steadily increase the level of contagious contacts kt
while still keeping the same equilibrium value for case numbers.

In order to connect this quantity to the predominant circulating variants, we recall the definition of
the hidden reproduction number RHt (which is slightly different from the effective reproduction number Rt



defined in equation (7)). As described in the main text and in (15), RHt accounts for the number of offspring
infections generated by individuals unaware of being infectious, in a fully susceptible population. In that way,
we can express it in terms of kt; RHt = ktR0. Thus, we can rewrite equation (13) in terms of the allowed
hidden reproduction number RHt , just by multiplying it by R0.

RHt = kcrit,0
t R0

1− f − ΦtR0

N̂obs
∞

, (14)

We note a slight coupling between the hidden reproduction number RHt and the dominant variant of
SARS-CoV-2 (through the base reproduction number), so scenarios need to be analyzed separately. Using
the vaccination progress described in Fig. 5 in the main text, our results are summarized in Fig. S3, where
we assume that the TTI and hospital strategies (resp. blue and gray curves) stabilize at 10 and 250 cases
per million people, respectively. The influx term that reduces the allowed hidden reproduction number RHt
highlights the need of combining NPIs aiming to lower case numbers to the TTI regime (where kcrit,0

t is
higher), especially when large fractions of the population remain susceptible (cf. Fig. S3A). However, in the
presence of highly contagious variants, NPIs must remain in place, as even after vaccine rollout the allowed
hidden reproduction number could not surpass the base reproduction number of the variant. Even though
reducing the influx could also help, its effect is little compared with the effect of immunization (cf. Fig. S3B).
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Supplementary Figure S3: As growing immunity increases the maximal allowed number of contacts, freedom
will proportionally increase. Scenarios considering the original, wild-type variant of SARS-CoV-2 (R0 = 3.3) show that
vaccination together with a strategy aiming at low case numbers can make the allowed hidden reproduction number RH

t cross
the variant’s R0, i.e., the population immunity threshold (A). However, considering the higher reproduction number of the
B.1.1.7, restrictions are not allowed to be lifted fully to keep case numbers under control, even if within TTI capacity (B). The
vaccination progress here was adapted from Figure 5 from the main text.

S1.5 Inferring the reproduction number of COVID-19 from Jun to Oct. 2020
We use the Bayesian inference framework on an SIR model presented in our previous work (17) to infer
the daily growth rate λ∗(t). An SIR compartmental model with weekly change points is used whose main
epidemiological parameters are inferred using the PyMC3 package (69). A weekly modulation was applied to
take the weekly reporting structure and weekend delays into account. After inference, a rolling average was
performed on the daily case numbers for comparability and clarity. The observed reproduction number R̂obs

t

can be expressed depending on the effective daily growth rate:

R̂obs
t = (λ∗(t) + 1)4 (15)

This short analysis was performed for Germany (Fig. S4) and other European countries (Fig. S5), which
showed the same metastable behavior, while their case numbers were below a threshold of around 50 cases



per day (per million). A transition into the unstable regime can be seen once case numbers surpass this
threshold.

Supplementary Figure S4: A substantial increase in Germany’s effective growth rate occurred during October,
suggesting that regional TTI capacity limits were exceeded. (A) Before October, the reproduction number was slightly
above one (corresponding to a daily growth rate λ∗ slightly above zero). (B) Observed case numbers were stabilized below 20
daily new cases per million (but still slowly growing) until a transition into the unstable regime took place over ∼ 4 weeks in
October. The time range is adjusted to focus on this tipping point. The inset shows case numbers for the full available time
range. (C) Main central epidemiological parameters with the prior and posterior distribution.

S1.6 On the incorporation of random testing in the TTI scheme

Testing can also be done randomly or randomly combined with a contact tracing strategy. Even though the
number of tests required for such purposes would be enormous, the development of fast, cheap, and reliable
tests offers an exciting alternative to consider.

In this supplementary note, we derive the equations presented in the methods but also including random
testing. As therein described, random testing is assumed to occur at a constant rate λr, which, for default
parameters, reflect the number of tests per day per million people. In that way, it seems reasonable to
consider unfeasible testing rates surpassing λmax

r = 0.1, as it would mean that a 10 % of the population is
tested every day.

S1.6.1 Number of cases observable through testing N test

When random testing is included in the scheme, the solution of equation (19) for the symptomatic and
asymptomatic infections -hidden- would be given by equations (16) and (17).

χs,r =

 ρτ exp (−ρτ) , if ρ ≈ λs + λr
ρ

(λs + λr)− ρ
(exp (−ρτ)− exp (−τ (λs + λr))) , else.

(16)

χr =

 ρτ exp (−ρτ) , if ρ ≈ λr
ρ

λr − ρ
(exp (−ρτ)− exp (−τλr)) , else.

(17)
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Supplementary Figure S5: Comparison of the reproduction number and reported cases as the second wave emerges
in different European countries. For each country, parameters of an SIR model, were fitted to the reported data of the
Our World in Data repository (35), following the procedure presented in (17). (Panels X1) The time-dependent effective
growth rate stays between −0.1 and 0.1 and rises before the tipping point. This corresponds to an effective reproduction number
between 0.7 and 1.3, which matches our preliminary assumptions. The time range is adjusted to focus on the tipping point.
(Panels X2) After a (meta-)stable regime in summer, all selected countries show a rise in case numbers and a tipping point
at around 50 new cases per day per million. The spread self-accelerates, and the cases increase significantly. (Insets) Case
numbers for the full available time range.

If both symptom-based and random testing take place simultaneously, the number of discovered infections
is given by

N test = λrI
H + λsI

H,s (18)

Further, assuming that after reaching N test
max, the testing rates at the overhead pool-sizes would decrease

to λ′s and λ′r, respectively, for symptom-driven and random testing. We further assume that testing resources



would be exclusively allocated to sustain the symptom-driven testing in our default scenario. The overall
testing term N test would be given by:

N test = λr min
(
IH , IHmax

)
+ λ′r max

(
0, IH−IHmax

)
+ λs min

(
IH,s, IH,smax

)
+ λ′s max

(
0, IH,s−IH,smax

)
,

(19)

where IH,smax, I
H
max represent the pool sizes of the symptomatic hidden and total hidden pools, respectively,

at the TTI limit, i.e. λrIHmax + λsI
H,s
max

!= N test
max, reached at time t = t∗. Defining ϕ := IH,s

IH

∣∣∣
t=t∗

, we can
express such magnitudes in term of the maximum capacity N test

max:

IH,smax = ϕN test
max

ϕλs + λr
(20)

IHmax = N test
max

ϕλs + λr
. (21)

The explicit value of ϕ can be obtained numerically in the integration routine or estimated through the
use of the equilibrium values of the differential equations, ϕ = IH,s

∞
IH
∞

(as implemented in our code). The
expression for the symptomatic hidden pool IH,s in the presence of random testing is slightly different;

N test
s = λr min

(
IH,s, IH,smax

)
+ λ′r max

(
0, IH,s−IH,smax

)
+ λs min

(
IH,s, IH,smax

)
+ λ′s max

(
0, IH,s−IH,smax

)
.

(22)

S1.6.2 Random testing: number of cases observable through contact-tracing N traced

Because of TTI, infectious individuals move (or are likely to move) from the hidden to the quarantined
infectious pool before recovering. Therefore, they spend a comparatively shorter amount of time there and,
on average, would not generate the expected amount of offspring infections as some would be prevented. In
the absence of TTI, the average time individuals spend in the infectious compartment is 1

γ . In the presence
of selective TTI, symptomatic individuals would have a greater chance to be tested (and thereby removed)
than the asymptomatic ones. As we explicitly consider compartments for symptomatic and asymptomatic
infections, each pool’s residence times would be different. Noting that symptomatic individuals can be tested
and therefore removed by any of the testing criteria, their residence time would be approximate 1

γ+λs+λr
. In

contrast, the average residence time of asymptomatic individuals would be 1
γ+λr

. Therefore, the fractions of
time that symptomatic and asymptomatic individuals stay unnoticed are respectively

ts = γ

γ + λs + λr
, (23)

and

tr = γ

γ + λr
. (24)

If the daily new cases observed through testing, delayed at the moment of processing, N test
t−τ , are within

the tracing capacity of the health authorities, i.e. N test
t−τ ≤ N test

max, then N traced is defined as

N traced = ηRt−τ

(
IHt−τ trλr + IH,st−τ (tsλs + (ts − tr)λr)

)
, (25)



where Rt−τ represents the effective reproduction number, as defined in equation (7). Otherwise, using
the expressions for IH and IH,s when the TTI capacity is reached derived in the previous section, we can
obtain an effective rate

λeq = λr ((1− ϕ) tr + ϕts) + ϕλsts
λr + ϕλs

. (26)

Therefore, the average amount of positive cases identified by contact tracing in the TTI limit is given by

N traced = ηRt−τN
test
maxλeq. (27)

To sum up the last equations:

N traced =
{
ηRt−τ (IHt−τ trλr + IH,st−τ (tsλs + (ts − tr)λr)) if N test

t−τ ≤ N test
max

ηRt−τN
test
maxλeq else

(28)

S1.7 More analytical insights into the TTI-based metastable regime

One of the crucial aspects of this paper is the description and profit from a metastable regime at low case
numbers. Because of the different compartments at interplay in the dynamics, some metastability aspects
are easier to present using a simplified model. The critical element behind the case-number dependent
metastability is the limited capacity to perform contact tracing of the newly identified infections. We refer
to the TTI limit being reached at a prevalence given by I = Imax. However, the fact that this metastable
equilibrium shows non-zero case numbers arises from a small but non-vanishing influx of externally acquired
infections to the system, which we call Φt.

Aiming to illustrate the dynamics in a minimalist way, we proceed as follows. We modify a plain SIR model
to include hidden and quarantined infections but simplify the TTI scheme to only depend on two parameters:
the TTI capacity referred to the hidden incidence Imax

H and the testing rate λ as long as the capacity is not
exceeded. If the capacity is exceeded the testing rate drops to zero. Infections in the quarantined and hidden
pools spread at rates β1 and β2 respectively, with β1 < β2, and the recovery rate is given by γ:

dS

dt
= −β1I

Q S

M
− β2I

H S

M
− Φt (29)

dIQ

dt
= β1I

Q S

M
− γIQ + min(λIH , λIHmax) (30)

dIH

dt
= β2I

H S

M
− γIH −min(λIH , λIHmax) + Φt. (31)

We observe that the metastable regime’s key ingredients relate to TTI: The system reacts less intensively
to new infections when case numbers are below the TTI capacity, as infection chains are diligently found
and removed. On the other hand, when the TTI system is overwhelmed, infections reproduce at the natural,
hidden rate. Assuming quasi-stationary dynamics for the susceptible pool (S), we can approximate:

d

dIH

(
dIH

dt

)
=


β2

S

M
− γ − λ, if IH < IHmax,

β2
S

M
− γ, otherwise.

(32)

If IH exceeds IHmax, there is the possibility for IH to grow and lead to a more significant number of
cases for a broader range of parameters. On the other hand, when studying the linear system’s equilibrium,



we identify the contributions to the observed number of cases N̂obs
∞ = β1I

Q
∞ + λIH∞. Assuming stationary

conditions for the S
M ≈ 1 limit, we obtain:

N̂obs
∞ = Φt

λ+ γ − β2

γλ

γ − β1
. (33)

Using these simple models, we can better understand the parameters and mechanisms that render the
system unstable or the equilibrium unfeasible. This better understanding of factors contributing to stabilizing
–and respectively destabilizing– the system, helps to guide policies. The transitions and equilibrium levels
have more complex analytical expressions in our model but follow the same spirit: to draw the line between
the stable and unstable spread.

S1.8 Exploring the effect of more compartments for the exposed individuals
Compartmental models coupled with differential equations implicitly assume first-order kinetics, which
translates to exponential emptying or filling the compartments involved in the dynamics. Even though
the expected residence time can be set for each compartment, the exponential shape of the residence time
distribution differs from the true disease dynamics. This difference can be corrected by including extra
compartments, so instead of having an exponential shape, the residence time distribution eventually converges
to a delta distribution around the desired value. Aiming to evaluate how this effect might change our estimates
for kcrit

t , we included three compartments for the exposed fraction of the population (and for hidden and
quarantined infections) presented in Fig. S6. As the latent period would be spent in these compartments, the
residence time in each one is one-third of the original, so that the new transition rate would be ρ′ = 3ρ.
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Supplementary Figure S6: Flowchart of the complete model, including three compartments for the latent period.
A: The solid blocks in the diagram represent different SEIR compartments for both hidden and quarantined individuals. Hidden
cases are further divided into symptomatic and asymptomatic carriers (not shown). Solid lines represent the natural progression
of the infection (contagion, latent period, and recovery). On the other hand, dashed lines account for imperfect quarantine and
limited compliance, external factors, and test-trace-and-isolate policies. B: Comparison between the distribution of kcrit

t for the
single-compartment model and the three compartments model.

Following the same formalism presented in the previous sections, we estimate the fraction of individuals
infected at time t that would remain in the different compartments by the time of contact tracing.

χ1 = exp (−3ρτ) , (34)



χ2 = (3ρ) τ exp (−3ρτ) , (35)

χ3 = (3ρ)2 τ
2

2 exp (−3ρτ) . (36)

Consistently, we can demonstrate that the fraction of individuals staying in the infectious compartment in
the presence of symptom-based testing is given by

χs,r =


(3ρ)3 τ

3

3! exp (−3ρτ) , if 3ρ ≈ λs + λr

(3ρ)3 exp (−3ρτ)
2(λs + λr − 3ρ)

(
τ2 − 2 τ

λs + λr − 3ρ + 2
(λs + λr − 3ρ)2 (1− exp (−τ (λs + λr − 3ρ)))

)
, else.

(37)
To analyze the stability of the extended system with three exposed compartments, we proceeded as

described in Section S1.2. The linear system with delay representing the dynamics is x′(t) = Ax(t)+Bx(t−τ),
with x(t) =

[
EQ1 (t); EQ2 (t); EQ3 (t); EH1 (t); EH2 (t); EH3 (t); IQ(t); IH(t); IH,s(t)

]
, where matrices A and B

are given by:

A =



−3ρ 0 0 0 0 0 νγR0 0 0
3ρ −3ρ 0 0 0 0 0 0 0
0 3ρ −3ρ 0 0 0 0 0 0
0 0 0 −3ρ 0 0 εγR0 γktR0 0
0 0 0 3ρ −3ρ 0 0 0 0
0 0 0 0 3ρ −3ρ 0 0 0
0 0 3ρ 0 0 0 −γ λr λs
0 0 0 0 0 3ρ 0 −γ − λr −λs
0 0 0 0 0 3 (1−ξ) ρ 0 0 −γ − λr − λs


(38)

B =



0 0 0 0 0 0 λeff
r χ1 λeff

s χ1

0 0 0 0 0 0 λeff
r χ2 λeff

s χ2

0 0 0 0 0 0 λeff
r χ3 λeff

s χ3

0 0 0 0 0 0 −λeff
r χ1 −λeff

s χ1

0 0 0 0 0 0 −λeff
r χ2 −λeff

s χ2

0 0 0 0 0 0 −λeff
r χ3 −λeff

s χ3

0 0 0 0 0 0 λeff
r (ξχr + (1−ξ)χs,r) λeff

s (ξχr + (1−ξ)χs,r)
0 0 0 0 0 0 −λeff

r (ξχr + (1−ξ)χs,r) −λeff
s (ξχr + (1−ξ)χs,r)

0 0 0 0 0 0 −λeff
r (1−ξ)χs,r −λeff

s (1−ξ)χs,r


ηktR0, (39)

We obtained new estimates for kcrit
t in the cases of available TTI capacity and overwhelmed TTI capacity.

Comparing these values to those obtained in our original model (with a single exposed compartment), we find
that they do not deviate significantly. Graphically, we see that the distributions share the same properties,
being slightly less skewed in the three-compartment case (see Fig. S6B). In numbers, the relative error we
induce in calculating the critical level of contacts allowed for stability by using a single exposed compartment
instead of three is reported in table S3.



Supplementary Table S3: Linearly-derived correspondence between contact reduction and the observed reproduction number
(7.5e4 realizations).

Percentile

Variable 2.5 % 50 % (median) 97.5 %

kcrit
t

∣∣∣
no TTI

three compartments 37.80 % 42.58 % 46.68 %
one compartment 37.71 % 42.59 % 46.71 %

kcrit
t

∣∣∣
TTI

three compartments 47.19 % 60.60 % 76.39 %
one compartment 46.99 % 60.48 % 76.20 %

Relative error
no TTI 0.22 % 0.03 % 0.07 %
TTI 0.42 % 0.19 % 0.24 %
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