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eMethods: Statistical methods supplement 
 
Adjusted AUC calculation 
 
The AUC, which is defined as the area under the ROC curve, may be alternatively formulated 
as an estimate of the probability that a model correctly predicts a greater risk of mortality for a 
patient who actually died than for a patient who actually survived. Let A denote a randomly 
selected patient, and let B denote a randomly selected patient with the opposite outcome (i.e., if 
patient A died, patient B survived and vice versa). Then, let 	"!		and		"#	be the predicted 
probabilities of in-hospital mortality for patient A and patient B, respectively. We say that the set 
of predictions (', ), "!		, "#	)	are “correct” if the patient who died had a larger predicted 
probability of mortality, “tied” if the predicted probabilities are equal, and “incorrect” if the patient 
who survived had a larger predicted probability of mortality. Then, the AUC is the average of the 
function  +(', ), "!		, "#	)	defined below across all possible randomly selected pairs of 
predictions. 
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In the setting where the data includes patients from multiple hospitals and the mortality rate 
within each hospital is included in the model, the predicted probabilities for patients in a hospital 
with a higher mortality rate will already be larger than the predicted probabilities for patients in a 
hospital with a lower mortality rate. Therefore, there is built in discrimination between patients 
from different hospitals that has nothing to do with the clinical characteristics in the model. We 
only want to estimate the discrimination of the model based on the clinical characteristics 
included, without this artificial boost from including the hospital mortality rate, so we calculate an 
adjusted AUC instead, described below. 
 
The key idea is that we modify the procedure described above so that we only compare pairs of 
patients (A, B) that are in the same hospital; as a result, any systematic differences between 
hospitals are irrelevant to the calculation of the adjusted AUC. More specifically, assume we 
have m hospitals and let Ni denote the number of patients who are in hospital i and N denote 
the total number of patients across all m hospitals. As before, let A denote a randomly selected 
patient.  However, now let B denote a randomly selected patient from the same hospital as 
patient A where patient B has the opposite outcome. We keep all other notation the same as 
above. 
 
We can now calculate AUC(w) as: 
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Where AUCi denotes the within-hospital AUC for hospital i, i.e., 
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AUCi = <[+(', ), "!		, "#	)|A	and	B	in	hospital	/] 
 
So, AUC(w) can be written as: 

AUC(w) = ∑ G'&
'($ 'EF' 
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Therefore, AUC(w) is a weighted average of the individual hospital AUC’s with weights 
proportional to the hospital sample size. 
 
Modeling for web application 
 
We use the following technique to allow for approximate refitting of the model without sharing 
the proprietary dataset when we share the model in the web application. First, we fit the logistic 
regression model described on the mortality outcome. Next, we transformed the predictions 
using a logit transform. If you fit a linear regression model (OLS) on these transformed 
predictions, the coefficients of the OLS model are exactly the same as those in the original 
logistic regression model. The coefficients of an OLS model (H) can be calculated using matrix 
algebra with the design matrix (X) and the outcome vector (y): 
  

H = (I*I)+$(I*J) 
 
We save the matrices G = X’X and B = X’y where y is the nx1 vector of logit transformed 
predictions from the logistic regression model and X is the design matrix.  
 
Then, say that one wishes to estimate the coefficients for a model without creatinine. Let 
creatinine be the fourth column in X and let K∗	be G with the 4th row and column removed and 
)∗	be B with the 4th row removed. Then, we can estimate the coefficients H∗	for a model without 
creatinine as: 
 

H∗ = (K∗)+$()∗) 
 
Thus, we can estimate the coefficients of the OLS model with any subset of the variables that 
we included in our final model.  This method allows us to still share a model that can be refitted 
and updated while maintaining data privacy since we save and share the G and B matrices 
rather than the raw data. 
 
Odds ratio and the hospital mortality rate 
 
Note that the estimated odds ratio of mortality in a hospital with mortality rate L, for a patient 
with other covariates X1 as compared to a patient with other covariates X2, where M is the model 
coefficient for Land H are the coefficients for all other covariates is N-./	0*1"/N-./0*1# =
N0*1"+0*1#. The hospital mortality rate is cancelled out in the odds ratio. Therefore, the estimated 
odds ratio between two patients in the same hospital can be calculated without knowing the 
hospital mortality rate. 
  


