Supplementary information

Higher-order phosphatase–substrate contacts terminate the integrated stress response

In the format provided by the authors and unedited

Supplementary Table 1

REAGENT or RESOURCE	SOURCE	IDENTIFIER		
Bacterial and virus strains				
T7 Express lysY/lq	New England Biolabs	Cat. No. C3013		
CHO-K1 with CHOP::GFP reporter	PMID:11381086	C30		
Chemicals, peptides, and recombinant proteins				
Thapsigargin	Calbiochem	586005-1MG		
Sodium arsenite	Sigma	S7400		
PhosTag reagent	Generon	F4002-10mg		
Latrunculin B	AbCam	#ab14491		
Partially purified (DP grade) bovine pancreatic DNase I	Worthington	#LS002139		
Lipofectamine LTX with Plus reagent	ThermoFisher	A12621		
Streptavidin-coated BLI Probes	Fortebio 18-5020			
Recombinant DNA (first mentioned in the indicate	d figure)			
Recombinant DNA (first mentioned in the indicated UK2514_Smt3_huPPP1R15A_582-621_pSUMO3 (Fig 1b)	d figure) here	UK2514		
Recombinant DNA (first mentioned in the indicated UK2514_Smt3_huPPP1R15A_582-621_pSUMO3 (Fig 1b) UK2699_hR15A_553-624_MBP_rPP1A_7- 300_pSUMO3 (Fig 2a)	d figure) here here	UK2514 UK2699		
Recombinant DNA (first mentioned in the indicated UK2514_Smt3_huPPP1R15A_582-621_pSUMO3 (Fig 1b) UK2699_hR15A_553-624_MBP_rPP1A_7- 300_pSUMO3 (Fig 2a) UK2750_hR15A_553-624-R595E-MBP_rPP1A_7- 300_pSUMO3 (Fig 2a)	d figure) here here here	UK2514 UK2699 UK2750		
Recombinant DNA (first mentioned in the indicated UK2514_Smt3_huPPP1R15A_582-621_pSUMO3 (Fig 1b) UK2699_hR15A_553-624_MBP_rPP1A_7- 300_pSUMO3 (Fig 2a) UK2750_hR15A_553-624-R595E-MBP_rPP1A_7- 300_pSUMO3 (Fig 2a) UK2751_hR15A_553-624-F592A_R595A- MBP_rPP1A_7-300_pSUMO3 (Fig 2a)	d figure) here here here here	UK2514 UK2699 UK2750 UK2751		
Recombinant DNA (first mentioned in the indicated UK2514_Smt3_huPPP1R15A_582-621_pSUMO3 (Fig 1b) UK2699_hR15A_553-624_MBP_rPP1A_7- 300_pSUMO3 (Fig 2a) UK2750_hR15A_553-624-R595E-MBP_rPP1A_7- 300_pSUMO3 (Fig 2a) UK2751_hR15A_553-624-F592A_R595A- MBP_rPP1A_7-300_pSUMO3 (Fig 2a) UK2752_hR15A_553-624-R612A-MBP_rPP1A_7- 300_pSUMO3 (Fig 2)	d figure) here here here here here here	UK2514 UK2699 UK2750 UK2751 UK2752		
Recombinant DNA (first mentioned in the indicated UK2514_Smt3_huPPP1R15A_582-621_pSUMO3 (Fig 1b) UK2699_hR15A_553-624_MBP_rPP1A_7- 300_pSUMO3 (Fig 2a) UK2750_hR15A_553-624-R595E-MBP_rPP1A_7- 300_pSUMO3 (Fig 2a) UK2751_hR15A_553-624-F592A_R595A- MBP_rPP1A_7-300_pSUMO3 (Fig 2a) UK2752_hR15A_553-624-R612A-MBP_rPP1A_7- 300_pSUMO3 (Fig 2) UK2755_hR15A_553-624-F592A_R595E- MBP_rPP1A_7-300_pSUMO3 (Fig 2a)	d figure) here here here here here here here	UK2514 UK2699 UK2750 UK2751 UK2752 UK2755		
Recombinant DNA (first mentioned in the indicated UK2514_Smt3_huPPP1R15A_582-621_pSUMO3 (Fig 1b) UK2699_hR15A_553-624_MBP_rPP1A_7- 300_pSUMO3 (Fig 2a) UK2750_hR15A_553-624-R595E-MBP_rPP1A_7- 300_pSUMO3 (Fig 2a) UK2751_hR15A_553-624-F592A_R595A- MBP_rPP1A_7-300_pSUMO3 (Fig 2a) UK2752_hR15A_553-624-R612A-MBP_rPP1A_7- 300_pSUMO3 (Fig 2) UK2755_hR15A_553-624-F592A_R595E- MBP_rPP1A_7-300_pSUMO3 (Fig 2a) UK2731_helF2a_2-187_WT_pSUMO3 (Fig 2a)	d figure) here here here here here here (Zyryanova et al., 2021)	UK2514 UK2699 UK2750 UK2751 UK2752 UK2755 UK2731		

UK2773_hR15A_583-621_WT_AviTag_H6_pET- 30a(+) (Fig 2d)		UK2773
UK2776_hR15A_583-621_R595E_AviTag_H6_pET- 30a(+)(Fig 2d)		UK2776
UK2779_hR15A_583- 621_F592A_R595E_AviTag_H6_pET-30a(+)(Fig 2d)		UK2779
UK2777_hR15A_583- 621_F592A_R595A_AviTag_H6_pET-30a(+)(Fig 2d)		UK2777
UK1250_FLAG_mR15A_1-653_mCherry (Fig 2)	(Chen et al., 2015)	UK1250
UK1302_FLAG_mR15A_1-653_F585A_mCherry (Fig 2)	(Chen et al., 2015)	UK1302
UK2724_FLAG_mR15A_1- 653_F585A_R588E_mCherry (Fig 2e)	here	UK2724
UK2727_FLAG_mR15A_1-653_R588E_mCherry (Fig 2e)	here	UK2727
UK2775_FLAG_mR15A_1- 653_F585A_R588A_mCherry (Fig 2e)	here	UK2775
UK2788_FLAG_mR15A_1-653_R605A_mCherry (Fig 2e)	here	UK2788
UK2830_p-eGFP-G3BP (Fig 2h)	(Panas et al., 2019)	UK2830
UK1300_FLAG_mR15A_1-653_W575A_mCherry (Fig 3)	(Chen et al., 2015)	UK1300
UK2739_pCEFL_BFP (Fig 3)	Here	UK2739
UK2740_hbActin_2-376_A204E_P243K_pCEFL_BFP (Fig 3)	here	UK2740
UK2741_hbActin_2- 376_A204E_P243K_E336R_pCEFL_BFP (Fig 3)	here	UK2741
UK2720_hR15A_553-624-MBP_rPP1A_7- 300_D64A_pSUMO3 (Fig 4)	here	UK2720
UK2814_hR15A_553-624_R591A_MBP_rPP1A_7- 300_pSUMO3 (Fig 5a)	here	UK2814
UK2815_hR15A_553-624_R594A_MBP_rPP1A_7- 300_pSUMO3 (Fig 5a)	here	UK2815
UK2826_hR15A_553-624_W582A_MBP_rPP1A_7- 300_pSUMO3 (Fig 5a)	here	UK2826

UK2827_hR15A_553- 624_R591A_R594A_MBP_rPP1A_7-300_pSUMO3 (Fig 5a)	here	UK2827
UK2808_FLAG_mR15A_1-653_R584A_mCherry (Fig 5d)	here	UK2808
UK2809_FLAG_mR15A_1-653_R587A_mCherry (Fig 5d)	here	UK2809
UK2733_helF2a_2-187_WT_AviTag_H6_pET-30a(+) (Fig 5f)	(Zyryanova et al., 2021)	UK2733
UK2840_hR15A_553-624_W582A_MBP_rPP1A_7- 300_D64A_pSUMO3 (Fig 5f)	here	UK2840
UK2841_hR15A_553-624_R591A_MBP_rPP1A_7- 300_D64A_pSUMO3 (Fig 5f)	here	UK2841
UK2849_helF2a_2-187_M44A_pSUMO3 (Fig 6b and c)	here	UK2849
UK2850_heIF2a_2-187_K79A_pSUMO3 (Fig 6b and c)	here	UK2850
UK2851_helF2a_2-187_Y81A_pSUMO3 (Fig 6b and c)	here	UK2851
UK2852_helF2a_2-187_D83A_pSUMO3 (Fig 6c)	here	UK2852

Full wwPDB X-ray Structure Validation Report (i)

Mar 28, 2021 – 12:47 am GMT

PDB ID : 7NXV Title : Crystal structure of the complex of DNase I/G-actin/PPP1R15A_582-621 Deposited on : 2021-03-19 Resolution : 2.55 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report.

This report is produced by the wwPDB biocuration pipeline after annotation of the structure.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:

	/	
MolProbity /:	:	4.02b-467
Mogul :	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix) :	:	1.13
EDS :	:	2.18
buster-report :	:	1.1.7(2018)
Percentile statistics :	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac :	:	5.8.0158
CCP4 :	:	7.0.044 (Gargrove)
Ideal geometry (proteins) :	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA) :	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP) :	:	2.18

Overall quality at a glance (i) 1

The following experimental techniques were used to determine the structure: X-RAY DIFFRACTION

The reported resolution of this entry is 2.55 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	(#Entries, resolution range(Å))
R _{free}	130704	$1284 \ (2.56-2.52)$
Clashscore	141614	1332 (2.56-2.52)
Ramachandran outliers	138981	1315 (2.56-2.52)
Sidechain outliers	138945	1315 (2.56-2.52)
RSRZ outliers	127900	1272 (2.56-2.52)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grev segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq =5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1 /	А	375	98%	
1	D	375	% •	_
		515	97%	••
2	В	260	97%	•
2 📕	F	260	99%	·
3	C	40	88% 89	% 5%
		/	Continued on next	паае

oniinuea on nexi page...

2 Entry composition (i)

There are 7 unique types of molecules in this entry. The entry contains 10650 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Actin, alpha skeletal muscle, intermediate form.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
1	А	373	Total 2908	C 1840	N 490 /	O 557	S 21	0	0	0
1	D	371	Total 2895	C 1833	N 488	O 553	S 21	0	0	0

• Molecule 2 is a protein called Deoxyribonuclease-1.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf	Trace
2	В	260	Total C N O S 2049 1298 341 402 8	0	0	0
2	F	260	Total C N O S 2049 1298 341 402 8	0	0	0

• Molecule 3 is a protein called Protein phosphatase 1 regulatory subunit 15A.

Mol	Chain	Residues		Atoms			ZeroOcc	AltConf	Trace
3	С	38	Total	C N	0	\mathbf{S}	0	0	0
	U	50	280	$173 \ / 55$	51	1	0	0	U
3	F	30	Total	C N	Ο	\mathbf{S}	0	0	0
			295	180 61	53	1	0	0	0

• Molecule 4 is an oligosaccharide called 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose.

Mol Chain	Residues	Atoms				ZeroOcc	AltConf	Trace
4 G	2	Total 28	C 16	N 2	O 10	0	0	0

Mol	Chain	Residues	ŀ	4ton	ns		ZeroOcc	AltConf	Trace
4	Н	2	Total 28	C 16	N 2	O 10	0	Ø	0

• Molecule 5 is ADENOSINE-5'-TRIPHOSPHATE (three-letter code: ATP) (formula: $C_{10}H_{16}N_5O_{13}P_3$).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
5	А	1	Total C N O P 31 10 5 13 3	0	0
5	D	1	Total C N O P 31 10 5 13 3	0	0

• Molecule 6 is CALCIUM ION (three-letter code: CA) (formula: Ca).

Mol	Chain	Residues	Atom	is	ZeroOcc	AltConf
6	A	A A	Total 1	Ca 1	0	0
6	В	2	Total 2	Ca 2	0	0
6	D	1	Total 1	Ca 1	0	0
6	F	2	Total 2	Ca 2	0	0

• Molecule 7 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
7	А	13	Total O 13 13	0	0
7	В	8	Total O 8 8	0	0
7	D	11	Total O 11 11	0	0
7	Е	1	Total O 1 1	0	0
7	F	17	Total O 17 17	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Actin, alpha skeletal muscle, intermediate form

5%			
Chain E:	92%	5%	
TRP E583 Q554 L585 A599 L603 L603 N621			
• Molecule 4: 2-a	acetamido-2-deoxy-beta-D-glud	copyranose-(1-4)-2-acetam	uido-2-deoxy-beta-D-glu
Chain G:	100%		V /
NAG1 NAG2			
• Molecule 4: 2-a opyranose	acetamido-2-deoxy-beta-D-gluo	copyranose-(1-4)-2-acetam	nido-2-deoxy-beta-D-glu
Chain H:	50%	50%	-
NAG2 NAG2			
-			
		S* /	
\cup /	<u>WOR</u>	LDWIDE	
	PROTEI	N DATA BANK	

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 21 21 21	Depositor
Cell constants	86.52Å 107.81Å 192.41Å	Depositor
$\mathrm{a,b,c,\alpha,\beta,\gamma}$	90.00° 90.00° 90.00°	Depositor
$\mathbf{P}_{\text{assolution}}(\hat{\mathbf{A}})$	55.11 - 2.55	Depositor
Resolution (A)	55.12 - 2.55	EDS
% Data completeness	99.8 (55.11-2.55)	Depositor
(in resolution range)	99.5 (55.12-2.55)	EDS
R_{merge}	0.32	Depositor
R _{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	1.72 (at 2.55 Å)	Xtriage
Refinement program	REFMAC 5.8.0267	Depositor
D D .	0.216 , 0.248	Depositor
Π, Π_{free}	0.223 , 0.254	DCC
R_{free} test set	2892 reflections (4.89%)	wwPDB-VP
Wilson B-factor $(Å^2)$	34.8	Xtriage
Anisotropy	0.185	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.35, 29.7	EDS
L-test for twinning ²	$ < L >=0.50, < L^2>=0.33$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.92	EDS
Total number of atoms	10650	wwPDB-VP
Average B, all atoms $(Å^2)$	39.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 2.93% of the height of the origin peak. No significant pseudotranslation is detected.

¹Intensities estimated from amplitudes.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: CA, NAG, ATP

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bond	angles	
	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.65	0/2971	0.71	0/4026	
1	D	0.65	0/2958	0.70	0/4008	5
2	В	0.65	0/2095	0.72	0/2853	
2	F	0.65	0/2095	0.72	0/2853	
3	С	0.67	0/284	0.74	0/386	~
3	Е	0.67	0/299	0.72	0/404	r
All	All	0.65	0/10702	0.71	0/14530	

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1/	A 🔨	2908	0	2866	4	0
1	D	2895	0	2860	2	0
2	В	2049	0	1980	4	0
2	F	2049	0	1981	1	0
3	C	280	0	263	2	0
3	Е	295	0	282	1	0
4	G	28	0	25	0	0

Conti	Continued from previous page									
Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes				
4	Н	28	0	25	2	0				
5	А	31	0	12	0	0				
5	D	31	0	12	0	0				
6	А	1	0	0	0	0				
6	В	2	0	0	0	0 -)				
6	D	1	0	0	0	0				
6	F	2	0	0	0	0				
7	А	13	0	0	0	0				
7	В	8	0	0	0	0				
7	D	11	0	0	0	0				
7	Е	1	0	0	0	0				
7	F	17	0	0	0	0				
All	All	10650	0	10306	14	0				

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 1.

All (14) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	A tom-2	Interatomic	Clash	
	Atom-2	distance (Å)	overlap (Å)	
4:H:2:NAG:H3	4:H:2:NAG:H83	1.83	0.58	
1:A:218:TYR:O	1:A:255:PHE:HA	2,12	0.49	
1:D:37:ARG:NH1	1:D:81:ASP:OD1	2.46	0.48	
2:B:26:VAL:HG21	2:B:54:TYR:CD1	2.49	0.47	
1:A:203:THR:HG21	2:B:46:VAL:HG21	1.96	0.47	
1:A:203:THR:O	1:A:207:GLU:HG2	2.15	0.46	
2:B:66:VAL:HB	2:B:82:PHE:HB2	2.01	0.43	
1:D:257:CYS:HB3	1:D:258:PRO:HD3	2.02	0.42	
4:H:2:NAG:H3	4:H:2:NAG:C8	2.49	0.42	
2:B:99:ASP:O	2:B:107:ASP:HA	2.20	0.41	
3:E:599:ALA:O	3:E:603:LEU:HB2	2.19	0.41	
3:C:604:SER:N	3:C:605:PRO:CD	2.83	0.41	
3:C:595:ARG:CZ	2:F:104:CYS:SG	3.09	0.41	
1:A:152:VAL:HA	1:A:298:VAL:O	2.21	0.40	

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	371/375~(99%)	363~(98%)	8 (2%)	0	100	100
1	D	369/375~(98%)	362~(98%)	7 (2%)	0	100	100
2	В	258/260~(99%)	251~(97%)	7 (3%)	0	100	100
2	F	258/260~(99%)	252~(98%)	6 (2%)	0	100	100
3	С	36/40~(90%)	36~(100%)	0	0	100	100
3	Ε	37/40~(92%)	37 (100%)	0	0	100	100
All	All	1329/1350~(98%)	1301 (98%)	28 (2%)	0	100	100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain Analysed		Rotameric	Outliers	Percentiles		
1	A	314/318~(99%)	314~(100%)	0	100	100	
1	D	313/318 (98%)	311~(99%)	2 (1%)	86	92	
2	В	229/229~(100%)	229~(100%)	0	100	100	
2	F	229/229 (100%)	228~(100%)	1 (0%)	91	95	
3	С	24/32~(75%)	24~(100%)	0	100	100	
3	Е	26/32~(81%)	26~(100%)	0	100	100	
All	All	1135/1158~(98%)	1132 (100%)	3~(0%)	92	96	

All (3) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	D	116	ARG
1	D	297	ASN
2	F	221	LEU

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. There are no such sidechains identified.

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

4 monosaccharides are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Tune	ype Chain	in Res	es Link	Bond lengths			Bond angles		
	туре				Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
4	NAG	G	1	2,4	$14,\!14,\!15$	0.32	0	$17,\!19,\!21$	1.21	1 (5%)
4	NAG	G	2	4	14, 14, 15	0.31	0	17,19,21	0.95	1 (5%)
4	NAG	Н	1	2,4	$14,\!14,\!15$	0.33	0	$17,\!19,\!21$	0.79	0
4	NAG	H	2	4	$14,\!14,\!15$	0.42	0	$17,\!19,\!21$	1.75	4 (23%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
4	NAG	G	1	2,4	-	0/6/23/26	0/1/1/1
4	NAG	G	2	4	-	2/6/23/26	0/1/1/1
4	NAG	Н	1	2,4	-	0/6/23/26	0/1/1/1
4	NAG	Н	2	4	-	3/6/23/26	0/1/1/1

There are no bond length outliers.

All (6) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
4	G	1	NAG	C1-O5-C5	4.46	118.24	112.19
4	Н	2	NAG	C2-N2-C7	4.20	128.89	122.90
4	Н	2	NAG	C8-C7-N2	3.46	121.96	116.10
4	G	2	NAG	C1-O5-C5	3.03	116.30	112.19
4	Н	2	NAG	C1-O5-C5	2.95	116.19	1/12.19
4	Н	2	NAG	O5-C5-C6	2.06	110.44	107.20

There are no chirality outliers.

All (5) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
4	G	2	NAG	O5-C5-C6-O6
4	Н	2	NAG	C8-C7-N2-C2
4	Н	2	NAG	O7-C7-N2-C2
4	G	2	NAG	C4-C5-C6-O6
4	Н	2	NAG	C3-C2-N2-C7

There are no ring outliers.

1 monomer is involved in 2 short contacts:

Mol	Chain	Res Type	Clashes	Symm-Clashes
4	Й	2 NAG	2	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for oligosaccharide.

5.6 Ligand geometry (i)

Of 8 ligands modelled in this entry, 6 are monoatomic - leaving 2 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	T	Chain	Res	Link	Bo	ond leng	$_{\rm ths}$	Bond angles		
	туре				Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
5	ATP	D	401	6	26,33,33	0.67	0	$31,\!52,\!52$	0.74	1 (3%)
5	ATP	A	401	6	26,33,33	0.66	0	$31,\!52,\!52$	0.76	1 (3%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
5	ATP	D	401	6	-	<mark>3/18/38/38</mark> /	0/3/3/3
5	ATP	А	401	6	-	3/18/38/38	0/3/3/3

There are no bond length outliers.

All (2) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$\operatorname{Ideal}(^{o})$
5	D	401	ATP	C5-C6-N6	2.20	123.69	120.35
5	А	401	ATP	C5-C6-N6	2,19	123.68	120.35

There are no chirality outliers.

All (6) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
5	А	401	ATP	PG-O3B-PB-O1B
5	D	401	ATP	PG-O3B-PB-O1B
5	А	401	ATP	PB-O3B-PG-O1G
5	А	401	ATP	PG-O3B-PB-O2B
5	D	401	ATP	PG-O3B-PB-O2B
5	D	401	ATP	PB-O3B-PG-O1G

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95th percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	$<$ RSRZ $>$	#RSRZ>2	$OWAB(Å^2)$	Q<0.9
1	А	373/375~(99%)	0.20	4 (1%) 80 85	27, 39, 63, 85	0
1	D	371/375~(98%)	0.08	2 (0%) 91 94	27, 38, 52, 62	0
2	В	260/260~(100%)	-0.02	1 (0%) 92 96	27, 33, 43, 54	0
2	F	260/260~(100%)	-0.05	0 100 100	25, 33, 45, 55	0
3	С	38/40~(95%)	0.78	2 (5%) 26 31	41, 56, 74, 77	0
3	E	39/40~(97%)	0.51	2 (5%) 28 33	35,47,84,91	0
All	All	$\boxed{1341/1350~(99\%)}$	0.10	11 (0%) 86 89	25, 36, 58, 91	0

All (11) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	D	270	GLU	2.8
3	Е	585	/LEU	2.8
1	А	268	GLY	2.4
1	D	69	TYR	2.3
1	А	199	SER	2.3
3	Е	621	ASN	2.2
1	A /	323	SER	2.2
2	B	156	GLN	2.1
1	Á	166	TYR	2.1
3	C	605	PRO	2.1
3	C	617	ALA	2.0

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

_									· / ·
	Mol	Type	Chain	\mathbf{Res}	Atoms	RSCC	RSR	$B-factors(A^2)$	$\mathbf{Q}{<}0.9$
	4	NAG	Н	2	14/15	0.69	0.30	75,79,82,82	0 /
	4	NAG	Н	1	14/15	0.82	0.23	52, 56, 58, 63	0
	4	NAG	G	2	14/15	0.87	0.20	44,46,48,48	0
	4	NAG	G	1	14/15	0.90	0.17	$39,\!40,\!42,\!42$	0
_							. /		/

The following is a graphical depiction of the model fit to experimental electron density for oligosaccharide. Each fit is shown from different orientation to approximate a three-dimensional view.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-factors}(\mathrm{\AA}^2)$	Q<0.9
6	CA	F	302	1/1	0.85	0.06	$61,\!61,\!61,\!61$	0
6	CA	В	302	1/1	0.92	0.09	$52,\!52,\!52,\!52$	0
6	CA	В	301	1/1	0.93	0.12	42,42,42,42	0
6	CA	F	301	1/1	0.98	0.06	33,33,33,33	0
5	ATP	A	401	31/31	0.98	0.12	$25,\!28,\!31,\!32$	0
5	ATP	D	401	31/31	0.99	0.12	$27,\!28,\!29,\!29$	0
6	CA	D	402	1/1	0.99	0.10	27,27,27,27	0
6	CA	A	402	1/1	1.00	0.10	$26,\!26,\!26,\!26$	0
/			/					

The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.

6.5 Other polymers (i)

There are no such residues in this entry.

Full wwPDB EM Validation Report

Mar 26, 2021 – 03:33 pm GMT

PDB ID	:	7NZM
EMDB ID	:	EMD-12665
Title	:	Cryo-EM structure of pre-dephosphorylation complex of phosphorylated
		eIF2alpha with trapped holophosphatase (PP1A_D64A/PPP1R15A/G-actin
		DNase I
Deposited on	:	2021-03-24
Resolution	:	3.96 Å(reported)
Based on initial models	:	2A42, 4MOV, 1KL9

This is a Full wwPDB EM Validation Report.

This report is produced by the wwPDB biocuration pipeline after annotation of the structure.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	$0.0.0\mathrm{dev}75$
Mogul	:	1.8.5 (274361), CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.18

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: *ELECTRON MICROSCOPY*

The reported resolution of this entry is 3.96 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length		Quality of a	chain	
1	E	186	12%	73%		22% • •
2	В	294	16%	68%		32%
3	A	375	•	82%		16% •
4	D	260	11%	74%		24% •
5	С	444	10% •	87	%	
6	F	2	50% 50%		50%	

2 Entry composition (i)

There are 8 unique types of molecules in this entry. The entry contains 9109 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Eukaryotic translation initiation factor 2 subunit 1.

Mol	Chain	Residues		ŀ	Atom	s /	/		AltConf	Trace
1	Е	178	Total 1392	C 887	N 232	О 267	P \$ 1 {	S 5	0	0

• Molecule 2 is a protein called Serine/threonine-protein phosphatase PP1-alpha catalytic subunit.

Mol	Chain	Residues	Atoms AltConf	Trace
2	В	293	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comm	lent	Reference
В	64	ALA	ASP	engineered r	nutation	UNP P62139

• Molecule 3 is a protein called Actin, alpha skeletal muscle, intermediate form.

Mol	Chain	Residues		At	oms			AltConf	Trace
3	А	370	Total 2884	C 1827	N 487	O 549	S 21	0	0

• Molecule 4 is a protein called Deoxyribonuclease-1.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
4	D	257	Total 2024	C 1282	N 337	O 397	S 8	0	0

• Molecule 5 is a protein called Protein phosphatase 1 regulatory subunit 15A,Maltose/malto dextrin-binding periplasmic protein.

Mol Chain	Residues		Ato	\mathbf{ms}			AltConf	Trace
5 C	59	Total 437	C 271	N 88	0 77	S 1	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
С	625	GLN	-	linker	UNP 075807

• Molecule 6 is an oligosaccharide called 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	I	Aton	ns	/	AltConf	Trace
6	F	2	Total 28	C 16	N 2	0 _10	0	0

• Molecule 7 is MANGANESE (II) ION (three-letter code: MN) (formula: Mn) (labeled as "Ligand of Interest" by depositor),

Mol	Chain	Residues	Ato	ns	AltConf
7	В	1	Total 1	Mn 1	0

• Molecule 8 is ADENOSINE-5'-TRIPHOSPHATE (three-letter code: ATP) (formula: $C_{10}H_{16}N_5O_{13}P_3$).

Mol	Chain	Residues		Δta	nme			AltConf
Q	Λ	1	Total	C	N	0	Р	0
0	А		31	10	5	13	3	U
								/
							/	
						/		
						/		
				/				¥ /
			/					
						J'		
				~			/	
		/			Y			
							/	
					/			
	/				/			
	R							
	\geq							
						RLDW	TDE	
					PROTE	EIN DAT	A BANK	

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 3: Actin, alpha skeletal muscle, intermediate form

24%

Chain D:

74%

• Molecule 5: Protein phosphatase 1 regulatory subunit 15A,Maltose/maltodextrin-binding periplasmic protein

87%

Chain C: 10% .

• Molecule 6: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-gluc opyranose

Chain F:

50%

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, C1	Depositor
Number of particles used	60413	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION; Warp estimated the	
	CTF parameters and passed them on to	
	CryoSPARC to perform CTF correction.	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	46.84	Depositor
Minimum defocus (nm)	-1000	Depositor
Maximum defocus (nm)	-2800	Depositor
Magnification	130000	Depositor
Image detector	GATAN K3 BIOQUANTUM (6k x 4k)	Depositor
Maximum map value	0.166	Depositor
Minimum map value	-0.031	Depositor
Average map value	0.001	Depositor
Map value standard deviation	0.007	Depositor
Recommended contour level	0.05	Depositor
Map size (Å)	221.68001, 221.68001, 221.68001	wwPDB
Map dimensions	340, 340, 340	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	0.652, 0.652, 0.652	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: SEP, ATP, NAG, MN

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Chain Bond lengths		Bond angles	
	Cnain	RMSZ	# Z > 5	RMSZ	# Z > 5
1	Е	0.36	0/1404	0.61	1/1899~(0.1%)
2	В	0.34	0/2366	0.67	1/3204 (0.0%)
3	А	0.38	0/2947	0.56	0/3993
4	D	0.35	0/2070	0.59	1/2821~(0.0%)
5	С	0.31	0/446	0.47	0/608
All	All	0.36	0/9233	0.60	3/12525(0.0%)

There are no bond length outliers,/

All (3) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
4	D	165	LEU	CA-CB-CG	6.04	129.20	115.30
1	Е	162	LEU	CA-CB-CG	5.73	128.48	115.30
2	В	75	LEU	CA-CB-CG	5.65	128.29	115.30

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1 E	1392	0	1325	34	0
2 B	2312	0	2234	72	0
3 A	2884	0	2849	46	0

Conti	Continued from previous page						
Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes	
4	D	2024	0	1949	45	0	
5	С	437	0	420	18	0	
6	F	28	0	25	1	0	
7	В	1	0	0	0	0	
8	А	31	0	12	4 /	0	
All	All	9109	0	8814	194	0	
				-			

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 11.

All (194) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
3:A:250:ILE:HD11	3:A:253:GLU:HB2	1.50	0.92
3:A:299:MET:HB3	3:A:304:THR:HG21	1.60	0.84
2:B:95:ASP:OD2	2:B:125:HIS:ND1	2.13	0.81
2:B:60:LYS:NZ	2:B:284:SER:OG	2.18	0.75
2:B:131:ASN:HB2	2:B:136:PHE:HB3	1.69	0.73
4:D:202:THR:HG21	4:D:212:ASP:H	1.53	0.72
1:E:6:ARG:NH2	1:E:127:GLU:OE2	2.23	0.72
4:D:196:ILE:HD13	4:D:214:ILE:H	1.53	0.71
2:B:243:LEU:HD13	2:B:262:GLN:HA	1.72	0.70
4:D:38:GLN:HE22	4:D:168:ASP:H	1.40	0.68
1:E:53:ARG:O	1:E:57:SER:OG	2.12	0.68
4:D:242:SER:OG	4:D:244:GLU:OE1	2.12	0.68
2:B:282:MET:HB2	2:B:294:GLN:HB2	1.76	0.67
4:D:131:VAL:HB	4:D:165:LEU:HD13	1.76	0.67
2:B:209:PRO:HG3	2:B:246:ARG:HH12	1.62	0.65
5:C:565:HIS;HB3	5:C:567:LEU:HD13	1.79	0.65
2:B:38:LEU:O	2:B:42:SER:OG	2.11	0.65
1:E:114:VAL:HG12	1:E:129:LEU:HD21	1.77	0.64
3:A:144:ALA:O	5:C:595:ARG:NH1	2.32	0.63
2:B:282:MET:O	2:B:294:GLN:N	2.30	0.62
2:B:257:PHE:CD1	2:B:261:ARG:HA	2.34	0.62
2:B:75:LEU:HG	2:B:282:MET:SD	2.40	0.60
1:E:117:VAL:HG11	1:E:174:VAL:HG11	1.83	0.59
1:E:132:ARG:HD2	/1:E:166:ASP:HB3	1.84	0.59
3:A:338:SER:HA	3:A:341:ILE:HG22	1.83	0.59
4:D:205:THR:HG23	4:D:207:THR:H	1.67	0.59
3:A:236:LEU:O	3:A:254:ARG:NH1	2.35	0.59
2:B:126:GLU:OE1	2:B:126:GLU:N	2.36	0.58

Continued	from	nrevious	naae

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å
3:A:107:GLU:OE1	3:A:116:ARG:NE	2.36	0.58
4:D:245:MET:SD	6:F:2:NAG:H81	2.43	0.58
3:A:24:ASP:OD2	3:A:28:ARG:NH1	2.36	0.58
3:A:143:TYR:HB3	5:C:603:LEU:HD21	1.85	0.58
2:B:35:ILE:HA	2:B:38:LEU:HD13	1.86	0.58
4:D:69:GLU:O	4:D:71:LEU:HD12	2.03	0.57
4:D:164:MET:HB2	4:D:221:LEU:HD11	1.86	0.57
1:E:138:ASP:OD1	1:E:145:GLY:N	2.36	0.57
2:B:62:CYS:SG	2:B:75:LEU:HD11	2,43	0.57
2:B:65:ILE:HD11	2:B:89:PHE:CD2	2.39	0.57
2:B:24:PRO:HA	2:B:70:TYR:CZ	2.39	0.57
1:E:53:ARG:HG3	1:E:54:ARG:H	1.69	0.57
3:A:78:ASN:ND2	3:A:81:ASP:OD1	2.37	0.57
4:D:242:SER:HB3	4:D:245:MET:CE	2.34	0.57
2:B:189:ILE:HD11	2:B:200:LEU:HD23	1.87	0.57
2:B:243:LEU:HB3	2:B:262:GLN:O	2.04	0.57
3:A:157:ASP:OD1	8:A:401:ATP:Ø3'	2.18	0.56
2:B:264:VAL:HG11	2:B:283:MET:HE2	1.87	0.56
1:E:51:SEP:O3P	2:B:124:ASN:ND2	2.38	0.56
1:E:18:VAL:HG12	1:E:71:VAL:HB	1.88	0.55
2:B:295:ILE:O	5:C:565:HIS:HB2	2.06	0.55
1:E:50:LEU:HD23	2:B:221:ARG:HH22	1,72	0.55
3:A:257:CYS:SG	3:A:258:PRO:HD3	2.47	0.55
2:B:234:LYS:O	2/B:238:LYS:HG3	2.07	0.54
2:B:295:ILE:HD12	5:C:562:VAL:HG13	1.89	0.54
3:A:193:LEU:HD21	3:A:250:ILE:HD13	1.89	0.54
4:D:38:GLN:NE2	4:D:168:ASP:H	2.05	0.54
2:B:219:ASN:HB2	2:B:225:PHE:C	2.28	0.53
3:A:46:GLY;H	4:D:94:THR:HG23	1.73	0.53
4:D:9:ARG:HG3	4:D:9:ARG:HH11	1.73	0.53
4:D:48:VAL:HG22	4:D:81:LEU:HD12	1.89	0.53
4:D:117:LYS:HB2	4:D:158:TRP:CH2	2.42	0.53
1:E:51:SEP:O2P	2:B:125:HIS:NE2	2.42	0.53
2:B:297:LYS:HE3	5:C:564:VAL:HB	1.90	0.52
1:E:29:MET:HG2	2:B:133:ILE:HG23	1.90	0.52
2:B:219:ASN:HB2	2:B:225:PHE:CA	2.40	0.52
4:D:118:PHE:CE2	4:D:130:ILE:HD12	2.44	0.52
3:A:99:GLU:HA	/3:A:130:PRO:HD3	1.92	0.52
3:A:304:THR:O	3:A:304:THR:HG22	2.10	0.52
3:A:14:SER:HA	3:A:71:ILE:HB	1.91	0.52
4:D:66:VAL:HB	4:D:82:PHE:HB2	1.92	0.52

Commuea from preo	ious puge	T , , •	
Atom-1	Atom-2	$\begin{array}{c} \text{Interatomic}\\ \text{distance} (\text{\AA}) \end{array}$	overlap (Å)
2:B:81:PHE:O	2:B:84:GLU:HG2	2.10	0.51
4:D:136:ALA:HB3	4:D:139:ASP:HB2	1.92	0.51
1:E:7:PHE:CD2	1:E:104:SER:HB3	2.45	0.51
4:D:70:PRO:HB2	4:D:77:LYS:HD3	1.92	0.51
3:A:196:ARG:NH1	3:A:249:THR:O	2.43	0.51
2:B:246:ARG:HH11	2:B:263:LEU:HD21	1.75	0.51
1:E:162:LEU:HD23	1:E:162:LEU:O	2.11	0.51
1:E:153:LYS:O	1:E:156:VAL:HG22	2.11	0.50
1:E:20:MET:HA	1:E:69:CYS:HA	1,94	0.50
4:D:201:ASP:OD1	4:D:203:THR:HG22	2.12	0.50
3:A:196:ARG:HD3	3:A:198:TYR:HE2	1.76	0.50
2:B:70:TYR:O	2:B:74:ARG:HG3	2.11	0.49
3:A:139:VAL:HA	3:A:165:ILE:HD13	1.93	0.49
4:D:8:ILE:HD13	4:D:25:ILE:HD11	1.94	0.49
3:A:215:LYS:HZ1	3:A:240:TYR:HE2	1.60	0.49
2:B:246:ARG:HD2	2:B:247:ALA:N	2.27	0.49
3:A:349:LEU:HD22	5:C:600:GLN:HG3	1.93	0.49
1:E:120:TYR:CD1	1:E:126:LEU:HA	2.47	0.49
3:A:230:ALA:HA	3:A:236:LEU:HD23	1.94	0.49
2:B:107:LEU:HB3	2:B:120:LEU:HD11	1.93	0.49
4:D:242:SER:HB3	4:D:245:MET:HE2	1.95	0.49
4:D:130:ILE:HG12	4:D:164:MET:HE1	1,95	0.48
4:D:4:ALA:HB3	4:D:35:VAL:HG23	1.94	0.48
1:E:114:VAL:CG1	1:É:129:LEU:HD21	2.44	0.48
2:B:281:ALA:HA	2:B:294:GLN:O	2.14	0.48
4:D:196:ILE:HD13	4:D:214:ILE:N	2.24	0.48
2:B:258:PHE:CE1	2:B:263:LEU:HB3	2.49	0.47
1:E:167:LEU:HD/23	1:E:171:GLU:HB3	1.96	0.47
2:B:16:LEU:HD23	2:B:28:VAL:HG11	1.95	0.47
4:D:10:THR:HB	4:D:41:ARG:NH2	2.30	0.47
2:B:61:ILE:CG2	2:B:283:MET:HB2	2.44	0.47
3:A:349:LEU:HD23	5:C:596:ILE:HG23	1.96	0.47
4:D:4:ALA:HA	4:D:255:VAL:O	2.15	0.47
4:D:171:ALA:O	4:D:211:TYR:HA	2.14	0.47
2:B:27:ASN:HB3	2:B:29:GLN:OE1	2.15	0.47
4:D:191:THR:O	4:D:222:GLN:NE2	2.47	0.47
2:B:56:GLU:HG3	2:B:57:ALA:O	2.14	0.47
2:B:209:PRO:HD3	2:B:246:ARG:HH22	1.80	0.47
4:D:90:SER:HB2	4:D:119:SER:HB3	1.97	0.47
2:B:150:LYS:O	2:B:153:THR:HG22	2.15	0.47
3:A:202:THR:HA	4:D:13:GLU:OE1	2.15	0.46

Continuea from previous page							
Atom-1	Atom-2	Interatomic	Clash				
		distance (A)	overlap (A)				
4:D:99:ASP:OD1	4:D:107:ASP:HB2	2.14	0.46				
2:B:257:PHE:HD1	2:B:261:ARG:HA	1.81	0.46				
2:B:273:CYS:SG	5:C:579:GLN:HA	2.56	0.46				
4:D:64:HIS:CD2	4:D:86:PRO:HG3	2.52	0.45				
4:D:137:PRO:HA	4:D:170:ASN:ND2	2.31	0.45				
4:D:16:MET:CE	4:D:51:LEU:HD13	2.46	0.45				
5:C:608:THR:HG23	5:C:611:ALA:H	1.81	0.45				
3:A:214:GLU:HA	8:A:401:ATP:N1	2.31	0.45				
3:A:214:GLU:HG2	8:A:401:ATP:C4	2,52	0.45				
3:A:217:CYS:HG	3:A:258:PRO:HD3	1.82	0.45				
1:E:107:VAL:O	1:E:111:LEU:HD23	2.17	0.45				
3:A:217:CYS:SG	3:A:258:PRO:HD3	2.56	0.45				
4:D:36:LEU:HD11	4:D:132:ALA:HB2	1.98	0.45				
1:E:29:MET:HE1	5:C:587:ARG:HA	1.98	0.45				
2:B:24:PRO:HD3	5:C:571:ALA:HB1	1.99	0.44				
2:B:101:LEU:HD13	2:B:144:TYR:CE2	2.52	0.44				
2:B:258:PHE:HE1	2:B:263:LEU:HD13	1.81	0.44				
3:A:71:ILE:HD11	3:A:82:MET:SD	2.56	0.44				
4:D:78:GLU:N	4:D:78:GLU:OE1	2.50	0.44				
2:B:82:PRO:HA	2:B:83:PRO:HA	1.61	0.44				
2:B:141:LYS:HB2	2:B:146:ILE:HD11	2.00	0.44				
2:B:177:SER:HA	2:B:225:PHE:HZ	1,81	0.44				
1:E:7:PHE:O	1:E:135:TRP:NE1	/2.31	0.44				
2:B:14:GLY:O	2:B:18:GLU:HG3	2.18	0.44				
4:D:164:MET:HG2	4:D:216:VAL:HG12	2.00	0.44				
1:E:120:TYR:HD1	1:E:126:LEU:HA	1.83	0.44				
1:E:7:PHE:HD2	1:E:104:SER:HB3	1.82	0.43				
3:A:214:GLU:HG2	8:A:401:ATP:C5	2.53	0.43				
2:B:203:ASP:CG	2:B:225:PHE:HE1	2.21	0.43				
3:A:317:ILE;HG22	3:A:327:ILE:HD13	2.00	0.43				
3:A:166:TYR:CD1	3:A:167:GLU:HG2	2.54	0.43				
3:A:217:CYS:SG	3:A:218:TYR:N	2.91	0.43				
3:A:123:MET:HE3	3:A:129:VAL:HG11	2.01	0.43				
5:C:603:LEU:HD12	5:C:603:LEU:HA	1.77	0.43				
2:B:17:LEU:HD11	2:B:110:TYR:OH	2.18	0.43				
2:B:64:ALA:O	2:B:268:SER:HB2	2.19	0.43				
2:B:123:GLY:HA2	2:B:173:HIS:CD2	2.52	0.43				
1:E:11:LYS:C	1:E:12:PHE:HD1	2.21	0.43				
1:E:55:ILE:HG23	1:E:56:ARG:H	1.83	0.43				
3:A:285:CYS:HB3	3:A:289:ILE:HD11	2.00	0.43				
4:D:242:SER:HB3	4:D:245:MET:HE1	2.00	0.43				
			-				

e ontontaca ji ont pice	roue page		/
Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:E:21:VAL:HG12	1:E:35:LEU:HD23	2.00	0.43
1:E:127:GLU:HG3	1:E:135:TRP:CZ3	2.54	0.43
2:B:66:HIS:CD2	2:B:92:ASP:HB3	2.53	0.43
2:B:104:ILE:HD11	2:B:156:PHE:HE1	1.83	0.43
2:B:216:TRP:HZ3	2:B:225:PHE:CE2	2.36	0.43
3:A:203:THR:HG21	4:D:44:HIS:HB2	2.00	0.43
4:D:203:THR:HB	4:D:209:CYS:SG	2.58	0.43
3:A:155:SER:O	3:A:303:THR:HG22	2.18	0.43
1:E:29:MET:SD	5:C:590:SER:HB2	2,58	0.42
3:A:215:LYS:NZ	3:A:240:TYR:HE2	2.16	0.42
2:B:248:HIS:O	2:B:249:GLN:HG2	2.19	0.42
4:D:89:VAL:HG23	4:D:119:SER:O	2.20	0.42
2:B:170:PHE:O	2:B:244:ILE:HG13	2.20	0.42
2:B:250:VAL:HG22	2:B:267:PHE:CE2	2.55	0.42
2:B:295:ILE:HD12	5:C:562:VAL:CG1	2.50	0.42
4:D:99:ASP:O	4:D:107:ASP:HA	2.19	0.42
3:A:178:LEU:HG	3:A:180:LEU:HB3	2.02	0.42
1:E:53:ARG:NH2	2:B:130:ILE:HD11	2.35	0.42
1:E:45:ILE:O	1:E:45:ILE:HG13	2.19	0.42
4:D:117:LYS:HE3	4:D:158:TRP:CE2	2.55	0.42
2:B:92:ASP:OD1	2:B:125:HIS:HD2	2.03	0.42
2:B:173:HIS:CE1	2:B:248:HIS:HB2	2,55	0.42
1:E:45:ILE:HG22	1:E:84:LEU:HB2	/2.02	0.42
2:B:43:ARG:HH12	2:B:154:ASP:HB3	1.85	0.42
3:A:132:MET:HE3	3:A:132:MET:HB3	1.94	0.41
4:D:67:VAL:HA	4:D:80:TYR:O	2.20	0.41
3:A:148:THR:HG22	5:C:603:LEU:HD12	2.02	0.41
5:C:592:PHE:O	5:C:596:ILE:HD12	2.20	0.41
1:E:21:VAL:HG11	1:E:84:LEU:HD13	2.01	0.41
1:E:140:LYS:HE2	1:E:141:TYR:CE2	2.55	0.41
2:B:60:LYS:O	2:B:87:TYR:HA	2.20	0.41
2:B:66:HIS:H	2:B:93:TYR:HA	1.86	0.41
2:B:66:HIS:NE2	2:B:92:ASP:HB3	2.36	0.41
2:B:164:ILE:HG12	2:B:170:PHE:HD1	1.86	0.41
2:B:233:ALA:O	2:B:236:LEU:HG	2.21	0.41
3:A:313:MET:HB2	3:A:329:ILE:HD13	2.03	0.41
3:A:123:MET:CE	3:A:129:VAL:HG11	2.50	0.41
3:A:335:ARG:HA	/3:A:338:SER:HB3	2.03	0.40
5:C:596:ILE:HD12	5:C:596:ILE:H	1.85	0.40
2:B:13:ILE:HD11	2:B:109:ALA:HB1	2.03	0.40
3:A:162:ASN:HD22	3:A:278:THR:HA	1.86	0.40

<i>a</i> 1	e		
Continued	trom	previous	<i>paae</i>
0 0 1 0 0 0 0 0 0 0 0	1.0.1.0	r	rogorn

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
3:A:369:ILE:HD12	3:A:372:ARG:HE	1.86	0.40
2:B:219:ASN:HD22	2:B:225:PHE:C	2.20	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	Ε	175/186~(94%)	169 (97%)	6 (3%)	0	100	100
2	В	291/294~(99%)	272 (94%)	19 (6%)	0	100	100
3	А	368/375~(98%)	360 (98%)	8 (2%)	0	100	100
4	D	255/260~(98%)	249 (98%)	6(2%)	0	100	100
5	С	57/444~(13%)	52 (91%)	5 (9%)	0	100	100
All	All	1146/1559 (74%)	1102 (96%)	44 (4%)	0	100	100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (1)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol Chain	Analysed	Analysed Rotameric Outliers			
1 E	141/170~(83%)	141 (100%)	0	100 100	
2 B	246/258~(95%)	245~(100%)	1 (0%)	91 94	

Conu	nuea jron	i previous page				
Mol	Chain	Analysed	Analysed Rotameric Out		Percentile	
3	А	311/318~(98%)	311~(100%)	0	100	100
4	D	226/229~(99%)	226 (100%)	0	100	100
5	С	38/354~(11%)	38 (100%)	0	100	100
All	All	962/1329~(72%)	961 (100%)	1 (0%)	93	96

Continued from provide

All (1) residues with a non-rotameric sidechain are listed/below:

Mol	Chain	Res	Type
2	В	191	ARG

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. There are no such sidechains identified.

5.3.3RNA (i)

There are no RNA molecules in this entry.

Non-standard residues in protein, DNA, RNA chains (i) 5.4

1 non-standard protein/DNA/RNA residue is modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Tro	Chain	Chain	Chain	Chain	Chain	Chain	Chain	Chain	Pos	Tink	B	ond leng	gths	B	ond ang	gles
	Moi Type Chain Res	nes	Гшк	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2								
1	SEP	Е	51	1	8,9,10	1.47	1 (12%)	8,12,14	1.90	2 (25%)							

In/the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	\mathbf{Res}	\mathbf{Link}	Chirals	Torsions	Rings
	SEP	E	51	1	-	0/5/8/10	-

All (1) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(A)	Ideal(Å)
1	Ε	51	SEP	P-O1P	3.28	1.61	1.50

All (2) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	Ideal(°)
1	Е	51	SEP	P-OG-CB	-3.69	108.12	118.30
1	Е	51	SEP	OG-CB-CA	3.30	111.36	108.14

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

1 monomer is involved in 2 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
1	Ē	51	SEP	2	0

5.5 Carbohydrates (i)

2 monosaccharides are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mot Type Chain Res Link Counts RMSZ $\# Z > 2$ Counts RMSZ $\# Z $ 6 NAG F 1 4,6 14,14,15 0.57 0 17,19,21 1.19 1 1	Mal	T	Chain	Chain Res I		Bond lengths			Bond angles		
6 NAG F 1 4,6 14,14,15 0.57 0 17,19,21 1.19 1 (4)		туре	Chain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
	6	NAG	F	1	4,6	14,14,15	0.57	0	$17,\!19,\!21$	1.19	1(5%)
$\begin{vmatrix} 6 \\ MAG \\ F \\ F \\ 12 \\ 6 \\ 14,14,15 \\ 0.90 \\ 1 \\ (7\%) \\ 17,19,21 \\ 0.87 \\ 1 \\ (87) \\$	6	NAG	F	2	6	14,14,15	0.90	1 (7%)	17,19,21	0.87	1(5%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
6	NAG	F	1	4,6	-	2/6/23/26	0/1/1/1
6	NAG	F	2	6	-	2/6/23/26	0/1/1/1

All (1) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\operatorname{Observed}(\operatorname{\AA})$	Ideal(Å)
6	F	2	NAG	C1-C2	2.66	1.56	1.52

All (2) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$\mathbf{Ideal}(^{o})$
6	F	1	NAG	C1-O5-C5	4.58	118.39	112.19
6	F	2	NAG	C1-O5-C5	3.17	116.48	112.19

There are no chirality outliers.

All (4) torsion outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	Atoms 🧹
6	F	1	NAG	O5-C5-C6-O6
6	F	2	NAG	Ø5-C5-C6-O6
6	F	1	NAG	C4-C5-C6-O6
6	F	2	NAG	C4-C5-C6-O6

There are no ring outliers.

1 monomer is involved in 1 short contact:

Mol	Chain	Res	Type	Cl	ashe	es	Symm-Clashes
6	F	2	NAG		1		0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for oligosaccharide.

5.6 Ligand geometry (i)

Of 2 ligands modelled in this entry, 1 is monoatomic - leaving 1 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Tuno	Chain	Pos	Link	Bo	ond leng	ths	B	ond ang	les
	Type	Chain	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
8	ATP	Ą	401	-	26,33,33	0.93	1 (3%)	$31,\!52,\!52$	1.68	6 (19%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral

centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
8	ATP	А	401	-	-	2/18/38/38	0/3/3/3

All (1) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\operatorname{Observed}(\operatorname{\AA})$	Ideal(A)
8	А	401	ATP	C5-C4	2.07	1.46	1.40

All (6) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
8	А	401	ATP	PA-O3A-PB	-5.09	115.35	132.83
8	А	401	ATP	PB-O3B-PG	-4.12	118.69	132.83
8	А	401	ATP	N3-C2-N1	-2.88	124.17	128.68
8	А	401	ATP	C4-C5-N7	-2.57	106.72	109.40
8	А	401	ATP	O2A-PA-O1A	2.08	122.50	112.24
8	А	401	ATP	O2B-PB-O1B	2.04	122.31	112.24

There are no chirality outliers.

All (2) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
8	А	401	ATP	PG-O3B-PB-O1B
8	А	401	ATP	PG-O3B-PB-O2B

There are no ring outliers.

1 monomer is involved in 4 short contacts:

Mol	Chain	Res Type	Clashes	Symm-Clashes
8	A	401 ATP	4	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the

average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers 🕠

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-12665. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

The images above show the map projected in three orthogonal directions.

- 6.2Central slices (i) Primary map 6.2.1Y Index: 170 X Index: 170 Z Index: 170 6.2.2Raw map
 - X Index: 170

Y Index: 170

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 181

6.3.2 Raw map

Z Index: 164

X Index: 169

Y Index: 179

Z Index: 164

The images above show the largest variance slices of the map in three orthogonal directions.

$6.4 \quad \text{Orthogonal surface views} (i)$

6.4.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.05. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.4.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

6.5 Mask visualisation (i)

This section shows the 3D surface view of the primary map at 50% transparency overlaid with the specified mask at 0% transparency

A mask typically either:

- Encompasses the whole structure
- Separates out a domain, a functional unit, a monomer or an area of interest from a larger structure

6.5.1 D_1292114160_em-mask-volume_P1.map.V2

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 79 nm^3 ; this corresponds to an approximate mass of 71 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

*Reported resolution corresponds to spatial frequency of 0.253 \AA^{-1}

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.253 \AA^{-1}

8.2 Resolution estimates (i)

Besolution estimate (λ)	Estimation criterion (FSC cut-off)			
Resolution estimate (A)	0.143	0.5	Half-bit	
Reported by author	3.96	-	- /	
Author-provided FSC curve	4.87	6.59	5.04	
Calculated*	4.88	6.65	5.06	

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from author-provided FSC intersecting FSC 0.143 CUT-OFF 4.87 differs from the reported value 3.96 by more than 10 %

The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 4.88 differs from the reported value 3.96 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-12665 and PDB model 7NZM. Per-residue inclusion information can be found in section 3 on page 6.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.05 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Atom inclusion (i)

At the recommended contour level, 92% of all backbone atoms, 66% of all non-hydrogen atoms, are inside the map.

