Supplementary information

Molecular mechanism of N-terminal acetylation by the ternary NatC complex

Sunbin Deng, Leah Gottlieb, Buyan Pan, Julianna Supplee, Xuepeng Wei, E James Petersson, Ronen Marmorstein

Supplementary Table 1. Sequence of primers for preparing mutations, Related	
to STAR Methods section SpNatC Complex Expression and Purification	
<i>Sp</i> Naa30- E25A	Forward: GATTTGAGTGCGCCATATAG
	Reverse: CTATATGGCGCACTCAAATC
SpNaa30- Y27A	Forward: GAGTGAGCCAGCTAGTAAATATGTG
	Reverse: CACATATTTACTAGCTGGCTCACTC
SpNaa30-S24A	Forward: CAAAAAGATTTGGCTGAGCCATATAG
	Reverse: CTATATGGCTCAGCCAAATCTTTTTG
SpNaa30-Y71A	Forward: CGCTTAGAGGTGCTATAGCAATGCTGG
	Reverse: CCAGCATTGCTATAGCACCTCTAAGCG
<i>Sp</i> Naa30-Y71F	Forward: CGCTTAGAGGTTTTATAGCAATGCTGG
	Reverse: CCAGCATTGCTATAAAACCTCTAAGCG
SpNaa30-M74A	Forward: GAGGTTATATAGCAGCGCTGGCCATAG
	Reverse: CTATGGCCAGCGCTGCTATATAACCTC
<i>Sp</i> Naa30-E109A	Forward: GGAAATTGTTTTGGCAACAGAGGTGG
	Reverse: CCACCTCTGTTGCCAAAACAATTTCC
SpNaa30-E109Q	Forward: GGAAATTGTTTTGCAAACAGAGGTGG
	Reverse: CCACCTCTGTTTGCAAAACAATTTCC
SpNaa30-N114A	Forward: CAGAGGTGGATGCTGAGGCAGCCATG
	Reverse: CATGGCTGCCTCAGCATCCACCTCTG
<i>Sp</i> Naa30-Y121F	Forward: GCCATGTCTTTTTTTGAAAGACTCGGG
	Reverse: CCCGAGTCTTTCAAAAAAAGACATGGC
<i>Sp</i> Naa30-Y121A	Forward: GCCATGTCTTTTGCTGAAAGACTCGGG
	Reverse: CCCGAGTCTTTCAGCAAAAGACATGGC
<i>Sp</i> Naa30-Y135A	Forward: CGTCTTTATCGTGCTTATTTGAACGGC
	Reverse: GCCGTTCAAATAAGCACGATAAAGACG
<i>Sp</i> Naa30-Y136A	Forward: CTTTATCGTTATGCTTTGAACGGCAC
	Reverse: GTGCCGTTCAAAGCATAACGATAAAG

Supplementary figure 1. Cryo-EM workflow and resolution of *Sp*NatC EM map, Related to Figure 2.

(a) 2D and 3D classification scheme and workflow for *Sp*NatC EM map determination. (b) Local resolution of the final *Sp*NatC EM map. (c) Viewing direction distribution of *Sp*NatC final EM map 3D reconstruction generated by cryoSPARC v2. (d) Gold standard Fourier Shell Correlation (FSC) curves of *Sp*NatC EM map 3D reconstruction, generated by cryoSPARC v2.

а

Supplementary figure 2. Correlation between Cryo-EM map of *Sp*NatC EM and its atomic model, Related to Figure 2.

(a) Atomic model of SpNatC fitted into the Cryo-EM map.

(b) FSC curves of the refined model versus the overall map that it was refined against (black); of the model refined in the first of the two independent maps used for the gold-standard FSC versus the same map (green); and of the model refined in the first of the two independent maps versus the second independent map (orange).

(c) The fit of several helical segments or β -strands from all three subunits of NatC in the EM density. The contour level is 5 sigma.

Supplementary figure 3. Sequence alignment of Naa35 orthologs,

Related to Figure 2. Sequences are from *Schizosaccharomyces pombe* (Sp), *Saccharomyces cerevisiae* (Sc), *Arabidopsis thaliana* (At), *Drosophila melanogaster* (Dm), and *Homo sapiens* (Hs). Numbering and secondary structure elements for *Sp*Naa30 are indicated above the sequence alignment. Residues truncated from the *Sp*Naa35 protein construct used in this study are indicated above in red ("Not included"). EPR2 (**Figure 5a**) from *Sc*Naa35 is annotated in blue.

Supplementary figure 4. Sequence alignment of Naa38 orthologs,

Related to Figure 2. Sequences are from *Schizosaccharomyces pombe* (Sp), *Saccharomyces cerevisiae* (Sc), *Arabidopsis thaliana* (At), *Drosophila melanogaster* (Dm), and *Homo sapiens* (Hs). Numbering and secondary structure elements for *Sp*Naa38 are indicated above the sequence alignment. Residues truncated from the *Sp*Naa38 protein construct used in this study are indicated above in red ("Not included").

Supplementary figure 5. The activity impacts of IP₆ on selective NATs, Related to Figure 2. 50 nM of either *Sp*NatC, *Sp*NatA, and hNatB was mixed with 2 μ M or no IP₆ for measuring product formation. Data was normalized to NATs activity without IP₆. Error bars indicates Mean with SD, n=3.

Supplementary figure 6. Michaelis–Menten kinetic curves of WT and mutant *Sp*NatC complexes, Related to Table 2. The data is summarized in Table 2.

Supplementary figure 7. Interaction between IP₆ and *Sp*NatC, Related to **Figure 2.** Residues that mediate IP₆ hydrogen bonds and van der Walls interaction are shown. The figure was generated with LIGPLOT(Laskowski R A, Swindells M B (2011).