Supplementary Information for:

OTULIN maintains skin homeostasis by controlling keratinocyte death and stem cell identity

Esther Hoste, Kim Lecomte and Geert van Loo

Supplementary Figures 1-7

Supplementary Table 1 and 2

Supplementary Figure 1. a. Western blot analysis of OTULIN on lysates from PMK cultures isolated from OTULIN^{fl/fl} and Δ^{Ker} OTULIN mice **b.** Representative picture of P6 OTULIN^{fl/fl} and Δ^{Ker} OTULIN mice. **c.** Oil Red O staining of skin sections obtained from back skin of 7-weeks old OTULIN^{fl/fl} and Δ^{Ker} OTULIN mice. Scale bars: 100 µm. **d.** Representative photograph of inguinal lymph nodes of 7-weeks old mice of the indicated genotypes.

Supplementary Figure 2. a. Immunofluorescent staining of skin sections from 7-weeks old OTULIN^{fl/fl} mice and non-lesional (NL) and lesional (L) skin of Δ^{Ker} OTULIN mice with antibodies against cleaved caspase-3 (green), keratin-14 (red) and nuclear staining with Dapi. Scale bar: 100 µm. **b.** Immunofluorescent staining of skin sections from 7-weeks old OTULIN^{fl/fl} mice and non-lesional (NL) and lesional (L) skin of Δ^{Ker} OTULIN mice with antibodies against Ki-67 (green), keratin-14 (red) and nuclear staining with Dapi. Scale bar: 100 µm. **c.** Wound healing dynamics in OTULIN^{fl/fl} (n=8 mice) and Δ^{Ker} OTULIN (n=6 mice) mice that were wounded at 7-weeks old (* p=0.036; ** p=0.00284; **** p<0.0001; Two-way ANOVA with multiple comparisons). Data represent means ± SEM. Scale bar: 200 µm. **d.** Representative photographs of wounds of OTULIN^{fl/fl} and Δ^{Ker} OTULIN mice at the indicated time-points post wounding (pw). **e.** H&E-stained sections of wounds OTULIN^{fl/fl} and Δ^{Ker} OTULIN mice at the indicated days pw. Scale bars: 200 µm.

a.

A^{Ker}OTULIN (NL)

A^{ker}OTULIN (L)

OTULIN^{fl/fl}

 $\Delta^{\mathrm{Ker}}\mathrm{OTULIN}$ (NL)

 $\Delta^{\rm Ker} {
m OTULIN}$ (L)

^{∆Ker}OTULIN

Supplementary Figure 3. a. Representative images and H&E-stained skin sections of 42-weeks old Δ^{Ker} OTULIN-TNFR1^{-/-} mice. **b.** Representative images and H&E-stained skin sections of 42-weeks old Δ^{Ker} OTULIN-RIPK1^{D138N/D138N} mice. **c.** Representative images and H&E-stained skin sections of 40-weeks old Δ^{Ker} OTULIN/FADD/MLKL mice. **d.** Representative images and H&E- stained skin sections of 8-weeks old Δ^{Ker} OTULIN/MLKL mice. Scale bars for panel a to d: 200 μ m. **e.** Relative mRNA expression of MCP-1 and TNF in lysates of OTULIN^{fl/fl} (WT; n=3) and Δ^{Ker} OTULIN (KO; n=3) PMKs. Data represent means \pm SEM. (* p < 0.05; Two-way ANOVA with multiple comparisons). **f.** Western blot analysis on lysates from PMK cultures isolated from OTULIN^{fl/fl} and Δ^{Ker} OTULIN mice that were treated with or without TNF in the presence of the proteasome inhibitor MG132 (20 mM). g. Immunoblotting for RIPK1 in epidermal tail lysates of OTULIN^{fl/fl} and Δ^{Ker} OTULIN mice and associated densitometry analysis relative to ß-actin levels. **h.** Representative images and H&E-stained skin sections of 40-weeks old OTULIN^{fl/fl} IFNAR^{-/-} and Δ^{Ker} OTULIN IFNAR^{-/-} mice. Scale bar: 200 µm.

Supplementary Figure 4. a. Dot plot showing expression of selected differentially expressed genes per annotated cluster as adapted from Joost et al. [35]. The dot size represents the percentage of cells expressing the gene, and the color represents the average expression of that gene within a cluster. **b.** Gating strategy for flow cytometric analysis of immune cell-types infiltrating the skin. **c.** UMAP plot of annotated

T-cell subcluster, showing several assigned clusters by unbiased clustering. Tregs segregate based on differential *Foxp3*, *CD4* and *IL10* gene expression. CD8 T-cells segregate in a cluster together with CD4 T-cells identified by *CD8* or *CD4* expression, $\gamma\delta$ T-cells were identified by lack of *CD8* and *CD4* expression. **d.** Distribution of WT, NL and L cells within the T-cell subclusters. **e.** Relative normalized T-cell frequencies of the indicated populations in the different conditions. **f.** Flow cytometric analysis of T-cell composition in control OTULIN^{fl/fl} skin (WT, n=5 mice) and non-lesional (NL) and lesional (L) skin of Δ^{Ker} OTULIN mice (n=5 mice per condition). The absolute number of T-cells per cm² skin is plotted. Right panel depicts the percentage of FoxP3-positive Tregs within the CD45 population, data represent means \pm SEM (* p<0.05; ** p=0.0079; Mann-Whitney two-sided testing). **g.** Percentage of cells positive for the indicated markers present in the permanent part of the epidermis (incl. IFE, SG, uHF and HF bu) and associated p-value (Chi-squared test, comparing L or NL gene frequencies to expected frequencies from WT).

Supplementary Figure 5. a. Schematic representation of NicheNet analysis identifying ligands secreted by innate immune cells that bind on receptors in keratinocytes, mediating gene expression changes. Non-lesional Δ^{Ker} OTULIN skin is compared to WT skin. CCL2 (MCP-1) and IL-1b are indicated with an arrow. **b.** Feature plot of IL-1 β , IL-1 α and IL-18 mRNA expression levels in innate immune cells, as determined by scRNAseq.

2.0 1.5 1.0 0.5

Supplementary Figure 6. Representative pictures of tail of Δ^{ker} OTULIN mice treated with daily injections of 300 mg/kg Anakinra or 40 mg/kg a-MCP-1 antibody twice weekly, and untreated controls. Duration of treatment is indicated.

otulin																																						
	adrenal gland amnion	arcuate nucleus of hypothalamus axillary lymph node	bone (os femoris) bone tissue	brain brown adipose tissue	caecum caudal brain neural epithelium	colon corpora quadrigemina	corpus striatum corpus of kidney dentate divides of hippocembral formation	diencentary diencentary	dorsal control neural poithelium dorsal raphe nucleus	duodenum embryonic tissue	epidermal ectoderm epididymis and seminiferous tubule	eye eyeball of camera-type eye	head mesenchymau head mesenchymau	hippocampal formation hypothalamus	ileum intestinal mucosa	Intestine Kidney Iatoral nasal prominonco	lateral prominence neural epithelium	liver	mammary gland mandibular arch	maxillary arch medial nasal prominence	medial prefrontal correx medulla oblongata	mesoderm midbrain Abirore fomorie)	non-floor plate neural epithelium olfactory brain	olfactory bulb olfactory epithelium	olfactory pit ovary	oviduct	pituitary gland pitotenta	saliva-secreting gland skeletal muscle	skeletal muscle tissue small intestine	spinal cord spleen	stomach	submandibular gland subventricular zone	testic	tongues tongues urinary bladder	uterus vagina	vesicular gland	white adipose tissue whole body whole ordanism	zone of skin

Supplementary Figure 7. Average OTULIN mRNA expression levels in different tissues of the mouse, as assessed by the EBI tissue expression atlas.

Antibodies	Cat #	company	dilution	application					
Anti-MCP-1	BE0185	InVivoMab	40 mg/kg	Therapeutic treatment					
CD24-eFluor450	48024282 (clone M1/69)	eBioscience	1/200	Flow cytometry					
CD3-PacBlue	100214 (clone 17A2)	Biolegend	1/100	Flow cytometry					
CD127a-PerCP-	46172182 (clone P84)	eBioscience	1/200	Flow cytometry					
eFluor710									
CD11b-BV605	563015 (clone M1/70)	BD Bioscience	1/200	Flow cytometry					
cD11c-BV711	cD11c-BV711	BD Pharmingen	1/200	Flow cytometry					
F4/80-BV785	123141 (clone BM8)	Biolegend	1/400	Flow cytometry					
CD45-AF700	56045182 (clone 30- F11)	eBioscience	1/400	Flow cytometry					
MHCII-APC- eFluor780	47532182 (clone M5/114152)	eBioscience	1/400	Flow cytometry					
Siglec-F-PE	552126 (clone E502440)	BD Pharmingen	1/1000	Flow cytometry					
B220-PE-Cy5	553091 (clone RA36B2)	BD Pharmingen	1/500	Flow cytometry					
CD317-PE-Cy7	25317282 (clone eBio927)	eBioscience	1/200	Flow cytometry					
CD3-BUV395	563565 (clone 1452C11)	BD Bioscience	1/100	Flow cytometry					
TCRb chain PE/Cy7	109222 (clone H57597)	Biolegend	1/300	Flow cytometry					
FoxP3-APC	17577382	eBioscience	1/100	Flow cytometry					
TCRγδ-AF488	118128 (clone GL3)	Biolegend	1/200	Flow cytometry					
Fc block CD16/CD32	553142 (clone 2.4G2)	BD Bioscience	1/400	Flow cytometry					
Filaggrin	PRB-417P	Covance	1/1000	immunofluorescence					
F4/80	MCA497G	AbD serotec	1/1000	immunofluorescence					
CD11b-PE	12-0112-81 (clone M1/70)	eBioscience	1/300	immunofluorescence					
CD45	550539 (clone 30-F11)	BD Pharmingen	1/500	immunofluorescence					
Keratin-6A	PRB-169P	Biolegend	1/1000	immunofluorescence					
Keratin-14	Ab7800 (clone LL002)	Abcam	1/1000	immunofluorescence					
Ki-67	12202 (clone D3B5)	Cell Signalling Technology	1/1000	immunofluorescence					
Cleaved casp-3	9661	Cell Signalling Technology	1/1000	immunofluorescence					
Donkey-anti- mouse AF488	A-21202	Thermofisher	1/2000	immunofluorescence					
Goat-anti-rabbit DyLight 555	84541	Thermofisher	1/2000	immunofluorescence					
Donkey-anti- rabbit AF488	A21206	Thermofisher	1/2000	immunofluorescence					
Goat-anti-mouse	84540	Thermofisher	1/2000	immunofluorescence					
DyLight 555									

OTULIN	14127	Cell Signalling	1/1000	Western blotting				
		Technology						
JNK	554285	BD Bioscience	1/1000	Western blotting				
phospho-JNK	PS1019	Millipore	1/1000	Western blotting				
ΙκΒα	sc371	Santa Cruz	1/1000	Western blotting				
		Biotechnology						
phospho-IκBα	9246	Cell Signalling	1/1000	Western blotting				
		Technology						
р38 МАРК	CST9212	Cell Signalling	1/1000	Western blotting				
		Technology						
phospho-p38	CST9215	Cell Signalling	1/1000	Western blotting				
МАРК		Technology						
HOIL-1		kind gift of Dr.	1/2000	Western blotting				
		Henning Walczak						
HOIP		kind gift of Dr.	1/1000	Western blotting				
		Rune Damgaard						
SHARPIN	14626-1-AP	Proteintech	1/1000	Western blotting				
RIPK1	3493	Cell Signalling	1/2000	Western blotting				
		Technology						
linear ubiquitin	MABS451 (LUB9)	Millipore	1/2500	Western blotting				
caspase-3	9662	Cell Signalling	1/1000	Western blotting				
		Technology						
actin-HRP	sc-47778	Santa Cruz	1/10000	Western blotting				
		Biotechnology						
anti-rabbit HRP	NA931	Amersham	1/2500	Western blotting				
anti-mouse HRP	NA934	Amersham	1/2500	Western blotting				
anti-goat HRP	Sc-2354	Amersham	1/2500	Western blotting				

Supplementary Table 1. List of used antibodies

Gene	Forward primer	Reverse primer
Cxcl10	CCAAGTGCTGCCGTCATTTTC	GGCTCGCAGGGATGATTTCAA
GAPDH	TGAAGCAGGCATCTGAGGG	CGAAGGTGGAAGAGTGGGAG
lfitm3	TGTTACACCTGCGTGTAGGG	GATGGTGGGTGATGTGACTG
Ifna2	GCCATCCCTGTGCTGCGAGA	GCAGCAGATGAAGCCTTTGATGTGA
lfnb1	AGCTCCAAGAAAGGACGAACA	GCCCTGTAGGTGAGGTTGAT
IL13	TGTGTAGCTGAGCAGTTTTGT	TTCTGTGTAGCCCTGGATTCC
IL4	TGGACTCATTCATGGTGCAG	AACATGGGAAAACTCCATGC
IL6	GAGGATACCACTCCCAACAGACC	AAGTGCATCATCGTTGTTCATACA
lsg15	ACGGTCTTACCCTTTCCAGTC	CCCCTTTCGTTCCTCACCAG
MCP-1	TTAAAAACCTGGATCGGAACCAA	GCATTAGCTTCAGATTTACGGGT
Mx1	GACCATAGGGGTCTTGACCAA	AGACTTGCTCTTTCTGAAAAGCC
S100A8	ATCCTTTGTCAGCTCCGTCTT	TGTAGAGGGCATGGTGATTTC
ß-actin	GCTTCTAGGCGGACTGTTACTGA	GCCATGCCAATGTTGTCTCTTAT
TNF	ACCCTGGTATGAGCCCATATAC	ACACCCATTCCCTTCACAGAG

Supplementary Table 2: List of used primers