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Supplementary methods 

Network architecture 

Except for the last convolution with a kernel size of 1 × 1, all convolutions use 3x3 kernels by 
default with zero padding of one to keep the spatial resolution. Suppose the input image has a 
dimension of H × W. After the four maxpooling operations (2 × 2 kernels with a stride of 2), the 
image dimensions change to H/2 × W/2 , H/4 × W/4 , H/8 × W/8 , and H/16 × W/16 , 
respectively, which are gradually recovered to H × W by the upsampling layers. For single-modal 
inputs, the feature numbers of the five encoder blocks are 64, 128, 256, 512, and 1024. For multi-
modal inputs, the extracted feature numbers are divided equally among the multiple modalities so 
that after the feature fusion, the feature numbers are the same as those extracted from the single-
modal inputs. Bilinear upsampling is utilized for our experiments. 

CHAOS dataset – segmentation with severely limited annotations 

From the 20 cases with high-quality annotations, 10 cases are randomly selected as the test set. 
The remaining 10 cases and the 20 unannotated cases are utilized as the training set. To simulate 
the extremely scarce annotation condition, our proposed framework AIDE is evaluated when only 
1 high-quality annotated case (30 image samples) is available and the left 29 cases (954 image 
samples) are used without annotations. Specifically, we train a segmentation network with 1 
randomly selected annotated case for 100 epochs. The trained network is then employed to 
generate pseudo-labels with low qualities for the other 29 cases. With this constructed training set 
of 30 cases (30 image samples with high-quality annotations and 954 image samples with 
pretrained model-generated low-quality labels), AIDE is implemented and the segmentation 
performance on the test set is compared with baseline models trained with the only annotated cases, 
trained with 10 high-quality annotated cases, and trained with the constructed training set but 
without the proposed self-label correcting capability. Pseudo-label1 and co-teaching2 are adopted 
as two methods for comparison as well.

Prostate datasets – segmentation with no target domain annotations 

We treat each domain as the source domain and test the segmentation performance on the other 
two domains. For example, when Domain 1 is treated as the source domain with high-quality 
annotations, models are trained with Domain 1 training dataset. Domain 2 and Domain 3 are 
regarded as two separate target domains, and the high-quality annotations of the respective training 
sets are not utilized during network training. Under this setting, we investigate the performance of 
AIDE when only source domain annotations are available. Similar to our experiments for SSL 
with the CHAOS dataset, models trained with the source domain annotated training data are 
applied to generate pseudo-labels for the target domain training data, and these pseudo-labels can 
be very noisy depending on the discrepancies between the different domains. AIDE is utilized to 
handle the combined data made of source domain high-quality annotated data and the target 
domain noisily labeled data to enhance the model performance on the target domain test set. 
Baseline models include those trained with the respective high-quality annotated data and the 
combined dataset, as well as pseudo-label1 and co-teaching2. 

QUBIQ dataset – segmentation with noisy annotations 

Respective sets of annotations from different annotators are utilized to train the model. 
Correspondingly, we treat each individual set of annotations as low-quality annotations and 
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investigate the effectiveness of AIDE on handling these data. The models trained with noisy 
annotations are utilized to initialize the network training of AIDE. Multiple annotations are also 
provided for the test data. Segmentation performance is calculated in an elegant manner. First, the 
continuous ground-truth annotations are generated by averaging the different annotations. Then, a 
series of thresholds (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9) are defined to obtain the binary 
growth truth and prediction segmentation maps. DSCs are calculated at these thresholds and the 
averaged DSCs are reported. 

Evaluations with the clinical breast tumor segmentation datasets 

To evaluate the impacts of AIDE on extricating radiologists from the cumbersome image 
annotation work required by conventional DNNs, we train DNNs with only 10% annotations and 
compare the segmentation performance with that achieved by training with 100% annotations 
available and that provided by independent annotators. To confirm that our achievements are 
robust and generalizable, we conduct independent experiments with the three datasets collected 
from the three medical centers and report the respective results. 

Implementation details of AIDE 

Our model was implemented using PyTorch and trained on a Tesla V100 32GB GPU with a batch 
size of 4. ADAM was utilized as the optimization method. The initial learning rates were set to 
0.0001 for all experiments except for the experiments with AIDE on the QUBIQ dataset, for which 
the initial learning rates were set to 0.00001. Step decay learning rate policy was applied that the 
learning rates were decayed by 50% after every 30 epochs. During network training, the images 
are resized to 256 x 256 for the CHAOS data, 384 x 384 for the prostate data, 256 x 256 for the 
brain growth and brain tumor data, 512 x 512 for the kidney data, and 384 x 384 for the breast 
tumor data after considering the original image sizes and the computational resources. We train 
the networks for 100 epochs and report the results on the test set of the model achieving the highest 
training set DSC during network optimization.
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Supplementary results 

Influence of labeled data on fully-supervised model’s performance 

Different numbers of training data are used to investigate the sensitivity of fully-supervised models 
to training conditions (Supplementary Fig. 1 and Supplementary Table 1). As depicted in 
Supplementary Fig. 1 (without the post-processing step), more training samples lead to clearly 
better segmentation results. The enhancement from 1 labeled training case (30 training samples) 
to 10 labeled training cases (331 training samples) is substantial (17.8% absolute DSC value 
increase and 25.3% relative increase), which indicates that for conventional fully-supervised deep 
learning methods, a large dataset with high-quality annotations is required to achieve the expected 
performance. 

Experiments with different levels of noisy labels on the CHAOS dataset 

We investigate the influence of the number of noisy labels on segmentation performance 
systematically and comprehensively with SSL, for which low-quality labels (i.e. noisy labels) are 
generated by models trained with the limited annotated data. The combined training data (high-
quality labeled data and noisily labeled data) are then utilized for network optimization. Results 
achieved under different experimental conditions are listed in Supplementary Table 1. For the 
fully-supervised learning baseline, noisy labels already affect their performance when the noise 
level is over 20% (P = 0.0133 from a paired t-test between the DSCs of Exp. 6 and Exp. 7 in 
Supplementary Table 1). Compared to the baseline, our method consistently improves the 
performance (characterized by increased DSC and decreased RAVD) at different noise levels. 
Furthermore, promising performance is achieved by our method with 97% noisy labels (Exp. 21 
in Table Supplementary Table 1). Besides, comparing Exp. 21 to Exp. 19 in Supplementary Table 
1, with the same quantity of high-quality labeled data, the introduction of more low-quality labeled 
data results in improved segmentation performance of our system. 

Results also indicate that when a large labeled dataset is provided, AIDE can perform on par 
to traditional supervised learning. Supplementary Table 1 shows that when all the labels are high-
quality labels (Exp. 6 for traditional supervised learning method and Exp. 14 for our proposed 
method), AIDE can still improve the model performance slightly. If additional noisily labeled 
training data are provided with this large high-quality labeled data, better results can be achieved 
(comparing Exp. 20 to Exp. 14). 

Ablation studies for different hyper-parameters on the CHAOS dataset 

With the proposed framework, several hyper-parameters are introduced, including the temperature, 
the loss weight, and the warm-up epoch number. We conduct ablation studies to investigate the 
influence of these hyper-parameters on the model performance (Supplementary Table 2). Results 
indicate that our method is very robust to the parameters within the respective tested ranges. 

Effects of the employed post-processing step 

Supplementary Fig. 2 presents several results with or without the post-processing step under 
different experimental conditions. It can be observed that for low-performance models (e.g. S01 

for the fully-supervised baseline without the post-processing step and S02 with the post-
processing), the post-processing can sometimes be very important and many outliers can be 
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removed. Nevertheless, for our proposed method (S11 without the post-processing and S12 with 
the post-processing), the performance enhancement brought by the post-processing step is 
marginal. 

Baselines for unsupervised domain adaptation 

Additional experiments are conducted by model training with both labeled source domain training 
data and labeled target domain training data (Supplementary Table 3). It can be observed that in 
most situations, utilizing labeled data from other domains can help achieve better segmentation 
results (e.g. compare the experiment training with Domain 1 labeled & 2 labeled data and testing 
on Domain 2 (DSC=89.0%, RAVD=9.19%, ASSD=1.21 mm, and MSSD=7.27 mm) in 
Supplementary Table 3 to the experiment training with only Domain 2 labeled data and testing on 
Domain 2 (DSC=87.3%, RAVD=16.1%, ASSD=1.36 mm, and MSSD=7.89 mm) in Table 2 in the 
manuscript). However, for the baseline comparison methods, when the introduced data from a 
different domain is unlabeled and pseudo-labels are utilized, the performance on both domains are 
affected, especially for the data from the domain without training annotations (e.g. the experiment 
training on Domain 1 labeled and 2 unlabeled data and testing on Domain 2 (DSC=33.7%, 
RAVD=71.5%, ASSD=5.94 mm, and MSSD=20.68 mm) in Supplementary Table 3). Compared 
to theses baselines, the performance of our AIDE on the target domain without training data 
annotations is largely improved (e.g. the experiment training on Domain 1 labeled and 2 unlabeled 
data and testing on Domain 2 with AIDE (DSC=80.0%, RAVD=25.1%, ASSD=2.83 mm, and 
MSSD=18.2 mm)). 

Visual segmentation maps of the prostate 

Supplementary Figs. 3–5 show the example test results when transferring models from Domain 1 
to Domain 2, from Domain 1 to Domain 3, and from Domain 2 to Domain 3. These three cases are 
plotted as big enhancements in the segmentation results of AIDE are observed. Visual results 
confirm the quantitative characteristics that direct cross-domain model testing is not feasible, and 
AIDE can help increase the cross-domain model testing accuracy without utilizing any target 
domain annotations. 

Results of methods for comparison on the unsupervised domain adaptation task 

Experiments have been conducted to check the performance of the two literature-reported methods 
(pseudo-label and co-teaching) on the unsupervised domain adaptation task (Supplementary Table 
4). Results indicate that the performance is improved when compared to the conventional fully-
supervised learning approach with pseudo-labels of the target domain data generated by the 
pretrained models. Overall, our method achieves better results than these two methods for 
comparison. 

Performance distributions over different thresholds on the QUBIQ datasets 

Supplementary Figs. 6 and 7 show DSC values of models tested with different thresholds of the 
four tasks. It can be summarized that in most cases, AIDE achieves higher DSCs, especially for 
smaller threshold values, which indicates that AIDE is more robust and less dependent on this 
threshold parameter. 
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Visual segmentation maps of breast tumors 

Supplementary Figs. 8–10 show the example test results on the three breast datasets, respectively. 
Overall, both the model predictions and the independent radiologist’s manual annotations are very 
close to the reference labels. Meanwhile, there are a few cases when the manual annotations are 
more accurate (second rows of each figure). Similarly, there exist cases when the model predictions 
are better (third rows of each figure). Both the model and the radiologist can have relatively large 

discrepancies from the reference labels in a few cases (fourth rows of each figure). 

The rationale for the proposed label filtering and correction steps 

Empirically, we find that when the training data containing noisy annotations, there is an overall 
positive correlation between the DSCs calculated comparing network outputs to noisy labels and 
the DSCs calculated comparing noisy labels to the high-quality labels for the training set in the 
initial 10 epochs (Supplementary Fig. S11a). In other words, within the considered training period, 
the network cannot memorize well those samples that contain large label noise but can learn the 
patterns of the samples that contain low label noise. We also check the model performance in the 
last 10 epochs and find that all the samples are well memorized (Fig. R1b). This phenomenon is 
relevant to the network memorization pattern, and it has been frequently observed for natural 

image analysis3–5. Here we show that the same network memorization pattern exists for medical 
image segmentation. Therefore, we can exploit this network property and conduct the label 
filtering and correction properly to make full use of both the high-quality labels and low-quality 
labeled image data. Accordingly, we design the specific noisy label updating schedule – we update 
the suspected noisy labels if the training epoch number is smaller than the defined warm-up epoch 
number and every 10 epochs thereafter. The first criterion is raised according to the above-
mentioned network memorization behavior we observe. The second criterion is raised because 
after certain epochs, the performances of the networks become relatively stable, and there is no 
need to update the labels so frequently. Therefore, in our experiments, we update the labels every 
10 training epochs.
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Supplementary Fig. 1 | Network performance on the test set (characterized by Dice score) with 
1, 2, 4, 6, 8, or 10 training cases with high-quality labels of the CHAOS dataset. More training 
samples lead to improved segmentation performance. 
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Supplementary Fig. 2 | Visualization of segmentation results for SSL on the CHAOS dataset. 
S01 to S12 refer to different experimental settings in Table 1. Numbers are the DSC values (%). 
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Supplementary Fig. 3 | Prostate segmentation maps of one case when transferring models 
from Domain 1 dataset to Domain 2 dataset. From left to right, the three columns correspond 
to the transverse plane image, the sagittal plane image, and the coronal plane image. From the head 
to bottom, the four rows refer to the ground-truth manual segmentation, the outputs of models 
trained directly on Domain 2 training set, the outputs of models trained on Domain 1 training set, 
and the outputs of models trained on Domain 1 training set with manual annotations and Domain 

2 training set without annotations with AIDE. 
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Supplementary Fig. 4 | Prostate segmentation maps of one case when transferring models 
from Domain 1 dataset to Domain 3 dataset. From left to right, the three columns correspond 
to the transverse plane image, the sagittal plane image, and the coronal plane image. From the head 
to bottom, the four rows refer to the ground-truth manual segmentation, the outputs of models 
trained directly on Domain 3 training set, the outputs of models trained on Domain 1 training set, 
and the outputs of models trained on Domain 1 training set with manual annotations and Domain 
3 training set without annotations with AIDE. 
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Supplementary Fig. 5 | Prostate segmentation maps of one case when transferring models 
from Domain 2 dataset to Domain 3 dataset. From left to right, the three columns correspond 
to the transverse plane image, the sagittal plane image, and the coronal plane image. From the head
to bottom, the four rows refer to the ground-truth manual segmentation, the outputs of models 

trained directly on Domain 3 training set, the outputs of models trained on Domain 2 training set, 
and the outputs of models trained on Domain 2 training set with manual annotations and Domain 
3 training set without annotations with AIDE. 
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Supplementary Fig. 6 | Segmentation results of the QUBIQ dataset Task1 and Task2. Vertical 
axis is DSC. Horizontal axis indicates the threshold utilized to calculate the DSC. The left three 
figures correspond to the results on Task1 with Anno1, Anno2, and Anno3 as the training 

annotations, respectively. The right three figures show the results on Task2 with Anno1, Anno2, 
and Anno3 as the training annotations. Blue lines are the results obtained by conventional models 

and red lines are the results obtained with AIDE. 
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Supplementary Fig. 7 | Segmentation results of the QUBIQ dataset Task3 and Task4. Vertical 
axis is DSC. Horizontal axis indicates the threshold utilized to calculate the DSC. The left three 
figures correspond to the results on Task3 with Anno1, Anno2, and Anno3 as the training 
annotations, respectively. The right three figures show the results on Task4 with Anno1, Anno2, 
and Anno3 as the training annotations. Blue lines are the results obtained by conventional models 
and red lines are the results obtained with AIDE. 
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Supplementary Fig. 8 | Example breast tumor segmentation on the GGH dataset. Red lines
indicate the boundaries of the high-quality annotations. Green lines are the segmentation results 
of AIDE with 10% training annotations. Yellow lines refer to the segmentations obtained from an
independent radiologist. 
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Supplementary Fig. 9 | Example breast tumor segmentation on the GPPH dataset. Red lines
indicate the boundaries of the high-quality annotations. Green lines are the segmentation results 
of AIDE with 10% training annotations. Yellow lines refer to the segmentations obtained from an

independent radiologist. 
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Supplementary Fig. 10 | Example breast tumor segmentation on the HPPH dataset. Red lines
indicate the boundaries of the high-quality annotations. Green lines are the segmentation results 
of AIDE with 9.2% training annotations. Yellow lines refer to the segmentations obtained from an

independent radiologist. 
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Supplementary Fig. 11 | Relationships between model memorization capability (DSCs calculated 
between network outputs and noisy labels (vertical axis)) and noisy label accuracy (DSCs 
calculated between noisy labels and high-quality labels (horizontal axis)) for the training set of the 
CHAOS dataset (training with 30 samples containing high-quality labels and 301 samples 
containing low-quality noisy labels utilizing the conventional fully-supervised learning method) 
in the first 10 epochs (a) and the last 10 epochs (b). Dots represent the DSCs calculated and dashed 

lines indicate the linear regression results. 
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Supplementary Table 1 | Segmentation results of networks under different SSL 

settings

Exp.
Noisy 

labels (%) 

Train 

HQA 

Train 

LQA 

Total 

train 
AIDE

DSC 

(%) 

RAVD 

(%) 

ASSD

(mm) 

MSSD

(mm) 

1 0 30 0 30 No 70.1 42.0 16.1 176.3 

2 0 64 0 64 No 79.4 41.4 14.9 151.4 

3 0 138 0 138 No 83.3 23.4 10.5 139.8 

4 0 203 0 203 No 83.7 18.2 7.48 100.9 

5 0 264 0 264 No 86.9 12.8 5.39 84.6 

6 0 331 0 331 No 87.9 10.4 4.65 65.1 

7 20.2 264 67 331 No 84.7 16.5 4.48 49.3 

8 38.7 203 128 331 No 81.5 16.0 6.23 66.8 

9 58.3 138 193 331 No 80.2 19.4 6.31 78.4 

10 80.7 64 267 331 No 79.4 17.9 8.16 115.9 

11 90.9 30 301 331 No 78.4 19.0 7.92 95.3 

12 66.4 331 653 984 No 89.3 8.96 3.74 58.2 

13 97.0 30 954 984 No 79.5 19.7 8.43 104.2 

14 0 331 0 331 Yes 88.1 11.1 4.71 61.5 

15 20.2 264 67 331 Yes 87.3 13.2 5.08 71.9 

16 38.7 203 128 331 Yes 84.3 14.9 5.80 72.9 

17 58.3 138 193 331 Yes 84.0 14.6 10.4 119.0 

18 80.7 64 267 331 Yes 82.9 16.9 7.94 108.2 

19 90.9 30 301 331 Yes 79.8 18.5 10.8 116.3 

20 66.4 331 653 984 Yes 89.3 8.55 3.75 56.2 

21 97.0 30 954 984 Yes 86.1 10.2 5.49 75.8 
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Supplementary Table 2 | Results of ablation studies on the CHAOS dataset

Temperature Weight Warm-up 

epoch 

DSC 

(%) 

RAVD

(%) 

ASSD

(mm) 

MSSD

(mm) 

0.5 1:10 20 86.5 10.0 4.55 48.8 

2.0 1:10 20 86.5 10.1 4.55 48.6 

1.0 1:1 20 86.3 11.5 4.49 48.1 

1.0 1:20 20 86.8 9.71 4.15 43.9 

1.0 1:10 10 86.1 11.8 4.49 45.1 

1.0 1:10 30 86.7 11.3 4.29 46.3 
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Supplementary Table 3 | Segmentation results of networks trained and tested with 

prostate datasets of different domains

Training 

dataset 

Testing 

dataset 

AIDE DSC

(%) 

RAVD

(%) 

ASSD

(mm) 

MSSD 

(mm) 

Domain 1 labeled & 2 labeled Domain 1 No 89.6 7.76 1.32 8.00 

Domain 1 labeled & 2 labeled Domain 2 No 89.0 9.19 1.21 7.27 

Domain 1 labeled & 3 labeled Domain 1 No 89.9 8.84 1.33 7.81 

Domain 1 labeled & 3 labeled Domain 3 No 85.7 9.55 1.74 10.3 

Domain 2 labeled & 3 labeled Domain 2 No 90.3 9.77 1.11 6.88 

Domain 2 labeled & 3 labeled Domain 3 No 87.0 7.91 1.51 9.43 

Domain 1 labeled & 2 unlabeled Domain 1 No 89.9 8.17 1.21 8.38 

Domain 1 labeled & 2 unlabeled Domain 2 No 33.7 71.5 5.94 20.68 

Domain 1 unlabeled & 2 labeled Domain 1 No 67.1 41.1 3.45 12.7 

Domain 1 unlabeled & 2 labeled Domain 2 No 83.1 20.7 1.68 9.70 

Domain 1 labeled & 3 unlabeled Domain 1 No 90.2 7.09 1.16 7.11 

Domain 1 labeled & 3 unlabeled Domain 3 No 44.8 66.6 5.65 18.4 

Domain 1 unlabeled & 3 labeled Domain 1 No 86.4 8.95 1.52 8.17 

Domain 1 unlabeled & 3 labeled Domain 3 No 81.7 8.98 2.44 15.7 

Domain 2 labeled & 3 unlabeled Domain 2 No 87.4 15.2 1.34 8.39 

Domain 2 labeled & 3 unlabeled Domain 3 No 54.6 56.7 4.95 18.1 

Domain 2 unlabeled & 3 labeled Domain 2 No 85.8 8.77 1.70 10.4 

Domain 2 unlabeled & 3 labeled Domain 3 No 86.9 9.83 1.47 7.80 

Domain 1 labeled & 2 unlabeled Domain 1 Yes 88.8 9.27 1.78 26.9 

Domain 1 labeled & 2 unlabeled Domain 2 Yes 80.0 25.1 2.83 18.2 

Domain 1 unlabeled & 2 labeled Domain 1 Yes 80.6 14.9 3.04 21.8 

Domain 1 unlabeled & 2 labeled Domain 2 Yes 86.0 14.4 1.68 11.4 

Domain 1 labeled & 3 unlabeled Domain 1 Yes 85.6 13.6 2.02 13.1 

Domain 1 labeled & 3 unlabeled Domain 3 Yes 74.0 40.4 3.56 17.8 

Domain 1 unlabeled & 3 labeled Domain 1 Yes 82.4 7.03 2.45 22.0 

Domain 1 unlabeled & 3 labeled Domain 3 Yes 84.2 9.71 1.69 9.42 

Domain 2 labeled & 3 unlabeled Domain 2 Yes 87.3 12.5 1.65 12.1 

Domain 2 labeled & 3 unlabeled Domain 3 Yes 74.5 38.6 3.77 20.3 

Domain 2 unlabeled & 3 labeled Domain 2 Yes 88.1 12.7 1.47 10.3 

Domain 2 unlabeled & 3 labeled Domain 3 Yes 85.9 8.54 1.57 8.67 
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Supplementary Table 4 | Segmentation results of methods for comparison for 

the unsupervised domain adaptation task

Source 

domain 

Target 

domain 

Pseudo

-label 

Co-

teaching

DSC 

(%) 

RAVD

(%) 

ASSD 

(mm) 

MSSD 

(mm) 

Domain 1 Domain 2 Y N 53.9 41.5 4.39 17.1 

Domain 1 Domain 3 Y N 60.5 45.5 4.16 14.9 

Domain 2 Domain 1 Y N 70.5 32.4 3.33 14.8 

Domain 2 Domain 3 Y N 58.0 38.1 6.38 20.2 

Domain 3 Domain 1 Y N 82.3 18.0 2.02 10.2 

Domain 3 Domain 2 Y N 78.6 31.5 3.25 21.3 

Domain 1 Domain 2 N Y 58.1 49.2 4.28 17.0 

Domain 1 Domain 3 N Y 62.2 42.4 3.87 14.8 

Domain 2 Domain 1 N Y 74.1 26.9 2.87 14.2 

Domain 2 Domain 3 N Y 66.7 43.9 3.57 14.6 

Domain 3 Domain 1 N Y 81.9 8.88 2.43 15.8 

Domain 3 Domain 2 N Y 88.1 11.1 1.33 7.51 


