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Supplementary Methods 

Human Subjects 

Some members within the pedigrees were also diagnosed with OCD and/or ADHD 

(including ADHD Combined type, ADHD Predominantly Inattentive type, or ADHD 

Predominantly Hyperactive-Impulsive type), based on the DSM-IV-TR, as part of the TIC 

Genetics study 1. The OCD and ADHD diagnosis were only used in the phenotype analysis and 

were not included in the genetic analysis. 

Whole Exome Sequencing, Variant Calling and Annotation 

Variant calling was performed using the Genome Analysis Toolkit (GATK) following the 

best practice pipeline 2. Briefly, paired-end sequencing reads from each individual were aligned 

to UCSC hg19 genome assembly using bwa (version 0.7.12) 3. The alignment files (in BAM 

format) were sorted and indexed using samtools (version 0.1.19) 4. The BAM files were then 

subjected to indel realignment (GATK IndelRealigner version 3.2 or 3.3) 2, mark duplicate reads 

(samtools markdup), and base quality score recalibration (GATK baseRecalibrator). Picard Tools 

CollectAlignmentSummaryMetrics and CollectWgsMetrics were used to extract sequencing 

summary statistics.  

For variant calling, GATK haplotypecaller (GATK version 3.3) was performed on each 

processed BAM file. The output gVCF files were combined into one single gVCF file using 

GATK combineGVCF. GATK GenotypeGVCF was used for joint genotype calling, followed by 

VariantRecalibrator and ApplyRecalibration for variant recalibration. After recalibration, sites 

with a “PASS” flag were selected for downstream analyses. To ensure consistency across 

samples, the exome target regions were defined based on the SeqCap EZ Exome V2 kit in all 

samples, which covers approximately 36 megabases of the human genome. 
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ANNOVAR 5 was used to annotate variants to obtain information, including allele 

frequency (AF) in the 1000 Genomes project (1KGP) 6 and Exome Aggregation Consortium 

(ExAC) 7, PolyPhen-2 8 and SIFT 9 damaging prediction scores, protein domain information, etc. 

ANNOVAR was run using the following command: 

table_annovar.pl input.vcf annovar/humandb -out out.vcf -

buildver hg19 -otherinfo -protocol 

refGene,cytoBand,exac03nonpsych,dbnsfp31a_interpro,gnomad211_exo

me -operation g -nastring "." -vcfinput 

Candidate Gene Prioritization 

pVAAST (pedigree Variant Annotation, Analysis and Search Tool) was used to identify 

candidate genes in each pedigree 10, 11. pVAAST scores each gene with a likelihood model 

considering several types of variant information in each gene, including the segregation pattern, 

the predicted functional impact, and the AF in general populations. Before the pVAAST run, 

variants were filtered on their prevalence in the general population based on ANNOVAR 

annotation. Variant sites with the 1KGP AF < 10% and ExAC_all AF < 5% were selected for the 

pVAAST analysis 11, 12. pVAAST was run under dominant mode of inheritance for all pedigrees 

and recessive mode of inheritance for some pedigrees if the recessive mode of inheritance cannot 

be excluded (Table 1). pVAAST was run following user guidelines for multiplex families in the 

following steps: 

Step1: VAAST converter 

perl vaast_converter --build hg19 TS_multiplex.vcf --path 

vaast_converter_output/ 
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Step 2: VAT (Variant Annotation Tool, one individual is shown here as an example, this step was 

performed for all individuals within a family) 

VAT -f RefSeq_hg19.p10_VAAST.gff3 -a vaast_hsap_chrs_hg19.fa 

4001.gvf > 4001.vat.gvf --sex male 

Step 3: VST (Variant Selection Tool, individuals within each family were merged into one file) 

VST -o 'U(0..$index)' -b hg19 *.vat.gvf > family1.cdr 

Step 4: pVAAST  

VAAST -m lrt -p 32 --indel --enable_splice_sites y -gw 1e6 -r 0.05 

-pv_control family1_dominant.ctl -o family1_dominant 

RefSeq_hg19.p10_VAAST.gff3 control.cdr 

Parameters used within the control file family1.ctl were as follows: 

unknown_representatives: yes   

inheritance_model: [dominant|recessive] 

informative_site_selection: 3   

simulate_genotyping_error: yes    

genotyping_error_rate: 1.00E-04   

penetrance_lower_bound: 0.6   

penetrance_upper_bound:  1   

max_prevalence_filter: 0.01   

lod_score_filter: yes   

clrt_score_filter: yes    

nocall_filter: yes   

nocall_filter_cutoff: 2   

inheritance_error_filter: no  
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The output of pVAAST were parsed to csv files by a custom Python script for downstream 

analyses. Candidate genes were removed if all variants scored by pVAAST had AF > 0.05 in the 

gnomAD 2.1.1 13. AF for variants inside repetitive sequences were curated manually because the 

variant call is subject to high error rates and the variant position reporting is often not consistent 

among different databases. The pLI (probability of being loss-of-function intolerant) score and 

the missense Z score were extracted from gnomAD for each gene 14. 

Candidate Gene Annotation and Filtering 

Gene expression data were downloaded from three resources: the Gene Tissue 

Expression project (GTEx) version 8 15, 16, the BrainSpan Atlas of the Developing Human Brain 

17, and the Human Developmental Biology Resource (HDBR) expression resource of prenatal 

human brain development 18. To reduce the variation caused by mitochondrial and non-coding 

genes, TPM (Transcript Per Million) values of coding genes were re-calculated after removing 

mitochondrial and non-coding genes. A gene is defined as coding if there is a protein sequence in 

corresponding GENCODE gene models 19 and the gene is not from mitochondria. To reduce the 

impact of variants in non-coding genes, for GTEx data, we excluded samples where less than 

40% of sequenced mRNAs were from coding genes (TPM < 400,000). For coding genes in each 

sample, 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑇𝑃𝑀 =
𝑇𝑃𝑀

𝑠𝑢𝑚 𝑜𝑓 𝑇𝑃𝑀𝑠
 × 106. For each gene, the median of normalized TPM 

values in samples of the same tissues were selected and normalized to represent the expression 

level of the genes in different tissues. TPM values for TD candidate genes were extracted from 

the three resources and a gene was removed if the max TPM values in brain tissues was less than 

5. 
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Variant Segregation Within Pedigrees 

To select genes with segregating variants, the number of affected/unaffected individuals 

with a candidate variant is counted within each gene. A true positive event is defined as an 

affected individual with the mutation and a true negative event as an unaffected family member 

without the mutation, respectively. A false positive event is defined as an unaffected family 

member with the mutation and a false negative event as an affected individual without the 

mutation. Unknown individuals are those whose genotype cannot be determined. For each 

variant, the false rate is calculated as (false positive + false negative) / (total individuals - 

unknown). Candidate genes that include at least one variant with true positive events ≥ 2 and 

false rate < 0.3 were kept. 

Gene Lists from Previous NDD Studies 

Risk genes for several NDDs were collected from previous studies (Table S1). The lists 

of genes are: TD_multiplex, genes reported in this study; TD_simplex, genes published in the 

previous TD literature 20-25 and genes with de novo mutations from TD simplex families 26; 

TD_CNV, genes from a copy number variant (CNV) study of TD 26; OCD, genes from two 

GWAS studies 27, 28 and one WES study of OCD 29; ADHD, “Published Gene” from the 

ADHDgene database (http://adhd.psych.ac.cn/) 30; ASD_high, ASD candidate genes annotated as 

syndromic or with score ≤ 2 in the Simons Foundation Autism Research Initiative (SFARI) 

database (12-05-2019 release) 31; ASD_low, other SFARI genes not labelled as ASD_high 31; 

OtherNeuro, genes associated with ID, EE, NDD, and SCZ summarized in 32.  

Protein–Protein Interaction Network Identification 

Three databases were selected to investigate Protein–Protein Interaction (PPI) networks 

among candidate genes, including STRING 33, ConsensusPathDB 34, and GIANT_v2 35 (an 
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updated version of GIANT 36). These three databases display the best performance for PPI 

network construction based on a recent benchmark study 37. For ConsensusPathDB (CPDB), 

“induced network modules” analysis was performed for genes from the eight gene lists (Table 

S1) using only high-confidence interactions and no intermediate nodes. For TD_multiplex genes, 

custom Python scripts were used to obtain all high-confidence interaction genes with them. For 

STRING, the v11 full human PPI network was downloaded from the STRING website 

(https://stringdb-static.org/download/protein.links.full.v11.0/9606.protein.links.full.v11.0.txt.gz). 

Self-interactions of genes were removed, and a cutoff was set for the “combined score” so that 

the number of interactions among the genes was the same as identified in ConsensusPathDB. For 

GIANT_v2, the full PPI network with global evidence was downloaded from the website 

(http://giant-v2.princeton.edu/static//networks/global.dab) and converted to text format with a 

Python script (https://github.com/FunctionLab/flib/blob/master/dat.py). A cutoff for interaction 

score was set in the same way as in the STRING analysis. For each TD_multiplex gene, the 

number of all interacting genes was counted based on interactions in any of the three databases. 

The number of interacting genes with other multiplex families and the other 7 gene lists were 

also counted for each TD_multiplex gene. Fisher’s exact test were performed to determine 

whether the number of interactions were enriched for candidate genes in each gene list. The 

numbers of interacting genes and enrichment p-values were used to prioritize putative causal 

genes. 

Gene Ontology, Pathway, and Protein Complex Enrichment 

Enrichment analyses were performed with over-representation analysis provided by 

ConsensusPathDB 34. All pathway, Gene Ontology (GO), and protein complex-based enrichment 

analyses were enabled, with the minimum two genes from the input and p-value cutoff set to 1. 

https://stringdb-static.org/download/protein.links.full.v11.0/9606.protein.links.full.v11.0.txt.gz
http://giant-v2.princeton.edu/static/networks/global.dab
https://github.com/FunctionLab/flib/blob/master/dat.py
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Enrichment p-values was determined by ConsensusPathDB using a hypergeometric test. For 

each enriched term (pathway, GO, or protein complex), the total number of genes of that group, 

input genes identified, gene counts in each of the eight gene lists (no overlap, Table 2), and 

multiplex family counts were determined. Terms were combined if the overlapped input genes 

were identical and the total count of genes of the smallest term was used for later analysis. A 

term was selected for further inspection if the total count of genes ≤ 200, TD_multiplex gene ≥ 2, 

TD_multiplex + TD_simplex + TD_CNV gene ≥ 3, and multiplex family count ≥ 2. Enrichment 

p-values of the eight gene lists were calculated with Fisher’s exact test and the significance level 

(3x10-5) is determined by the Bonferroni correction of the 1,669 selected terms (0.05/1669). The 

enriched terms were used as evidence to prioritizing causal genes in multiplex families.  

Copy Number Variant (CNV) Analysis 

Genotypes were called using Illumina GenomeStudio software (V2010.1). There were no 

significant differences in call rates and heterozygosity between genotyping facilities. All samples 

included in the analysis passed strict quality control, including expected genotypic identity 

within the family using PLINK 38, expected genotypic sex based on chromosome X 

heterozygosity and sex chromosome LRR, genotyping rate >= 97%, and all samples passing 

quality metrics within the CNV calling algorithms. The CNV detection was performed using the 

program CNVision (https://sourceforge.net/projects/cnvision) as previously described 39. 

CNVision merges CNV calls from three algorithms: PennCNV 40, QuantiSNP 41, and GNOSIS 

42.  

 

 

 

https://sourceforge.net/projects/cnvision
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