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Overview19

In section 1 we provide details on the Landau Theory introduced in the main text. We first derive20

the Landau coefficients used in our expression of the tether free energy, ftether. Next we detail the21

derivation of the surface free energy, fsurf expressed as a function of three ‘surface’ variables φ0,ψ,ρ.22

We then examine the behavior of fsurf near the membrane critical point, showing enhancement23

of prewetting through the diverging effective surface enhancement and surface chemical potential24

as criticality is approached. We then derive a relationship between membrane’s susceptibility and25

the enhancement of prewetting. In Section 2 we provide the supplemental figures referenced in the26

main text. Here we discuss the effect of finite tether-length used in our simulations, properties27

of our bulk lattice polymers system and alternative polymer mixtures, expand on the three-phase28

coexistence region, and discuss membrane- and bulk-dominated surface denstites29
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1 Landau Theory30

Our mean-field theory starts with the Landau Functional shown in Equation 1 of the main text:

L = L2D + L3D

L2D =

∫
d2~xf2D(ψ, ρ, φ0)

L3D =

∫
d2~xdz

1

2
∇φ2 + f3D(φ)

f2D(ψ, ρ, φ0) =
tmem

2
ψ2 +

umem
4!

ψ4 − λψψ︸ ︷︷ ︸
fmembrane

− 5

6
ρ+

3

2
ρ2 − 3

3!
ρ3 +

2

4!
ρ4 − 1

4
− λρρ︸ ︷︷ ︸

ftether

− hψρψ − hφρφ0︸ ︷︷ ︸
fint

(1)

where f3D is the free energy of a system displaying a conventional condensation transition:

f3D =
tbulk

2
φ2 +

ubulk
4!

φ4 − µbulkφ (2)

Our goal is to minimize L over order parameters ρ,ψ and order parameter profile φ(z). Two31

derivatives ∂L
∂ψ = ∂L

∂ρ = 0 minimize the free energy over purely ‘surface’ terms. A functional32

derivative δL
δφ(z) = 0 minimizes the energy over forms of the density profile φ(z).33

1.1 Derivation of ftether34

The free energy of the tethers in our model is expressed as a Landau free energy, a function of
powers of the order parameter ρ and Landau coefficients a,b,c,d,e

ftether(ρ) = aρ+
b

2
ρ2 +

c

3!
ρ3 +

d

4!
ρ4 + e− λρρ

The tethers are a non-interacting 2-dimensional lattice gas. The free energy of a 2D gas may be
written as ftether = ρ log ρ. We approximate this by expanding ftether in powers of ρ at ρ?

ρ log ρ|ρ? = (ρ− ρ?) (1 + log ρ?) +
(ρ− ρ?)2

2ρ?
− (ρ− ρ?)3

6ρ2?
+

(ρ− ρ?)4

12ρ3?

ftether(ρ, ρ?) =
−3ρ4? − 12ρ4? log ρ?

12ρ3?
+
ρ
(
−10ρ3? + 12ρ3? log ρ?

)
12ρ3?

+
3ρ2

2ρ?
− ρ3

2ρ2?
+

ρ4

12ρ3?
− λρρ

Setting ρ? = 1, as used in all calculations here, we obtain the free energy of the tethers and values
of all Landau coefficients:

ftether(ρ, ρ? = 1) = −1

4
− 5

6
ρ+

3

2
ρ2 − 3

3!
ρ3 +

2

4!
ρ4 − λρρ

This Taylor series provides an analytically tractable approximation to the ideal gas free energy of35

the tethers near ρ = 1. However, because its first derivative is finite at ρ = 0, some of our physical36

phases spill over into negative values of ρ. As such we interpret ρ more as an order parameter than37

as a more rigorously defined tether density.38
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1.2 Derivation of surface free-energy39

Contributions from the bulk are a function of φ(z). To simplify calculations we express the bulk40

energy as a function of initial and final values of φ, φ(z = 0) = φ0 and φ(z = ∞) = φ∞. these41

solely determine the behaviour of the density profile. We write f3D(φ)− f3D(φ∞) as fφ−φ∞3D .42

First we perform the functional derivative, δLbulk
δφ(z)

Lbulk(φ(z)) =

∫ ∞
0

dz
1

2
(∇φ)2 + fφ−φ∞3D

δLbulk[φ(z)] =

∫ ∞
0

dz∇φ∇δφ+
∂fφ−φ∞3D

∂φ
δφ

δLbulk[φ(z)]

δφ(z)
=
∂fφ−φ∞3D

∂φ
−∇2φ = 0 (3)

The last equality serves as a second order ODE for φ(z) which we solve given boundary conditions
at z = 0,∞, making use of mathematical tools developed in [1].

δLbulk
δφ(z)

= 0

∂2φ

∂z2
=
∂fφ−φ∞3D

∂φ

∂φ

∂z

∂2φ

∂z2
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∂φ
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(
∂φ

∂z

)2

=
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z=0
dzfφ−φ∞3D
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∂φ

∂z

)2

z=∞
−
(
∂φ
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)
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1

2

(
∂φ
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∂φ

∂z
= ±

√
2fφ−φ∞3D (φ0) (4)

Finally we substitute this into our original functional and rewrite as an integration over values
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of φ instead of z to define the bulk contribution, ∆fbulk

∆fbulk(φ(z)) =

∫ ∞
0

dz
1

2
(∇φ)2 + fφ−φ∞3D

=

∫ ∞
0

dz (∇φ)2

=

∫ φ∞

φ0

dz
dφ

dz

dz

dφ
(∇φ)2

=

∫ φ∞

φ0

dφ∇φ

∆fbulk(φ0, φ∞) =

∫ φ∞

φ0

dφ
√

(2(fφ0 − fφ∞)) (5)

The sign of ∂φ
∂z depends on whether φ0 is above or below φ∞: polymer density always moves

towards the bulk density φ∞. An expression for the gradient may be obtained by substituting in
the expression for fφ−φ∞3D (φ) and ubulk = 1

6

(
6tbulkφ∞ + φ3∞

)
:

∂φ

∂z
= (φ− φ∞)

√
(12tbulk + φ2 + 2φφ∞ + 3φ2∞)

2
√

6
(6)

Writing ∆fbulk as a function of φ0 and φ∞ now allows minimization of the systems Landau free
energy over values of φ0,ρ, and ψ. After solutions are obtained we compute the energy of each of
these solutions. This can be expressed as

fsurf = ∆fbulk(φ0, φ∞) + f2D(φ0, ψ, ρ)

=

∫ φ∞

φ0

dφ
√

2(fφ0 − fφ∞) + f2D

fsurf =

∫ φ∞

φ0

dφ

{
∇φ− ∂f2D

∂φ

}
+
∂f2D
∂φ
|φ∞ (7)

where the final equation is the is the integration between the curves of ∇φ and −∂f2D
∂φ0

shown in43

Figure 5B of the main text.44

1.3 Enhancement of prewetting regime near membrane critical point45

In our Monte-Carlo simulations and numerical calculations, we find a large expansion of the prewet-46

ting region as the membrane is brought near to its critical point. We now aim to show using a47

simplified Landau theory how this enhancement arises. First we simplify the free energies of mem-48

brane and tether components, and obtain expressions for minimal values of ψ and ρ to quadratic49

order:50

f2D =
tmem

2
ψ2 − λψψ −

1

4
− 5

6
ρ+

3

2
ρ2 − λρρ− hψψρ− hφφ0ρ
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∂f2D
∂ψ

=
∂f2D
∂ρ

= 0

ψmin = −
−5hψ − 6 (hψλρ − 3λψ − hφhψφ0)

6
(

3tmem − h2ψ
)

ρmin = −
5tmem − 6 (tmemλρ + hφλψ + tmemhφφ0)

6
(
h2ψ − 3tmem

) (8)

This simplification of f2D excludes fourth order terms in ψ and ρ is only reasonable for tmem >
tc,mem. Substituting ψmin,ρmin into the original fsurf we obtain the surface free energy in terms of
φ0:

fsurf (φ0, ψ, ρ) = ∆fbulk(φ0, φ∞)−
tmemh

2
φ

2(3tmem − h2ψ)
φ20 −

hφ (tmem (5 + 6λρ) + 6hψλψ)

6(3tmem − h2ψ)
φ0

−
tmem

(
79 + 60λρ + 36λ2ρ

)
+ 6

(
−3h2ψ + 2hψ (5 + 6λρ)λψ + 18λ2ψ

)
72(3tmem − h2ψ)

(9)

Here second order couplings in φ0 emerge after the minimizing over the membrane and tether51

degrees of freedom. Each of these terms has a denominator, 3tmem−h2ψ which defines the membrane52

critical point as tmem = h2ψ/3. The surface enhancement (prefactor to the φ20 term) is proportional53

to (Jc,mem−Jmem)−1 which is consistent with the scaling of the Ising model susceptibility exponent54

γ = 1 in mean-field.55

1.4 Membrane susceptibility and prewetting56

The susceptibility-mediated enhancement of prewetting can be seen directly by examining higher-
order interactions between membrane and tether components. We split L2D into non-interacting
membrane and tether contributions and interaction terms mixing all components:

L2D =

∫
d2~x{fmem(ψ) + ftether(ρ) + fint(ψ, ρ, φ0)}

fint(ψ, ρ, φ0) = −hψρψ − hφρφ0 (10)

We focus on the interactions and define Lint =
∫
d2~xfint(ψ, ρ, φ0). We calculate Lint as a sum of

cumulants:

Lint ≈ L0int − 〈Lint〉 −
1

2

(
〈L2int〉 − 〈Lint〉2

)
− . . .

〈Lint〉 =

∫
d2~xhψψρ+ hφφ0ρ

〈L2int〉 =

∫
d2~xρ(hψψ + hφφ0)

∫
d2~x′ρ′(hψψ

′ + hφφ0)

〈Lint〉2 =

(∫
d2~xhψψρ+ hφφ0ρ

)2

(11)

We assume tmem > tc,mem and the membrane is at it’s critical composition, ψ = 0. We assume we
are far from the prewetting critical point and neglect second order terms in φ0
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〈Lint〉 = 〈ρ〉(hφ〈φ0〉+ hψ〈ψ〉)〈
L2int

〉
− 〈Lint〉2 = h2ψ〈ρ〉2

∫
d2~xψx

∫
d2~x′ψx′ −

(∫
d2~xhψψxρx

)2

= h2ψ〈ρ〉2
∫
d2~x

∫
d2~x′〈ψxψx−x′〉 − h2ψ〈ρ〉2〈ψx〉2

= h2ψ〈ρ〉2
∫
d2~x〈ψ2

x〉 − 〈ψx〉2

= h2ψ〈ρ〉2
∫
d2~xG(~x)

= h2ψ〈ρ〉2
∫
drG(r)

= h2ψ〈ρ〉2χψ (12)

Here χψ is the susceptibility of the membrane and G(r) is the two-point correlation function. The57

integral over all space of G(r) is χψ. Here we have assumed that the membrane order parameter is58

translationally invariant and that G(r) is spherically symmetric.59

Lint ≈ L0int − 〈ρ〉 (hφ〈φ0〉+ hψ〈ψ〉)−
h2ψ〈ρ〉2

2
χψ (13)

At the critical composition, ψ = 0 and critical temperature, χψ → ∞, implying that interactions
become very favorable even with negligible contributions from other terms. Substituting Lint into
our original Landau functional, we obtain a new free energy function, neglecting fourth order terms:

f2D = −5

6
ρ+

3

2
ρ2 − 1

4
− λρρ− hφφ0ρ−

h2ψρ
2

2
χψ (14)

Minimizing over ψ and ρ and substituting back in the free energy, as in equation 9 above, we express
f2d just in terms of surface polymer density φ0

f2D = −
h2φ

2(h2ψχψ − 3)
φ20 +

hφ(5 + 6λρ)

6(h2ψχψ − 3)
φ0 +

−18h2ψχψ + 36λ2ρ + 60λρ + 79

72(h2ψχψ − 3)
(15)

This is similar to Equation 9, where the denominator vanishes at the ‘shifted’ membrane critical60

point χψ = 3
h2ψ

. This differs from the calculation above where the divergence near the critical point61

is stronger, as the Ising susceptibility exponent γ = 7/4 instead of 1. A full treatment of our model62

beyond mean-field would likely expand prewetting boundaries beyond the values we present here.63
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2 Supplementary Figures64

2.1 Effect of tether length in monte-carlo simulations65

Our Monte Carlo Simulations implement tethers with a finite three-dimensional length while the66

tethers in our landau theory lack a three-dimensional component. We examined the effect of tether67

length with simulations varying tether length from 1 − 10 mononmers S1. As expected, prewet68

phases are stable at higher bulk temperatures as tether length is increased. The form of the69

polymer density profile is influenced by tether length. The density profile has a maximum at short70

but non-zero distances from the wall (see Main text Figure 2D,Figure 3C, S1). The location of71

this maximum extends further from the wall as tether length is increased. This is in contrast to72

conventional wetting and prewetting where the density profile is monotonic with distance from the73

membrane.74

The non-standard behavior of the density profile is explained by the entropic repulsion expe-75

rienced by polymers near a surface. Along the length of the tether, the membrane- and tether-76

mediated interactions between polymers are the same. However there are more interactions available77

to polymers at finite distance from the surface. With a non-zero tether length, polymers prefer to78

concentrate their density away from the surface while still within the tether length.79

Figure S1: Effect of Tether Length A) Density profiles of simulations at various tether lengths.
Simulations with longer tethers have a broader maximum further from the membrane. B) Distance
of maximum polymer Density plotted against tether length
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2.2 Simulations of bulk polymer mixtures80

Our 3D lattice polymer simulations phase-separate into coexisting dense and dilute phases in-81

lieu of membrane and tethers. Here, as in the main text, red and blue polymers of equal length82

(n=20 monomer units) interact attractively with one another and like polymers repel each other.83

Polymers phase-separate through increasing Jbulk (See Figure S2). Higher polymer concentrations84

phase-separate at lower Jbulk.85

Figure S2: Monte-Carlo Simulations of Bulk Lattice Polymers A) Lattice polymer simu-
lations show phase coexistence. Simulations at 0.25kBT have a homogeneous polymer density.B
Simulations at strong polymer coupling 1.0kBT , bottom, see coexisting dense and dilute phases.

8



2.3 Alternative bulk polymer mixtures86

We also ran simulations with different bulk polymer mixtures and observed similar phases to those87

in our symmetric mix of red and blue polymers (See Figure S3). We simulated a unary polymer88

mixture with strong nearest-neighbor interactions, an asymmetric mixture of polymers (n=5 and89

n=20), and a mixture of two short (n=5) polymers. We observe one,two, and three surface phase-90

coexistence in all of these mixtures. The classical theories of wetting and prewetting only require a91

bulk systems that phase separates, and a surface with affinity for one of these phases. Diverse bulk92

systems ought display these phases, so long as they can phase-separate in the absence of a surface.93

Figure S3: Several Bulk Polymer Mixtures Produce Similar Results. A) Single surface-
phase system with a single polymer species (left), two polymers of unequal length (middle), and
short polymers (right) B)Surface phase coexistence in mixtures as above C) Three surface phase
coexistence
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2.4 Two phase coexistence regions bound three-phase coexistence regions on94

the surface phase diagram95

Our landau theory predicts three two-phase coexistence regions bounding the three-phase coex-96

istence region (main text Figure 7A). We examined our Landau theory in these regions, Figure97

S4A. Shifting the surface composition eliminates one of the three stable solutions. After finding a98

parameter regime in simulations demonstrating three-phase coexistence we shifted membrane and99

tether compositions to access the two phase coexistence regions S4. Decreasing membrane order100

at constant tether density eliminates the prewet dry phase (ld Dry-lo Prewet). Likewise increas-101

ing membrane order with a slight increase in tether density shows lo-Dry lo-Prewet Coexistence.102

Finally, removing tethers eliminates the polymer rich phase, displaying a lo-Dry ld-Dry membrane.103

Figure S4: Two-phase coexistence near three-phase coexistence A) Gradient construction
within each two phase region depicted in Figure 7A. B) Two-phase coexistence regions observed in
simulation
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2.5 Dependence of three-phase coexistence region on bulk and membrane tem-104

peratures105

The three-phase coexistence region requires a phase-separated membrane and polymers that prewet106

in the absence of membrane interactions. We calculated the phase diagram in our Landau theory107

over membrane and bulk couplings in Figure S5A. Three-phase coexistence occurs at low membrane108

and bulk temperatures, and the parameter regime shrinks as either temperature is increased. We109

plotted the surface phase-diagram at several points within this phase diagrams in Figure S5B.110

Decreasing Jmem shrinks the lo Dry -ld-Dry coexistence region and respective edge of the three111

phase region. Decreasing Jbulk shrinks the lo Dry-lo Prewet coexistence region. Outside of the112

parameter regime where three-phases coexist, two-phases coexist. The character of these phases113

depends on whether the dominant force is membrane or bulk.114

Figure S5: Bulk and Membrane Coupling govern 3-phase coexistence A) Phase diagram
over membrane and bulk couplings showing one, two, and three phase regions (yellow, blue, and
red). Three phase coexistence generally requires strong membrane and bulk interactions, but
extends to weaker Jbulk near the membrane critical point. B) Surface phase diagrams at various
membrane and bulk couplings. Weak membrane couplings collapse the purple (l0-dry,ld-dry) region,
top to bottom. Weak bulk couplings shrink the green (lo-prewet,lo-dry) edge, left to right.
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2.6 Surface densities may be dominated by bulk or membrane forces115

Near Jc,mem, two surface phases coexist at very low Jbulk; at high Jbulk surface phases may also116

coexist at low Jmem (main text Figure 6A). We explored our Landau theory in these two limits117

to determine the character of these phases Figure S6. Order parameter profiles show that while118

the bulk-dominated phase is similar to that of classical prewetting [1] the membrane dominated119

phases only have marginal enrichment relative to the bulk equilibrium density φ∞ as with a classical120

‘surface transition’ [2]. This is similar to Nakanishi and Fisher’s description of wetting and surface121

transitions [3], where surface transitions and prewetting are revealed to be the same transition122

viewed from different regions of a higher-dimensional phase diagram. Biological systems likely123

utilize these forces in a variety ways where membrane and bulk systems both have a role.

Figure S6: Bulk and Membrane Dominated Surface densities A) Density profiles for surface
densities dominated by bulk (purple) and membrane (green) forces. B) Gradient construction for
bulk and membrane dominated systems. A near-critical membrane allows surface coexistence when
the gradient term is steep, but only over a narrow range of φ0 values
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2.7 Membrane composition and tether density alter surface polymer density124

Our simulations show a strong dependence on membrane coupling and tether-bulk coupling. We125

explored the effect of surface composition, performing simulations varying tether density (see Figure126

S7A) and membrane composition (see Figure S7B) along with bulk coupling. We find that as tether127

density is increased, the density of polymers on the surface increases. As membrane order decreases128

towards the membrane critical point (membrane order = 0, or M =0), the density of surface129

polymers similarly increases. As membrane order further decreases, polymer density increases as130

tethers relegated to smaller regions on the membrane, effectively increasing their density

Figure S7: Surface composition alters polymer density at the membrane: A) Varying
tether density and bulk coupling increases surface polymer density. High densities, dark blue; low
densities, light blue. B) Decreasing membrane order increases surface polymer density

131
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Table S1: Simulation parameters used in supplemental figures
Figure Tether Density Membrane Order Jbulk, kBT Jmem, Tc Jtether µbulk
S1A/B 0.25 0.8 0.4 1.1 1.0 -4.5

S2A, One Phase N/A N/A 0.25 N/A N/A 0.06
S2A, Coexistence N/A N/A 1.0 N/A N/A 0.06

S3A Single 0.094 0.5 0.55 2.0 1.0 -4.5
S3A, Unequal 0.0625 0.5 1.62 2.0 1.0 -3.0

S3A, Short 0.0625 0.5 3.31 2.0 1.0 -3.5
S3B, Single 0.094 0.5 0.55 1.0 1.0 -4.5

S3B, Unequal 0.0625 0.5 1.62 1.0 1.0 -3.0
S3B, Short 0.0625 0.5 3.31 1.05 1.0 -3.5
S3C, Single 0.094 0.5 0.55 0.9 1.0 -4.5

S3C, Unequal 0.0625 0.5 1.64 0.0 1.0 -3.0
S3C, Short 0.0625 0.5 3.31 0.9 1.0 -3.5

S4B,lo − Prewet/ldDry 0.08 0.2 0.5 0.5 1.0 -4.5
S4B, lo −Dry/lo − Prewet 0.14 1 0.5 0.5 1.0 -4.5

S4B, ld −Dry/lo −Dry 0.02 0.5 0.5 0.5 1.0 -4.5
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