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1 Spin Dynamics

The dynamics of nuclear spins in a magnetic field are described phenomenologically by the Bloch
equation [1]. Given the magnetic field as a function of time at a given location, an initial condition
for the spin, and parameters T1, T2, the Bloch equation predicts the state of the spin at subsequent
times. Here, we consider MRF pulse sequences for two-dimensional slices through brain tissue
consisting of 256 × 256 voxels, each 1.2mm by 1.2mm. (The thickness is not explicitly modeled
but in vivo is approximately 5mm.) Correspondingly, our mathematical model consists of a value
of T1, T2, and m0 (proton density) assigned to each voxel. The proton density only affects the
magnetization of the voxel by acting as a time-independent multiplicative factor. For a given pulse
sequence we solve the Bloch equations (in the hard-pulse approximation) to obtain magnetization
vs. time for each (T1, T2) pair appearing within the voxels of the simulated tissue distribution.

Because the static B0 field is not perfectly spatially homogeneous, different spins throughout the
brain precess at slightly different rates. This induces unwanted artifacts in the resulting magnetic
resonance images. The purpose of the spoiling gradient is to reduce sensitivity to B0 inhomogeneity
by effectively averaging away the x and y components of the magnetization at the end of each TR.
For this to be effective, the spoiling gradient needs to be sufficiently strong that the difference in
precession angle between different spins within the same voxel is at least 2π. In our computer model
we assign F = 400 spins to each voxel, which get rotated by angles uniformly spaced between −π
and π during the spoiling gradient. At the measurement stage, the magnetization associated to a
given voxel is obtained by averaging over these 400 spins, conventionally referred to as isochromats.

∗The work of H. G. K. was performed before joining Amazon Web Services.
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In the hard pulse approximation, the RF pulses that rotate the spins on the Bloch sphere
are considered instantaneous. Consequently, the exponential decay dictated by T1 and T2 is not
intermixed with these rotations. Let s denote the index of a given TR. The first step in a given
TR is to apply an RF pulse implementing a rotation on the Bloch sphere according to polar angle
αs followed by azimuthal angle θs. That is, the magnetization vector ~ms,j of the jth isochromat at
the sth timestep undergoes the transformation

~ms,j(x, y)← Rs ~ms,j(x, y) (1)

where Rs is the rotation matrix

Rs =

 cos2 θs + cosαs sin2 θs (cosαs − 1) cos θs sin θs sinαs cos θs
(cosαs − 1) cos θs sin θs cosαs cos2 θs + sin2 θs cos θs sinαs

− sinαs sin θs − cos θs sinαs cosαs

 . (2)

The next step in the sth TR is to wait for time TEs. Left undisturbed for duration TEs the
magnetization will relax toward equilibrium according to

~ms,j(x, y)← D(TEs) ~ms,j(x, y) + ~v(TEs). (3)

Where

D(t) =

 e−t/T2 0 0

0 e−t/T2 0

0 0 e−t/T1

 (4)

and

~v(t) =

 0
0

1− e−t/T1

 . (5)

Conventional magnetic resonance imaging hardware cannot measure the z-component of magneti-
zation. Furthermore, the measurement cannot distinguish isochromats within a voxel but instead
is sensitive only to their average magnetization. In keeping with widely used conventions in the
magnetic resonance literature we express this average magnetization in the xy plane in a given
voxel as a complex number whose real part is the x-component of the magnetization and whose
imaginary part is the y-component, as follows.

ms(x, y)← 1

F

F−1∑
j=0

([~ms,j(x, y)]x + i [~ms,j(x, y)]y) . (6)

Next, another idle waiting period is imposed for the remaining time TRs−TEs. Hence, relaxation
dynamics again occurs in accordance with (3).

~ms,j(x, y)← D(TRs − TEs) ~ms,j(x, y) + ~v(TRs − TEs). (7)

Lastly, a spoiling gradient is applied, which rotates the different isochromats within the voxel by
different angles, determined by their position along the gradient. That is,

~ms+1,j(x, y)← Sj ~ms,j(x, y), (8)
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~ms,j(x, y) ← Rs ~ms,j(x, y) apply rotation specified by (αs, θs)
~ms,j(x, y) ← D(TEs) ~ms,j(x, y) + ~v(TEs) wait for time TEs
ms(x, y) ← 1

F

∑F−1
j=0 ([~ms,j(x, y)]x + i [~ms,j(x, y)]y) measurement averages isochromats

~ms,j(x, y) ← D(TRs − TEs) ~ms,j(x, y) + ~v(TRs − TEs) wait for remainder of TRs duration
~ms+1,j(x, y) ← Sj ~ms,j(x, y) apply spoiling gradient

Figure 1: Summary of spin dynamics within a voxel of given T1 and T2 during the sth TR of a
FISP pulse sequence.

where

Sj =

 cosφj − sinφj 0
sinφj cosφj 0

0 0 1

 . (9)

This mathematical model of a FISP pulse is summarized in figure 1.
For a sequence with an initial inversion pulse we take the initial state of ~mj to be (0, 0,−0.95)

for all j.

2 Digital Phantom

For an MRF scan we wish to minimize T1 error, T2 error, and scan time. We use a weighted
combination of the predicted values for these quantities as a cost function to minimize. Magnetic
resonance scans are complicated processes involving many sources of random and systematic error.
Modeling these to obtain a cost function that accurately predicts real-world in vivo performance
of pulse sequences is highly nontrivial. Here, we use a model that incorporates random error due
to thermal noise, and systematic errors due to Fourier undersampling and phase inhomogeneity.
Such phase inhomogoneity is commonly observed and could be caused by B0 or B1 inhomogeneity
or motion. (A preliminary report on our cost function appears in [2]).

At least ideally, the RF pulses in a magnetic resonance scan are uniform throughout the xy
plane and induce the same rotation on the Bloch sphere to every spin throughout the targeted slice
of tissue. Sensitivity to spatial variation is obtained during the measurement step through the use
of magnetic field gradients, which allow the extraction of Fourier components of the magnetization
in the xy-plane. Because spins at different locations have different values of T1 and T2 depending
on tissue type, the magnetization vs time will vary spatially, and this variation can be used to map
the distribution of different tissues. To obtain complete information about the magnetization after
each pulse, one would need to measure a number of Fourier components equal to the number of
voxels in the desired image. However, to obtain shorter scan durations it is typical in practice to
measure only a much smaller number of Fourier components after each pulse.

In this study we use a high level of Fourier undersampling to achieve short scan times. Specif-
ically, we use a variable density spiral readout in Fourier space [3] in the “one-shot” setting with
undersampling factor R = 48. That is, after each RF pulse, we measure Fourier components along
a single spiral, repeatedly cycling through a sequence of 48 spirals, which collectively provide full
coverage of Fourier space. Superimposing all 48 spirals does not yield a set of points in Fourier space
arranged according to a uniform grid. Rather, the density of samples in Fourier space varies slightly.
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To infer spatial images, this non-uniform sample density is compensated for using a Non-Uniform
Fast Fourier Transform (NUFFT) [4].

The mapping from actual xy-magnetization at a given time to the measured Fourier compo-
nents is given by a Fourier transform, which is linear. The mapping from the measured Fourier
components to the inferred xy-magnetization is given by a non-uniform Fourier Transform, which
is also linear. Therefore, the inferred magnetization in position space is expressible as a linear
combination of contributions from the actual magnetization in position space. That is,

Is(x, y) =
∑
x′,y′

Us(x, y, x
′, y′)ms(x

′, y′). (10)

Here, ms(x
′, y′) is the actual magnetization at location (x′, y′) at the time of sth measurement,

Is(x, y) is the magnetization at location (x, y) inferred based on the results of the sth measurement,
and Us(x, y, x

′, y′) is the point spread function defined by the non-uniform Fourier transform applied
to the set Fourier components measured in the sth step. (In our case, the set of Fourier components
measured in the sth step are those lying within the jth spiral trajectory, where j is given by s
reduced modulo 48. Thus Us(x, y, x

′, y′) = Us+48(x, y, x′, y′).) Here we are taking Is(x, y) and
ms(x

′, y′) to be complex numbers as noted earlier.
In magnetic resonance fingerprinting, one discretizes the range of T1 and T2 that might be

found in human tissues into a finite set of values. Given a pulse sequence, one then computes,
for each (T1, T2) pair in this set, the corresponding magnetization vs. measurement index s. This
list of potential magnetization vs. s curves is called a dictionary. After performing a magnetic
resonance scan and applying non-uniform Fourier transforms, one obtains estimates of magnetiza-
tion vs. measurement index for each voxel. Although the individual magnetization estimates for
each measurement index have large error due to Fourier undersampling, the time-series across all
measurement indices nevertheless contains useful information. The time series for a given voxel
can be compared against the entries in the dictionary, and for each voxel one can assign (T1, T2)
based on the dictionary entry that makes the closest match to the observed signal according to
a suitably chosen metric of closeness. Here, following [5], we take the perspective that, for a se-
quence with n measurements, we can normalize (I1(x, y), I2(x, y), . . . , In(x, y)) to obtain a unit
vector in Cn. The dictionary entries are also normalized to become unit vectors in Cn. For a
given voxel one infers (T1, T2) to be the values of the dictionary entry whose inner product with
(I1(x, y), I2(x, y), . . . , In(x, y)) has the largest magnitude.

In principle, given a pulse sequence, choice of Fourier-space trajectories, and a model tissue
distribution assigning (T1, T1,m0) values to each voxel, one can solve the Bloch equation to obtain
ms(x

′, y′) and solve (10) to obtain Is(x, y), thereby simulating the effect of Fourier undersampling
errors. This data can then be matched against a dictionary of predicted signals to obtain inferred
(T1, T2) values for each voxel. The inferred (T1, T2) values can then be compared against the model
tissue distribution to evaluate error in inferred T1 and T2 induced by Fourier undersampling. Some
pulse sequences will be more robust against Fourier undersampling error than others, and this
metric of error can thus be used to construct a cost function to optimize.

Unfortunately, this is not very practical, as most optimization methods need to make a large
number of queries to the cost function and evaluation of Is(x, t) via (10) is somewhat computation-
ally intensive. Large computational savings can be made by taking a somewhat simplified model,
as described in [2]. Instead of assigning each voxel in the model brain to a unique (T1, T2,m0) value,
we consider an idealized brain in which each voxel in our 256×256 array is one of four types: white
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matter (T1 = 800ms, T2 = 40ms,m0 = 0.77), grey matter (T1 = 1400ms, T2 = 60ms,m0 = 0.86),
cerebrospinal fluid (T1 = 3000ms, T2 = 2000ms,m0 = 1.0), or air (m0 = 0). Consequently, to
compute Is(x, y), one need only to solve the Bloch equations for grey matter, white matter, and
cerebrospinal fluid, and then for each measurement index s, take the corresponding complex linear
combination of the three pre-summed point spread functions corresponding to the spatial distribu-
tions of these three tissues. That is,

Is(x, y) = U (GM)
s (x, y)m(GM)

s + U (WM)
s (x, y)m(WM)

s + U (CSF)
s (x, y)m(CSF)

s (11)

where:
U (GM)
s (x, y) = m

(GM)
0

∑
(x′,y′)∈GM

Us(x, y, x
′, y′) (12)

and similarly for WM and CSF.
Although spoiling gradients, as used in FISP sequences, mitigate the effects ofB0 inhomogeneity,

they do not eliminate spatial inhomogeneities entirely. It has been previously reported in highly
undersampled MRF scans that systematic errors in the phase of ms(x, y) result in shading artifacts
in the inferred T1 and T2 images, even in FISP sequences [6]. Examples of such shading artifacts
are shown in figure 1 of the main text. Currently, this is usually dealt with in postprocessing, by
employing methods such as iterative reconstruction [7, 8, 9, 10]. Here, we take a novel approach of
optimizing pulse sequences to be intrinsically robust against these errors, thereby producing good
quality images directly from inner-product maximizing dictionary matching, without the need for
ad hoc corrections.

To optimize for robustness against phase errors we can simply incorporate a representative

example of typically observed phase errors into the point spread functions U
(GM)
s (x, y), U

(WM)
s (x, y),

and U
(CSF)
s (x, y). The phase errors observed experimentally vary from scan to scan even on the

same machine. However, the phase errors tend to be smoothly varying across the field of view and
differ between scans mainly in the direction across which they vary. Empirically, as discussed in
the results section, we have found that optimizing against a representative example of a phase error
tends to yield sequences that are also robust against other phase errors with different orientations.
Furthermore, the sequences with smaller shading artifacts in simulation are observed to have smaller
shading artifacts in vivo. Examples of simulated phase errors are given in figure 2 of the main text.

After the predicted magnetization time-series are predicted for each voxel, these are checked
against a “dictionary” of simulated time-series for a list of possible T1, T2 pairs. The value of T1

and T2 from the dictionary entry that most closely matches the measured time signal from a given
voxel are inferred as the most likely estimates of the ground truth T1 and T2 values for that voxel.
In this manner a maps of T1 and T2 are extracted, in keeping with standard practice in Magnetic
Resonance Fingerprinting [5]. At each query, the cost function is given a new pulse sequence, and
thus must generate a new MRF dictionary. In our modeling we use a dictionary of 14,996 (T1, T2)
pairs, discretizing the range

2ms ≤ T1 ≤ 3000ms
2ms ≤ T2 ≤ 2000ms

T2 ≤ T1.
(13)

Thus, at each query to the cost function, the Bloch equations must be solved for each of these
14,996 (T1, T2) values. Then, after the Fourier undersampling errors have been simulated according
to (11), the inner products between the signals calculated for each of the 256 × 256 voxels (with
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the exception of the air voxels) must be calculated with the signals calculated for each of the
14,996 library entries in order to perform the dictionary decoding. These two processes: dictionary
generation, and dictionary decoding, are the dominant computational costs in the evaluation of
the cost function, with the evaluation of (11) and the evaluation of of the predicted random errors
being essentially negligible. Using an optimized multithreaded implementation running on a 24-
vcpu virtual machine (Azure NC24) we find that the cost function, for a sequence with 1000 TRs,
can be evaluated in 2.0 seconds.

It is unlikely that any mathematical model of a complicated system such as this one will ever
be complete. In particular, our digital phantom does not include explicit modeling of slice profile
corrections. It also does not directly model of spatial inhomogeneity of B0 or B1 magnetic fields
or time-dependent effects due, for example, to eddy currents. Rather, these are incorporated via
a simple phenomenological model in which we impose a phase that varies quadratically along an
arbitrary direction in the xy-plane. The merits of this model are that it can be computed rapidly
enough to incorporate into a cost function and it empirically does a good job of qualitatively repro-
ducing the systematic errors observed in a series of in vivo scans that were carried out using a wide
variety of pulse sequences on several volunteers. In future work, one could consider incorporating
first-principles modeling of additional physical effects into the digital phantom.

3 Model of Random Errors

In addition to Fourier undersampling and phase errors, magnetic resonance scans are also affected
by random error due to thermal fluctuations. These are typically modeled as independent identically
distributed gaussian errors of mean zero and variance σ2 added to each measured Fourier coefficient.
Analytical formulas for the resulting errors in inferred T1 and T2 via dictionary matching are derived
in [11, 12]. In addition to σ2, these errors depend on the rate at which the dictionary entries vary
with respect to T1 and T2. These formulas show that better robustness is achieved by pulse
sequences such that the dictionary entries (thought of as vectors in Cn) vary rapidly as T1 and T2

are changed. This is in agreement with general intuition. In fact, prior work has used small inner
product between adjacent dictionary entries as a criterion for optimizing pulse sequences [13].

Using the formulas from [11, 12] and a value of σ2, one can obtain predicted standard deviation
on T1 and T2 for a given tissue. The value of σ2 can either be inferred from experimental data or
treated as effectively a tunable “weight” factor to adjust the importance of random error relative
to systematic error in the optimization. From our simulation of Fourier undersampling artifacts we
obtain predicted discrepancies between the theoretical and measured values of T1 and T2 associated
with each voxel. Averaging over voxels of a given tissue type, we can obtain root-mean-square
values of systematic error due to Fourier undersampling for each of the three tissue types in our
model. These can be interpreted as standard deviations if one were to select a voxel uniformly at
random among all voxels of the given tissue type. Correspondingly, we add these root-mean-squared
undersampling errors to the predicted standard deviations to obtain a total predicted error. We
thus obtain six numbers:

σ
(p)
t =

√(
ν

(p)
t

)2
+
(
η

(p)
t

)2
p ∈ {T1, T2} t ∈ {GM,WM,CSF}, (14)

where ν
(p)
t is the standard deviation in parameter p and tissue t predicted due to thermal noise,
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and η
(p)
t is the root-mean-square error in parameter p and tissue t predicted due to Fourier under-

sampling.
The sensitivity to thermal noise is affected by the choice of pulse sequence through several

mechanisms. First, a sequence that yields larger magnetization in the xy-plane will yield stronger
signals and hence better signal to noise ratio. More subtly, some sequences are better than others
in terms of how rapidly the dictionary entry (which for a scan with n measurements can be thought
of as a vector in Cn) varies as a function of T1 and T1. If the dictionary entry varies rapidly as a
function of these parameters then the inferred values of these parameters will be less affected by
random error in the measured signal. A mathematical analysis of this effect is given in [11, 12].

Although we have motivated the above error model heuristically, it is worth highlighting that
it can be derived from a minimal set of assumptions, which do not include any assumption about
errors being Gaussian. Specifically, let δj,t,p be the (signed) discrepancy between the true value
of p ∈ {T1, T2} for voxel j of tissue t ∈ {GM,WM,CSF} and the value inferred by dictionary
matching. Then, by definition, the mean and variance of δj,t,p are

µj,t,p = 〈δj,t,p〉 (15)

ν2
j,t,p = 〈δ2

j,t,p〉 − 〈δj,t,p〉2, (16)

respectively. Let Np be the number of voxels of tissue type p. If we select a voxel uniformly at
random among these voxels then the root-mean-squared error is1

σ
(p)
t =

√√√√ 1

Np

Np∑
j=1

〈δ2
j 〉 (17)

By (15) and (16)

σ
(p)
t =

√√√√ 1

Np

Np∑
j=1

(
ν2
j,t,p + µ2

j,t,p

)
(18)

In our error model, µj,t,p is calculated separately for each voxel by explicitly modeling the Fourier
undersampling and phase errors, applying dictionary matching to infer the value of parameter p for
voxel j, and then subtracting from that the original ground truth value of parameter p for voxel j
in the original model. In contrast, we estimate ν2

j,t,p for each tissue type and parameter using the

perturbative arguments of [11, 12]. Thus our estimated values of ν2
j,t,p are in fact independent of j.

Consequently, (18) simplifies to

σ
(p)
t =

√√√√ν2
t,p +

1

Np

Np∑
j=1

µ2
j,t,p. (19)

Introducing the notation η
(p)
t =

√
1
Np

∑Np

j=1 µ
2
j,t,p for the root-mean-square systematic error and

substituting into (19) yields (14). Note also that there is no assumption that error is of mean zero.

Bias is incorporated into the error metric via the
(
η

(p)
t

)2
term.

1By linearity of expectation one could equivalently write σ
(p)
t =

√
〈 1
Np

∑Np

j=1 δ
2
j 〉.
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4 Magnitude Incentive

As shown in equation (1) of the main text, our cost function takes the form

C = Cmain + wmagCmag, (20)

where
Cmain =

(
σ(T1) + w2σ

(T2)
)√

t (21)

and

Cmag =
1

m̄min
, (22)

with m̄min denoting the average signal magnitude of a tissue, minimized over tissues. Thus, Cmag

penalizes pulse sequences yielding weak signals, and the strength of this penalty relative to the rest
of the cost function is tuned by adjusting the coefficient wmag.

In Figure 4 of the main text and tables 1-4 of this supporting material, we present fifteen
optimized pulse sequences labelled a through o. Two of these, sequences i and j, are produced by
optimizations in which the coefficient wmag has been set non-zero. The other thirteen optimized
sequences are all produced using wmag = 0.

A stronger signal magnitude should result in a better signal to noise ratio. Thus, one may
expect that the magnitude incentive is redundant with the model of random error (from [11, 12])
that is already incorporated into the calculation of σ(T1) and σ(T2). The Cmag term defined in (22)
is not, however, manifestly equivalent to the magnitude incentive achieved indirectly through σ(T1)

and σ(T2). Thus we chose to experimentally test some sequences optimized using such a term.
In figure 4 of the main text, one sees that in fact sequences i and j, which were produced with

nonzero wmag, achieve the best precision as measured by bootstrapping statistics applied to in vivo
data. Two general classes of hypotheses might be proposed for why this is the case. One is that the
incorporation of nonzero wmag yields a cost function that achieves better modeling of the notion
of precision that is measured by bootstrap statistics. The second is that nonzero wmag = 0 simply
yielded better convergence of the optimizer. In other words, with wmag = 0 the optimizer converged
poorly and reached solutions that were far from optimal, as defined by the cost function itself.

Cost functions like equation 20, containing a linear combination of two terms, are studied
under the rubric of “multi-objective optimization.” As the weighting coefficient is swept, the
resulting set of global optima define a Pareto-optimal tradeoff frontier. It holds rigorously that the
resulting tradeoff curve must be monotonically decreasing, as any decrease in one cost term must
be accompanied by an increase in the other. (If this were not the case, one could improve one
term without causing any deterioration in the other, thus the point being plotted is not actually
optimal.) In an optimization which is well-converged but not hitting exact global optima, this
property should hold approximately.

In figure 2, such a tradeoff frontier is shown, which displays this approximate monotonicity
property, though with substantial scatter. This is consistent with the improved-modeling hypothesis
but does not resolve the issue definitively. We thus leave further exploration of this issue to future
work.
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Figure 2: The cost function takes the form C = Cmain + wmagCmag, where Cmain is the main cost
to be minimized, Cmag is a term that penalizes small signal magnitude, and wmag is a coefficient
that sets the relative weight of the magnitude term. In a well-converged optimization, any decrease
in the magnitude penalty will come at the cost of an increase in the main cost. By changing the
magnitude coefficient one can sweep across this tradeoff curve. The general trend of the points
obtained from the 90 optimization results shown here is consistent with this. However, there is a
substantial amount of scatter thus illustrating that the optimization is generally not reaching exact
global optima.

9



5 Search Space Parameterization

For most of our optimizations we set θs = 0 for all s. In this case, the number of parameters defining
a pulse sequence is 2n, where n is the number of TRs. In this work we consider sequences with
480 ≤ n ≤ 3000, which have duration roughly 5 seconds to 35 seconds. MRF pulse sequence design
is thus a continuous-variable optimization problem on a 2n-dimensional search space parameterized
by n flip angles α1, . . . , αn and n durations TR1, . . . ,TRn. The cost function also turns out to be
highly non-convex, as illustrated in figure 5 of the main text. Finding global optima for such a
high-dimensional non-convex optimization problem is likely out of reach for existing algorithms
and computational hardware. Furthermore, even finding good local optima is challenging on such
a high-dimensional and rugged optimization landscape.

To make a high dimensional optimization problem more manageable one can use prior knowledge
to narrow the search to more promising regions of the search space. One way to do this is to
initialize the optimization algorithm with a prior solution already known to be good. A different
way is to use a parameterization of the search space that restricts the optimizer to explore some
lower dimensional manifold of solutions thought to be promising. Here, we take this latter approach.
Specifically, we restrict attention only to pulse sequences in which the flip angle and TR times vary
smoothly from one TR to the next. This is motivated by the observation that such sequences
typically have lower Fourier undersampling error than “rough” sequences [14, 15, 16, 17]. We
achieve this by parameterizing the flip angle α vs. s and TR vs s curves using cubic splines2

The spline is determined by a small number k of control points (typically 10 ≤ k ≤ 20) over
which the optimizer has control of vertical (i.e. α-axis or TR-axis) and horizontal (i.e. s-axis)
position. Because the first and last control points of each spline are pinned to s = 1 and s = n,
respectively, this yields a (2k − 2)-dimensional search space. Within the resulting search space of
more manageable dimension, we generate starting points for the optimizer uniformly at random
and attempt to optimize more globally. This opens the possibility of finding novel pulse sequences
unbiased by any human-designed starting point.

6 Optimization Algorithms

We formulate the design of MRF pulse sequences as a global optimization problem over continuous
variables. The cost function is treated as a black box. There is no formula for the gradient of the
cost function; strictly speaking, the cost function is not differentiable due to the discrete dictionary
matching involved in computing Fourier undersampling errors. Due to the highly non-convex
nature of the cost function, as illustrated in figure 3, we relied on optimization heuristics capable of
escaping from local minima. The best performing of these, according to our experimentation, were
simulated annealing and substochastic Monte Carlo. These algorithms are simplest to formulate
in the context of discrete-variable optimization problems. The special considerations needed to
adapt these to the continuous-variable problem of pulse-sequence optimization are outlined in this
section.

2We have also tried other parameterizations: direct parameterization in terms of all 2n variables (αs,TRs),
piecewise linear, piecewise constant, and linear combination of Gaussians. However, all of the best sequences in terms
of in vivo performance, and all of the sequences reported in this paper, come from spline parameterizations.
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Figure 3: Samples of the cost function landscape for a pulse sequence of 480 TRs. Here, the
optimization landscape is specified by a cubic spline with 18 degrees of freedom that dictates the
flip angles (α) and a cubic spline with 18 degrees of freedom that specifies the TR times (TR). For
each of the above plots, we take a random starting point in the resulting 36-dimensional space and
a pair of random 18-dimensional unit vectors to determine directions of motion for the flip angle
spline and TR spline. We then plot the cost function as a function of the distance moved along
these two directions. The plots are zoomed in to five different scales, by factors of ten.
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6.1 Continuous Substochastic Monte Carlo

Substochastic Monte Carlo is a quantum-inspired optimization method introduced in [18]. Sub-
stochastic Monte Carlo is inspired directly by adiabatic quantum algorithms for optimization [19].
In adiabatic computation, one starts with an initial Hamiltonian Hinit, whose ground state is easy
to prepare, and slowly interpolates to some final Hamiltonian Hfinal, whose ground state encodes
the solution to the computational problem at hand. When executed on ideal quantum hardware
(without decoherence) the resulting dynamics is that determined by Schrödinger’s equation

d

dt
|ψ〉 = −iH(t) |ψ〉 (23)

H(t) = (1− s(t))Hinit + s(t)Hfinal. (24)

Here, the function s(t) ∈ [0, 1] is the “annealing schedule” according to which the interpolation is
performed. In the simplest case, one could proceed from Hinit to Hfinal at a constant rate over a
period of duration T by using s(t) = t/T . Quantum adiabatic theorems [20, 21] guarantee that,
if the the interpolation is done sufficiently slowly, then the system will track the instantaneous
ground state of H(t) and thereby produce the ground state of Hfinal, as desired. Specifically, this
can be achieved with T = O(1/γ2), where γ = min0≤t≤T γ(t) and γ(t) is the energy gap between
the ground state and first excited state for H(t).

Hamiltonians in which all off-diagonal matrix elements are non-positive are known as stoquas-
tic. By the Perron-Frobenius theorem, the ground state of any stoquastic Hamiltonian can be
expressed using only real nonnegative amplitudes. Complexity-theoretic evidence suggests that
adiabatic quantum computation with stoquastic Hamiltonians cannot efficiently implement univer-
sal quantum computation [22]. More concretely, standard folklore in the computational physics
community asserts that stoquastic adiabatic processes should be efficient to simulate on classical
computers using path integral or diffusion Monte Carlo methods as they do not suffer from a “sign
problem”. On the other hand, some counterexamples have been constructed in which standard
path integral and diffusion Monte Carlo methods fail to converge in polynomial time when simu-
lating such Hamiltonians [23, 18] and there is complexity-theoretic evidence that polynomial-time
classical simulation of general stoquastic Hamiltonians is impossible [24].

In [18] it was observed that, by applying a variant of diffusion Monte Carlo to simulate a
quantum adiabatic optimization, one obtains a classical optimization heuristic which is competitive
with state of the art solvers on a widely studied discrete optimization problem called MAXSAT.
In diffusion Monte Carlo, one constructs a Markov Chain to mimic imaginary-time Schrödinger
equation dynamics:

d

dt
|ψ〉 = −H(t) |ψ〉 . (25)

For timestep δt small compared to the variation of H(t) one can approximately solve (25) by

|ψ(T )〉 =

T/δt∏
j=0

e−H(jδt)δt |ψ(0)〉 , (26)

which becomes exact in the limit δt→ 0.
As |ψ(0)〉 is a vector and e−H(jδt)δt |ψ(0)〉 is a matrix, (26) looks much like a Markov chain.

However, there remain two difficulties for simulating (25) using a Markov Chain. The first is that
e−H(jδt)δt has matrix elements (which in a Markov chain become transition probabilities) that are
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not easy to compute. The second is that e−H(jδt)δt is in general not a stochastic matrix, and
therefore does not preserve the sum of the entries of the vector, which in a Markov chain represent
probabilities that must sum to one. (Exponentially large dimension of e−H(jδt)δt and |ψ(T )〉 does
not pose a problem for Markov Chain Monte Carlo methods because |ψ(T )〉 is not a list of numbers
to be stored in memory but rather a probability distribution to be inhabited by following the
specified transition probabilities.)

The solutions to these difficulties depends on the specific structure of the Hamiltonian (24). In
a continuous variable optimization problem on n variables a natural choice is to take

Hinit = −∇2 (27)

Hfinal = C(x1, . . . , xn) (28)

where ∇2 is the Laplacian on Rn (i.e. a kinetic energy term for a single particle in n dimensions)
and C(x1, . . . , xn) is a diagonal operator in the position basis (i.e. a potential energy term). This
ensures that the ground state of Hinit is the uniform superposition and the ground state of Hfinal

is a delta function centered at the minimum of C. In this case, using a first order Trotter-Suzuki
expansion3, one obtains

e−H(t)δt = e−(1−s(t))∇2δte−s(t)Cδt +O(δt2). (29)

The operator e−(1−s(t))∇2δt has a direct interpretation in terms of random walks. By Fourier
transform on finds that, in n dimensions, for any α > 0

〈~y| eα∇2 |~x〉 =

(
1

2
√
απ

)n
exp

[
−|~x− ~y|

2

4α

]
. (30)

Thus, the corresponding stochastic dynamics is to perturb the position of the random walker by a
gaussian random variable of variance 2α.

The operator e−s(t)Cδt does not correspond directly to a stochastic process, since probability is
not preserved. Since C is diagonal in the position basis, one has

e−s(t)Cδt |~x〉 = e−s(t)C(~x)δt |~x〉 , (31)

where, on the lefthand side C is an operator, and on the righthand side, C(~x) is a number, namely
the cost function evaluated at ~x. Thus, for walkers at locations with cost less than zero, the
probability must grow, and the for walkers at locations with cost greater than zero the probability
must shrink. As in [18] we implement this via birth-death dynamics. For C(~x) > 0 we can assign
the walker at ~x to “die” with some probability and be removed from the population. For C(~x) < 0
we assign the walker to “replicate” with some probability, yielding multiple walkers at ~x. We choose
these probabilities such that the expected number of walkers at site ~x gets multiplied by the desired
factor e−s(t)C(~x)δt.

With this interpretation, (29) yields a prescription for an algorithm: alternate between steps
where the population of walkers is perturbed according to gaussian-distributed moves, over length
scales that gradually decrease over the course of the anneal, according to some schedule specified
by s(t), and steps where the birth-death dynamics kills off walkers at higher values of the cost

3For the discrete problems considered in [18] a Taylor expansion is used instead. However, this is not possible
here since ∇2 is an unbounded operator.
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function and replicates walkers at lower values of the cost function. There are however some
additional subtleties to address in order to turn this into a practical algorithm. Applied to an
arbitrary cost function, such a procedure generically yields a population of walkers that either
collapses to zero (if the population-average value of C(~x) is positive) or exponentially blows up (if
the population-average value of C(~x) is negative). One can compensate for this by replacing C with
C − 〈C〉, where 〈C〉 is the cost function averaged over the current distribution of walkers. Note
that, in the context of Schrodinger’s equation, subtracting a time-dependent constant term from
the potential C would result only in an unobservable global phase. Similarly, in the imaginary-time
Schrödinger equation, such a term only affects overall magnitude of the solution vector. Thus, this
adjustment does not distort the underlying physics.

In practice, this is not quite sufficient to obtain highly stable population size, so one must add
a feedback loop to stabilize it. For example, we have found it effective to replace e−s(t)(C−〈C〉)δt

with fe−s(t)(C−〈C〉)δt, where

f =

{
0.96 if population exceeds target
1.05 otherwise

(32)

The target population is then one of the hyperparameters of the optimization algorithm. In this
work we have generally found it effective to set the target population at twenty walkers.

One also must choose a timestep δt. If δt is chosen too small then in the birth-death process
very few walkers will die or replicate. Hence the tendency of the dynamics toward lower values of
the cost function will be very weak and walkers will move according to almost pure diffusion. If
δt is too large then almost the entire population will quickly get concentrated on the location of
the walker that currently has the lowest value of the cost function. A choice of δt in the operator
e−s(t)(C−〈C〉)δt which achieves a good compromise between these extremes is to take

δt =
Cmax − Cmin

s(t)
. (33)

If the distribution of C over the population of walkers is such the mean cost is halfway between the
maximum and minimum then this ensures that the exponent −s(t)(C − 〈C〉)δt lies between −1/2
and 1/2. Thus the expected number of walkers on a given site will be adjusted by a factor in the
range [e−1/2, e1/2]. For any distribution, it is still the case that the exponent will lie between −1 and
1, and thus the expected number of walkers on a given site will always be multiplied by a factor in
the range [e−1, e]. (By ignoring or, through choice of δt eliminating, the possibility of factor greater
than 2 one can simplify the algorithm slightly by eliminating the need to ever replicate a walker
into more than two walkers.)

If the goal were to achieve an accurate physical simulation of a process with pre-specified anneal
schedule s(t), then one would use the same timestep δt in both e−s(t)Cδt and e−(1−s(t))∇2δt in (29).
Here, however, our goal is instead to achieve effective optimization. Consequently, we take as user
input an annealing schedule specifying the width of the gaussian update as a function of timestep.
In pseudocode, one has algorithm 1.
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Algorithm 1 Continuous-Variable Substochastic Monte Carlo

REQUIRED INPUTS:

[x
(min)
v (~x), x

(max)
v (~x)]; functions that, given ~x ∈ Rn, specify allowed range of xv for v = 1 . . . n.

Tmax; number of timesteps
s : {1, . . . , Tmax} → [0, 1]; anneal schedule
Ptarget; target population size
C : Rn → R; cost function
ALGORITHM:
Place Ptarget walkers uniformly at random in the search space
Let Cwinner, ~xwinner equal the cost and location of lowest cost walker in population
for t = 1 to Tmax do
comment: First, simulate e−s(t)(C−〈C〉)δt

Let Cmin, Cmax, 〈C〉 equal minimum, maximum, and average cost in current population
for w = 1 to current population size do

Let ~x ∈ Rn be location of walker w
Let Ĉ = (C(~x)− 〈C〉)/(Cmax − Cmin)
Let f equal 0.96 if population exceeds Ptarget, 1.05 otherwise

Let q = f × e−Ĉ .
if q < 1 then

Keep walker as-is with probability q, remove walker with probability 1− q
else
if q > 2 then

Let q = 2
Print a warning (rare in practice)

end if
comment: Here we know 1 ≤ q ≤ 2
Duplicate walker with probability q − 1, keep walker as-is with probability 2− q

end if
end for
comment: Second, simulate e(1−s(t))∇2δt

for w = 1 to population size do
Let ~x ∈ Rn be location of walker w
for v = 1 to n do

Let R = x
(max)
v (~x)− x(min)

v (~x)
Sample δ as gaussian random variable of µ = 0 and σ = (1− s(t))×R× 0.1
Add δ to coordinate xv of walker w
Truncate coordinate xv of walker w back to range [x

(min)
v (~x), x

(max)
v (~x)], if necessary

end for
end for
if lowest cost of a walker in current population is less than Cwinner then

Overwrite Cwinner and ~xwinner with the cost and location of this walker
end if

end for
output ~xwinner
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Some comments on algorithm 1:

• In algorithm 1 we allow for the possibility that the minimum is found at any timestep.
However, it is typically found in the final timestep or a near-final timestep.

• At the initial time step we have the random walk perturb the variables by a constant frac-
tion of the width of the search space. Here we have taken this fraction to be 0.1. This
is a somewhat arbitrary value chosen so that the initial diffusion process take jumps large
enough compared to the search space to ensure good mixing of the Markov chain but small
enough to ensure that truncation at the boundaries is not too common. At the final timestep
the variables are perturbed by much smaller distances according to the ratio 1−s(1)

1−s(Tmax) . To
optimize the variables up to some desired precision ε we need these final perturbations to
have magnitude on the order of ε. The ratio of the width of the search space to the desired
precision ε is thus an important metric of the size of the search space and dictates the range
over which s must be swept. For our pulse sequence optimizations we typically take this
ratio to be 104. Minimization by exhaustive search over n variables would thus require 104n

evaluations of the cost function. With our spline parameterization n = 36 is a typical value,
and hence 10144 evaluations would be needed for exhaustive search. In our optimizations with
substochastic Monte Carlo or simulated annealing we typically use on the order of 105 cost
function evaluations. (However, unlike exhaustive search, these algorithms are not guaranteed
to find the global minimum.)

• By examining algorithm 1 one can observe that, due to the adaptively chosen offset 〈C〉
and timestep δt, the dynamics of the walkers is invariant under the transformation C(~x) →
aC(~x) + b for any constant b and any positive constant a. This is very useful in practice for
optimizing pulse sequences because one must typically experiment with many different cost
functions which may differ widely in scale. These changing scales require no adjustment to
the algorithm or to the hyperparameters.

6.2 Adaptive Non-Isotropic Simulated Annealing

Simulated annealing is a widely used physics-inspired heuristic for non-convex optimization [25].
At each iteration a move in the search space is proposed, which is accepted with probability
min{1, e−β∆E}, where β is interpreted as an inverse temperature, and ∆E is the change in cost
function, interpreted as an energy. The rate of convergence of simulated annealing algorithms de-
pends strongly on the acceptance rate of the proposed moves. For application to simulations in
statistical physics, where the goal is sampling from a Boltzmann distribution, it can be proven
under certain conditions that the optimal acceptance rate is 0.234 [26]. For continuous variable
optimization it has been conjectured based on experimental results and heuristic arguments that
an acceptance rate of 0.5 may yield optimal performance [27].

To achieve acceptance rates near half, the proposed moves in the search space should yield
changes in the value of the cost function (here interpreted as energy) of roughly comparable magni-
tude to the temperature T = 1/β. (For convenience we here use units where Boltzmann’s constant
is unity.) For typical cost functions, making smaller magnitude changes to ~x will yield smaller
magnitude changes to C(~x). Consequently, efficient simulated annealing algorithms for continuous
variable optimization problems propose smaller moves in the search space as the temperature is
decreased [27].
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Here, we choose step size as a function of temperature using an approach tailored to the specific
properties of our pulse sequence optimization problem. As discussed in §5, we have four distinct
variable types: horizontal coordinates of spline control points for flip angle, vertical coordinates
for spline control points for flip angle, horizontal coordinates for spline control points for TR time,
and vertical coordinates for spline control points for TR time. The typical amount that the cost
function is changed by making an adjustment of given magnitude to a variable can be expected to
differ strongly between these four types of variables. Therefore, at the start of the optimization,
for each of the four variable types, we separately perform random sampling to estimate the typical
magnitude of change in cost as a function of magnitude of perturbation to those variables.

For our specific cost function, we find that the median absolute value of change in cost, as a
function of the magnitude in the change of a variable, is well fit by assuming that the magnitude of
change in cost is proportional to the magnitude of the move in the search space. We thus extract
four proportionality constants, one for each variable type, from random sampling and linear fits,
at the start of the anneal, and then generating proposed moves by perturbing a given variable
by adding a gaussian random variable with mean zero and standard deviation proportional to the
temperature, via the proportionality constant appropriate to the variable’s type. Precise details of
our implementation of adaptive non-isotropic simulated annealing are given in algorithms 2 through
5. Any questions can be directed to the corresponding author dan.ma@case.edu.

Figure 4: Evolution of the three tissue T1 and T2 undersampling errors (a), and random errors (b)
over 2000 optimization steps. All errors were normalized to the value at the first step. The biggest
gains are made in the initial iterations. At later iterations small gains in cost function are obtained
by moving along tradeoff curves in which one form of error is improved at the expense of another
source of error whose weight coefficient in the cost function is smaller.
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Algorithm 2 PerturbVar(x, xmin, xmax, scale)

COMMENT: this routine modifies x, e.g. via pass by reference
Let δ = Gaussian[µ = 0, σ = 1]× scale× (xmax − xmin)
Let x = x+ δ
if x < xmin then

Let x = xmin

end if
if x > xmax then

Let x = xmax

end if

Algorithm 3 MedianDiff(scale, `)

for t = 1 to 499 do
Place ~x uniformly at random in the search space
Let Ebefore = C(~x)
Choose v uniformly at random among variables of type `

PerturbVar(~xv, x
(min)
v , x

(max)
v , scale)

COMMENT: Eafter is evaluated at the perturbed value of ~X.
Let Eafter = C(~x)
Let ∆t = |Eafter − Ebefore|

end for
Return ∆̄` = median of ∆{1,...,499}

Algorithm 4 FindScaleFactors

for J = 1 to 4 do
Let SJ = 0.03× e−2J

for ` = 1 to NumTypes do

Let ∆̄
(`)
J = MedianDiff(SJ , `)

end for
end for
for ` = 1 to NumTypes do

COMMENT: Least squares fit of ∆̄
(`)
J = F`SJ to {(∆̄(`)

J , SJ) : J = 1 . . . 4}

Let F` =
(∑4

J=0 SJ∆̄
(`)
J

)/(∑4
J=0 S

2
J

)
end for
Return array F`=1...NumTypes
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Algorithm 5 Adaptive Non-Isotropic Simulated Annealing (ANISA)

Let F`=1...NumTypes = FindScaleFactors
Let kT = 0.1× F0

Let r = R1/Tmax

Initialize ~x uniformly at random in the search space
for t = 1 to Tmax do
for ` = 1 to NumTypes do

for v in variables of type ` do
PerturbVar(~xv, kT/F`)
Accept or reject according to Metropolis rule at temperature kT

end for
end for
Let kT = kT × r

end for
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7 Additional Data

The data in tables 1, 2, 3, and 4 is available for download in csv format at
https://github.com/madan6711/Automatic-MRF-seq-design.

Figure 5: Histograms of flip angles aggregated across an ensemble of 388 optimized pulse sequences.
The maximum flip angle of 73 degrees is determined from a Sinc pulse with a duration of 2000 us
and time bandwidth product of 8, which is used to limit deviation from nominal flip angles and
reduce bias in the resulting maps[28]. Left panel shows histograms of flip angles across all TRs of
all pulse sequences. Right three panels show flip angles in TRs of peak duration. One can observe
that low flip angles are much more prevalent at peak duration TRs. Furthermore, this favoring of
low flip angles at TR duration peaks is most pronounced in the optimized pulse sequences in which
random errors were more strongly optimized at the expense of undersampling errors.

20



Figure 6: Flip angles and TR durations for the top 10% optimized sequences sorted by lowest un-
dersampling errors (top row), and by lowest random errors (bottom row). A standard unoptimized
sequence (dotted curve) is added for comparison.
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Sequence TRs Duration (s) Avg T1 error (ms) Avg T2 error (ms)

standard480 480 5.57 25.1 3.51

standard672 672 7.75 24.6 2.04

standard864 864 9.93 24.3 1.85

standard1056 1056 12.21 24.1 1.76

standard1248 1248 14.50 23.6 1.64

standard1440 1440 16.69 23.2 1.51

standard1632 1632 18.99 23.1 1.43

standard2400 2400 28.05 22.3 1.20

standard2592 2592 30.30 22.2 1.17

standard2784 2784 32.52 21.9 1.16

standard3000 3000 34.95 21.7 1.13

optimized a 480 6.43 27.15 1.67

optimized b 1000 16.76 20.1 1.48

optimized c 1000 15.92 23.7 2.01

optimized d 480 11.40 29.7 2.45

optimized e 480 10.37 37.4 2.26

optimized f 480 14.11 20.3 1.96

optimized g 480 10.99 21.1 1.90

optimized h 480 8.89 25.1 1.81

optimized i 480 7.76 13.2 0.88

optimized j 960 13.66 13.2 0.73

optimized k 480 5.83 28.1 1.81

optimized l 480 5.00 28.7 1.81

optimized m 480 5.02 18.9 1.84

optimized n 480 4.88 27.1 1.32

optimized o 480 5.85 22.1 1.72

Table 1: Unoptimized sequences, c2p480–c2p3000, of different durations, are compared to optimized
sequences. The average T1 error and T2 error are computed for four regions of interest in the white
matter and then averaged. These are standard deviations under the influence of gaussian noise,
as computed by applying the bootstrap method of [29] to in vivo data obtained from healthy
volunteers.

22



sequence σ1(WM) σ2(WM) σ1(GM) σ2(GM) σ1(CSF) σ2(CSF)

standard480 94.4 47.3 153.7 69.5 78.3 873.1

standard672 98.3 12.0 166.1 27.2 75.8 451.6

standard864 113.8 8.5 166.7 26.5 71.8 381.1

standard1056 105.7 9.8 159.6 26.0 63.9 376.5

standard1248 90.1 11.7 148.8 26.7 57.6 386.4

standard1440 102.5 8.5 159.0 25.8 52.7 358.9

standard1632 108.1 8.1 162.5 24.9 49.5 363.9

standard2400 89.2 8.4 137.5 32.0 54.2 209.2

standard2592 79.9 7.5 128.4 30.8 51.9 206.7

standard2784 74.0 8.1 122.8 30.7 49.2 212.8

standard3000 92.9 7.2 138.3 30.2 50.4 233.6

optimized a 84.8 5.8 196.5 19.7 120.6 429.2

optimized b 84.3 6.3 139.5 24.2 97.8 208.8

optimized c 65.5 13.4 80.3 22.1 179.5 333.5

optimized d 181.5 5.8 340.3 63.5 263.4 341.5

optimized e 51.7 2.9 127.9 8.6 47.5 287.9

optimized f 47.7 18.1 84.0 28.1 60.6 149.9

optimized g 34.1 7.6 70.3 15.9 98.3 205.2

optimized h 79.2 6.4 128.2 21.6 118.8 416.7

optimized i 101.8 10.1 236.0 24.3 76.6 308.4

optimized j 322.3 9.3 376.8 27.0 74.0 301.6

optimized k 40.0 1.2 114.8 2.9 59.6 124.1

optimized l 38.1 1.3 107.4 2.4 53.0 176.7

optimized m 42.3 1.5 126.0 4.0 59.7 105.3

optimized n 26.1 1.9 81.3 7.0 136.8 691.0

optimized o 48.9 1.6 127.3 4.8 82.8 105.2

Table 2: Systematic errors as predicted by the three-tissue digital phantom. Each voxel in the
simulated brain is assigned to be either white matter (WM), grey matter (GM), or cerebrospinal
fluid (CSF). The bloch equations are solved, and the resulting measurement outcomes are computed
as in equation 11 using point spread functions that incorporate phase errors. The inferred values
of T1 and T2 are then computed from these signals for each voxel by dictionary matching. The
root-mean-square deviation of the inferred value from the original value assigned to the voxels is
tabulated for T1 for T2 for each of the three tissue types. σj(T ) is the RMS deviation in Tj for
tissue type T , expressed in milliseconds.
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sequence σ1(WM) σ2(WM) σ1(GM) σ2(GM) σ1(CSF) σ2(CSF)

standard480 57.3 7.3 148.1 18.7 77.5 615.6

standard672 54.3 4.3 136.7 26.3 79.6 337.6

standard864 54.0 4.4 131.5 27.1 74.5 284.0

standard1056 53.4 4.2 130.5 24.7 64.7 289.5

standard1248 51.2 4.4 127.9 24.9 58.7 306.0

standard1440 50.7 4.5 125.8 26.2 54.8 285.0

standard1632 50.1 4.5 123.4 25.6 50.8 277.4

standard2400 45.4 5.2 98.7 35.7 55.5 181.9

standard2592 43.8 5.2 96.6 34.5 52.1 192.8

standard2784 42.8 5.1 95.5 34.1 48.8 204.3

standard3000 43.0 4.9 93.7 33.5 47.4 208.4

optimized a 31.6 2.9 99.4 22.1 83.6 319.8

optimized b 42.5 4.5 78.1 27.0 92.6 127.2

optimized c 35.7 4.7 67.8 21.1 87.3 284.2

optimized d 49.8 1.6 116.0 6.0 131.7 60.2

optimized e 42.4 1.5 119.0 2.5 46.9 44.1

optimized f 32.3 4.6 58.0 23.7 49.5 136.0

optimized g 31.7 4.2 59.5 17.3 19.0 187.7

optimized h 32.4 5.0 60.2 23.5 38.4 281.5

optimized i 42.4 5.0 95.5 25.5 52.4 281.8

optimized j 48.6 8.1 110.5 33.5 68.6 207.6

optimized k 42.3 1.4 119.9 3.3 53.8 199.1

optimized l 42.2 1.4 111.0 2.3 46.8 328.4

optimized m 44.1 1.5 133.5 4.2 55.7 148.6

optimized n 29.0 1.9 81.1 7.8 130.3 781.2

optimized o 53.5 1.5 135.7 5.4 73.4 311.1

Table 3: Here, digital phantom predictions are tabulated as in table 2 except that this model
assumes no phase errors.
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sequence min mag q1(WM) q2(WM) q1(GM) q2(GM) q1(CSF) q2(CSF)

standard480 0.0587 3.90e-01 2.73e-04 1.49e+00 6.05e-04 3.43e+01 3.83e-02

standard672 0.0547 3.99e-01 3.92e-04 1.53e+00 9.03e-04 4.69e+01 2.60e-01

standard864 0.0547 4.04e-01 4.81e-04 1.55e+00 1.05e-03 4.72e+01 3.28e-01

standard1056 0.0570 4.09e-01 5.31e-04 1.55e+00 1.12e-03 4.90e+01 3.30e-01

standard1248 0.0588 4.25e-01 6.46e-04 1.57e+00 1.37e-03 5.47e+01 3.54e-01

standard1440 0.0594 4.34e-01 7.63e-04 1.59e+00 1.58e-03 5.71e+01 4.11e-01

standard1632 0.0600 4.40e-01 8.66e-04 1.60e+00 1.75e-03 5.82e+01 4.31e-01

standard2400 0.0575 4.76e-01 1.36e-03 1.68e+00 2.67e-03 6.34e+01 2.12e+00

standard2592 0.0583 4.88e-01 1.42e-03 1.69e+00 2.78e-03 6.39e+01 2.17e+00

standard2784 0.0591 4.98e-01 1.48e-03 1.71e+00 2.87e-03 6.53e+01 2.30e+00

standard3000 0.0596 5.06e-01 1.57e-03 1.72e+00 3.04e-03 6.75e+01 2.47e+00

optimized a 0.0617 2.24e-01 5.12e-04 7.40e-01 1.01e-03 1.74e+01 2.31e-01

optimized b 0.0593 7.04e-01 9.16e-04 2.26e+00 2.16e-03 3.35e+01 1.52e+00

optimized c 0.0629 6.82e-01 1.21e-03 1.98e+00 3.03e-03 2.53e+01 6.61e-01

optimized d 0.0506 2.61e-01 2.66e-04 1.16e+00 2.82e-04 9.78e+00 1.82e-01

optimized e 0.0564 1.68e-01 3.58e-04 1.16e+00 4.63e-04 4.27e+01 2.73e-02

optimized f 0.0774 5.96e-01 8.60e-04 1.59e+00 2.37e-03 2.89e+01 2.79e+00

optimized g 0.0678 4.83e-01 7.94e-04 1.27e+00 1.92e-03 2.22e+01 7.85e-01

optimized h 0.0666 4.20e-01 8.06e-04 1.23e+00 1.93e-03 1.49e+01 4.78e-01

optimized i 0.0681 4.05e-01 8.25e-04 1.22e+00 2.03e-03 3.76e+01 7.38e-01

optimized j 0.0592 4.70e-01 1.40e-03 1.42e+00 3.24e-03 5.79e+01 1.89e+00

optimized k 0.0415 1.56e-01 2.97e-04 1.20e+00 3.47e-04 2.35e+01 1.19e-02

optimized l 0.0324 1.36e-01 2.77e-04 1.07e+00 3.45e-04 1.91e+01 6.17e-03

optimized m 0.0406 2.85e-01 2.88e-04 1.43e+00 3.80e-04 1.67e+01 1.85e-02

optimized n 0.0376 7.89e-02 3.67e-04 2.93e-01 6.18e-04 7.09e+00 6.55e-03

optimized o 0.0500 2.04e-01 3.22e-04 1.35e+00 3.88e-04 2.78e+01 1.65e-02

Table 4: For each of the three tissue types, the magnitude of the magnetization, as predicted by
the Bloch equations, is averaged over the measurements (of which there is one for each TR). The
minimum of these three numbers is recorded as “min mag”. The quality factors for the three tissues
are metrics of robustness against random error, which are estimated by a first order perturbative
calculation in [11, 12]. The noise model is identical independently distributed complex gaussian
noise of mean zero and standard deviation ση added to the data point associated with each point
in k-space, at each measurement. In this approximation, the predicted standard deviation in the
value of T1 for grey matter due to random noise is given by ση/

√
q1(GM), and similarly for T2 and

for the other tissue types.
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Figure 7: T1 (red) and T2 (blue) in vivo image pairs for each of the 15 optimized sequences. The
labels match the data points in figure 3 of the main text. The sequence d was optimized with a
direct parameterization rather than splines. This results in flip angles that vary less smoothly from
one pulse to the next, and thereby produces stronger Fourier undersampling artifacts and inferior
image quality relative the the other sequences, which are optimized using spline parameterizations.
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