Parameter	Meaning	Value	Unit	Ref.
Δt	simulation time step	1	h	
p_p	cancer cell proliferation probability	2.31 x 10 ⁻²	h ⁻¹	[1]
p_a	cancer apoptosis rate	4.17 x 10 ⁻³	h⁻¹	[2]
p_m	cancer motility rate	4.17 x 10 ⁻¹	h ⁻¹	[3]
h _r	immune cell motility probability	0.37	min ⁻¹	[4-6]
p_E	probability of cancer cell kill by effector cell	0.03	h ⁻¹	
p_R	probability of effector cell kill by suppressor cell	0.01	h ⁻¹	
α_{c}	cancer cell radiosensitivity	0.3	Gy ⁻¹	[7]
β _c	cancer cell radiosensitivity	0.03	Gy ⁻²	[7]
ξ	quiescence radioresistance	1/3		[8]
$SF_E(1.8 Gy)$	effector cell radiosurvival	0.63		[9]
$SF_E(2.0 Gy)$	effector cell radiosurvival	0.61		[9]
$SF_{S}(1.8 Gy)$	suppressor cell radiosurvival	0.81		[9]
$SF_{S}(2.0 Gy)$	suppressor cell radiosurvival	0.79		[9]
δ_E	radiation-induced effector cell recruitment	0.05	h ⁻¹	
δ_E	radiation-induced suppressor cell recruitment	0.01	h ⁻¹	
γ	decay of radiation-induced immune stimulation	0.05	h ⁻¹	

Supplementary Table 1. Model parameters.

Abbreviation	Tumor-Infiltrating
CD8 1	CD8+ I cell
DC-	Resting Dendritic cell
DC+	Activated Dendritic cell
Eos	Eosinophil
M0	Non-polarized Macrophage
M1	M1-polarized Macrophage
M2	M2-polarized Macrophage
MC-	Resting Mast cell
MC+	Activated Mast cell
Mem B	Memory B cell
Mem CD4 T-	Resting CD4+ Memory T cell
Mem CD4 T+	Activated CD4+ Memory T cell
Mono	Monocyte
Naïve B	Naïve B cell
Naïve CD4 T	Naïve CD4+ T cell
NK-	Resting Natural Killer cell
NK+	Activated Natural Killer cell
PC	Plasma cell
PMN	Neutrophil
Tfh	T cell follicular helper cell
Treg	T regulatory cell
γδ Τ	Gamma-delta T cell

Supplementary Table 2. Nomenclature of immune cell type abbreviations

Abbreviation	Tumor Type
BC_BASAL	PAM50 Basal
BC_HER2	PAM50 Her2
BC_LUMA	PAM50 LumA
BC_LUMB	PAM50 LumB
BC_NORM	PAM50 Normal
BLCA	Bladder
CESC	Cervix
COLON	Large Bowel
ESCA	Esophagus
HGG	High-grade glioma
HNSC	Head - Neck
KIR	Kidney
KIR_PEL	Renal Pelvis
LGG	Low-grade glioma
LIVC	Liver
LU_NOS	Lung NOS
LUAD	Lung adenocarcinoma
LUSC	Lung squamous cell
MELA	Melanoma
NE	Neuroendocrine
NE_LUNG	Neuroendocrine Lung
NE_PANC	Neuroendocrine Pancreas
NMSC	Non-melanoma skin cancer
OVCA	Ovary
PANC	Pancreas
PRAD	Prostate
READ_AN	Rectum-Anus
SARC	Sarcoma
STAD	Stomach
ТНСА	Thyroid
UCEC	Endometrium/Uterus

Supplementary Table 3. Nomenclature of tumor type abbreviations

Supplementary Figures

Figure S1. TIES for 31 tumor types. Mapping of TIES composition for each of the 31 tumor types, highlighting that all clinically observed tumors have an immune-evasion phenotype.

Supplementary Figure 1

Figure S2. Comparison of iRIS among PAM50 breast subtypes. Boxplots demonstrating distribution of iRIS among PAM50 molecular breast subtypes. Significant differences within subtypes are noted. Kruskall-Wallis test was used to compare groups.

References

[1] Tubiana, Maurice. "Tumor cell proliferation kinetics and tumor growth rate." Acta Oncologica 28.1 (1989): 113-121.

[2] Chaplain, Mark AJ, Luigi Graziano, and Luigi Preziosi. "Mathematical modelling of the loss of tissue compression responsiveness and its role in solid tumour development." Mathematical medicine and biology: a journal of the IMA 23.3 (2006): 197-229.

[3] Morton, C. I., Hlatky, L., Hahnfeldt, P., & Enderling, H. (2011). Non-stem cancer cell kinetics modulate solid tumor progression. Theoretical Biology and Medical Modelling, 8(1), 48.

[4] M. J. Miller, S. H. Wei, I. Parker, and M. D. Cahalan. Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science 296(5574): 1869–73, 2002.

[5] S. N. Mueller. Effector T-cell responses in non-lymphoid tissues: insights from in vivo imaging. Immunology and Cell Biology 91(4): 290–6, 2013.

[6] D. Masopust and J. M. Schenkel. The integration of T cell migration, differentiation and function. Nature Reviews Immunology 13(5): 309, 2013.

[7] H. Enderling, D. Park, L. Hlatky, and P. Hahnfeldt. The importance of spatial distribution of stemness and proliferation state in determining tumor radioresponse. Mathematical Modelling of Natural Phenomena 4(3): 117–33, 2009.

[8] S. Rockwell, I. T. Dobrucki, E. Y. Kim, et al. Hypoxia and radiation therapy: Past history, ongoing research, and future promise. Curr Mol Med 9:442-58, 2009.

[9] K. Schnarr, I. Dayes, J. Sathya, and D. Boreham. Individual radiosensitivity and its relevance to health physics. Dose-Response 5(4):333-48, 2007.