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Section SM 1. Hyperparameters 

QA is shipped mostly fully configured and the few hyperparameters of interest are easily modifiable via 

the configuration file (Table S1). In the use cases discussed here, the hyperparameters requiring 

modification were those governing the behavior of the superpixels on account of the target structure 

size. Briefly, a superpixel is defined as a group of adjacent pixels sharing similar characteristics in terms 

of chromatic, texture, or deep learned feature values[15] (Figure S1). The variable approxcellsize is set 

to the approximate width of the desired superpixel, and works well when set to the approximate width 

of the structure of interest. The nonnegative compactness value determines the regularity of the 

superpixel boundary, wherein higher compactness encourages superpixels to retain their initial square 

shape, while lower compactness allows for greater boundary irregularity. As an example, our epithelium 

use case employed a lower compactness setting due to highly irregular boundaries, versus nuclei which 

tend to be more consistently circular and thus have a smoother boundary. Lastly, setting a higher 

edgeweight encourages the DL model to focus the loss function on incorrectly classified boundary 

pixels; increasing this weight is beneficial when clear boundaries are hard to distinguish.  

 

Section SM 2. Experiment setup and workflow 

In this paper we focused on 3 histologic structures for segmentation: pancreatic nuclei, colorectal 

tubules, and breast cancer (see Figure S1).  

Each use case followed the workflow presented in Figure S3. However, each use case benefited from 

slight variations in each step, due to histologic structure size, in order to optimize annotation efficiency 

(Section SM 3).  All experiments were conducted on a Windows 10 desktop with a Nvidia RTX2060 

8GB GPU.  
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Section SM 3. Use case specific workflows and insights 

SM 3.1 Nuclei Case 

We selected 5 pancreatic cancer WSIs scanned at 40x from TCGA-PAAD dataset verified by Saltz’s 

Group [21]. These 5 WSI images were divided into 2000 x 2000 image tiles.  We selected 100 tiles 

from the generated ROIs. In accordance with the workflow presented in Figure S3, 20 nuclei tiles were 

uploaded into QA, a u-net autoencoder was trained, and patches were plotted on the embedding plot. 

Patches were then selected and manually annotated for 5 minutes. The DL prediction model was then 

trained and predictions were reviewed for modification and acceptance. The process iterated using 

batches of 20 tiles until all 100 tiles were completed.   

In the first 5 minutes of nuclei annotation, even though no DL model was available, QA performed twice 

as fast as manual segmentation using QuPath [10] due to QA’s superpixel functionality (0.27 vs 0.14 

nuclei per second). Superpixels enabled one-click selection for a subset of nuclei, notably improving 

annotation efficiency. As the DL model began to produce better predictions due to more training data, 

fewer modifications need to be made before accepting the model’s proposals. This corresponded to 

the jump in improvement observed in Figure 3A. 

 

SM 3.2 Tubules Case 

We selected 10 colorectal cancer WSIs from TCGA-COAD dataset. These 5 WSI images were divided 

into 1000 x 1000 image tiles and down sampled to 10x magnification, from which 100 tubule containing 

tiles were selected. To begin, 20 tiles were uploaded into QA after which the same workflow as to the 

nuclei use case was employed.  

Figure 3B shows the efficiency changes over time as more tubules are annotated and the DL 

performance improves. Performance fluctuations were the result of differences in quality of WSIs, 

resulting in some tiles requiring additional correction. The superpixel feature continued to display a one-

click selection for many tubules (Figure S1). Compared with nuclei annotation, tubule annotation 

efficiency converged faster and gave reliable suggestions with fewer annotated patches. The large 

difference in efficiency performance between nuclei and tubules (103x vs 9x, respectively) resulted 

from the fact that tubules occupy larger area, and thus there are fewer of them per 1000 x 1000 tile, 

implying more time is spent transitioning between tiles. 
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SM 3.3 Epithelium Case 

We selected 10 WSIs from an in-house estrogen receptor positive (ER+) breast cancer dataset 

scanned at 40x, and were processed similar to the tubule use case.  

In the first 5 minutes of epithelium annotation, the bulk of the effort was spent manually delineating 

regions, as superpixel boundaries were not reliable (Figure S1 yellow arrow). This manual process is 

observed to be slower than the other 2 use cases due to the epithelial compartment’s intricate structure. 

It appears that once a sufficient training set is created, coinciding with 246 annotated regions, the user 

starts to largely accept the DL suggestions. After this transition point, QA starts to provide 

improvements in both efficiency and annotation precision. For example, QA was able to provide better 

pixel-level segmentations in delicate regions which may be intractable for manual annotators (Figure 

S4).  
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Supplementary Figures S1 – S4 
 

 

Figure S1. The (A & D & G) original 256 x 256 tubules, epithelium, and nuclei ROIs with (B & E & H) 

intensity-based superpixels and (C & F & I) deep learning derived superpixels. In QA, selecting a 

superpixel (boundaries shown in green) results in the groups of connected pixels sharing similar 
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characteristics to be selected. As the user trains models, the superpixels evolve to capture more 

accurate boundaries of structures of interest. Later iterations (C & F & I) show increased specificity 

in terms of hugging structures of interest (e.g., areas indicated with arrows), thus enabling the user 

to rapidly select structures with high precision while using minimal effort. 
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Figure S2. The figure shows original ROIs of (A) pancreatic nuclei, (D) colon tubule, and (G) breast 

cancer with associated (B & E & H) manual annotations and (C & F & I) QA annotation overlaid in 

fuchsia. The f-scores of QA versus manual annotation are (top) 0.97, (middle) 0.92, and (bottom) 

0.91. In more complex regions (bottom row, areas indicated with arrows), users often produce false 

positives, likely due to the associated additional time burden needed for intricate annotating. 
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Figure S3. Flowchart illustrating the general workflow of QA. (A & B & C) WSI are divided into tiles 

using a provided preprocessing script before being uploaded to QA. (D) Tiles are subsequently sub-

divided into smaller patches of size 256 x256 amenable to deep learning. (E) These patches are 

used to train a u-net in an autoencoding fashion under the guise of initializing the u-net model with 

dataset-derived weights. (F) Each patch is subsequently embedded into a 2D space using UMAP 

from a feature vector derived from the transition layer between encoding and decoding of the u-net. 

(F -> G) The user then views the UMAP embedding plot (Figure 1 A) to select representative patches 

from the cohort for annotation. (H) Subsequently, the user annotates some suggested patches in the 

annotations pages (Figure 1B) with annotation aided tools. (I) These annotations were subsequently 

used to train the u-net and reapply it to the current image tile. (J & K) When viewing the annotation 

suggestions (Figure 1C), the user may either continue with manual annotation from scratch, or import 

the DL based suggestions for modification and acceptance of the annotations. (L) The embedding 

plot can be updated as the model improves, helping to identify poorly represented regions in the 

training set. As the model provides increasingly reliable suggestions, the user can begin to more 

confidently accept prediction results (Figure 3), allowing transitions directly from (G) to (J).  
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Figure S4. There is marked difference in levels of complexity between (A) less complex and (D) more 

complex epithelial regions. When manually annotating, large regions are more likely to be marked at 

a coarse level as indicated in fuchsia overlay (B & E). While QA is able to recapitulate the annotation 

with high fidelity in less complex images (C, f-score =0.89), in more complex regions (F, e.g., areas 

indicated with arrows, f-score=0.69) the prediction QA generates appears to be able to provide a 

level of precision beyond that which would be achievable with human efforts. QA employs an intuitive 

binary classification such that all pixels are labeled as either epithelial or not epithelial. The latter 

class includes the totality of all other classes on the image, for example stroma and slide glass. 
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Supplementary Table 

Histologic 

Structure 

edgeweight [train_tl] approxcellsize [superpixel] compactness [superpixel] 

Cell Nuclei 8 20 10-4 

Tubules 2 80 10-5 

Epithelium 25 55 10-6 

Table S1. Hyper-parameters (edgeweight, approxcellsize, and compactness) are set to different values 

for different structures. 

 

 


