
Supplementary Material

S1 Review of generic FDR control methods

To facilitate our discussion, we introduce the notations for data. For feature j = 1, . . . , d, we use
Xj = (Xj1, . . . , Xjm)> ∈ Rm≥0 and Y j = (Yj1, . . . , Yjn)> ∈ Rn≥0 to denote its measurements under
the experimental and background conditions, respectively. We assume that Xj1, . . . , Xjm are identically
distributed, so are Yj1, . . . , Yjn. Let µXj = E[Xj1] and µY j = E[Yj1] denote the expected measure-
ment of feature j under the two conditions, respectively. Then we denote by X̄j the sample average of
Xj1, · · · , Xjm and by Ȳj the sample average of Yj1, · · · , Yjn.

S1.1 P-value-based methods

Here we describe the details of p-value-based FDR control methods, including BH-pair, BH-pool, qvalue-
pair, and qvalue-pool. Each of these four methods first computes p-values using either the pooled ap-
proach or the paired approach, and it then relies on the BH procedure [14] or Storey’s qvalue procedure
[25] for FDR control. In short, every p-value-based method is a combination of a p-value calculation ap-
proach and a p-value thresholding procedure. Below we introduce two p-value calculation approaches
(paired and pooled) and two p-value thresholding procedures (BH and Storey’s qvalue).

S1.1.1 P-value calculation approaches

The paired approach. The paired approach examines one feature at a time and compares its mea-
surements between two conditions. Besides the ideal implementation, i.e., the correct paired approach
that uses the correct model to calculate p-values, we also include commonly-used flawed implementa-
tions that either misspecify the distribution, i.e., the misspecified paired approach, or misformulate the
two-sample test as a one-sample test, i.e., the 2as1 paired approach.

Here we use the negative binomial distribution as an example to demonstrate the ideas of the correct,
misspecified, and 2as1 paried approaches. Suppose that for each feature j, its measurements under
each condition follow a negative binomial distribution, and the two distributions under the two conditions
have the same dispersion; that is,Xj1, · · · , Xjm

i.i.d.∼ NB (µXj , θj) ; Yj1, · · · , Yjn
i.i.d.∼ NB (µY j , θj), where

θj is the dispersion parameter such that the variance Var(Xji) = µXj + θjµ
2
Xj .

• The correct paired approach assumes that the two negative binomial distributions have the same
dispersion parameter θj , and it uses the two-sample test for the null hypothesis H0 : µXj = µY j

against the alternative hypothesis H1 : µXj > µY j (enrichment analysis) or H1 : µXj 6= µY j

(differential analysis).

• The misspecified paired approach misspecifies the negative binomial distribution as Poisson, and
it uses the two-sample test for the null hypothesis H0 : µXj = µY j against the alternative hypoth-
esis H1 : µXj > µY j (enrichment analysis) or H1 : µXj 6= µY j (differential analysis).

• The 2as1 paired approach bluntly assumes µY j = Ȳj , and it performs the one-sample test based
on Xj1, . . . , Xjm for the null hypotheses H0 : µXj = Ȳj against the alternative hypothesis H1 :

µXj > Ȳj (enrichment analysis) or H1 : µXj 6= Ȳj (differential analysis).

The pooled approach. The pooled approach pools all features’ average measurements under the
background condition

{
Ȳj
}d
j=1

to form a null distribution, and it calculates a p-value for each feature j

1



by comparing X̄j to the null distribution. Specifically, in enrichment analysis, the p-value of feature j is
computed as:

pj =
card

({
k : Ȳk ≥ X̄j

})
d

.

In differential analysis, the p-value of feature j is computed as:

pj = 2 ·min

(
card

({
k : Ȳk ≥ X̄j

})
d

,
card

({
k : Ȳk ≤ X̄j

})
d

)
.

S1.1.2 P-value thresholding procedures for FDR control

Definition S1 (BH procedure for thresholding p-values [14]) The features’ p-values p1, . . . , pd are sorted
in an ascending order p(1) ≤ p(2) ≤ . . . ≤ p(d). Given the target FDR threshold q, the Benjamini–Hochberg
(BH) procedure finds a p-value cutoff TBH as

TBH := p(k), where k = max

{
j = 1, . . . , d : p(j) ≤

j

d
q

}
. (S1)

Then BH outputs
{
j : pj ≤ TBH

}
as discoveries.

Definition S2 (Storey’s qvalue procedure for thresholding p-values [25]) The features’ p-values p1, . . . , pd

are sorted in an ascending order p(1) ≤ p(2) ≤ . . . ≤ p(d). Let π̂0 denote an estimate of the probability
P (the i-th feature is uninteresting) (see Storey [25] for details). Storey’s qvalue procedure defines the
q-value for p(d) as

q̂(p(d)) :=
π̂0 · d · p(d)

card
({
k : pk ≤ p(d)

}) = π̂0 · p(d) .

Then for j = d− 1, d− 2, . . . , 1, the q-value for p(j) is defined as:

q̂(p(j)) := min

(
q̂(p(j+1)),

π̂0 · d · p(j)

card
({
k : pk ≤ p(j)

})) .
Then Storey’s qvalue procedure outputs {j : q̂(pj) ≤ q} as discoveries.

We use function qvalue from R package qvalue (v 2.20.0; with default estimate π̂0) to calculate
q-values.

Definition S3 (SeqStep+ procedure for thresholding p-values [35]) Define Hj
0 as the null hypothe-

sis for feature j and pj as the p-value for Hj
0 , j = 1, . . . , d. Order the null hypotheses H1

0 , . . . ,H
d
0 from

the most to the least promising (here more promising means more likely to be interesting) and denote
the resulting null hypotheses and p-values as H(1)

0 , . . . ,H
(d)
0 and p(1), . . . , p(d). Given any target FDR

threshold q, a pre-specified constant s ∈ (0, 1), and a subset K ⊆ {1, . . . , d}, the SeqStep+ procedure
finds a cutoff ĵ as

ĵ := max

{
j ∈ K :

1 + card
({
k ∈ K, k ≤ j : p(k) > s

)}
card

({
k ∈ K, k ≤ j : p(k) ≤ s

)}
∨ 1
≤ 1− s

s
q

}
(S2)

Then SeqStep+ rejects
{
H

(j)
0 : p(j) ≤ s, j ≤ ĵ, j ∈ K

}
. If the orders of the null hypotheses are inde-

pendent of the p-values, the SeqStep+ procedure ensures FDR control.

The GZ procedure (Definition 3) used in Clipper is a special case of the SeqStep+ procedure with
s = 1/(h+1). Recall that given the number of non-identical permutations h ∈ {1, · · · , hmax} and contrast

2



scores {Cj}dj=1, the GZ procedure sorts {|Cj |}dj=1 in a decreasing order:

|C(1)| ≥ |C(2)| ≥ · · · ≥ |C(d)| . (S3)

To see the connection between the GZ procedure and SeqStep+, we consider the null hypothesis for
the j-th ordered feature, j = 1, . . . , d, as H(j)

0 : µX(j) = µY (j) and define the corresponding p-value

p(j) :=
r(T

σ0
(j)

)

h+1 , where r(Tσ0

(j)) is the rank of Tσ0

(j) in {Tσ0

(j), · · · , T
σh
(j)} in a descending order. We also define

K := {j = 1, . . . , d : Cj 6= 0} as the subset of features with non-zero Cj ’s. Finally, we input the p-values,
null hypothesis orders in (S3), s = 1/(h + 1), q and K into the SeqStep+ procedure, and we obtain the
GZ procedure.

The BC procedure (Definition 1) is a further special case with h = 1, p(j) :=
(
1(C(j) > 0) + 1

)
/2,

and K := {j = 1, . . . , d : Cj 6= 0}.

S1.2 Local-fdr-based methods

The FDR is statistical criterion that ensures the reliability of discoveries as a whole. In contrast, the
local fdr focuses on the reliability of each discovery. The definition of the local fdr relies on some pre-
computed summary statistics zj for feature j, j = 1, . . . , d. In the calculation of local fdr, {z1, . . . , zd}
are assumed to be realizations of an abstract random variable Z that represents any feature. Let p0

or p1 denote the prior probability that any feature is uninteresting or interesting, with p0 + p1 = 1. Let
f0(z) := P(Z = z | uninteresting ) or f1(z) := P(Z = z | interesting ) denote the conditional probability
density of Z at z given that Z represents an uninteresting or interesting feature. Thus by Bayes’ theorem,
the posterior probability of any feature being uninteresting given its summary statistic Z = z is

P(uninteresting | Z = z) = p0f0(z)/f(z) , (S4)

where f(z) := p0f0(z) + p1f1(z) is the marginal probability density of Z. Accordingly, the local fdr of
feature j is defined as follows.

Definition S4 (Local fdr [72]) Given notations defined above, the local fdr of feature j is defined as

local-fdrj := f0(zj)/f(zj) .

Because p0 ≤ 1, local-fdrj is an upper bound of the posterior probability of feature j being uninteresting
given its summary statistic zj , defined in (S4).

Note that another definition of the local fdr is the posterior probability P(uninteresting | z) in (S4) [16].
Although this other definition is more reasonable, we do not use it but choose Definition S4 because
the estimation of p0 is ususally difficult. Another reason is that uninteresting features are the dominant
majority in high-throughput biological data, so p0 is often close to 1.

We define local-fdr-based methods as a type of FDR control methods by thresholding local fdrs of
features under the target FDR threshold q. Although the local fdr is different from FDR, it has been
shown that thresholding the local fdrs at q will approximately control the FDR under q [72]. This makes
local-fdr-based methods competitors against Clipper and p-value-based methods.

Every local-fdr-based method is a combination of a local fdr calculation approach and a local fdr
thresholding procedure. Below we introduce two local fdr calculation approaches (empirical null and
swapping) and one local fdr thresholding procedure. After the combination, we have two local-fdr-based
methods: locfdr-emp and locfdr-swap.
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S1.2.1 Local fdr calculation approaches

With z1, . . . , zd, the calculation of local fdr defined in Definition S4 requires the estimation of f0 and f ,
two probability densities. f is estimated by nonparametric density estimation, and f0 is estimated by
either the empirical null approach [72] or the swapping approach, which shuffles replicates between
conditions [16]. With the estimated f̂ and f̂0, the estimated local fdr of feature j is

̂local-fdrj := f̂0(zj)/f̂(zj) . (S5)

The empirical null approach. This approach assumes a parametric distribution, typically the Gaussian
distribution, to estimate f0. Then with the density estimate f̂ , the local fdr is estimated for each feature
j. The implementation of this approach depends on the numbers of replicates.

• In 1vs1 enrichment and differential analyses, we define zj as

zj :=
Dj√

1
d

∑d
j=1

(
Dj − D̄

)2 ,
where Dj = Xj1 − Yj1 and D̄ =

∑d
j=1Dj/d.

• In 2vs1 enrichment and differential analyses, we define zj as

zj :=
X̄j − Yj1√

s2Xj
2

,

where s2
Xj =

∑2
i=1(Xji − X̄j)

2.

• In mvsn enrichment and differential analyses with m,n ≥ 2, we define zj as the two-sample
t-statistic with unequal variances:

zj :=
X̄j − Ȳj√
s2Xj
m +

s2Y j
n

,

where s2
Xj = 1

m−1

∑m
i=1(Xji − X̄j)

2 and s2
Y j = 1

n−1

∑n
i=1(Yji − Ȳj)2 are the sample variances of

feature j under the experimental and background conditions.

Then {l̂ocfdrj}dj=1 are estimated from {zj}dj=1 by function locfdr in R package locfdr (v 1.1-8; with
default arguments).
The swapping approach. This approach swaps dm/2e replicates under the experimental condition
with dn/2e replicates under the background condition. Then it calculates the summary statistic for each
feature on the swapped data, obtaining z′1, . . . , z

′
d. Finally, it estimates f0 and f by applying kernel

density estimation to z′1, . . . , z
′
d and z1, . . . , zd, respectively (by function kde in R package ks). With f̂0

and f̂ , {l̂ocfdrj}dj=1 are calculated by Definition S4.
The implementation of this approach depends on the numbers of replicates. Below are three special

cases included in this work.

• In 1vs1 enrichment and differential analyses, the swapping approach is inapplicable because
interesting features would not become uninteresting after the swapping.
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• In 2vs1 enrichment and differential analyses, we define zj and z′j as

zj =
Xj1 +Xj2

2
− Yj1 ,

z′j =
Xj1 + Yj1

2
−Xj2 .

• In 3vs3 enrichment and differential analyses with, we define zj and z′j as

zj =
Xj1 +Xj2

2
− Yj1 + Yj2

2
,

z′j =
Xj1 + Yj1

2
− Xj2 + Yj2

2
.

Then we apply kernel density estimation to {zj}dj=1 and
{
z′j
}d
j=1

to obtain f̂ and f̂0, respectively. By

(S5), we calculate {l̂ocfdrj}dj=1.

S1.2.2 The local fdr thresholding procedure

Definition S5 (locfdr procedure) Given the local fdr estimates { ̂local-fdrj}dj=1 and the target FDR
threshold q, the locfdr procedure outputs {j = 1, . . . , d : ̂local-fdrj ≤ q} as discoveries.

S2 The Clipper methodology

Clipper is a flexible framework that reliably controls the FDR without using p-values in high-throughput
data analysis with two conditions. Clipper has two functionalities: (I) enrichment analysis, which iden-
tifies the “interesting” features that have higher expected measurements (i.e., true signals) under the
experimental condition than the background, a.k.a. negative control condition (if the goal is to identify
the interesting features with smaller expected measurements under the experimental condition, enrich-
ment analysis can be applied after the values are negated); (II) differential analysis, which identifies the
interesting features that have different expected measurements between the two conditions. For both
functionalities, uninteresting features are defined as those that have equal expected measurements
under the two conditions.

Clipper only relies on two fundamental statistical assumptions of biological data analysis: (1) mea-
surement errors (i.e., differences between measurements and their expectations, with the expectations
including biological signals and batch effects) are independent across all features and experiments;
(2) every uninteresting feature has measurement errors identically distributed across all experiments.
These two assumptions are used in almost all bioinformatics tools and commonly referred to as the
“measurement model” in statistical genomics [39].

In the following subsections, we will first introduce notations and assumptions used in Clipper. Then
we will detail how Clipper works and discuss its theoretical guarantee in three analysis tasks: the
enrichment analysis with equal numbers of replicates under two conditions (m = n), the enrichment
analysis with different numbers of replicates under two conditions (m 6= n), and the differential analysis
(when m+ n > 2)..

S2.1 Notations and assumptions

To facilitate our discussion, we first introduce the following mathematical notations. For two random
vectorsX = (X1, . . . , Xm)> and Y = (Y1, . . . , Yn)>, or two sets of random variables X = {X1, . . . , Xm}
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and Y = {Y1, . . . , Yn}, we write X ⊥ Y or X ⊥ Y if Xi is independent of Yj for all i = 1, . . . ,m and
j = 1, . . . , n. To avoid confusion, we use card(A) to denote the cardinality of a set A and |c| to denote
the absolute value of a scalar c. We define a ∨ b := max(a, b).

Clipper only requires two inputs: the target FDR threshold q ∈ (0, 1) and the input data. Regarding
the input data, we use d to denote the number of features with measurements under two conditions,
and we use m and n to denote the numbers of replicates under the two conditions. For each feature
j = 1, . . . , d, we use Xj = (Xj1, . . . , Xjm)> ∈ Rm≥0 and Y j = (Yj1, . . . , Yjn)> ∈ Rn≥0 to denote its
measurements under the two conditions, where R≥0 denotes the set of non-negative real numbers. We
assume that all measurements are non-negative, as in the case of most high-throughput experiments.
(If this assumption does not hold, transformations can be applied to make data satisfy this assumption.)

Clipper has the following assumptions on the joint distribution of X1, . . . ,Xd,Y 1, . . . ,Y d. For j =

1, . . . , d, Clipper assumes that Xj1, . . . , Xjm are identically distributed, so are Yj1, . . . , Yjn. Let µXj =

E[Xj1] and µY j = E[Yj1] denote the expected measurement of feature j under the two conditions,
respectively. Then conditioning on {µXj}dj=1 and {µY j}dj=1,

Xj1, · · · , Xjm, Yj1, · · · , Yjn are mutually independent ; (S6)

Xj ⊥Xk,Y j ⊥ Y k and Xj ⊥ Y k , ∀j, k = 1, . . . , d.

An enrichment analysis aims to identify interesting features with µXj > µY j (withXj and Y j defined
as the measurements under the experimental and background conditions, respectively), while a differ-
ential analysis aims to call interesting features with µXj 6= µY j . We define N := {j : µXj = µY j} as the
set of uninteresting features and denote N := card(N ). In both analyses, Clipper further assumes that
an uninteresting feature j satisfies

Xj1, · · · , Xjm, Yj1, · · · , Yjn are identically distributed ,∀j ∈ N . (S7)

Clipper consists of two main steps: construction and thresholding of contrast scores. First, Clipper
computes contrast scores, one per feature, as summary statistics that reflect the extent to which features
are interesting. Second, Clipper establishes a contrast-score cutoff and calls as discoveries the features
whose contrast scores exceed the cutoff.

To construct contrast scores, Clipper uses two summary statistics t(·, ·) : Rm≥0 × Rn≥0 → R to extract
data information regarding whether a feature is interesting or not:

tminus(x,y) := x̄− ȳ ; (S8)

tmax(x,y) := max (x̄, ȳ) · sign (x̄− ȳ) , (S9)

where x = (x1, . . . , xm)> ∈ Rm≥0, y = (y1, . . . , yn)> ∈ Rn≥0, x̄ =
∑m
i=1 xi/m, ȳ =

∑n
i=1 yi/n, and

sign(·) : R→ {−1, 0, 1} with sign(x) = 1 if x > 0, sign(x) = −1 if x < 0, and sign(x) = 0 otherwise.
Notably, other summary statistics can also be used to construct contrast scores. For example, an

alternative summary statistic is the t statistic from the two-sample t test:

tt(x,y) :=
x̄− ȳ√∑m

i=1(xi−x̄)2+
∑n
i=1(yi−ȳ)2

m+n−2

.

S2.2 Enrichment analysis with equal numbers of replicates (m = n)

Under the enrichment analysis, we assume that Xj ∈ Rm≥0 and Y j ∈ Rn≥0 are the measurements of
feature j, j = 1, . . . , d, under the experimental and background conditions with m and n replicates,
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respectively. We start with the simple case when m = n. Clipper defines a contrast score Cj of feature
j in one of two ways:

Cj := tminus(Xj ,Y j) minus contrast score , (S10)

or

Cj := tmax(Xj ,Y j) maximum contrast score . (S11)

Accordingly, a large positive value of Cj bears evidence that µXj > µY j . Motivated by Barber and
Candès [35] and Arias-Castro and Chen [36], Clipper proposes the following BC procedure to control
the FDR under the target level q ∈ (0, 1).

Definition S6 (Barber-Candès (BC) procedure for thresholding contrast scores [35]) Given contrast
scores {Cj}dj=1, C = {|Cj | : Cj 6= 0 ; j = 1, . . . , d} is defined as the set of non-zero absolute values of
Cj ’s. The BC procedure finds a contrast-score cutoff TBC based on the target FDR threshold q ∈ (0, 1)

as
TBC := min

{
t ∈ C :

card({j : Cj ≤ −t}) + 1

card({j : Cj ≥ t}) ∨ 1
≤ q
}

(S12)

and outputs
{
j : Cj ≥ TBC

}
as discoveries.

Theorem 1 Suppose that the input data satisfy the Clipper assumptions (S6)–(S7) and m = n. Then
for any q ∈ (0, 1) and either definition of constrast scores in (S10) or (S11), the contrast-score cutoff
TBC found by the BC procedure guarantees that the discoveries have the FDR under q:

FDR = E

[
card

({
j ∈ N : Cj ≥ TBC

})
card({j : Cj ≥ TBC}) ∨ 1

]
≤ q ,

where N = {j : µXj = µY j} denotes the set of uninteresting features.

The proof of Theorem 1 (Supp. Section S8) requires two key ingredients: Lemma 1, which states
important properties of contrast scores, and Lemma 2 from [75], which states a property of a Bernoulli
process with independent but not necessarily identically distributed random variables. The cutoff TBC

can be viewed as a stopping time of a Bernoulli process.

Lemma 1 Suppose that the input data that satisfy the Clipper assumptions (S6)–(S7) and m = n, and
that Clipper constructs contrast scores {Cj}dj=1 based on (S10) or (S11). Denote Sj = sign (Cj) ∈
{−1, 0, 1}. Then {Sj}dj=1 satisfy the following properties:

(a) S1, . . . , Sd are mutually independent ;

(b) P(Sj = 1) = P(Sj = −1) for all j ∈ N ;

(c) {Sj}j∈N ⊥ C.

Notably, Lemma 1(a) can be relaxed as P(Sj = 1) ≤ P(Sj = −1) for all j ∈ N . Then Lemma 2 still
holds, and so does Theorem 1, making Clipper still have theoretical FDR control.

Lemma 2 Suppose that Z1, . . . , Zd are independent with Zj ∼ Bernoulli(ρj), and minj ρj ≥ ρ > 0. Let
J be a stopping time in reverse time with respect to the filtration {Fj}, where

Fj = σ ({(Z1 + · · ·+ Zj), Zj+1, · · · , Zd}) , (S13)
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with σ(·) denoting a σ-algebra. Then

E
[

1 + J

1 + Z1 + · · ·+ ZJ

]
≤ ρ−1.

Here we give a brief intuition about how Lemma 2 bridges Lemma 1 and Theorem 1 for FDR control.
First we note that the false discovery proportion (FDP), whose expectation is the FDR, satisfies

FDP :=
card

({
j ∈ N : Cj ≥ TBC

})
card ({j : Cj ≥ TBC}) ∨ 1

(S14)

=
card

({
j ∈ N : Cj ≥ TBC

})
card ({j ∈ N : Cj ≤ −TBC}) + 1

·
card

({
j ∈ N : Cj ≤ −TBC

})
+ 1

card ({j : Cj ≥ TBC}) ∨ 1
(S15)

≤
card

({
j ∈ N : Cj ≥ TBC

})
card ({j ∈ N : Cj ≤ −TBC}) + 1

·
card

({
j : Cj ≤ −TBC

})
+ 1

card ({j : Cj ≥ TBC}) ∨ 1
(S16)

≤
card

({
j ∈ N : Cj ≥ TBC

})
card ({j ∈ N : Cj ≤ −TBC}) + 1

· q , (S17)

where the last inequality follows from the definition of TBC (S12).
By its definition, if TBC exists, it is positive. This implies that Clipper would never call the features

with Cj = 0 as discoveries. Here we sketch the idea of proving Theorem 1 by considering a simplified
case where C is fixed instead of being random; that is, we assume the features with non-zero contrast
scores to be known. Then, without loss of generality, we assume C = {1, . . . , d}. Then we order the
absolute values of uninteresting features’ contrast scores, i.e., elements in {|Cj | : j ∈ N}, from the
largest to the smallest, denoted by |C(1)| ≥ |C(2)| ≥ · · · ≥ |C(N)|. Let J =

∑
j∈N 1

(
|Cj | ≥ TBC

)
, the

number of uninteresting features whose contrast scores have absolute values no less than TBC. When
J > 0, |C(1)| ≥ · · · ≥ |C(J)| ≥ TBC. Define Zk = 1

(
C(k) < 0

)
, k = 1, . . . , N . Then for each order k, the

following holds

C(k) ≥ TBC ⇐⇒
∣∣C(k)

∣∣ ≥ TBC and C(k) > 0⇐⇒ k ≤ J and Zk = 0 ;

C(k) ≤ −TBC ⇐⇒
∣∣C(k)

∣∣ ≥ TBC and C(k) < 0⇐⇒ k ≤ J and Zk = 1 .

Then the upper bound of FDP becomes

card({j ∈ N : Cj ≥ TBC})
card({j ∈ N : Cj ≤ −TBC}) + 1

· q =

∑N
k=1 1

(
C(k) ≥ TBC

)
1 +

∑N
k=1 1

(
C(k) ≤ −TBC

) · q
=

∑J
k=1 1

(
C(k) ≥ TBC

)
1 +

∑J
k=1 1

(
C(k) ≤ −TBC

) · q
=

(1− Z1) + · · ·+ (1− ZJ)

1 + Z1 + · · ·+ ZJ
· q

=

(
1 + J

1 + Z1 + · · ·+ ZJ
− 1

)
· q .

By Lemma 1(a)–(b), Zk
i.i.d.∼ Bernoulli(0.5), which together with Lemma 1(c) satisfy the condition of

Lemma 2 and make ρ = 0.5. Then by Lemma 2, we have

FDR = E[FDP] ≤ E
[

1 + J

1 + Z1 + · · ·+ ZJ
− 1

]
· q ≤ (ρ−1 − 1) · q = q ,

which is the statement of Theorem 1. The complete proof of Theorem 1 is in Supp. Section S8.
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S2.2.1 An optional, heuristic fix if the BC procedure makes no discoveries

Although the BC procedure has theoretical guarantee of FDR control, it lacks power when the num-
ber of replicates m = n, the target FDR threshold q, and the number of features d are all small (e.g.,
m = n = 1, q = 0.01 and d = 1000 in Fig. S24). As a result, the BC procedure may lead to no dis-
coveries. In that case, Clipper implements a heuristic fix—an approximate p-value Benjamini-Hochberg
(aBH) procedure—to increase the power. The aBH procedure constructs an empirical null distribution of
contrast scores by additionally assuming that uninteresting features’ contrast scores follow a symmetric
distribution around zero; it then computes approximate p-values of features based on the empirical null
distribution, and finally it uses the BH procedure [14] to threshold the approximate p-values.

Definition S7 (The aBH procedure) Given contrast scores {Cj}dj=1, an empirical null distribution is
defined on E := {Cj : Cj < 0; j = 1, . . . , d} ∪ {−Cj : Cj < 0; j = 1, . . . , d}. The aBH procedure defines
the approximate p-value of feature j as

pj :=

∑
c∈E 1(c ≥ Cj)
card(E) ∨ 1

.

Then it applies the BH procedure with the target FDR threshold q to {pj}dj=1 to call discoveries.

S2.3 Enrichment analysis with any numbers of replicates m and n

When m 6= n, the BC procedure cannot guarantee FDR control because Lemma 1 no longer holds. To
control the FDR in a more general setting (m = n or m 6= n), Clipper constructs contrast scores via
permutation of replicates across conditions. The idea is that, after permutation, every feature becomes
uninteresting and can serve as its own negative control.

Definition S8 (Permutation) We define σ as permutation, i.e., a bijection from the set {1, · · · ,m + n}
onto itself, and we rewrite the data X1, . . . ,Xd,Y 1, . . . ,Y d into a matrix W:

W =


W11 · · · W1m W1(m+1) · · · W1(m+n)

...
...

Wd1 · · · Wdm Wd(m+1) · · · Wd(m+n)

 :=


X11 · · · X1m Y11 · · · Y1n

...
...

Xd1 · · · Xdm Yd1 · · · Ydn

 .
We then apply σ to permute the columns of W and obtain

Wσ :=


W1σ(1) · · · W1σ(m) W1σ(m+1) · · · W1σ(m+n)

...
...

Wdσ(1) · · · Wdσ(m) Wdσ(m+1) · · · Wdσ(m+n)

 ,

from which we obtain the permuted measurements
{

(Xσ
j ,Y

σ
j )
}d
j=1

, where

Xσ
j :=

(
Wjσ(1), . . . ,Wjσ(m)

)>
,

Y σ
j :=

(
Wjσ(m+1), . . . ,Wjσ(m+n)

)>
. (S18)

In the enrichment analysis, if two permutations σ and σ′ satisfy that

{σ(1), · · · , σ(m)} = {σ′(1), · · · , σ′(m)} ,
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then we define σ and σ′ to be in one equivalence class. That is, permutations in the same equivalence
class lead to the same division of m+ n replicates (from the two conditions) into two groups with sizes
m and n. In total, there are

(
m+n
m

)
equivalence classes of permutations.

We define σ0 as the identity permutation such that σ0(i) = i for all i ∈ {1, · · · ,m + n}. In addition,
Clipper randomly samples h equivalence classes σ1, . . . , σh with equal probabilities without replacement
from the other hmax :=

(
m+n
m

)
− 1 equivalence classes (after excluding the equivalence class containing

σ0). Note that hmax is the maximum value h can take.
Clipper then obtains

{
(Xσ0

j ,Y
σ0
j ), (Xσ1

j ,Y
σ1
j ), · · · , (Xσh

j ,Y σh
j )
}d
j=1

, where (Xσ`
j ,Y

σ`
j ) are the per-

muted measurements based on σ`, ` = 0, . . . , h. Then Clipper computes Tσ`j := tminus(Xσ`
j ,Y

σ`
j ) to

indicate the degree of “interestingness” of feature j reflected by (Xσ`
j ,Y

σ`
j ). Note that Clipper chooses

tminus instead of tmax because empirical evidence shows that tminus leads to better power. Sorting
{Tσ`j }h`=0 gives

T
(0)
j ≥ T (1)

j ≥ · · · ≥ T (h)
j .

Then Clipper defines the contrast score of feature j, j = 1, . . . , d, in one of two ways:

Cj :=

{
T

(0)
j − T (1)

j if T (0)
j = Tσ0

j

T
(1)
j − T (0)

j otherwise
minus contrast score , (S19)

or

Cj :=


∣∣∣T (0)
j

∣∣∣ if T (0)
j = Tσ0

j > T
(1)
j

0 if T (0)
j = T

(1)
j

−
∣∣∣T (0)
j

∣∣∣ otherwise

maximum contrast score . (S20)

The intuition behind the contrast scores is that, if Cj < 0, then 1(T
(0)
j = Tσ0

j ) = 0, which means that
at least one of Tσ1

j , . . . , Tσhj (after random permutation) is greater than Tσ0
j calculated from the original

data (identity permutation), suggesting that feature j is likely an uninteresting feature in enrichment
analysis. Motivated by Gimenez and Zou [63], we propose the following procedure for Clipper to control
the FDR under the target level q ∈ (0, 1).

Definition S9 (Gimenez-Zou (GZ) procedure for thresholding contrast scores [63]) Given h ∈ {1,
· · · , hmax} and contrast scores {Cj}dj=1, C = {|Cj | : Cj 6= 0 ; j = 1, . . . , d} is defined as the set of non-
zero absolute values of Cj ’s. The GZ procedure finds a contrast-score cutoff TGZ based on the target
FDR threshold q ∈ (0, 1) as:

TGZ := min

{
t ∈ C :

1
h + 1

hcard ({j : Cj ≤ −t})
card ({j : Cj ≥ t}) ∨ 1

≤ q
}

(S21)

and outputs
{
j : Cj ≥ TGZ

}
as discoveries.

Theorem 2 Suppose that the input data that satisfy the Clipper assumptions (S6)–(S7). Then for any
q ∈ (0, 1) and either definition of contrast scores in (S19) or (S20), the contrast-score cutoff TGZfound
by the GZ procedure (S21) guarantees that the discoveries have the FDR under q:

FDR = E

[
card

({
j ∈ N : Cj ≥ TGZ

})
card ({j : Cj ≥ TGZ}) ∨ 1

]
≤ q ,

where N denotes the set of uninteresting features.

The proof of Theorem 2 (Supp. Section S8) is similar to that of Theorem 1 and requires two key
ingredients: Lemma 2, which is also used in the proof of Theorem 1, and Lemma 3, which is similar
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to Lemma 1 and is about the properties of signs of {Cj}dj=1. The cutoff TGZ can also be viewed as a
stopping time of a Bernoulli process.

Lemma 3 For input data that satisfy the Clipper assumptions (S6) and (S7), Clipper constructs contrast
scores {Cj}dj=1 based on (S20) or (S19). Denote Sj = sign (Cj) ∈ {−1, 0, 1}. Then {Sj}dj=1 and
{Cj}dj=1 satisfy the following properties:

(a) S1, . . . , Sd are mutually independent ;

(b) P(Sj = 1) ≤ 1
h+1 for all j ∈ N ;

(c) {Sj}j∈N ⊥ C.

We note that the GZ procedure is also applicable to the enrichment analysis with equal numbers of
replicates, i.e., m = n (Section S2.2). We will compare the GZ procedure against the BC procedure in
our results.

S2.4 Differential analysis with m+ n > 2

For differential analysis, Clipper also uses permutation to construct contrast scores. When m 6= n, the
equivalence classes of permutations are defined the same as for the enrichment analysis with m 6= n.
When m = n, there is a slight change in the definition of equivalence classes of permutations: if σ and
σ′ satisfy that

{σ(1), · · · , σ(m)} = {σ′(1), · · · , σ′(m)} or {σ′(m+ 1), · · · , σ′(2m)} ,

then we say that σ and σ′ are in one equivalence class. In total, there are htotal :=
(
m+n
m

)
(when

m 6= n) or
(

2m
m

)
/2 (when m = n) equivalence classes of permutations. Hence, to have more than one

equivalence class, we cannot perform differential analysis with m = n = 1; in other words, the total
number of replicates m+ n must be at least 3.

Then Clipper randomly samples σ1, . . . , σh with equal probabilities without replacement from the
hmax := htotal−1 equivalence classes that exclude the class containing σ0, i.e., the identity permutation.
Note that hmax is the maximum value h can take. Next, Clipper computes Tσ`j :=

∣∣tminus(Xσ`
j ,Y

σ`
j )
∣∣,

where Xσ`
j and Y σ`

j are the permuted data defined in (S18), and it defines Cj as the contrast score of
feature j, j = 1, . . . , d, in the same ways as in (S19) or (S20).

Same as in the enrichment analysis with m 6= n, Clipper also uses the GZ procedure [63] to set a
cutoff on contrast scores to control the FDR under the target level q ∈ (0, 1), following Theorem 2.

S2.5 Clipper variant algorithms

For nomenclature, we assign the following names to Clipper variant algorithms, each of which combines
a contrast score definition with a thresholding procedure.

• Clipper-minus-BC: minus contrast score Cj = tminus(Xj ,Y j) (S10) and BC procedure (Definition
S6);

• Clipper-minus-aBH: minus contrast score Cj = tminus(Xj ,Y j) and aBH procedure (Definition
S7);

• Clipper-minus-GZ: minus contrast score τj = T
(0)
j −T

(1)
j (S19) and GZ procedure (Definition S9);

• Clipper-max-BC: maximum contrast score Cj = tmax(Xj ,Y j) (S11) and BC procedure;
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• Clipper-max-aBH: maximum contrast score Cj = tmax(Xj ,Y j) and aBH procedure;

• Clipper-max-GZ: maximum contrast score τj = T
(0)
j (S20) and GZ procedure.

S2.6 R package “Clipper”

In the R package Clipper, the default implementation is as follows. Based on the power comparison
results in Section S3 and Figs. S24, S25, S26, and S27, Clipper uses Clipper-minus-BC as the default
algorithm for the enrichment analysis with equal numbers of replicates; when there are no discoveries,
Clipper suggests users to increase the target FDR threshold q or to use the Clipper-minus-aBH algorithm
with the current q. For the enrichment analysis with different numbers of replicates under two conditions
or the differential analysis, Clipper uses the Clipper-max-GZ algorithm by default.

S3 Comparison of Clipper variant algorithms

We compared Clipper variant algorithms applicable to each experimental design. Based on the com-
parison results, we selected a variant algorithm as the default Clipper implementation for each design.

• 1vs1 enrichment analysis. Under each of the 12 settings, we compared Clipper-minus-BC,
Clipper-minus-aBH, Clipper-max-BC, and Clipper-max-aBH (Section S2.5), the only four Clipper
variant algorithms applicable to 1vs1 enrichment analysis. The results in Fig. S24 show that,
regardless of the contrast scores being minus or maximum (max), the BC procedure always guar-
antees the FDR control under a range of target FDR thresholds q ∈ {1%, 2%, · · · , 10%}. Notably,
in terms of power, the two contrast scores consistently have different advantages under the two
background scenarios: Clipper-max-BC has higher power under the homogeneous background,
while Clipper-minus-BC is more powerful under the heterogeneous background. Considering that
the heterogeneous scenario is prevalent in high-throughput biological data, the minus contrast
score is preferred. As the power of Clipper-minus-BC drops when q is too small (q ≤ 3%) and d
is not too large (d = 1000), we consider the aBH procedure as an alternative to control the FDR.
The results show that Clipper-minus-aBH is indeed more powerful when Clipper-minus-BC lacks
power; however, Clipper-minus-aBH cannot guarantee the exact FDR control as Clipper-minus-
BC does. Therefore, Clipper uses Clipper-minus-BC by default in 1vs1 enrichment analysis, and
it recommends users to increase q when too few discoveries are made; if users reject this option,
then Clipper would use Clipper-minus-aBH to increase power for the current q.

• 2vs1 enrichment analysis. Under each of the 6 settings, we compared Clipper-minus-GZ and
Clipper-max-GZ (Section S2.5), the only two Clipper variant algorithms applicable to 2vs1 enrich-
ment analysis. For either algorithm, we further compared two numbers of permutation equivalence
classes: h = 1 or 2, where the latter is hmax =

(
3
1

)
− 1—the maximum number of equivalence

classes that do not include the identity permutation. Note that h is a required input parameter
for the GZ procedure. The results in Fig. S25 show that, regardless of h and the contrast score
definition—maximum (max) or minus, the GZ procedure always guarantees the FDR control un-
der all target FDR thresholds q ∈ {1%, 2%, · · · , 10%}. In terms of power, Clipper-max-GZ(h = 1)
is consistently more powerful than the other three Clipper variants under all settings. Therefore,
Clipper uses Clipper-max-GZ(h = 1) by default in enrichment analysis with unequal numbers of
replicates under two conditions.

• 3vs3 enrichment analysis. Under each of the 12 settings, we compared five Clipper vari-
ant algorithms: Clipper-minus-BC, Clipper-minus-aBH, Clipper-max-BC, Clipper-max-aBH, and

12



Clipper-max-GZ (Section S2.5). Fig. S26 shows the comparison of the first four variants: regard-
less of the contrast scores being minus or maximum (max), the BC procedure simultaneously
guarantees the FDR control and achieves good power under a range of target FDR thresholds
q ∈ {1%, 2%, · · · , 10%}. Similar to the results in the 1vs1 enrichment analysis, Clipper-max-BC
has higher power under the homogeneous background, while Clipper-minus-BC is more power-
ful under the heterogeneous background. By the same reasoning—the prevalent heterogeneous
scenarios in high-throughput biological data—we prefer the minus contrast score. Unlike the 1vs1
enrichment analysis, here Clipper-minus-BC is consistently as powerful as Clipper-minus-aBH,
even when q is small, but Clipper-minus-aBH cannot guarantee the exact FDR control. Therefore,
Clipper-minus-BC achieves the overall best performance among the first four Clipper variants.
Given that the GZ procedure is also applicable to this setting, we further compared Clipper-minus-
BC with Clipper-max-GZ(h = 1), the most powerful Clipper variant with the GZ procedure and
the default Clipper implementation in the 2vs1 enrichment and differential analyses and the 3vs3
differential analysis. The results in Fig. S28 show that while both Clipper-minus-BC and Clipper-
max-GZ(h = 1) control the FDR, the former is more powerful. Hence, we will use Clipper-minus-
BC as the default when both conditions have more than one and the same number of replicates.

Under the simulation settings from Gaussian distributions, we also compared Clipper-minus-BC
with another Clipper variant using the BC procedure and the t statistic as the contrast score
(Clipper-t), where the t statistic is from the two-sample t test. Fig. S13 shows that, although
Clipper-t always guarantees the FDR control under a range of target FDR thresholds q ∈ {1%, 2%, · · · , 10%},
it has lower power compared to Clipper-minus-BC, our default Clipper for enrichment analysis with
equal numbers of replicates. Based on this result, we did not consider the t statistic as an alter-
native contrast score for Clipper.

• 2vs1 differential analysis. Similar to 2vs1 enrichment analysis, under each of the 6 settings, we
compared Clipper-minus-GZ and Clipper-max-GZ (Section S2.5) with h = 1 or 2. The results in
Fig. S25 show that, regardless of h and the contrast score definition—maximum (max) or minus,
the GZ procedure always guarantees the FDR control under a range of target FDR thresholds
q ∈ {1%, 2%, · · · , 10%}. Notably, in terms of power, Clipper-minus-GZ(h = 2) is the most pow-
erful when when q is very small (q ≤ 2%) under Poisson and negative binomial settings, while
Clipper-max-GZ(h = 1) is the most powerful otherwise. Considering that Clipper-max-GZ(h = 1)
outperforms the other three Clipper variants in most cases, Clipper uses Clipper-max-GZ(h = 1)
by default in 2vs1 differential analysis, and it recommends users to use Clipper-minus-GZ(h = 2)
when too few discoveries are made.

• 3vs3 differential analysis. Under each of the 12 settings, we compared Clipper-minus-GZ, and
Clipper-max-GZ (Section S2.5) with h = 1, 3 or 9, where h = 9 is hmax =

(
6
3

)
/2 − 1—the maxi-

mum number of equivalence classes that do not include the identity permutation. The results in
Fig. S27 show that, regardless of h and the contrast score definition—maximum (max) or minus,
the GZ procedure always guarantees the FDR control under a range of target FDR thresholds
q ∈ {1%, 2%, · · · , 10%}. In terms of power, Clipper-max-GZ(h = 1) is consistently more powerful
than the other Clipper variant algorithms under all settings. Therefore, Clipper uses Clipper-max-
GZ(h = 1) by default in 3vs3 differential analysis.

Under the simulation settings from Gaussian distributions, we also compared Clipper-max-GZ
with another Clipper variant using the GZ procedure and the t statistic to calculate the degree of
interestingness (Clipper-t), where the t statistic is from the two-sample t test. Fig. S14 shows that,
although Clipper-t always guarantees the FDR control under a range of target FDR thresholds
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q ∈ {1%, 2%, · · · , 10%}, it has lower power compared to Clipper-max-GZ, our default Clipper for
differential analysis. Based on this result, we did not consider the t statistic as an alternative
contrast scores for Clipper.

In summary, whenever Clipper-minus-BC is applicable (enrichment analysis with equal number of repli-
cates under two conditions), it is chosen as the default Clipper implementation; otherwise, Clipper-max-
GZ(h = 1) is the default.

S4 Data generation and detailed implementation of the paired ap-
proach (a p-value calculation approach) in simulation studies

We describe how we simulated data and how we implemented the paired approach in different simu-
lation settings: 1vs1 enrichment analysis, 2vs1 enrichment analysis, 3vs3 enrichment analysis, 2vs1
differential analysis, and 3vs3 differential analysis, combined with three distribution families (Gaussian,
Poisson, and negative binomial) and two background scenarios (homogeneous and heterogeneous).
Under some settings, we considered different numbers of features and the existence of outliers.

In each simulation setting, we generated 200 simulated datasets, computed an FDP and an empirical
power on each dataset, and averaged the 200 FDPs and 200 empirical powers to approximate the FDR
and power, repsectively. For notation simplicity, we use N(µ, σ2) to denote the Gaussian distribution
with mean µ and variance σ2, Pois(λ) to denote the Poisson distribution with mean λ, and NB(µ, θ) to
denote the negative binomial distribution with mean µ and dispersion θ (such that its variance equals
µ+ θµ2).

For each design and analysis, we compared the default Clipper implementation with other generic
FDR control methods. Specifically, seven generic methods (BH-pool, qvalue-pool, BH-pair-mis, qvalue-
pair-mis, BH-pair-2as1, qvalue-pair-2as1, and locfdr-emp) are included in all designs and analyses. The
two methods relying on correct model specification, BH-pair-correct and qvalue-pair-correct, are only
included in the 3vs3 enrichment and differential analyses, because it is almost impossible to correctly
specify a model with fewer than three replicates per condition. The permutation-based method, locfdr-
swap, is excluded from the 1vs1 enrichment analysis because it requires at least one condition to have
more than one replicate.

In addition to the above designs and analyses, we also compared the default Clipper implementa-
tion with BH-pair methods that use parametric or non-parametric tests to calculate p-values when the
numbers of replicates are 10 under both conditions for enrichment analysis, i.e., 10vs10 enrichment
analysis.

S4.1 1vs1 enrichment analysis

We simulated data with d = 1000 and 10,000 features under two background scenarios and three distri-
butional families—a total of 12 settings. In each setting, 10% of the features are interesting (µXj > µY j),
and the rest are uninteresting (with µXj = µY j). Recall that N denotes the set of uninteresting features.

Gaussian distribution

We simulated data from Gaussian using the following procedure:

• Under the homogeneous background scenario, we set µY j = 0 for all d features. For uninteresting
features, we set µXj = µY j = 0 for j ∈ N . For interesting features, we generated {µXj}j /∈N i.i.d.
from N(5, 1).

14



• Under the heterogeneous background scenario, we generated {µY j}dj=1 i.i.d. from N(0, 22). For
uninteresting features, we set µXj = µY j for j ∈ N . For interesting features, we generated
{µXj}j /∈N i.i.d. from N(5, 1).

• We independently generated Xj1 from N(µXj , 1) and Yj1 from N(µY j , 1), j = 1, . . . , d.

To implement the misspecified paired approach (as in BH-pair-mis and qvalue-pair-mis), we as-
sumed that the null distribution of Xj1 − Yj1, j = 1, . . . , d is N(0, σ̂2), where

σ̂2 =
1

d− 1

d∑
j=1

Xj1 −
1

d

d∑
j=1

Xj1

2

+
1

d− 1

d∑
j=1

Yj1 − 1

d

d∑
j=1

Yj1

2

.

This is a misspecified model that assumes that µXj ’s are all equal and so are µY j ’s. Then we computed
the p-value of feature j = 1, . . . , d as the right tail probability ofXj1−Yj1 inN(0, σ̂2), i.e., 1−Φ

(
Xj1−Yj1

σ̂

)
,

where Φ is the cumulative distribution function of N(0, 1).
To implement the 2as1 paired approach (as in BH-pair-2as1 and qvalue-pair-2as1), we treated

N(Yj1, 1) conditioning on the observed Yj1 as the null distribution of Xj1. Then we calculated the
p-value of feature j = 1, . . . , d as the right tail probability of Xj1 in N(Yj1, 1), i.e., 1− Φ (Xj1 − Yj1).

Poisson distribution

We simulated data from Poisson using the following procedure:

• Under the homogeneous background scenario, we set µY j = 20 for all d features. For uninterest-
ing features, we set µXj = µY j = 20 for j ∈ N . For interesting features, we generated {µXj}j /∈N
i.i.d. from Pois(40).

• Under the heterogeneous background scenario, we generated {µY j}dj=1 i.i.d. from Pois(20). For
uninteresting features, we set µXj = µY j for j ∈ N . For interesting features, we generated
{µXj}j /∈N i.i.d. from Pois(40).

• We independently generated Xj1 from Pois(µXj) and Yj1 from Pois(µY j), j = 1, . . . , d.

To implement the misspecified paired approach (as in BH-pair-mis and qvalue-pair-mis), we first
defined a log-transformation f(x) = log(x + 0.01), which we applied to Xj1 and Yj1, j = 1, . . . , d. We
assumed that the null distribution of f(Xj1)− f(Yj1), j = 1, . . . , d is N(0, σ̂2), where

σ̂2 =
1

d− 1

d∑
j=1

f(Xj1)− 1

d

d∑
j=1

f(Xj1)

2

+
1

d− 1

d∑
j=1

f(Yj1)− 1

d

d∑
j=1

f(Yj1)

2

.

This model misspecifies the Poisson distribution as the log-normal distribution.
Then we computed the p-value of feature j = 1, . . . , d as the right tail probability of f(Xj1)− f(Yj1)

in N(0, σ̂2), i.e., 1− Φ
(
f(Xj1)−f(Yj1)

σ̂

)
, where Φ is the cumulative distribution function of N(0, 1).

To implement the 2as1 paired approach (as in BH-pair-2as1 and qvalue-pair-2as1), we treated
Pois(Yj1) conditioning on the observed Yj1 as the null distribution of Xj1. Then we calculated the p-
value of feature j = 1, . . . , d as the right tail probability of Xj1 in Pois(Yj1), i.e., P(Z ≥ Xj1) where
Z ∼ Pois(Yj1).

Negative binomial distribution

We simulated data from negative binomial using the following procedure:
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• Under the homogeneous background scenario, we set µY j = 20 for all d features. For uninterest-
ing features, we set µXj = µY j = 20 for j ∈ N . For interesting features, we generated {µXj}j /∈N
i.i.d. from NB(45, 45−1).

• Under the heterogeneous background scenario, we generated {µY j}dj=1 i.i.d. from NB(20, 20−1).
For uninteresting features, we set µXj = µY j for j ∈ N . For interesting features, we generated
{µXj}j /∈N i.i.d. from NB(45, 45−1).

• We independently generated Xj1 from NB(µXj , µ
−1
Xj) and Yj1 from NB(µY j , µ

−1
Y j), j = 1, . . . , d.

To implement the misspecified paired approach (as in BH-pair-mis and qvalue-pair-mis), we as-
sumed that for each uninteresting feature j, Yj1 and Xj1 follow the same Poisson distribution. We cal-
culated the p-value of feature j from a two-sample Poisson test for the null hypothesis H0 : µXj = µY j

against the alternative hypothesis H1 : µXj > µY j using function poisson.test in R package stats.
To implement the 2as1 paired approach (as in BH-pair-2as1 and qvalue-pair-2as1), we treated

NB(Yj1, Y
−1
j1 ) conditioning on the observed Yj1 as the null distribution of Xj1. Then we calculated

the p-value of feature j = 1, . . . , d as the right tail probability of Xj1 in NB(Yj1, Y
−1
j1 ).

S4.2 2vs1 enrichment analysis

We simulated data with d = 10,000 features under two background scenarios and three distributional
families—a total of 6 settings. In each setting, 10% of the features are interesting (µXj > µY j) and the
rest are uninteresting (with µXj = µY j). Recall that N denotes the set of uninteresting features.

Gaussian distribution

We simulated data from Gaussian using the following procedure:

• Under the homogeneous background scenario, we set µY j = 0 for all d features. For uninteresting
features, we set µXj = µY j = 0 for j ∈ N . For interesting features, we generated {µXj}j /∈N i.i.d.
from N(5, 1).

• Under the heterogeneous background scenario, we generated {µY j}j∈N i.i.d. from N(0, 22) and
set µXj = µY j for j ∈ N . We next generated {µY j}j /∈N i.i.d. from N(0, 22) and {µXj}j /∈N i.i.d.
from N(5, 1).

• We independently generated Xj1 and Xj2 from N(µXj , 1) and Yj1 from N(µY j , 1), j = 1, . . . , d.

To implement the misspecified paired approach (as in BH-pair-mis and qvalue-pair-mis), we as-
sumed that the null distribution of 1

2 (Xj1 +Xj2)− Yj1, j = 1, . . . , d, is N(0, σ̂2), where

σ̂2 =
1

2(2d− 1)

d∑
j=1

2∑
i=1

Xji −
1

2d

d∑
j=1

2∑
i=1

Xji

2

+
1

d− 1

d∑
j=1

Yj1 − 1

d

d∑
j=1

Yj1

2

.

This is a misspecified model that assumes µXj ’s are all equal and so are µY j ’s. Then we computed
the p-value of feature j = 1, . . . , d as the right tail probability of 1

2 (Xj1 + Xj2) − Yj1 in N(0, σ̂2), i.e.,
1− Φ

(
1
2 (Xj1+Xj2)−Yj1

σ̂

)
, where Φ is the cumulative distribution function of N(0, 1).

To implement the 2as1 paired approach (as in BH-pair-2as1 and qvalue-pair-2as1), we treated
N(Yj1, 1/2) conditioning on the observed Yj1 as the null distribution of 1

2 (Xj1 + Xj2). Then we cal-
culated the p-value of feature j = 1, . . . , d as the right tail probability of 1

2 (Xj1 +Xj2) in N(Yj1, 1/2), i.e.,
1− Φ

(
1
2 (Xj1+Xj2)−Yj1

1/
√

2

)
.
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Poisson distribution

We simulated data from Poisson using the following procedure:

• Under the homogeneous background scenario, we set µY j = 20 for all d features. For uninterest-
ing features, we set µXj = µY j = 20 for j ∈ N . For interesting features, we generated {µXj}j /∈N
i.i.d. from Pois(40).

• Under the heterogeneous background scenario, we generated {µY j}dj=1 i.i.d. from Pois(20). For
uninteresting features, we set µXj = µY j for j ∈ N . For interesting features, we generated
{µXj}j /∈N i.i.d. from Pois(40).

• We independently generated Xj1 and Xj2 from Pois(µXj) and Yj1 from Pois(µY j), j = 1, . . . , d.

To implement the misspecified paired approach (as in BH-pair-mis and qvalue-pair-mis), we first
defined a log-transformation f(x) = log(x + 0.01), which we applied to Xj1 and Yj1, j = 1, . . . , d. We
assumed that the null distribution of f(Xj1) + f(Xj2)− 2f(Yj1), j = 1, . . . , d is N(0, σ̂2), where

σ̂2 =
6

d− 1

d∑
j=1

f(Yj1)− 1

d

d∑
j=1

f(Yj1)

2

.

This model misspecifies the Poisson distribution as the log-normal distribution.
Then we computed the p-value of feature j = 1, . . . , d as the right tail probability of f(Xj1)+f(Xj2)−

2f(Yj1) in N(0, σ̂2), i.e., 1−Φ
(
f(Xj1)+f(Xj2)−2f(Yj1)

σ̂

)
, where Φ is the cumulative distribution function of

N(0, 1).
To implement the 2as1 paired approach (as in BH-pair-2as1 and qvalue-pair-2as1), we assumed

that for each uninteresting feature j, Xj1 and Xj2 independently follow Pois(Yj1) conditioning on the
observed Yj1. Then we calculated the p-value of feature j = 1, . . . , d by performing a one-sample
Poisson test using the R function poisson.test for the null hypothesis H0 : µXj = Yj1 against the
alternative hypothesis H1 : µXj > Yj1.

Negative binomial distribution

We simulated data from negative binomial using the following procedure:

• Under the homogeneous background scenario, we set µY j = 20 for all d features. For uninterest-
ing features, we set µXj = µY j = 20 for j ∈ N . For interesting features, we generated {µXj}j /∈N
i.i.d. from NB(45, 45−1).

• Under the heterogeneous background scenario, we generated {µY j}dj=1 i.i.d. from NB(20, 20−1).
For uninteresting features, we set µXj = µY j for j ∈ N . For interesting features, we generated
{µXj}j /∈N i.i.d. from NB(45, 45−1).

• We independently generated Xj1 and Xj2 from NB(µXj , µ
−1
Xj) and Yj1 from NB(µY j , µ

−1
Y j), j =

1, . . . , d.

To implement the misspecified paired approach (as in BH-pair-mis and qvalue-pair-mis), we as-
sumed that for each uninteresting feature j, Xji, i = 1, 2 and Yj1 follow the same Poisson distribu-
tion. We calculated the p-value of feature j from a two-sample Poisson test for the null hypothesis
H0 : µXj = µY j against the alternative hypothesis H1 : µXj > µY j using the function poisson.test in
R package stats.
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To implement the 2as1 paired approach (as in BH-pair-2as1 and qvalue-pair-2as1), we treated
NB(2Yj1, (2Yj1)−1) conditioning on the observed Yj1 as the null distribution of Xj1 +Xj2. Then we cal-
culated the p-value of feature j = 1, . . . , d as the right tail probability of Xj1 +Xj2 in NB(2Yj1, (2Yj1)−1).

S4.3 3vs3 enrichment analysis

We simulated data with and without outliers under two background scenarios and three distributional
families—a total of 12 settings. In each setting, we generated d = 10,000 features, among which 10%

are interesting (with µXj > µY j) and the rest are uninteresting (with µXj = µY j). For the results in
Fig. S11, we simulated data without outliers under two background scenarios and three distributional
families using two more proportions of interesting features: 20% and 40%. The data generation under the
Gaussian, Poisson, and negative binomial distributions is the same as the settings with 10% interesting
features.

Under the settings with outliers, we generated {OXji : j = 1, . . . , d; i = 1, . . . , 3} and {OYji : j =

1, . . . , d; i = 1, . . . , 3} i.i.d. from Bernoulli(0.1), where OXji = 1 or OYji = 1 indicates Xji or Yji is an
outlier, respectively. Under settings without outliers, OXji = OYij = 0 for all j = 1, . . . , d; i = 1, . . . , 3.

Gaussian distribution

• Under the homogeneous background scenario, we set µY j = 0 for all d features. For uninteresting
features, we set µXj = µY j = 0 for j ∈ N . For interesting features, we generated {µXj}j /∈N i.i.d.
from N(5, 1).

• Under the heterogeneous background scenario, we generated {µY j}dj=1 i.i.d. from N(0, 22). For
uninteresting features, we set µXj = µY j for j ∈ N . For interesting features, we generated
{µXj}j /∈N i.i.d. from N(5, 1).

• We independently generated Xji from N(µXj , 1) if OXji = 0 or from the top 1% percentile of
N(µXj , 1) if OXji = 1, j = 1, . . . , d; i = 1, . . . , 3. Similarly, we independently generated Yji from
N(µY j , 1) if OYji = 0 or from the top 1% percentile of N(µY j , 1) if OYji = 1, j = 1, . . . , d; i = 1, . . . , 3.

• For the results in Additional File 1: Fig. S13, under the heterogeneous background scenario, we
generated {µY j}dj=1 i.i.d. from N(0, 22), and {sj}dj=1 i.i.d. from a uniform distribution U(0.5, 2).
For uninteresting features, we set µXj = µY j for j ∈ N . For interesting features, we generated
{µXj}j /∈N i.i.d. from N(5, 1). We then independently generated Xji from N(µXj , s

2
j ) if OXji = 0

or from the top 1% percentile of N(µXj , s
2
j ) if OXji = 1, j = 1, . . . , d; i = 1, . . . , 3. Similarly, we

independently generated Yji from N(µY j , s
2
j ) if OYji = 0 or from the top 1% percentile of N(µY j , s

2
j )

if OYji = 1, j = 1, . . . , d; i = 1, . . . , 3.

• For the results in Additional File 1: Fig. S12, we generated correlated features. We first selected
10 groups of features (2 groups of interesting features and 8 groups of uninteresting features),
with each group containing 200 features. For each group k, we used k1, . . . , k200 to denote the
indices of the 200 features within that group and generated {Xkli}200

l=1 from a multivariate Gaussian
distribution N(µk,Σk), where µk = (µXk1 , . . . , µXk200) and Σk is a matrix with diagonal entries as
1 and other entries as a fixed correlation. In our simulation, the fixed correlation took two values:
0.2 and 0.4.

To implement the correct paired approach (as in BH-pair-correct and qvalue-pair-correct), we cal-
culated the p-value of feature j from a two-sample t-test with equal variance for the null hypothesis
H0 : µXj = µY j against the alternative hypothesis H1 : µXj > µY j .
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To implement the misspecified paired approach (as in BH-pair-mis and qvalue-pair-mis), we calcu-
lated the p-value of feature j from a two-sample t-test with unequal variance for the null hypothesis
H0 : µXj = µYj against the alternative hypothesis H1 : µXj > µYj .

To implement the 2as1 paired approach (as in BH-pair-2as1 and qvalue-pair-2as1), we assumed
that for each uninteresting feature j, Xji, i = 1, . . . , 3 are i.i.d. Gaussian with mean Ȳj conditioning
on the observed Ȳj and unknown variance. We calculated the p-value of feature j using a one-sample
t-test for the null hypothesis H0 : µXj = Ȳj against the alternative hypothesis H1 : µXj > Ȳj .

Poisson distribution

We simulated data from Poisson using the following procedure:

• Under the homogeneous background scenario, we set µY j = 20 for all d features. For uninterest-
ing features, we set µXj = µY j = 20 for j ∈ N . For interesting features, we generated {µXj}j /∈N
i.i.d. from Pois(40).

• Under the heterogeneous background scenario, we generated {µY j}dj=1 i.i.d. from Pois(20). For
uninteresting features, we set µXj = µY j for j ∈ N . For interesting features, we generated
{µXj}j /∈N i.i.d. from Pois(40).

• We independently generated Xji from Pois(µXj) if OXji = 0 or from the top 1% percentile of
Pois(µXj) if OXji = 1, j = 1, . . . , d, i = 1, . . . , 3. Similarly, we independently generated Yji from
Pois(µY j) if OYji = 0 or from the top 1% percentile of Pois(µY j) if OYji = 1, j = 1, . . . , d; 1, . . . , 3.

To implement the correct paired approach (as in BH-pair-correct and qvalue-pair-correct), we cal-
culated the p-value of feature j by performing a two-sample Poisson test for the null hypothesis H0 :

µXj = µY j against the alternative hypothesis H1 : µXj > µY j using the function poisson.test in R
package stats.

To implement the misspecified paired approach (as in BH-pair-mis and qvalue-pair-mis), we first
defined a log-transformation f(x) = log(x + 0.01), which we applied to Xji and Yji, j = 1, . . . , d;
i = 1, . . . , 3. We assumed that for each uninteresting feature j, {f(Xji)}3i=1 and {f(Yji)}3i=1 follow
Gaussian distributions with mean µf(Xj) and µf(Y j), respectively. Then we computed the p-value of
feature j using a two-sample equal variance t-test for the null hypothesis H0 : µf(Xj) = µf(Y j) against
the alternative hypothesis H1 : µf(Xj) > µf(Y j).

To implement the 2as1 paired approach (as in BH-pair-2as1 and qvalue-pair-2as1), we assumed
that for each uninteresting feature j, {Xji}3i=1 follow Pois(Ȳj) conditioning on the observed Ȳj . We
calculated the p-value of feature j by performing a one-sample Poisson test for the null hypothesis
H0 : µXj = Ȳj against the alternative hypothesis H1 : µXj > Ȳj using R function poisson.test from
package stats.

Negative binomial distribution

We simulated data from negative binomial using the following procedure:

• Under the homogeneous background scenario, we set µY j = 20 for all d features. For uninterest-
ing features, we set µXj = µY j = 20 for j ∈ N . For interesting features, we generated {µXj}j /∈N
i.i.d. from NB(45, 45−1).

• Under the heterogeneous background scenario, we generated {µY j}dj=1 i.i.d. from NB(20, 20−1).
For uninteresting features, we set µXj = µY j for j ∈ N . For interesting features, we generated
{µXj}j /∈N i.i.d. from NB(45, 45−1).
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• We independently generated Xji from NB(µXj , µ
−1
Xj) if OXji = 0 or from the top 1% percentile of

NB(µXj , µ
−1
Xj) if OXji = 1, j = 1, . . . , d, i = 1, . . . , 3. Similarly, we independently generated Yji from

NB(µY j , µ
−1
Y j) if OYji = 0 or from the top 1% percentile of NB(µY j , µ

−1
Y j) if OYji = 1, j = 1, . . . , d,

i = 1, . . . , 3.

To implement the correct paired approach (as in BH-pair-correct and qvalue-pair-correct), we per-
formed a two-sample negative binomial test for the null hypothesis H0 : µXj = µY j against the alterna-
tive H1 : µXj > µY j using Tj :=

∑3
i=1Xji −

∑3
i=1 Yji as the test statistic. We computed the p-value of

feature j as the right tail probability

P(Tj ≥ tj) =

∞∑
k1=0

∞∑
k2=k1+tj

P

(
3∑
i=1

Xji ≥ k2

)
P

(
3∑
i=1

Yji = k1

)
,

where tj is the realization of Tj , P(
∑3
i=1Xji ≥ k2) and P(

∑3
i=1 Yji = k1) can be estimated from the

null distribution of Xji and Yji, j = 1, . . . , d; i = 1, . . . , 3. As
∑3
i=1Xji and

∑3
i=1 Yji follow the same

distribution under null, we estimated µXj and µY j as µ̂Xj = µ̂Y j := (
∑3
i=1Xji +

∑3
i=1 Yji)/6. Then, we

calculated P(
∑3
i=1Xji ≥ k2) and P(

∑3
i=1 Yji = k1) using the estimated distribution of Xji and Yji as

NB(µ̂Xj , (µ̂Xj)
−1) and NB(µ̂Y j , (µ̂Y j)

−1), respectively, j = 1, . . . , d; i = 1, . . . , 3.
To implement the misspecified paired approach (as in BH-pair-mis and qvalue-pair-mis), we as-

sumed that for each uninteresting feature j, {Xji}3j=1 and {Yji}3j=1 follow the same Poisson distribu-
tion. We calculated the p-value of feature j from a two-sample Poisson test for the null hypothesis
H0 : µXj = µY j against the alternative hypothesis H1 : µXj > µY j using function poisson.test in R
package stats.

To implement the 2as1 paired approach (as in BH-pair-2as1 and qvalue-pair-2as1), we treated
NB(

∑3
i=1 Yji, (

∑3
i=1 Yji)

−1) conditioning on the observed
∑3
i=1 Yji as the null distribution of

∑3
i=1Xji.

Then we calculated the p-value of feature j = 1, . . . , d as the right tail probability of
∑3
i=1Xji in

NB(
∑3
i=1 Yji, (

∑3
i=1 Yji)

−1).

S4.4 10vs10 enrichment analysis

We simulated data without outliers under heterogeneous background scenario and three distributional
families—a total of 3 settings. In each setting, we generated d = 10,000 features, among which 10% are
interesting (with µXj > µY j) and the rest are uninteresting (with µXj = µY j).

The data generation under the Gaussian, Poisson, and negative binomial distributions is the same
as in the 3vs3 enrichment analysis (Section S4.3) except that we set the number of replicates to 10

under each condition, and we did not generate outliers.
The correct paired approaches in BH-pair-parametric are the same as the corresponding BH-pair-

correct in the 3vs3 enrichment analysis (Section S4.3) except that, under the negative binomial distribu-
tion, the test statistic Tj and its null distribution should have the number of replicates changed from 3 to
10. The misspecified and 2as1 paired approaches (BH-pair-mis and BH-pair-2as1) are also the same
as the corresponding approaches in the 3vs3 enrichment analysis (Section S4.3).

To implement the non-parametric paired approaches, we calculated the p-value of feature j from
the one-sided two-sample Wilcoxon rank-sum test (using R function wilcox.test in package stats) in
BH-pair-Wilcoxon and from the one-sided two-sample permutation test (using R function oneway test

in package coin) in BH-pair-permutation.
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S4.5 2vs1 differential analysis

We simulated data with d = 10,000 features under two background scenarios and three distributional
families—a total of 6 settings. In each setting, we set 10% features as “up-regulated” with µXj > µY j

and another 10% features as “down-regulated” with µXj < µY j .

Gaussian distribution

We simulated data from Gaussian using the following procedure:

• Under the homogeneous background scenario, we set µY j = 0 for all d features. For uninteresting
features, we set µXj = µY j = 0 for j ∈ N . For up-regulated features, we generated µXj i.i.d. from
N(5, 1). For down-regulated features, generated µXj i.i.d. from N(−5, 1) .

• Under the heterogeneous background scenario, we generated {µY j}dj=1 i.i.d. from N(0, 22). For
uninteresting features, we set µXj = µY j for j ∈ N . For up-regulated features, we generated µXj
i.i.d. from N(5, 1). For down-regulated features, generated µXj i.i.d. from N(−5, 1) .

• We independently generated Xj1 and Xj2 from N(µXj , 1) and Yj1 from N(µY j , 1), j = 1, . . . , d.

To implement the misspecified paired approach (as in BH-pair-mis and qvalue-pair-mis), we as-
sumed that the null distribution of 1

2 (Xj1 +Xj2)− Yj1, j = 1, . . . , d, is N(0, σ̂2), where

σ̂2 =
1

2(2d− 1)

d∑
j=1

2∑
i=1

Xji −
1

2d

d∑
j=1

2∑
i=1

Xji

2

+
1

d− 1

d∑
j=1

Yj1 − 1

d

d∑
j=1

Yj1

2

.

This is a misspecified model assuming that µXj ’s are all equal and so are µY j ’s. Then we computed
the p-value of feature j = 1, . . . , d as the two-sided tail probability of 1

2 (Xj1 +Xj2)−Yj1 in N(0, σ̂2), i.e.,
2 · min

(
1− Φ

(
1
2 (Xj1+Xj2)−Yj1

σ̂

)
,Φ
(

1
2 (Xj1+Xj2)−Yj1

σ̂

))
, where Φ is the cumulative distribution function

of N(0, 1).
To implement the 2as1 paired approach (as in BH-pair-2as1 and qvalue-pair-2as1), we treated

N(Yj1, 1) conditioning on the observed Yj1 as the null distribution of Xj1. Then we calculated the
p-value of feature j = 1, . . . , d as the two-sided tail probability of 1

2 (Xj1 + Xj2) in N(Yj1, 1/2), i.e.,
2 ·min

(
1− Φ

(
1
2 (Xj1+Xj2)−Yj1

1/
√

2

)
,Φ
(

1
2 (Xj1+Xj2)−Yj1

1/
√

2

))
.

Poisson distribution

We simulated data from Poisson using the following procedure:

• Under the homogeneous background scenario, we set µY j = 20 for all d features. For uninterest-
ing features, we set µXj = µY j = 20 for j ∈ N . For up-regulated features, we generated µXj i.i.d.
from Pois(60). For down-regulated features, we generated µXj i.i.d. from Pois(5) .

• Under the heterogeneous background scenario, we generated {µY j}dj=1 i.i.d. from Pois(20). For
uninteresting features, we set µXj = µY j for j ∈ N . For up-regulated features, we generated µXj
i.i.d. from Pois(60). For down-regulated features, we generated µXj i.i.d. from Pois(5) .

• We independently generated Xj1 and Xj2 from Pois(µXj) and Yj1 from Pois(µY j), j = 1, . . . , d.

To implement the misspecified paired approach (as in BH-pair-mis and qvalue-pair-mis), we first
defined a log-transformation f(x) = log(x + 0.01), which we applied to Xj1 and Yj1, j = 1, . . . , d. We
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assumed that the null distribution of f(Xj1) + f(Xj2)− 2f(Yj1), j = 1, . . . , d is N(0, σ̂2), where

σ̂2 =
6

d− 1

d∑
j=1

f(Yj1)− 1

d

d∑
j=1

f(Yj1)

2

.

This model misspecifies the Poisson distribution as the log-normal distribution. Then we computed the
p-value of feature j = 1, . . . , d as the two-sided tail probability of f(Xj1) + f(Xj2)− 2f(Yj1) in N(0, σ̂2),
i.e., 2 ·min

(
1− Φ

(
f(Xj1)+f(Xj2)−2f(Yj1)

σ̂

)
,Φ
(
f(Xj1)+f(Xj2)−2f(Yj1)

σ̂

))
, where Φ is the cumulative distri-

bution function of N(0, 1).
To implement the 2as1 paired approach (as in BH-pair-2as1 and qvalue-pair-2as1), we assumed

that for each uninteresting feature j, Xj1 and Xj2 independently follow Pois(Yj1) conditioning on the
observed Yj1. Then we calculated the p-value of feature j = 1, . . . , d by performing a one-sample
Poisson test using the R function poisson.test for the null hypothesis H0 : µXj = Yj1 against the
alternative hypothesis H1 : µXj 6= Yj1.

Negative binomial distribution

We simulated data from negative binomial using the following procedure:

• Under the homogeneous background scenario, we set µY j = 30 for all d features. For uninterest-
ing features, we set µXj = µY j = 30 for j ∈ N . For up-regulated features, we generated µXj i.i.d.
from NB(70, 70−1). For down-regulated features, we generated µXj i.i.d. from NB(7, 7−1) .

• Under the heterogeneous background scenario, we generated {µY j}dj=1 i.i.d. from NB(30, 30−1).
For uninteresting features, we set µXj = µY j for j ∈ N . For up-regulated features, we gener-
ated µXj i.i.d. from NB(70, 70−1). For down-regulated features, we generated µXj i.i.d. from
NB(7, 7−1) .

• We independently generated Xj1 and Xj2 from NB(µXj , µ
−1
Xj) and Yj1 from NB(µY j , µ

−1
Y j), j =

1, . . . , d.

To implement the misspecified paired approach (as in BH-pair-mis and qvalue-pair-mis), we as-
sumed that for each uninteresting feature j, Xj1, Xj2, and Yj1 follow the same Poisson distribution. We
calculated the p-value of feature j from a two-sample Poisson test for the null hypothesisH0 : µXj = µY j

against the alternative hypothesisH1 : µXj 6= µY j using the function poisson.test in R package stats.
To implement the 2as1 paired approach (as in BH-pair-2as1 and qvalue-pair-2as1), we treated

NB(2Yj1, (2Yj1)−1) conditioning on the observed Yj1 as the null distribution ofXj1+Xj2. Then we calcu-
lated the p-value of feature j = 1, . . . , d as the two-sided tail probability ofXj1+Xj2 in NB(2Yj1, (2Yj1)−1),
i.e., twice the smaller of the left-tail and right-tail probabilities.

S4.6 3vs3 differential analysis

We simulated data with or without outliers under two background scenarios and three distributional
families—a total of 12 settings. In each setting, we generated d = 10,000 features, among which 10%

features were “up-regulated features” with µXj > µY j and another 10% were “down-regulated features”
with µXj < µY j .

Under the settings with outliers, we generated {OXji : j = 1, . . . , d; i = 1, . . . , 3} and {OYji : j =

1, . . . , d; i = 1, . . . , 3} i.i.d. from Bernoulli(0.1), where OXji = 1 or OYji = 1 indicates Xji or Yji is an
outlier, respectively. Under settings without outliers, OXji = OYij = 0 for all j = 1, . . . , d; i = 1, . . . , 3.
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Gaussian distribution

• Under the homogeneous background scenario, we set µY j = 0 for all d features. For uninteresting
features, we set µXj = µY j = 0 for j ∈ N . For up-regulated features, we generated µXj i.i.d. from
N(5, 1). For down-regulated features, generated µXj i.i.d. from N(−5, 1) .

• Under the heterogeneous background scenario, we generated {µY j}dj=1 i.i.d. from N(0, 22). For
uninteresting features, we set µXj = µY j for j ∈ N . For up-regulated features, we generated µXj
i.i.d. from N(5, 1). For down-regulated features, generated µXj i.i.d. from N(−5, 1) .

• We independently generated Xji from N(µXj , 1) if OXji = 0 or from the top 1% percentile of
N(µXj , 1) if OXji = 1, j = 1, . . . , d; i = 1, . . . , 3. Similarly, we independently generated Yji from
N(µY j , 1) if OYji = 0 or from the top 1% percentile of N(µY j , 1) if OYji = 1, j = 1, . . . , d; i = 1, . . . , 3.

• For the results in Additional File 1: Fig. S14, under the heterogeneous background scenario, we
generated {µY j}dj=1 i.i.d. from N(0, 22), and {sj}dj=1 i.i.d. from a uniform distribution U(0.5, 2).
For uninteresting features, we set µXj = µY j for j ∈ N . For up-regulated features, we generated
µXj i.i.d. from N(5, 1). For down-regulated features, generated µXj i.i.d. from N(−5, 1) . We
then independently generated Xji from N(µXj , s

2
j ) if OXji = 0 or from the top 1% percentile of

N(µXj , s
2
j ) if OXji = 1, j = 1, . . . , d; i = 1, . . . , 3. Similarly, we independently generated Yji

from N(µY j , s
2
j ) if OYji = 0 or from the top 1% percentile of N(µY j , s

2
j ) if OYji = 1, j = 1, . . . , d;

i = 1, . . . , 3.

To implement the correct paired approach (as in BH-pair-correct and qvalue-pair-correct), we cal-
culated the p-value of feature j from a two-sample t-test with equal variance for the null hypothesis
H0 : µXj = µY j against the alternative hypothesis H1 : µXj 6= µY j .

To implement the misspecified paired approach (as in BH-pair-mis and qvalue-pair-mis), we calcu-
lated the p-value of feature j from a two-sample t-test with unequal variance for the null hypothesis
H0 : µXj = µYj against the alternative hypothesis H1 : µXj 6= µYj .

To implement the 2as1 paired approach (as in BH-pair-2as1 and qvalue-pair-2as1), we treated
N(Ȳj , 1) conditioning on observed Ȳj as the null distribution of Xji, i = 1, . . . , 3. We calculated the
p-value of feature j using a one-sample t-test for the null hypothesis H0 : µXj = Ȳj against the alterna-
tive hypothesis H1 : µXj 6= Ȳj .

Poisson distribution

We simulated data from Poisson using the following procedure:

• Under the homogeneous background scenario, we set µY j = 20 for all d features. For uninterest-
ing features, we set µXj = µY j = 20 for j ∈ N . For up-regulated features, we generated µXj i.i.d.
from Pois(40). For down-regulated features, we generated µXj i.i.d. from Pois(5) .

• Under the heterogeneous background scenario, we generated {µY j}dj=1 i.i.d. from Pois(20). For
uninteresting features, we set µXj = µY j for j ∈ N . For up-regulated features, we generated µXj
i.i.d. from Pois(40). For down-regulated features, we generated µXj i.i.d. from Pois(5) .

• We independently generated Xji from Pois(µXj) if OXji = 0 or from the top 1% percentile of
Pois(µXj) if OXji = 1, j = 1, . . . , d; i = 1, . . . , 3. Similarly, we independently generated Yji from
Pois(µY j) if OYji = 0 or from the top 1% percentile of Pois(µY j) if OYji = 1, j = 1, . . . , d; i = 1, . . . , 3.
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To implement the correct paired approach (as in BH-pair-correct and qvalue-pair-correct), we cal-
culated the p-value of feature j by performing a two-sample Poisson test for the null hypothesis H0 :

µXj = µY j against the alternative hypothesis H1 : µXj 6= µY j using function poisson.test in R pack-
age stats.

To implement the misspecified paired approach (as in BH-pair-mis and qvalue-pair-mis), we first
defined a log-transformation f(x) = log(x + 0.01), which we applied to Xji and Yji, j = 1, . . . , d;
i = 1, . . . , 3. We assumed that for each uninteresting feature j, {f(Xji)}3i=1 and {f(Yji)}3i=1 follow
Gaussian distributions with mean µf(Xj) and µf(Y j), respectively. Then we computed the p-value of
feature j using a two-sample equal variance t-test for the null hypothesis H0 : µf(Xj) = µf(Y j) against
the alternative hypothesis H1 : µf(Xj) 6= µf(Y j).

To implement the 2as1 paired approach (as in BH-pair-2as1 and qvalue-pair-2as1), we assumed
that for each uninteresting feature j, {Xji}3i=1 follow Pois(Ȳj) conditioning on the observed Ȳj . We
calculated the p-value of feature j by performing a one-sample Poisson test for the null hypothesis
H0 : µXj = Ȳj against the alternative hypothesis H1 : µXj 6= Ȳj using the function poisson.test in R
package stats.

Negative binomial distribution

We simulated data from negative binomial using the following procedure:

• Under the homogeneous background scenario, we set µY j = 30 for all d features. For uninterest-
ing features, we set µXj = µY j = 30 for j ∈ N . For up-regulated features, we generated µXj i.i.d.
from NB(70, 70−1). For down-regulated features, we generated µXj i.i.d. from NB(7, 7−1) .

• Under the heterogeneous background scenario, we generated {µY j}dj=1 i.i.d. from NB(30, 30−1).
For uninteresting features, we set µXj = µY j for j ∈ N . For up-regulated features, we gener-
ated µXj i.i.d. from NB(70, 70−1). For down-regulated features, we generated µXj i.i.d. from
NB(7, 7−1) .

• We independently generated Xji from NB(µXj , µ
−1
Xj) if OXji = 0 or from the top 1% percentile of

NB(µXj , µ
−1
Xj) if OXji = 1; j = 1, . . . , d, i = 1, . . . , 3. Similarly, we independently generated Yji from

NB(µY j , µ
−1
Y j) if OYji = 0 or from the top 1% percentile of NB(µY j , µ

−1
Y j) if OYji = 1, j = 1, . . . , d;

i = 1, . . . , 3.

To implement the correct paired approach with unknown dispersion (as in BH-pair-correct and
qvalue-pair-correct), we performed a two-sample negative binomial test for the null hypothesis H0 :

µXj = µY j against the alternative hypothesis H1 : µXj 6= µY j using the coefficient from the negative bi-
nomial regression as the test statistic. Specifically, for each feature j we performed a negative binomial
regression by treating the condition labels as a categorical covariate and feature j’s measurements as
the response. We implemented this regression analysis using function glm.nb in R package MASS and
extracted the p-value of the coefficient as the p-value of feature j. The dispersion parameter was not
pre-specified but estimated by glm.nb.

To implement the correct paired approach with known dispersion, we performed a similar negative
binomial regression but with the pre-specified dispersion parameter 30−1 for each feature j. Then
we computed the feature’s p-value as the p-value of the coefficient of the condition covariate. We
implemented this regression analysis using function glm in R package stats.

To implement the misspecified paired approach (as in BH-pair-mis and qvalue-pair-mis), we as-
sumed that for each uninteresting feature j, {Xji}3j=1 and {Yji}3j=1 follow the same Poisson distribu-
tion. We calculated the p-value of feature j from a two-sample Poisson test for the null hypothesis
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H0 : µXj = µY j against the alternative hypothesis H1 : µXj 6= µY j using function poisson.test in R
package stats.

To implement the 2as1 paired approach (as in BH-pair-2as1 and qvalue-pair-2as1), we first used
function glm.nb in R package MASS to estimate µ̂Y j and θ̂Y j from {Yji}3j=1. Then we computed the
p-value of feature j by treating NB(3µ̂Y j , (3θ̂Y j)

−1) as the null distribution of
∑3
i=1Xji and calculated

its two-sided tail probability, i.e., twice the smaller of the left-tail and right-tail probabilities.

S5 Bioinformatic methods with FDR control functionality

S5.1 Peak calling methods for ChIP-seq data

MACS2 MACS2 [1] uses sliding windows with a fixed length across the genome and identifies peaks
by using a Poisson distribution to model the read counts within each window, which has one read count
per replicate. Specifically, for each region (which is combined from sliding windows), MACS2 performs
a one-sample Poisson test to calculate a p-value, where the null distribution is set to be Poisson with
its parameter estimated from the background. By thresholding p-values, MACS2 identifies a set of
candidate peaks. It also estimates for each candidate peak a q-value by swapping the experimental
sample with the background (negative control) sample, and the q-values are used for FDR control. We
used MACS2 software (version 2.2.6) with its default settings.

HOMER We used findPeaks, a program in HOMER [2], to perform peak calling on ChIP-seq data. The
p-value calculation in findPeaks is similar to that in MACS2; that is, findPeaks also uses the Poisson
distribution as the null distribution of read counts in a genomic region, and it also estimates the Poisson
mean from the background sample. Then findPeaks identifies peaks by setting thresholds on p-values
and fold-changes (the folder change of a region is defined as the observed read count under the ex-
perimental sample divided by the estimated Poisson mean from the the background sample). We used
findPeaks version 3.1.9.2.

S5.2 SEQUEST for peptide identification from MS data

SEQUEST SEQUEST uses probability-based scoring to identify PSMs from mass-spectrometry data.
We ran SEQUEST in Proteome Discoverer 2.3.0.523 (ThermoScientific) with the following settings: 10
ppm precursor tolerance; 0.6 Da fragment tolerance; static modifications: methylthio (C); dynamic mod-
ifications: deamination (NQ), oxidation (M). We ran Percolator [76] in conjunction with SEQUEST with
the target/decoy selection mode set to “separate.” For SEQUEST, for a range of target FDR thresholds
(q ∈ {1%, 2%, . . . , 10%}), we identified the target PSMs with SEQUEST q-values no greater than q as
discoveries. To prepare the input for Clipper, we set peptide and protein FDRs to 100% to obtain the
entire lists of target PSMs and decoy PSMs with their SEQUEST q-values.

S5.3 Differentially expressed gene (DEG) methods for bulk RNA-seq data

edgeR edgeR models each gene’s read counts by using a negative binomial regression, where the
condition is incorporated as an indicator covariate, and the condition’s coefficient represents the gene-
wise differential expression effect [4]. We used R package edgeR version 3.30.0.
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DESeq2 DESeq2 uses a similar negative binomial regression as edgeR to model each gene’s read
counts under two conditions. DESeq2 differs from edgeR mainly in their estimation of the dispersion
parameter in the negative binomial distribution [5]. We used R package DESeq2 version 1.28.1.

S5.4 Differentially expressed gene (DEG) methods for scRNA-seq data

MAST MAST models each gene’s log read counts (TPM) by using a two-part generalized regression
model. Each gene’s expression rate was modeled using logistic regression and, conditioning on a cell
expressing the gene, the gene’s expression level was modeled as Gaussian [56]. We used R package
MAST version 1.14.0.

Monocle3 Monocle3 uses a generalized linear model to model each gene’s normalized expression
value, with other information included as covariates (time, treatment, and so on) [57]. We used R

package monocle3 version 0.2.3.0.

S5.5 Differentially interacting chromatin regions (DIR) methods for Hi-C data

MultiHiCcompare MultiHiCcompare relies on a non-parametric method to jointly normalize multiple
Hi-C interaction matrices [11]. It uses a generalized linear model to detect DIRs. MultiHiCcompare is
an extension of the HiCcompare package [77]. We used R package multiHiCcompare version 1.6.0.

diffHiC diffHiC uses the statistical framework of the edgeR package to model biological variability and
to test for significant differences between conditions [13]. We used R package diffHiC version 1.20.0.

FIND FIND uses a spatial Poisson process to detect chromosomal regions that display a significant
difference between two regions’ contact intensity and their neighbouring contact intensities [12]. We
used R package FIND version 0.99.

S6 Benchmark data generation in omics data applications

S6.1 ChIP-seq data with synthetic spike-in peaks

We used two control samples (which we refer to as Control 1 and Control 2) from H3K4me3 ChIP-seq
data in Chromosome 1 of the cell line GM12878 [44].

(i) We created two semi-synthetic experimental samples by adding synthetic true peaks to Control
1. To mimic real H3K4me3 ChIP-seq data, where peaks are located predominantly in promoter
regions, we added synthetic true peaks to promoter regions annotated from Ensembl BioMart
(Ensemble hg 19, regulation 104) [78]. Specifically, we randomly sampled 585 genes’ promoter
regions from Chromosome 1. We then used ChIPulate to simulate reads from these promoter
regions (for each simulation, extraction efficiency parameter and PCR efficiency parameter were
randomly sampled from a uniform distribution between 0 to 1; binding energy parameters were
randomly sampled from a uniform distribution between 0 and 2; sequencing depth parameter was
set to 50). Then we added the simulated reads to Control 1. We repeated this procedure for twice
to obtain two semi-synthetic experimental samples (i.e., two replicates under the experimental
condition).
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(ii) We repeated Step (i) for 20 times to generate 20 sets of semi-synthetic experimental samples.
For each set of experimental samples, we paired them with Control 2, which was treated as the
background sample (i.e., one replicate under the background condition). Hence, we obtained 20

semi-synthetic ChIP-seq datasets, each containing 585 synthetic true peaks.

(iii) After applying a peak calling method to these 20 semi-synthetic datasets, we evaluated the method’s
20 FDPs and 20 empirical power, which were then averaged as the method’s approximate FDR
and power. In the evaluation, a called peak was a true positive if it overlapped with a synthetic
true peak; otherwise, it was a false positive.

S6.2 Real MS benchmark data

We purchased the complex proteomics standard (CPS) (part number 400510) from Agilent (Agilent,
Santa Clara, CA, USA). The CPS contains soluble proteins extracted from the archaeon Pyrococcus
furiosus (Pfu), which has a complete protein database; that is, all proteins from Pfu were catalogued
into its protein database with known protein sequences. We subjected the CPS to a shotgun proteomics
analysis that generated mass spectra of Pfu.

To generate a benchmark dataset, we first generated a reference database by concatenating the
Uniprot Pyrococcus furiosus (Pfu) database, the Uniprot Human database, and two contaminant databases:
the CRAPome [79] and the contaminant database from MaxQuant [80]. During the process, we purified
the reference database by first performing in silico digestion of Pfu proteins and then removing human
proteins that contained Pfu peptides from the reference database. We then input the Pfu mass spectra
(from the CPS) and the purified reference database into SEQUEST. We considered a target PSM as
true if SEQUEST reported its protein as from Pfu or the two contaminants; otherwise (if from Human),
we considered the target PSM as false. The in silico digestion was performed in Python using the
pyteomics.parser function from pyteomics with the following settings: Trypsin digestion, two allowed
missed cleavages, minimum peptide length of six [81, 82].

S6.3 Bulk RNA-seq data with synthetic spike-in DEGs

We generated four sets of realistic semi-synthetic data from two real RNA-seq datasets. The first one
is a human monocyte RNA-seq dataset including 17 samples of classical monocytes and 17 samples of
non-classical monocytes [51]. Each sample contains expression levels of d = 52,376 transcripts.

The second one is a yeast RNA-seq dataset including 48 samples of a snf2 knockout mutant cell
line and 48 samples of negative control (without the knockout) [52]. Each sample contains expression
levels of d = 7126 genes. We preprocessed this dataset by removing low-quality replicates (replicates
6, 13, 25, 35 from the knockout; replicates 21, 22, 25, 28, 34, 36 from the control) identified by the original
paper Gierliński et al. [52], leaving us with 44 replicates under the knockout condition and 42 replicates
under the negative control.

Here we describe our simulation strategy 1. Given either the human monocyte dataset or the yeast
dataset, we performed the following steps.

(i) We first performed normalization on all samples across two conditions using the edgeR normal-
ization method trimmed mean of M-values (TMM) [50]. We denote the resulting normalized read
count matrix of classical human monocytes or yeasts without the knockout by X1 and the nor-
malized read count matrix of non-classical human monocytes or yeast with the knockout by X2,
respectively. Following the convention in bioinformatics, the columns and rows of X1 and X2

represent biological samples and genes, respectively.
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(ii) To define true DEGs, we first computed the fold change of gene j by FCj =
[
(X̄2

j + 1)/(X̄1
j + 1)

]
for j = 1, . . . , d, where X1

j and X2
j denote the j-th row vector of X1 and X2 respectively and ·̄

denotes the average of elements in a vector. We added the pseudo-count of 1 to avoid division by
0. We defined true DEGs as those with | log2 FCj | ≥ 4 for the human monocyte dataset and with
| log2 FCj | ≥ 1.5 for the yeast dataset, resulting 191 true human DEGs (transcripts) and 152 true
yeast DEGs.

(iii) We generated semi-synthetic data with 3 samples under both the experimental and background
conditions, a typical design in bulk RNA-seq experiments. Specifically, if gene j is a true DEG,
we randomly sampled without replacement 3 values from X1

j as counts under the experimental
condition, and another 3 values from X2

j as counts under the background condition. If gene j is
not a true DEG, we randomly sampled 6 values without replacement from (X1

j ,X
2
j ) and randomly

split them into 3 and 3 counts under two conditions. Doing so guaranteed that a non-DEG’s read
counts are i.i.d. regardless of condition.

(iv) We repeated Step (iii) for 100 times to generate 100 semi-synthetic datasets.

Next, we describe our simulation strategy 2. Let us now re-use notations X1 to denote the original
read count matrix of classical human monocytes or yeast without the knockout, and X2 to denote the
original read count matrix of non-classical human monocytes or yeast with the knockout. Both X1 and
X2 have rows as genes or transcripts and columns as biological samples. Given either the human
monocyte dataset or the yeast dataset, we performed the following steps.

(i) We first identified genes whose read counts are positive in all samples under both conditions and
denote the number of such genes by dp. Then from these identified genes, we randomly sampled
without replacement min(dp, 0.3d) genes as true DEGs. The remaining d − min(dp, 0.3d) genes
were considered true non-DEGs.

(ii) To generate fold changes of true DEGs, we first computed the fold change of gene j by FCj =[
(X̄2

j + 1)/(X̄1
j + 1)

]
for j = 1, . . . , d, where X1

j and X2
j denote the j-th row vector of X1 and X2

respectively and ·̄ denotes the average of elements in a vector. Let W denote {FCj : FCj ≥
16, j = 1, . . . , d} for the human monocyte dataset and {FCj : FCj ≥ 1.5, j = 1, . . . , d} for the yeast
dataset. We then sorted unique elements in W and denoted them by w(1) < · · · < w(nu), where
nu is the number of unique elements in W. To generate a fold change of a true DEG, say gene
j, we randomly generated an integer v with equal probability from {1, · · · , nu − 1} and a value p
from Uniform(0, 1). Then we calculated the fold change as Rj = w(v) + p(w(v+1) − w(v)). Using
this approach, generated the fold changes independently for all true DEGs.

(iii) Next, we randomly sampled 6 replicates without replacement from X2 and split them into two
groups of 3 replicates. We denote the resulting matrices as X̃1 and X̃2, whose j-th rows are
denoted respectively by X̃1

j and X̃2
j . If gene j is a true DEG, we generated Uj from Bernoulli(1/2).

Then we set gene j’s expression levels under the two conditions to RjX̃1
j and X̃2

j if Uj = 0 or X̃1
j

and RjX̃
2
j if Uj = 1. If gene j is not a true DEG, its expression levels under the two conditions

would remain unchanged, i.e., X̃1
j and X̃2

j . Such data generation strategy has no guarantee of
i.i.d. read counts for non-DEGs if the samples in X2 have batch effects.

(iv) We repeated Step (iii) for 100 times to generate 100 semi-synthetic datasets.

The human monocyte RNA-seq dataset is available in the NCBI Sequence Read Archive (SRA) un-
der accession number SRP082682 (https://www.ncbi.nlm.nih.gov/Traces/study/?acc=srp082682).
The yeast RNA-seq data is available in the European Nucleotide Archive (ENA) archive with project ID
PRJEB5348 (https://www.ebi.ac.uk/ena/browser/view/PRJEB5348).
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S6.4 Single-cell RNA-seq data with synthetic spike-in DEGs

We used scDesign2, a flexible probabilistic simulator to generate realistic scRNA-seq count data with
gene correlations captured [59]. Using scDesign2, we generated two sets of semi-synthetic data from
two peripheral blood mononuclear cell (PBMC) real datasets [60]: one generated using the 10x Ge-
nomics protocol [61] and the other using Drop-seq [62]. Each semi-synthetic dataset contains two
types of cells: CD4+ T cells, and cytotoxic T cells, which we treated as two conditions. Starting with the
real data generated using either 10x Genomics or Drop-seq, we used the following steps to generate
semi-synthetic scRNA-seq data.

(i) First, we fit the real data count matrices using R function fit model scDesign2 for each cell type
by specifying the underlying distribution of each gene as negative binomial. Denote the resulting
marginal distributions of gene j as NB(µ̂j1, θ̂j1) for CD4+ T cells and NB(µ̂j2, θ̂j2) for cytotoxic
T cells, j = 1, . . . , d. The gene-gene correlations with each cell type were fitted using a copula
model.

(ii) Let Xcd4 and Xcyto denote the read count matrices of CD4+ T cells and cytotoxic T cells. To define
true DEGs, we first computed the log fold change of gene j by logFCj = log2

[
(X̄cd4

j + 1)/(X̄cyto
j + 1)

]
for j = 1, . . . , d, where Xcd4

j and Xcyto
j denote the j-th row vector of Xcd4 and Xcyto respectively

and ·̄ denotes the average of elements in a vector. We then selected 1000 genes with the largest
absolute fold changes as true DEGs and kept the remaining ones as true non-DEGs.

(iii) We simulated the semi-synthetic datasets using R function simulate count scDesign2. Specifi-
cally, we set the number of synthetic cells generated by scDesign2 equal to the number of real
cells for each cell type. If a gene j is a true DEG, we specify its marginal distributions under the
two conditions as NB(µ̂j1, θ̂j1) and NB(µ̂j2, θ̂j2) respectively. If a gene j is a true non-DEG, we
specify its marginal distribution under both conditions as NB((µ̂j1 + µ̂j2)/2, (θ̂j1 + θ̂j2)/2). We
used the fitted copula models from the two cell types to generate genes’ (correlated) expression
read counts.

(iv) We repeated Step (iii) for 200 times to generate 200 semi-synthetic datasets.

Both fit model scDesign2 and simulate count scDesign2 come from R package scDesign2 [59].
The 10x Genomic PBMC dataset and the Drop-seq PBMC dataset are available from the Gene Ex-
pression Omnibus (GEO) with accession number GSE132044 (https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE132044) and the Single Cell Portal with accession numbers SCP424 (https://
singlecell.broadinstitute.org/single_cell/study/SCP424/single-cell-comparison-pbmc-data).

S6.5 Hi-C data with synthetic spike-in DIRs

The real Hi-C interaction matrix contains the pairwise contact intensities of 250 binned genomic regions
in Chromosome 1. It is from the cell line GM12878 and available in the NCBI Gene Expression Omnibus
(GEO) under accession number GSE63525. We denote the real interaction matrix as Xreal. Because
Xreal is symmetric, we only focus on its upper triangular part.

(i) Among the (250 × 250 − 250)/2 = 31,125 upper triangular entries (i.e., region pairs), we selected
404 entries as true up-regulated DIRs, and 550 entries as true down-regulated DIRs (Fig. S29).

(ii) Next, for the (i, j)-th entry, we generated a log fold change, denoted by fij , between the two
conditions as follows. We simulated fij from truncated Normal(100/|i − j|, 0.52) with support
[0.05,∞) if the (i, j)-th entry is up-regulated, or from truncated Normal(−100/|i − j|, 0.52) with
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support (−∞,−0.05] if the (i, j)-th entry is down-regulated; if the (i, j)-th entry is not differential,
we set fij = 0.

(iii) Then we specify the mean measurement of the (i, j)-th entry under the two conditions as µXij =

[Xreal]ij and µY ij = [Xreal]ij · efij , respectively.

(iv) We generated synthetic read counts of the (i, j)-th entry from NB(µXij , 1000−1) and NB(µY ij , 1000−1)

respectively under the two conditions.

(v) We repeated Step (iv) for 200 times to generate 200 semi-synthetic datasets.

S7 Implementation of Clipper in omics data applications

Below we briefly introduce the implementation of Clipper in the four omics data applications. All the
results were obtained by running using R package Clipper (see package vignette for details: https:

//github.com/JSB-UCLA/Clipper/blob/master/vignettes/Clipper.pdf).

S7.1 Peak calling from ChIP-seq data

(i) We consider each genomic location, i.e., a base pair, as a feature and each ChIP-seq sample
as a replicate under the experimental or background condition. Then we consider the read count
of each location in each sample as the corresponding feature’s measurement. Doing so, we
summarized ChIP-seq data into a d × (m + n) matrix, where d is the number of locations, and m
and n are the numbers of experimental and control samples, respectively. We then applied Clipper
to perform an enrichment analysis to obtain the contrast score Cj for each location j. In our study,
m = n = 1, so the default Clipper implementation is Clipper-minus-BC.

(ii) For any target FDR threshold q, Clipper gives a cutoff Tq on contrast scores.

(iii) We then used existing peak calling methods, e.g., MACS2 and HOMER, to call candidate peaks
with the least stringent q-value cutoff. For example, when we used MACS2, we set the q-value
cutoff as 1.

(iv) We computed the contrast score of each candidate peak as the median of the contrast scores of
all the locations within.

(v) The candidate peaks with contrast scores greater than or equal to Tq are called discoveries.

It is known that uninteresting regions tend to have larger read counts in the control sample than
in the experimental (ChIP) sample, making them more likely to have negative contrast scores than
positive ones. However, this phenomenon does not violate Clipper’s theoretical assumption (Lemma
1(a) in Section S2).

S7.2 Peptide identification from mass spectrometry data

(i) We consider each mass spectrum as a feature and its target/decoy PSM as a replicate under the
experimental/background condition respectively. Then we consider − log10(q-value + 0.01) as the
measurement of each PSM, where the q-value is output by SEQUEST. Doing so, we summarized
the SEQUEST output into a d × (m + n) matrix, where d is the number of mass spectra, and
m and n are the numbers of experimental and control samples, respectively. We then applied
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Clipper to perform an enrichment analysis to obtain a contrast score Cj for each mass spectrum
j. If the mass spectrum has no decoy or background measurement, we set Cj = 0. In our study,
m = n = 1, so the default Clipper implementation is Clipper-minus-BC.

(ii) For any target FDR threshold q, Clipper gives a cutoff Tq on contrast scores.

(iii) The target PSMs whose mass spectra have contrast scores greater than or equal to Tq are called
discoveries.

S7.3 DEG identification from bulk RNA-seq data

(i) We consider each gene as a feature and the class label—classical and non-classical human
monocytes—as the two conditions. We first performed the TMM normalization method [50]. Then
we consider log2-transformed read counts with a pseudocount 1 as measurements. Doing so, we
summarized the gene expression matrix into a d×(m+n) matrix, where d is the number of genes,
and m and n are the numbers of samples under the two conditions, respectively. We then applied
Clipper to perform a differential analysis to obtain a contrast score Cj for each gene. In our study,
m = n = 3, so the default Clipper implementation is Clipper-max-GZ with h = 9, the maximum
number of permutations when we have three replicates under both conditions.

(ii) For any target FDR threshold q, Clipper gives a cutoff Tq on contrast scores.

(iii) The genes with contrast scores greater than or equal to Tq are called discoveries.

S7.4 DEG identification from scRNA-seq data

(i) We consider each gene as a feature and the two cell types—CD4+ T cells and cytotoxic T cells—
as the two conditions. We first performed the TMM normalization [50]. Then we consider log2-
transformed read counts with a pseudocount 1 as measurements. Doing so, we summarized the
gene expression matrix into a d × (m + n) matrix, where d is the number of genes, and m and
n are the numbers of samples under the two conditions, respectively. We then applied Clipper to
perform differential analysis to obtain a contrast score Cj for each gene j. In our study, m = 1172,
n = 789 for Drop-seq dataset and m = 963, n = 694 for 10x Genomics dataset. The default
Clipper implementation is Clipper-max-GZ with h = 1, the default number of permutations.

(ii) For any target FDR threshold q, Clipper gives a cutoff Tq on contrast scores.

(iii) The genes with contrast scores greater than or equal to Tq are called discoveries.

S7.5 DIR identification from Hi-C data

(i) We consider each pair of genomic regions as a feature and manually created two conditions. Then
we consider log-transformed read counts as measurements. Doing so, we summarized the gene
expression matrix into a d× (m + n) matrix, where d is the total pairs of genomic regions, and m
and n are the numbers of samples under the two conditions, respectively. We then applied Clipper
to perform a differential analysis to obtain a contrast score Cj for each pair of genomic regions. In
our study, m = n = 2, so the default Clipper implementation is Clipper-max-GZ with h = 1.

(ii) For any target FDR threshold q, Clipper gives a cutoff Tq on contrast scores.

(iii) The pairs of genomic regions with contrast scores greater than or equal to Tq are called discover-
ies.
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S8 Proofs

S8.1 Proof of Theorem 1

We first prove Theorem 1, which relies on Lemmas 1 and 2. Here we only include the proof of Lemma
1 and defer the proof of Lemma 2 to Section S8.3.

Proof 1 (Proof of Lemma 1) Here we prove that Lemma 1 holds when Cj is constructed using (S10);
the proof is similar when Cj is constructed using (S11).

When input data satisfy (S6) and (S7) and m = n, properties (a) and (b) can be derived directly. To
prove property (c), it suffices to prove that for any j ∈ N with Cj 6= 0, Sj is independent of |Cj |.

Note that X̄j and Ȳj are i.i.d for j ∈ N when m = n. Hence for any measurable set A ⊂ [0,+∞),

P (Sj = 1, |Cj | ∈ A) = P
(
tminus(Xj ,Y j) ∈ A

)
= P

(
tminus(Y j ,Xj) ∈ A

)
= P (Sj = −1, |Cj | ∈ A) .

The first equality holds because tminus(Xj ,Y j) = Cj = |Cj | when Sj = 1. The second equality holds
because tminus(Xj ,Y j) and tminus(Y j ,Xj) are identically distributed when j ∈ N . The third equality
holds because tminus(Y j ,Xj) = −Cj ; if −Cj ∈ A, then Sj = −1.

Because P (Sj = 1, |Cj | ∈ A) + P (Sj = −1, |Cj | ∈ A) = P (|Cj | ∈ A), it follows that

P (Sj = 1, |Cj | ∈ A) =
1

2
P (|Cj | ∈ A) = P(Sj = 1)P (|Cj | ∈ A) ,

where the last equality holds because P(Sj = 1) = 1/2 by property (b).
Hence, Sj and |Cj | are independent ∀j ∈ N .

Proof 2 (Proof of Theorem 1) Define a random subset of N asM := N\{j ∈ N : Cj = 0} = {j ∈ N :

Sj 6= 0}.
First note that by Lemma 1(b), P(Sj = −1) = P(Cj < 0) = 1/2 for all j ∈ M ⊂ N . Assume

without loss of generality that M = {1, . . . , d′}. We order {|Cj | : j ∈ M}, from the largest to the
smallest, denoted by |C(1)| ≥ |C(2)| ≥ · · · ≥ |C(d′)|. Let J =

∑
j∈N 1

(
|Cj | ≥ TBC

)
, the number of

uninteresting features whose contrast scores have absolute values no less than TBC. When J > 0,
|C(1)| ≥ · · · ≥ |C(J)| ≥ TBC. Define Zk = 1

(
C(k) < 0

)
, k = 1, . . . , d′. Then for each order k, the

following holds

C(k) ≥ TBC ⇐⇒
∣∣C(k)

∣∣ ≥ TBC and C(k) > 0⇐⇒ k ≤ J and Zk = 0 ;

C(k) ≤ −TBC ⇐⇒
∣∣C(k)

∣∣ ≥ TBC and C(k) < 0⇐⇒ k ≤ J and Zk = 1 .

Then

card({j ∈M : Cj ≥ TBC})
card({j ∈M : Cj ≤ −TBC}) + 1

=

∑d′

k=1 1
(
C(k) ≥ TBC

)
1 +

∑d′

k=1 1
(
C(k) ≤ −TBC

)
=

∑J
k=1 1

(
C(k) ≥ TBC

)
1 +

∑J
k=1 1

(
C(k) ≤ −TBC

)
=

(1− Z1) + · · ·+ (1− ZJ)

1 + Z1 + · · ·+ ZJ

=
1 + J

1 + Z1 + · · ·+ ZJ
− 1 .

Because {Sj}j∈N is independent of C (Lemma 1(c)), Lemma 1(a)-(b) still holds after C1, . . . , Cd′ are
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reordered as C(1), . . . , C(d′). Thus Z1, . . . , Zd′ are i.i.d. from Bernoulli(1/2). To summarize, it holds that

{Zj}j∈M
∣∣∣ M i.i.d.∼ Bernoulli(1/2) .

Then by applying Lemma 2 and making ρ = 0.5, we have:

E

[
card(

{
j ∈M : Cj ≥ TBC

}
)

card({j ∈M : Cj ≤ −TBC}) + 1

∣∣∣∣∣ M
]
≤ 1 (S22)

Then

FDR = E

[
card(

{
j ∈ N : Cj ≥ TBC

}
)

card({j : Cj ≥ TBC}) ∨ 1

]

= E

[
card(

{
j ∈ N : Cj ≥ TBC

}
)

card({j ∈ N : Cj ≤ −TBC}) + 1
·

card(
{
j ∈ N : Cj ≤ −TBC

}
) + 1

card({j : Cj ≥ TBC}) ∨ 1

]

≤ E

[
card(

{
j ∈ N : Cj ≥ TBC

}
)

card({j ∈ N : Cj ≤ −TBC}) + 1
·

card(
{
j : Cj ≤ −TBC

}
) + 1

card({j : Cj ≥ TBC}) ∨ 1

]

≤ q · E

[
card(

{
j ∈ N : Cj ≥ TBC

}
)

card({j ∈ N : Cj ≤ −TBC}) + 1

]

≤ q · E

[
E

[
card(

{
j ∈M : Cj ≥ TBC

}
)

card({j ∈M : Cj ≤ −TBC}) + 1

∣∣∣∣∣ M
]]

≤ q,

where M is random subset of N such that for each j ∈ M, |Cj | > 0. The last inequality follows from
(S22).

S8.2 Proof of Theorem 2

We then prove Theorem 2, which relies on Lemmas 2 and 3. Here we introduce the proof of Lemma 3
and defer the proof of Lemma 2 to Section S8.3.

Proof 3 (Proof of Lemma 3) With input data satisfying (S6) and (S7), Cj constructed from (S19) or
(S20), property (a) can be derived directly.

To show property (b), note that for each uninteresting feature j ∈ N , Xj and Y j are from the same
distribution; thus {Tσ`j }h`=0 are identically distributed. Define an event Ej :=

{∑h
`=0 1(Tσ`j = T

(0)
j ) = 1

}
,

which indicates that T (0)
j , the maximizer of {Tσ`j }h`=0, is unique. Then conditional on Ej , the maximizer is

equally likely to be any of {0, . . . , h}, and it follows that P(Sj = 1 | Ej) = P(Tσ0
j = T

(0)
j | Ej) = 1/(h+ 1).

Conditioning on that Ej does not happen, P(Sj = 1 | Ecj ) = 0 . Thus P(Sj = 1) = P(Sj = 1 | Ej)P(Ej) +

P(Sj = 1 | Ecj )P(Ecj ) ≤ 1/(h+ 1) .
The proof of property (c) is similar to the Proof of Lemma 1(c). It suffices to show that for any j ∈ N

with Cj 6= 0 (that is, Ej occurs), Sj is independent of |Cj |. AsXj and Y j are from the same distribution,
{Tσ`j }h`=0 are identically distributed. Hence for any measurable set A ⊂ [0,+∞),

P (Sj = 1, |Cj | ∈ A | Ej) = P
(
Tσ0
j = T

(0)
j , |Cj | ∈ A

∣∣∣ Ej)
=

1

h
P
(
Tσ0
j 6= T

(0)
j , |Cj | ∈ A

∣∣∣ Ej)
=

1

h
P (Sj = −1, |Cj | ∈ A | Ej) .
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The first equality holds because Tσ0
j = T

(0)
j when Sj = 1. The second equality holds because

{Tσ`j }h`=0 are identically distributed when j ∈ N . The third equality holds because Tσ0
j 6= T

(0)
j when

Sj = −1.
Because P (Sj = 1, |Cj | ∈ A | Ej) + P (Sj = −1, |Cj | ∈ A | Ej) = P (|Cj | ∈ A | Ej), it follows that

P (Sj = 1, |Cj | ∈ A | Ej) =
1

h+ 1
P (|Cj | ∈ A | Ej) = P(Sj = 1 | Ej)P (|Cj | ∈ A | Ej) ,

where the last equality holds because P(Sj = 1 | Ej) = 1/(h+ 1).
Hence, Sj and |Cj | are independent ∀j ∈ N with Cj 6= 0.

Proof 4 (Proof of Theorem 2) Define a random subset of N as M := N\{j ∈ N : Cj = 0} = {j ∈
N : Sj 6= 0}. Assume without loss of generality that M = {1, . . . , d′}. We order {|Cj | : j ∈ M}, from
the largest to the smallest, denoted by |C(1)| ≥ |C(2)| ≥ · · · ≥ |C(d′)|. Let J =

∑
j∈N 1

(
|Cj | ≥ TGZ

)
, the

number of uninteresting features whose contrast scores have absolute values no less than TGZ. When
J > 0, |C(1)| ≥ · · · ≥ |C(J)| ≥ TGZ. Define Zk = 1

(
C(k) < 0

)
, k = 1, . . . , d′. Then for each order k, the

following holds:

C(k) ≥ TGZ ⇐⇒
∣∣C(k)

∣∣ ≥ TGZ and C(k) > 0⇐⇒ k ≤ J and Zk = 0 ;

C(k) ≤ −TGZ ⇐⇒
∣∣C(k)

∣∣ ≥ TGZ and C(k) < 0⇐⇒ k ≤ J and Zk = 1 .

Then it follows that

card({j ∈M : Cj ≥ TGZ})
card({j ∈M : Cj ≤ −TGZ}) + 1

=

∑d′

k=1 1
(
C(k) ≥ TGZ

)
1 +

∑d′

k=1 1
(
C(k) ≤ −TGZ

)
=

∑J
k=1 1

(
C(k) ≥ TGZ

)
1 +

∑J
k=1 1

(
C(k) ≤ −TGZ

)
=

(1− Z1) + · · ·+ (1− ZJ)

1 + Z1 + · · ·+ ZJ

=
1 + J

1 + Z1 + · · ·+ ZJ
− 1 .

Because {Sj}j∈N is independent of C (Lemma 1(c)), Lemma 1(a)-(b) still holds after C1, . . . , Cd′ are
reordered as C(1), . . . , C(d′). Thus Z1, . . . , Zd′ are i.i.d. from Bernoulli(ρk). To summarize, it holds that

{Zj}j∈M
∣∣∣ M i.i.d.∼ Bernoulli(ρk) .

Then by applying Lemma 2 and making ρ = h/(h+ 1), we have:

E
[

card({j ∈M : Cj ≥ TGZ})
card({j ∈M : Cj ≤ −TGZ}) + 1

]
≤ 1/h . (S23)
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Then

FDR = E

[
card(

{
j ∈ N : Cj ≥ TGZ

}
)

card({j : Cj ≥ TGZ}) ∨ 1

]

= E

[
card(

{
j ∈ N : Cj ≥ TGZ

}
)

card({j ∈ N : Cj ≤ −TGZ}) + 1
·

card(
{
j ∈ N : Cj ≤ −TGZ

}
) + 1

card({j : Cj ≥ TGZ}) ∨ 1

]

≤ h · E

[
card(

{
j ∈ N : Cj ≥ TGZ

}
)

card({j ∈ N : Cj ≤ −TGZ}) + 1
·

1
hcard(

{
j : Cj ≤ −TGZ

}
) + 1

h

card({j : Cj ≥ TGZ}) ∨ 1

]

≤ hq · E

[
card(

{
j ∈ N : Cj ≥ TGZ

}
)

card({j ∈ N : Cj ≤ −TGZ}) + 1

]

≤ hq · E

[
E

[
card(

{
j ∈M : Cj ≥ TGZ

}
)

card({j ∈M : Cj ≤ −TGZ}) + 1

∣∣∣∣∣ M
]]

≤ q ,

where the second inequality follows from the definition of TGZ (S21) and the last inequality follows from
(S23).

S8.3 Proof of Lemma 2

Finally, we derive Lemma 2 by following the same proof same as in [75], which relies on Lemma 4 and
Corollary 1.

Lemma 4 Suppose that Z1, . . . , Zd
i.i.d.∼ Bernoulli(ρ). Let J be a stopping time in reverse time with

respect to the filtration {Fj}, where Fj = σ ({(Z1 + · · ·+ Zj), Zj+1, · · · , Zd}) with σ(·) denoting a σ-
algebra, and the variables Z1, . . . , Zj are exchangeable with respect to {Fj}. Then

E
[

1 + J

1 + Z1 + · · ·+ ZJ

]
≤ ρ−1.

Proof 5 (Proof of Lemma 4) Define

Yj = Z1 + · · ·+ Zj ∈ Fj

and define the process

Mj =
1 + j

1 + Z1 + · · ·+ Zj
=

1 + j

1 + Yj
∈ Fj .

In [35], it is shown that E[Md] ≤ ρ−1. Therefore, by the optional stopping time theorem it suffices to
show that {Mj} is a supermartingale with respect to {Fj}. As {Z1, . . . , Zj+1} are exchangeable with
respect to Fj+1, we have

P (Zj+1 = 1 | Fj+1) =
Yj + 1

1 + j
.
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Therefore, if Yj+1 > 0,

E [Mj | Fj+1] =
1 + j

1 + Yj+1
· P (Zj+1 = 0 | Fj+1) +

1 + j

1 + Yj+1 − 1
· P (Zj+1 = 1 | Fj+1)

=
1 + j

1 + Yj+1
· 1 + j − Yj+1

1 + j
+

1 + j

1 + Yj+1 − 1
· Yj+1

1 + j

=
1 + j − Yj+1

1 + Yj+1
+ 1

=
1 + (j + 1)

1 + Yj+1

= Mj+1.

If instead Yj+1 = 0, then trivially Yj = 0, and Mj = 1 + j < 2 + j = Mj+1. This proves that {Mj} is a
supermartingale with respect to {Fj} as desired.

Corollary 1 Suppose that A ⊆ {1, . . . , d} is fixed, while Z1, . . . , Zd
i.i.d.∼ Bernoulli(ρ). Let J be a stop-

ping time in reverse time with respect to the filtration {Fj}, whereFj = σ
(
{
∑
k≤j,k∈A Zk} ∪ {Zk : j < k < d, k ∈ A}

)
with σ(·) denoting a σ-algebra, and the variables {Zk : k ≤ j, k ∈ A} are exchangeable with respect to
Fj . Then

E

[
1 + card ({k : k ≤ J, k ∈ A})

1 +
∑
k≤J,k∈A Zk

]
≤ ρ−1.

Proof 6 (Proof of Corollary 1) Let A = {j1, . . . , jm} where 1 ≤ j1 < · · · < jm ≤ d. Then by consider-
ing the i.i.d. sequence

Zj1 , . . . , Zjm

in place of Z1, . . . , Zd, we see that this result is equivalent to Lemma 4.

Proof 7 (Proof of Lemma 2) [From [35]] We may assume ρ < 1 to avoid the trivial case. We first
introduce a different definition for {Zj}dj=1 by defining a random set A ⊆ {1, . . . , d} where for each j,
independently,

P (j ∈ A) =
1− ρj
1− ρ

.

We then define random variables Q1, . . . , Qd
i.i.d.∼ Bernoulli(ρ), which are generated independently of

the random set A. Finally, we define

Zj = Qj · 1 (j ∈ A) + 1 (j /∈ A) . (S24)

Then {Zj}dk=1 are mutually independent and P (Zj = 1) = 1 − P(j ∈ A) · P(Qj = 0) = ρj , that is,
Zj ∼ Bernoulli(ρj). This new definition of {Zj}dj=1 meet all the conditions required by Lemma 2, so that
we can apply this new definition in the following proof.

As Zj = Qj · 1 (j ∈ A) + 1 (j /∈ A) for all j, we have

1 + J

1 + Z1 + · · ·+ ZJ
=

1 + card ({j ≤ J : j ∈ A}) + card ({j ≤ J : j /∈ A})
1 +

∑
j≤J,j∈AQj + card ({j ≤ J : j /∈ A})

≤ 1 + card ({j ≤ J : j ∈ A})
1 +

∑
j≤J,j∈AQj

,

(S25)
where the last step uses the identify a+c

b+c ≤
a
b whenever 0 < b ≤ a and c ≥ 0. Therefore, it will be

sufficient to prove that

E

[
1 + card ({j ≤ J : j ∈ A})

1 +
∑
j≤J,j∈AQj

∣∣∣∣∣A
]
≤ ρ−1, (S26)
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To prove (S26), first let Q̃j = Qj · 1(j ∈ A), and define a filtration {F ′j} where F ′j is the σ-algebra
generated as

F ′j = σ
({
Q̃1 + · · ·+ Q̃j , Q̃j+1, · · · , Q̃d,A

})
.

Next for any j, by (S24) we see that

Z1 + · · ·+ Zj , Zj+1, . . . , Zd ∈ F ′j ⇒ Fj ⊆ F ′j ,

so J is a stopping time (in reverse time) with respect to F ′j . Finally, since the Qj ’s are independent of
A, (S26) follows from Corollary 1 after conditioning on A.

37



S9 Supplementary figures
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Figure S1: In the 1vs1 enrichment analysis, comparison of Clipper and four other generic FDR control meth-
ods (BH-pool, BH-pair-2as1, BH-pair-mis, and locfdr-emp) in terms of their FDR control and power. At target FDR
thresholds q ∈ {1%, 2%, · · · , 10%}, each method’s actual FDRs and power are evaluated on 200 simulated datasets
with d = 1000 or 10,000 features generated from (a) the Gaussian distribution, (b) the Poisson distribution, or (c) the
negative binomial distribution under homogeneous (two left columns) and heterogeneous (two right columns) back-
ground scenarios. Among the methods that control the FDR, Clipper is the second most powerful for homogeneous
background and the most powerful for heterogeneous background.
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Figure S2: In the 2vs1 enrichment analysis (columns 1 and 3) and differential analysis (columns 2 and 4), com-
parison of Clipper and five other generic FDR control methods (BH-pooled, BH-pair-2as1, BH-pair-mis, locfdr-emp,
and locfdr-swap) in terms of their FDR control and power. At target FDR thresholds q ∈ {1%, 2%, · · · , 10%}, each
method’s actual FDRs and power are evaluated on 200 simulated datasets with d = 10,000 features generated
from (a) the Gaussian distribution, (b) the Poisson distribution, or (c) the negative binomial distribution under ho-
mogeneous(two left columns) and heterogeneous (two right columns) background scenarios. Among the methods
that control the FDR, Clipper is the second most powerful for homogeneous background and the most powerful for
heterogeneous background (except for differential analysis with q ≤ 2%).
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Figure S3: In the 3vs3 enrichment analysis without (columns 1 and 3) or with outliers (columns 2 and 4), compari-
son of Clipper and six other generic FDR control methods (BH-pooled, BH-pair-correct, BH-pair-2as1, BH-pair-mis,
locfdr-emp, and locfdr-swap)in terms of their FDR control and power in 3vs3 enrichment analysis with possible
outliers. At target FDR thresholds q ∈ {1%, 2%, · · · , 10%}, each method’s actual FDRs and power are evaluated
on 200 simulated datasets with d = 10,000 features generated from (a) the Gaussian distribution, (b) the Poisson
distribution, or (c) the negative binomial distribution under homogeneous (two left columns) and heterogeneous
(two right columns) background scenarios. 10% of the features are interesting features. Among the methods that
control the FDR, Clipper is the second most powerful for homogeneous background and the most powerful for
heterogeneous background.
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Figure S4: In the 3vs3 differential analysis without (columns 1 and 3) or with outliers (columns 2 and 4),
comparison of Clipper and six other generic FDR control methods (BH-pooled, BH-pair-correct, BH-pair-2as1,
BH-pair-mis, locfdr-emp, and locfdr-swap) in terms of their FDR control and power. At target FDR thresholds
q ∈ {1%, 2%, · · · , 10%}, each method’s actual FDRs and power are evaluated on 200 simulated datasets with
d = 10,000 features generated from (a) the Gaussian distribution, (b) the Poisson distribution, or (c) the negative
binomial distribution under homogeneous (two left columns) and heterogeneous (two right columns) background
scenarios. Among the methods that control the FDR, Clipper is the second most powerful for homogeneous back-
ground and the most powerful for heterogeneous background (except for Poisson distribution where Clipper is
second to BH-pair-correct, an idealistic method).
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Figure S5: In the 1vs1 enrichment analysis, comparison of Clipper and three other generic FDR control methods
using Storey’s q-value (qvalue-pool, qvalie-pair-2as1, and qvalue-pair-mis) in terms of their FDR control and power.
At target FDR thresholds q ∈ {1%, 2%, · · · , 10%}, each method’s actual FDRs and power are evaluated on 200
simulated datasets with d = 1000 or 10,000 features generated from (a) the Gaussian distribution, (b) the Poisson
distribution, or (c) the negative binomial distribution under homogeneous (two left columns) and heterogeneous
(two right columns) background scenarios. Among the methods that control the FDR, Clipper is the second most
powerful for homogeneous background and the most powerful for heterogeneous background.
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Figure S6: In the 2vs1 enrichment analysis (columns 1 and 3) and differential analysis (columns 2 and 4), compar-
ison of Clipper and three other generic FDR control methods using Storey’s q-value (qvalue-pool, qvalie-pair-2as1,
and qvalue-pair-mis) in terms of their FDR control and power. At target FDR thresholds q ∈ {1%, 2%, · · · , 10%},
each method’s actual FDRs and power are evaluated on 200 simulated datasets with d = 10,000 features generated
from (a) the Gaussian distribution, (b) the Poisson distribution, or (c) the negative binomial distribution under ho-
mogeneous (two left columns) and heterogeneous (two right columns) background scenarios. Among the methods
that control the FDR, Clipper is the second most powerful for homogeneous background and the most powerful for
heterogeneous background.
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Figure S7: In the 3vs3 enrichment analysis without (columns 1 and 3) or with outliers (columns 2 and 4), com-
parison of Clipper and four other generic FDR control methods using Storey’s q-value (qvalue-pooled, qvalue-pair-
correct, qvalue-pair-2as1, and qvalue-pair-mis) in terms of their FDR control and power in 3vs3 enrichment analysis
with possible outliers. At target FDR thresholds q ∈ {1%, 2%, · · · , 10%}, each method’s actual FDRs and power
are evaluated on 200 simulated datasets with d = 10,000 features generated from (a) the Gaussian distribution,
(b) the Poisson distribution, or (c) the negative binomial distribution under homogeneous (two left columns) and
heterogeneous (two right columns) background scenarios. Among the methods that control the FDR, Clipper is the
second most powerful for homogeneous background and the most powerful for heterogeneous background.
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Figure S8: In the 3vs3 differential analysis without (columns 1 and 3) or with outliers (columns 2 and 4), com-
parison of Clipper and four other generic FDR control methods using Storey’s q-value (qvalue-pooled, qvalue-pair-
correct, qvalue-pair-2as1, and qvalue-pair-mis) in terms of their FDR control and power. At target FDR thresholds
q ∈ {1%, 2%, · · · , 10%}, each method’s actual FDRs and power are evaluated on 200 simulated datasets with
d = 10,000 features generated from (a) the Gaussian distribution, (b) the Poisson distribution, or (c) the negative
binomial distribution under homogeneous (two left columns) and heterogeneous (two right columns) background
scenarios. Among the methods that control the FDR, Clipper is the second most powerful for homogeneous back-
ground and the most powerful for heterogeneous background (except for Poisson distribution where Clipper is
second to qvalue-pair-correct, an idealistic method).
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Figure S9: In the 3vs3 differential analysis without (columns 1 and 3) or with outliers (columns 2 and 4), comparison
of Clipper, BH-pair-correct (known dispersion), and BH-pair-correct (unknown dispersion) in terms of their FDR
control and power. At target FDR thresholds q ∈ {1%, 2%, · · · , 10%}, each method’s actual FDRs and power are
evaluated on 200 simulated datasets with d = 10,000 features generated from the negative binomial distribution
under homogeneous (two left columns) and heterogeneous (two right columns) background scenarios. BH-pair-
correct (unknown dispersion) cannot control the FDR in all settings. In contrast, Clipper is consistently the most
powerful for homogeneous and heterogeneous background.
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Figure S10: In the 10vs10 enrichment analysis with and without outliers, comparison of Clipper and eight generic
FDR control methods (BH-pooled, BH-pair-Wilcoxon, BH-pair-parametric, and BH-pair-permutation, BH-pair-2as1,
BH-pair-mis, locfdr-emp, and locfdr-swap) in terms of their FDR control and power. At target FDR thresholds
q ∈ {1%, 2%, · · · , 10%}, each method’s actual FDRs and power are evaluated on 200 simulated datasets with
d = 10,000 features generated from the Gaussian distribution (left), the Poisson distribution (middle), or the negative
binomial distribution (right) under heterogeneous background scenarios. Clipper achieves the highest power for all
three distributions.
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Figure S11: In 3vs3 enrichment analysis with different proportions of interesting features without outliers,
comparison of Clipper and six generic FDR control methods (BH-pooled, BH-pair-correct, BH-pair-2as1, BH-
pair-mis, locfdr-emp, and locfdr-swap) in terms of their FDR control and power. At target FDR thresholds
q ∈ {1%, 2%, · · · , 10%}, each method’s actual FDRs and power are evaluated on 200 simulated datasets with
d = 10,000 features generated from the Gaussian distribution, the Poisson distribution, or the negative binomial
distribution, with the proportion of interesting features being 0.2 (columns 1 and 3) or 0.4 (columns 2 and 4) under
homogeneous (columns 1 and 2) and heterogeneous (columns 3 and 4) background scenarios. Clipper achieves
the highest power for all distributions.

49



Homogeneous background Heterogeneous background

Cor=0.2                 Cor=0.4 Cor=0.2                 Cor=0.4

Gaussian

2
4
6
8

10

25

50
75

100

0

25

50

75

100

2
4
6
8

10

25

50
75

100

0

25

50

75

100
0 2 4 6 8 10

0 2 4 6 8 10

0 2 4 6 8 10

0 2 4 6 8 10

A
ct

ua
l F

D
R

 (
%

)
P

ow
er

 (
%

)

2
4
6
8

10

25

50
75

100

0

25

50

75

100

2
4
6
8

10

25

50
75

100

0

25

50

75

100
0 2 4 6 8 10

0 2 4 6 8 10

0 2 4 6 8 10

0 2 4 6 8 10

Clipper
BH−pool
BH−pair−correct
BH−pair−2as1
BH−pair−mis
locfdr−emp
locfdr−swap

Figure S12: In the 3vs3 enrichment analysis with correlated features, comparison of Clipper and six other
generic FDR control methods (BH-pooled, BH-pair-correct, BH-pair-2as1, BH-pair-mis, locfdr-emp, and locfdr-
swap) in terms of their FDR control and power in 3vs3 enrichment analysis. At target FDR thresholds q ∈
{1%, 2%, · · · , 10%}, each method’s actual FDRs and power are evaluated on 200 simulated datasets with d =
10,000 features generated from a multivariate Gaussian distribution with a correlation 0.2 (columns 1 and 3) or 0.4
(columns 2 and 4) between features. Among the methods that control the FDR, Clipper is the second most powerful
for homogeneous background and the most powerful for heterogeneous background.
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Figure S13: In the 3vs3 enrichment analysis with and without outliers, comparison of the default Clipper, the Clipper
variant using the t statistic as the contrast score (Clipper-t), and six generic FDR control methods (Clipper BH-
pooled, BH-pair-correct, BH-pair-2as1, BH-pair-mis, locfdr-emp, and locfdr-swap) in terms of their FDR control and
power. At target FDR thresholds q ∈ {1%, 2%, · · · , 10%}, each method’s actual FDRs and power are evaluated on
200 simulated datasets with d = 10,000 features generated from the Gaussian distribution, the Poisson distribution,
or the negative binomial distribution under homogeneous (columns 1 and 2) and heterogeneous (columns 3 and 4)
background scenarios. Clipper achieves higher power than Clipper-t does.
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Figure S14: In the 3vs3 differential analysis with and without outliers, comparison of the default Clipper, the
Clipper variant using the t statistic to calculate the degree of interestingness (Clipper-t), and six generic FDR
control methods (Clipper BH-pooled, BH-pair-correct, BH-pair-2as1, BH-pair-mis, locfdr-emp, and locfdr-swap) in
terms of their FDR control and power. At target FDR thresholds q ∈ {1%, 2%, · · · , 10%}, each method’s actual
FDRs and power are evaluated on 200 simulated datasets with d = 10,000 features generated from the Gaussian
distribution, the Poisson distribution, or the negative binomial distribution under homogeneous (columns 1 and 2)
and heterogeneous (columns 3 and 4) background scenarios. Clipper achieves higher power than Clipper-t does.
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Human monocyte semi−synthetic datasets by simulation strategy 1
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Figure S15: Comparison of Clipper and two popular DEG identification methods—edgeR and DESeq2—in DEG
analysis on semi-synthetic bulk RNA-seq data (generated from human monocyte real data using simulation strategy
1 in Supp. Section S6.3). (a) FDR control, power given the same target FDR, and power given the same actual FDR.
(b) Ranking consistency of the true DEGs among the top 100 DEGs identified by each method. The consistency
is defined between the genes’ ranking based on edgeR/DESeq2’s p-values or Clipper’s contrast scores and their
ranking based on true expression fold changes. (c) Reproducibility between two semi-synthetic datasets as tech-
nical replicates. Three reproducibility criteria are used: the IDR, Pearson correlation, and Spearman correalation.
Each criterion is calculated for edgeR/DESeq2’s p-values or Clipper’s contrast scores on the two semi-synthetic
datasets. Among the three methods, only Clipper controls the FDR, and Clipper achieves the highest power, the
best gene ranking consistency, and the best reproducibility.
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Yeast semi−synthetic datasets by simulation strategy 1
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Figure S16: Comparison of Clipper and two popular DEG identification methods—edgeR and DESeq2—in DEG
analysis on semi-synthetic bulk RNA-seq data (generated from yeast real data using simulation strategy 1 in Supp.
Section S6.3). (a) FDR control, power given the same target FDR, and power given the same actual FDR. (b)
Ranking consistency of the true DEGs among the top 100 DEGs identified by each method. The consistency is
defined between the genes’ ranking based on edgeR/DESeq2’s p-values or Clipper’s contrast scores and their
ranking based on true expression fold changes. (c) Reproducibility between two semi-synthetic datasets as tech-
nical replicates. Three reproducibility criteria are used: the IDR, Pearson correlation, and Spearman correalation.
Each criterion is calculated for edgeR/DESeq2’s p-values or Clipper’s contrast scores on the two semi-synthetic
datasets. Among the three methods, only Clipper controls the FDR, and Clipper achieves the highest power, the
best gene ranking consistency, and the best reproducibility.
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Yeast semi−synthetic datasets by simulation strategy 2
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Figure S17: Comparison of Clipper and two popular DEG identification methods—edgeR and DESeq2—in DEG
analysis on semi-synthetic bulk RNA-seq data (generated from yeast real data using simulation strategy 2 in Supp.
Section S6.3). (a) FDR control, power given the same target FDR, and power given the same actual FDR. (b)
Ranking consistency of the true DEGs among the top 100 DEGs identified by each method. The consistency is
defined between the genes’ ranking based on edgeR/DESeq2’s p-values or Clipper’s contrast scores and their
ranking based on true expression fold changes. (c) Reproducibility between two semi-synthetic datasets as tech-
nical replicates. Three reproducibility criteria are used: the IDR, Pearson correlation, and Spearman correalation.
Each criterion is calculated for edgeR/DESeq2’s p-values or Clipper’s contrast scores on the two semi-synthetic
datasets. Among the three methods, only Clipper controls the FDR, and Clipper achieves the highest power, the
best gene ranking consistency, and the best reproducibility.
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Figure S18: Histograms of p-values (one p-value per non-DEG) that are obtained by testing whether each non-
DEG’s p-values (output by DESeq2 or edgeR) follow a uniform distribution. For each real dataset (yeasts on the
top and human monocytes on the bottom) and each simulation strategy (red for strategy 1 and blue for strategy
2), a histogram is plotted for DESeq2 (left) or edgeR (right); each p-value is calculated across 100 semi-synthetic
datasets (excluding NA p-values). In each panel, more right skewed histograms are considered better.
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Figure S19: The p-value distributions of 16 non-DEGs that are most frequently identified by DESeq2 at q = 5%
from 200 semi-synthetic datasets. The p-values of these 16 genes tend to be overly small, and their distributions
are non-uniform with a mode close to 0.
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Figure S20: Enrichment q-values of GO terms that are found enriched in the DEGs that are uniquely identified
by Clipper in pairwise comparison of (a) Clipper vs. edgeR and (b) Clipper vs. DESeq2. These GO terms are all
related to immune response and thus biologically meaningful.
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Figure S21: The p-values of the top enriched pathways in the DEGs that are uniquely identified by (a) Clipper and
(b) DESeq2; i.e., the DEGs that are only identified by one method by missed by the other two methods. There are
more immune-related pathways enriched in (a) than (b).
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Figure S22: Comparison of Clipper and five scRNA-seq DEG identification methods on semi-synthetic Drop-seq
data generated by scDesign2 (based on a real Drop-seq dataset of PBMCs). The target FDR threhold q ranges
from 1% to 10%. In the “Actual FDR vs. Target FDR” plot (left), points above the dashed diagonal line indicate failed
FDR control. Clipper controls the FDR while maintaining high power, demonstrating Clipper’s good performance in
single-cell DE analyses.
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Figure S23: In the 3vs3 enrichment analysis, distributions of contrast scores used by two Clipper variants: the
default Clipper using the minus contrast score (top) and the Clipper variant using the two-sample t statistic (bottom).
Features are generated from the Gaussian distribution under the heterogeneous background scenario (see Supp.
Section S4). The vertical dashed lines indicate the contrast score cutoffs found by the BC procedure at the target
FDR threshold q = 1%. The distribution of the minus contrast scores has a heavier right tail (5.22%) than that of
the distribution of the t statistic contrast scores (1.19%).
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Figure S24: In 1vs1 enrichment analysis, comparison of four Clipper variant algorithms (Clipper-minus-BC,
Clipper-minus-aBH, Clipper-max-BC, and Clipper-max-aBH) in terms of their FDR control and power. At target
FDR thresholds q ∈ {1%, 2%, · · · , 10%}, each method’s actual FDRs and power are evaluated on 200 simulated
datasets with d = 1000 or 10,000 features generated from (a) the Gaussian distribution, (b) the Poisson distribu-
tion, or (c) the negative binomial distribution under homogeneous (two left columns) and heterogeneous (two right
columns) background scenarios. Clipper-minus-BC is chosen as the default implementation under this scenario.
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Figure S25: In the 2vs1 enrichment analysis (columns 1 and 3) and differential analysis (columns 2 and 4), compar-
ison of four Clipper variant algorithms (Clipper-minus-GZ(h=1), Clipper-minus-GZ(h=2), Clipper-max-GZ(h=1), and
Clipper-max-GZ(h=2)) in terms of their FDR control and power. At target FDR thresholds q ∈ {1%, 2%, · · · , 10%},
each method’s actual FDRs and power are evaluated on 200 simulated datasets with d = 10,000 features generated
from (a) the Gaussian distribution, (b) the Poisson distribution, or (c) the negative binomial distribution under homo-
geneous (two left columns) and heterogeneous (two right columns) background scenarios. Clipper-max-GZ(h=1)
is chosen as the default implementation under this scenario.
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Figure S26: In 3vs3 enrichment analysis without (columns 1 and 3) or with outliers (columns 2 and 4), comparison
of four Clipper variant algorithms (Clipper-minus-BC, Clipper-minus-aBH, Clipper-max-BC, and Clipper-max-aBH)
in terms of their FDR control and power. At target FDR thresholds q ∈ {1%, 2%, · · · , 10%}, each method’s actual
FDRs and power are evaluated on 200 simulated datasets with d = 10,000 features generated from (a) the Gaussian
distribution, (b) the Poisson distribution, or (c) the negative binomial distribution under homogeneous (two left
columns) and heterogeneous (two right columns) background scenarios. Clipper-minus-BC is chosen as the default
implementation under this scenario.
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Figure S27: In 3vs3 differential analysis without (columns 1 and 3) or with outliers (columns 2 and 4), comparison
of six Clipper variant algorithms (Clipper-minus-GZ(h=1), Clipper-minus-GZ(h=3), Clipper-minus-GZ(h=9), Clipper-
max-GZ(h=1), Clipper-max-GZ(h=3), and Clipper-max-GZ(h=9)) in terms of their FDR control and power. At target
FDR thresholds q ∈ {1%, 2%, · · · , 10%}, each method’s actual FDRs and power are evaluated on 200 simulated
datasets with d = 10,000 features generated from (a) the Gaussian distribution, (b) the Poisson distribution, or (c)
the negative binomial distribution under homogeneous (two left columns) and heterogeneous (two right columns)
background scenarios. Clipper-max-GZ(h=1) is chosen as the default implementation under this scenario.
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Figure S28: In the 3vs3 enrichment analysis without (columns 1 and 3) or with outliers (columns 2 and 4), compar-
ison of two Clipper variant algorithms (Clipper-minus-BC, Clipper-max-GZ(h=1)) in terms of their FDR control and
power. At target FDR thresholds q ∈ {1%, 2%, · · · , 10%}, each method’s actual FDRs and power are evaluated
on 200 simulated datasets with d = 10,000 features generated from (a) the Gaussian distribution, (b) the Poisson
distribution, or (c) the negative binomial distribution under homogeneous (two left columns) and heterogeneous
(two right columns) background scenarios. Clipper-minus-BC is chosen as the default implementation under this
scenario.
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Figure S29: (a) log10-transformed mean Hi-C interaction matrices (µX and µY in Section S6.5) under the two
conditions. DIR regions are highlighted in red squares. (b) In one randomly picked Hi-C semi-synthetic dataset,
closer genomic regions tend to have higher contact intensities.
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