
KwARG: PARSIMONIOUS RECONSTRUCTION OF ANCESTRAL

RECOMBINATION GRAPHS WITH RECURRENT MUTATION

ANASTASIA IGNATIEVA1, RUNE B. LYNGSØ 2, PAUL A. JENKINS 1 3 4, AND JOTUN HEIN 2 4

Supplementary Materials

1 Department of Statistics, University of Warwick, Coventry CV4 7AL, UK
2 Department of Statistics, University of Oxford, 24-29 St Giles’, Oxford OX1 3LB, UK
3 Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK
4 The Alan Turing Institute, British Library, London NW1 2DB, UK

KwARG i

S1. KwARG pseudocode

Let D be an input data matrix with entries 0, 1 or ?. Denote by Di,j the entry of D at
position (i, j). Let Rr(D, i) and Rc(D, j) denote the resulting matrix when the i-th row or
the j-th column of D is deleted, respectively. Let the history H be a set storing all of the
intermediate states visited on the path from D to the root of the ARG.

Algorithm 1: Clean (adapted from Song and Hein, 2003)

Input: Dataset D, history H
Output: Reduced dataset D, updated history H′
Initialise C ← true, D ← D, H′ ← H;
while C do

if two distinct rows i, j agree: Di,k ∈ {Dj,k , ?} ∀k then
D ← Rr(D, i), H′ ← H′ ∪ D ;

else if there is a column i such that Dk,i = 1 for exactly one k then
D ← Rc(D, i), H′ ← H′ ∪ D ;

else if two distinct neighbouring columns i, j agree: Dk,i ∈ {Dk,j , ?} ∀k then
D ← Rc(D, i), H′ ← H′ ∪ D ;

else
C ← false;

end

return (D, H′);

Define the following operations:

(1) Recurrent mutation: D̃ = RM(D, i, j) is the result of a recurrent mutation in row i at

column j; D̃ is obtained from D by changing the (i, j)-th entry from 0 to 1 or from 1
to 0.

(2) Recombination: D̃ = Rec(D, i, j) is the result of a recombination in row i with break-

point just after column j. Namely, D̃ is obtained from D by inserting a copy of the i-th

row just below itself, and setting D̃i,k = ? ∀k ≤ j and D̃i+1,k = ? ∀k > j.

(3) Two consecutive recombinations: D̃ = RRec(D, i, j, k, l) is the result of performing two
recombinations, in rows i and k with breakpoints at j and l, respectively.

Note that for recombination events, not all row and column positions should to be considered,
as some moves are guaranteed not to resolve any incompatibilities in the dataset. We apply
the ideas detailed in Lyngsø et al. (2005, Section 3.3) to restrict the rows and breakpoints
considered for recombination events. Suppose that as a result, R is the list of row and column
indices (i, j) to consider for recombination events, and RR is the list of indices (i, j, k, l) to
consider for two consecutive recombination events.

ii KwARG

Algorithm 2: Neighbourhood

Input: Dataset D
Output: Neighbourhood N
Initialise N ← {∅};
for (i, j) ∈ R do
N ← N ∪ Rec(D, i, j);

end
for (i, j, k, l) ∈ RR do
N ← N ∪ RRec(D, i, j, k, l);

end
for all rows i do

for all columns j such that Di,j 6= ? do
N ← N ∪ RM(D, i, j);

end
end
return N ;

Algorithm 3: KwARG

Input: Dataset D
Output: History H
Initialise i← 1, H ← {D}, (D1,H)← Clean(D,H);

while Di 6= ∅ do
Ni ← {∅}, Li ← {∅}, S ← {∅};
Ni ← Neighbourhood(Di) = {N 1

i ,N 2
i , . . .};

for j = 1 to |Ni| do
(N j

i ,L
j
i)← Clean(N j

i ,H ∪N
j
i);

Ni ← Ni ∪N j
i , Li ← Li ∪ Lj

i ;

S ← S ∪ S̃
(
N j

i ,N
j
i ,Di

)
, where S̃

(
N j

i ,N
j
i ,Di

)
is computed using (??);

end

Randomly draw an index k from {1, . . . , |Ni|} with probabilities proportional to entries
of S;

Set Di+1 ← N k
i , H ← Lk

i ;
i← i + 1;

end
return H;

S2. Default cost configuration

If the number of iterations Q > 1 is specified but no costs are input, KwARG runs each of
the following 13 cost configurations Q times:

(CSE, CRM , CR, CRR) ∈ {(∞,∞, 1.0, 2.0), (1.0, 1.01, 1.0, 2.0), (0.9, 0.91, 1.0, 2.0), (0.8, 0.81, 1.0, 2.0),

(0.7, 0.71, 1.0, 2.0), (0.6, 0.61, 1.0, 2.0), (0.5, 0.51, 1.0, 2.0),

(0.4, 0.41, 1.0, 2.0), (0.3, 0.31, 1.0, 2.0), (0.2, 0.21, 1.0, 2.0),

(0.1, 0.11, 1.0, 2.0), (0.01, 0.02, 1.0, 2.0), (1.0, 1.1,∞,∞)}.

KwARG iii

Figure S1. Solution tile plot for the Kreitman dataset.

The effectiveness of this is illustrated in Figure S1, which is based on the set of all possible
minimal solutions identified for the Kreitman dataset. Fixing CR = 1.0 and CRR = 2.0, each tile
represents a pair (CSE, CRM). Each tile is coloured and labelled according to the corresponding
cost-optimal solution, in the form {x, y, z}, giving the number of SE, RM and recombination
events, respectively. For instance, if CSE = 0.5 and CRM = 0.61, the solutions {3, 0, 3} (with
cost 3 · 0.5 + 3 · 1.0 = 4.5) and {5, 0, 2} (with cost 5 · 0.5 + 2 · 1.0 = 4.5) have the lowest costs
over all feasible solutions.

The default cost configuration includes all pairs (CSE, CRM) on the diagonal in this plot,
falling on the red line. This line crosses all optimal solutions which maximise the number
of SE events for each possible number of recombinations. Such events affect only a single
sequence at a single site in the input dataset, so are, in a sense, more parsimonious than
recurrent mutations occurring on internal branches.

S3. Comparison to PAUP* and Beagle

S3.1. PAUP*. 1 100 genealogies were simulated using msprime (parameters: 20 sequences,
Ne = 1). For each tree, Seq-Gen (Rambaut and Grass, 1997) was used to add mutations
(parameters: 1 000 sites, mutation rate per generation per site set by the scaling constant
s = 0.01); only transitions were allowed, to fulfil the requirement that sites mutate between
exactly two states. 1 063 datasets exhibited incompatibilities caused by recurrent mutations.
KwARG was run for a total of Q = 600 iterations per dataset; 150 of these were used to estimate
Rmin, and 450 were run with a range of costs to estimate Pmin. The runs were terminated after
10 minutes (if 600 iterations had not been completed by then, the results were discarded; this
happened in 69 cases); a total of 994 successful runs were performed.

S3.2. Beagle. 1 100 datasets were simulated using msprime (Kelleher et al., 2016), under the
infinite sites assumption (parameters: Ne = 1, mutation rate per generation per site 0.02,
recombination rate per site 0.0003, 40 sequences of length 2 000bp). Of the generated datasets,
38 had no incompatible sites, and runs were terminated if Beagle took over 10 minutes to
complete (which happened in 25 cases), leaving 1 037 datasets for testing. The parameters
were chosen to produce datasets on which Beagle could be run within a reasonable amount of
time; the value of Rmin for the simulated datasets varied between 1 and 10.

S4. Comparison to SHRUB and SHRUB-GC

The performance of KwARG on larger datasets was tested against the parsimony-based
heuristic methods SHRUB and SHRUB-GC. Both methods implement a backwards-in-time

iv KwARG

construction of ARGs, using a dynamic programming approach to choose among possible re-
combination events. SHRUB produces an upper bound on Rmin under the infinite sites assump-
tion. SHRUB-GC also allows gene conversion events; setting the maximum gene conversion
tract length to 1 makes this equivalent to recurrent mutation. The algorithm seeks to minimise
the total number of events, essentially assigning equal costs to recombination and recurrent
mutation. This differs from KwARG in that a single solution is produced for a given dataset,
rather than a full range of solutions varying in the number of recombinations and recurrent
mutations.

Using msprime and Seq-Gen, 300 datasets of 100 sequences were simulated, with a range
of mutation and recombination rates and sequence lengths of 2 000, 5 000, 8 000 and 10 000
bp. For each dataset, KwARG was run for a total of Q = 260 iterations, with the default cost
configurations and T = 30. The resulting upper bound on Rmin was compared to that produced
by SHRUB, and the minimum number of events over all identified solutions was compared to
the solution produced by SHRUB-GC (configured to allow length-1 gene conversions).

0

5

10

15

20

25

0 5 10 15 20 25
SHRUB estimate of Rmin

K
w

A
R

G
 e

st
im

at
e

0

5

10

15

0 5 10 15
SHRUB−GC estimate of event number

K
w

A
R

G
 e

st
im

at
e

Figure S2. Comparison of KwARG to SHRUB and SHRUB-GC. x-axis: estimate produced
by SHRUB (left) and SHRUB-GC (right). y-axis: estimate produced by KwARG. Instances
where equally good solutions were found lie on the red diagonal line. Size of points is
proportional to the number of corresponding datasets.

10−4

10−2

100

102

0 5 10 15 20 25
Estimate of Rmin

C
P

U
 ti

m
e

(s
ec

on
ds

)

10−4

10−2

100

102

104

0 5 10 15 20 25
Estimate of Rmin

C
P

U
 ti

m
e

(s
ec

on
ds

)

Figure S3. Blue points: time taken to run Q = 20 iterations of KwARG (left: disallowing
recurrent mutations, right: allowing both recombination and recurrent mutation). Blue
lines: mean values. Red line: mean run time of SHRUB (left) and SHRUB-GC (right).
Time in seconds is given on a log scale.

KwARG obtained solutions at least as good as SHRUB’s in 292 (97.3%) of 300 cases, outper-
forming it in 35 (11.7%) instances. KwARG obtained solutions at least as good as SHRUB-GC

KwARG v

in 296 (98.7%) cases, outperforming it in 2 instances. The results and the run times are illus-
trated in Figures S2 and S3. On average, for relatively small and simple datasets, KwARG
takes approximately the same time per one iteration as a run of SHRUB or SHRUB-GC, and
outperforms both programs on more complex datasets.

S5. Comparison to tsinfer, RENT+, and ARGweaver

Datasets were simulated using msprime under the infinite sites assumption (parameters:
Ne = 10 000, 20 sequences of length 1 000bp), with a range of recombination rates ({1 · 10−7, 2 ·
10−7, 4 ·10−7, 8 ·10−7, 1.6 ·10−6} per site per generation) and mutation rates ({5 ·10−8, 1 ·10−7, 2 ·
10−7, 4 · 10−7, 8 · 10−7, 1.6 · 10−6, 3.2 · 10−6, 6.4 · 10−6, 1.28 · 10−5} per site per generation). These
parameters were chosen to cover a broad range of the simulated number of recombinations and
mutations. 100 datasets were simulated for each combination of rates.

RENT+, tsinfer, ARGweaver, and KwARG were run on each dataset. For tsinfer, the
ancestral state must be specified at each variable site, and was set to the simulated truth.
ARGweaver requires the specification of mutation and recombination rates; these were set to
the simulation parameters used. ARGweaver was run for 1 200 iterations, discarding the first
1 000 as burn-in, and then sampling ARGs with intervals of 20 steps (obtaining 10 in total).
KwARG was run for one iteration per dataset, with the parameters T = 30, CSE = CRM =∞,
and the known ancestral sequence set as the root.

For each dataset, the local trees output by each program were then compared to the simulated
true trees, by calculating the Kendall–Colijn metric at each variable site position. As tsinfer can
output trees with unresolved polytomies, these were resolved randomly before calculating the
metric for the sake of fair comparison. The mean was then calculated across sites, and for each
combination of recombination and mutation rate the metric was averaged across the datasets.
The results are presented in Figure S4. A comparison of the run times of the programs used is
illustrated in Figure S5.

●

●

●

●

●

●

●

●

●●
●
●

●

●
●
●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

ρ = 1e−07

0

10

20

30

10−7 10−6 10−5

Mutation rate

K
−

C
 d

is
ta

nc
e

●

●

●

●

●●●
●

●
●●

●

●
●
●●

●

●

●●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

ρ = 2e−07

0

10

20

30

10−7 10−6 10−5

Mutation rate

K
−

C
 d

is
ta

nc
e

●

●

●

●

●
●
●

●

●
●●

●

●
●
●
●

●
●●
●

●

●
●●

●

●

●
●

●

●

●

●

●

●

ρ = 4e−07

0

10

20

30

10−7 10−6 10−5

Mutation rate

K
−

C
 d

is
ta

nc
e

●

●

●

●

●●●

●

●
●
●

●

●
●●

●

●
●●

●

●

●●
●

●
●●●

●
●
●

●

●
●

ρ = 8e−07

0

10

20

30

10−7 10−6 10−5

Mutation rate

K
−

C
 d

is
ta

nc
e

●

●

●

●

●●●

●

●
●
●

●

●
●●

●

●

●●

●

●
●
●

●

●
●
●
●

●
●●

●
●
●

0

10

20

30

10−7 10−6 10−5

Mutation rate

K
−

C
 d

is
ta

nc
e

ρ = 1.6e−06

●

●

●

●

ARGweaver

KwARG

RENT+

tsinfer

Figure S4. Comparison of performance in local tree recovery. Dashed vertical lines show
the value of the recombination rate in each panel. Points correspond to mean values; error
bars show mean ± standard error. ARGweaver results not shown past µ = 3.2 · 10−6 due
to prohibitively long run time. Lower K-C distance indicates better accuracy.

vi KwARG

● ● ● ● ● ● ●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

● ● ● ● ● ● ● ●
●

ρ = 1e−07

10−3

10−2

10−1

100

101

102

103

104

10−7 10−6 10−5

Mutation rate

T
im

e
(s

ec
on

ds
, l

og
 s

ca
le

)

● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ● ● ● ● ● ● ●
●

ρ = 2e−07

10−3

10−2

10−1

100

101

102

103

104

10−7 10−6 10−5

Mutation rate

T
im

e
(s

ec
on

ds
, l

og
 s

ca
le

)

● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

● ● ● ● ● ● ● ●
●

ρ = 4e−07

10−3

10−2

10−1

100

101

102

103

104

10−7 10−6 10−5

Mutation rate

T
im

e
(s

ec
on

ds
, l

og
 s

ca
le

)

● ● ●
● ● ● ●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

● ● ● ● ● ● ● ●
●

ρ = 8e−07

10−3

10−2

10−1

100

101

102

103

104

10−7 10−6 10−5

Mutation rate

T
im

e
(s

ec
on

ds
, l

og
 s

ca
le

)

● ● ● ● ● ● ●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●
●

● ● ● ● ● ● ● ●
●

ρ = 1.6e−06

10−3

10−2

10−1

100

101

102

103

104

10−7 10−6 10−5

Mutation rate

T
im

e
(s

ec
on

ds
, l

og
 s

ca
le

)

●

●

●

●

ARGweaver

KwARG

RENT+

tsinfer

Figure S5. Comparison of time taken per dataset. Points show mean run time averaged
over 100 datasets for each combination of rate parameters. Error bars show mean ± standard
error.

S6. Time complexity

The scaling of KwARG’s run time was investigated through simulation. First, we fixed the
sequence length at 5 000bp, and simulated datasets with varying numbers of sequences (from 2
to 30) using msprime, with the infinite sites assumption (parameters: Ne = 10 000, mutation
rate 2 · 10−7 per site per generation, recombination rate 2 · 10−7 per site per generation). 500
simulations were carried out for each number of sequences; for each dataset, KwARG was run
once and the runtime recorded. The results are presented in the left panel of Figure S6. KwARG
runs very quickly when the number of sequences is very low, and shows roughly exponential
growth in run time when the number of sequences is 6 or more.

●

●

●

● ●

●

●

●
●

● ●
●

●

● ●

10−4

10−3

10−2

10−1

100

10 20 30
Number of sequences

T
im

e
(s

ec
on

ds
, l

og
 s

ca
le

)

●

●

●

●

●
●

●

●

●

●
●

●

● ●
●

●
●

10−5

10−4

10−3

10−2

10−1

100

101

102

0 5000 10000 15000
Sequence length

T
im

e
(s

ec
on

ds
, l

og
 s

ca
le

)

Figure S6. Run time versus number of sequences (left panel) and sequence length (right
panel). Lines show mean run time over 500 (100) datasets; error bars show mean ± standard
error.

KwARG vii

Next, we fixed the number of sequences at 20, and simulated datasets with varying sequence
lengths (from 100 to 15 000bp) using msprime, with the infinite sites assumption (same param-
eters as above). 100 simulations were carried out for each sequence length; for each dataset,
KwARG was run once and the runtime recorded. The results are presented in the right panel
of Figure S6. After an initial exponential increase (due to small datasets taking very little time
per iteration), the run time scales roughly linearly in sequence length.

References

Kelleher, J., Etheridge, A. M. and McVean, G. (2016). Efficient coalescent simulation and
genealogical analysis for large sample sizes. PLoS Computational Biology, 12(5), 1–22.

Lyngsø, R. B., Song, Y. S. and Hein, J. (2005). Minimum recombination histories by branch and
bound. In International Workshop on Algorithms in Bioinformatics, pp. 239–250. Springer.

Rambaut, A. and Grass, N. C. (1997). Seq-Gen: an application for the Monte Carlo simulation
of DNA sequence evolution along phylogenetic trees. Bioinformatics, 13(3), 235–238.

Song, Y. S. and Hein, J. (2003). Parsimonious reconstruction of sequence evolution and hap-
lotype blocks. In International Workshop on Algorithms in Bioinformatics, pp. 287–302.
Springer.

	S1. KwARG pseudocode
	S2. Default cost configuration
	S3. Comparison to PAUP* and Beagle
	S3.1. PAUP*
	S3.2. Beagle

	S4. Comparison to SHRUB and SHRUB-GC
	S5. Comparison to tsinfer, RENT+, and ARGweaver
	S6. Time complexity
	References

